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Preface

In his biography of the great twentieth-century theoretical physicist Richard Feyn-
man, Gleick (1993) writes: ‘He (Feynman) believed in the primacy of doubt, not as
a blemish on our ability to know, but as the essence of knowing’. Feynman’s philos-
ophy applies as much to weather and climate forecasting as to fundamental physics,
as made explicit by Tennekes et al. (1987) when they wrote: ‘no forecast is complete
without a forecast of forecast skill’.

The estimation of uncertainty in weather and climate prediction is encapsulated
in the word ‘predictability’. If something is said to be predictable, then presumably
it can be predicted! However, initial conditions are never perfect and neither are the
models used to make these predictions. Hence, the predictability of the forecast is
a measure of how these inevitable imperfections leave their imprint on the forecast.
By virtue of the non-linearity of the climate, this imprint varies from day to day, just
as the weather itself varies; predictability is as much a climatic variable as rainfall,
temperature or wind.

Of course, it is one thing to talk about predictability as if it were just another
climatic variable; it is another thing to estimate it quantitatively. The predictability of a
system is determined by its instabilities and non-linearities, and by the structure of the
imperfections. Estimating these instabilities, non-linearities and structures provides a
set of tough problems, and real progress requires sophisticated mathematical analysis
on both idealised and realistic models.

However, the big world out there demands forecasts of the weather and the climate:
is it going to rain tomorrow, will the Arctic ice cap melt by the end of the century?
The man in the street wanting to know whether to bring his umbrella to work, or
the politician looking for advice on formulating her country’s strategy on climate

xiii



xiv Preface

change, cannot wait for the analysis on existence or otherwise of heteroclinic state-
space orbits to be finalised! The difference between the real world of prediction, and
the more aesthetic world of predictability has been perfectly encapsulated by one of
the pioneers of the subject, Kiku Miyakoda, who said: ‘Predictability is to prediction
as romance is to sex!’. Oscar Wilde, who wrote: ‘The very essence of romance is
uncertainty!’, might well have approved.

However, as we enter the twenty-first century, is this still a fair characterisation? We
would argue not! In the last decade, the romantic world of predictability has collided
head-on with the practical world of prediction. No longer do operational centres
make forecasts without also estimating forecast skill – whether for predictions one
hour ahead or one century ahead. This change has come in the last few years through
the development of ensemble forecast techniques made practical by mind-boggling
developments in high-performance computer technology.

In late 2002, the European Centre for Medium-Range Weather Forecasts
(ECMWF) held a week-long seminar on the topic of Predictability of Weather and
Climate. A subtheme, borrowing from Kiku Miyakoda’s aphorism, was to celebrate
the ‘reconciliation of romance and sex’! World leaders in the field of predictability
of weather and climate gave pedagogical presentations covering the whole range of
theoretical and practical aspects on weather and climate timescales, i.e. from a few
hours to a century. It was decided, as this was a sufficiently landmark meeting and
the presentations sufficiently comprehensive, that it was worth publishing the pro-
ceedings for the benefit of the larger scientific community. During 2004 and 2005
authors were asked to expand and update their presentations.

In fact there is one exception to this strategy. One of the greatest pioneers of the
subject is Ed Lorenz – his prototypical model of chaos spawned a revolution, not only
in meteorology, but in mathematics and physics in general. Ed was unable to come
to the 2002 meeting, but a few years earlier had given a presentation at ECMWF on
what has become known as the Lorenz-1996 model. This paper is widely cited, but
has never been published externally. We decided it would be proper to acknowledge
Ed’s unrivalled contribution to the field of weather and climate predictability by
publishing his 1996 paper in this volume.

Lorenz’s contribution is one of the introductory chapters on predictability where
both general and specific theoretical/mathematical aspects of predictability theory
are discussed. These chapters are followed by contributions on data assimilation
methods. The next chapters represent a journey through the predictability of different
timescales and different phenomena. The link to real-world applications is made
by discussing important developments in operational forecast systems, presenting
methods to diagnose and improve forecast systems, and finally giving examples
utilising predictability in decision-making processes.

We would like to acknowledge the help of Anabel Bowen, Rob Hine, Els Kooij-
Connally, and Matt Lloyd during all stages of the production of this book. Last but
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not least, we would like to thank ECMWF for initiating and supporting the seminar
on which the contributions of this book are based.
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1

Predictability of weather and climate: from
theory to practice

T. N. Palmer
European Centre for Medium-Range
Weather Forecasts, Reading

1.1 Introduction

A revolution in weather and climate forecasting is in progress, made possible by
theoretical advances in our understanding of the predictability of weather and climate
on the one hand, and by the extraordinary developments in supercomputer technology
on the other. Specifically, through ensemble prediction, whose historical development
has been documented by Lewis (2005), weather and climate forecasting is set to enter
a new era, addressing quantitatively the prediction of weather and climate risk in a
range of commercial and humanitarian applications. This chapter gives some back-
ground to this revolution, with specific examples drawn from a range of timescales.

1.2 Perspectives on predictability: theoretical
and practical

Predictions of weather and climate are necessarily uncertain; our observations of
weather and climate are uncertain and incomplete, the models into which we assim-
ilate this data and predict the future are uncertain, and external effects such as vol-
canoes and anthropogenic greenhouse emissions are also uncertain. Fundamentally,
therefore, we should think of weather and climate prediction in terms of equations
whose basic prognostic variables are probability densities ρ(X, t), where X denotes

Predictability of Weather and Climate, ed. Tim Palmer and Renate Hagedorn. Published by Cambridge University Press.
C© Cambridge University Press 2006.
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2 T. N. Palmer

Figure 1.1 Schematic illustration of the climatological probability distribution of
some climatic variable X (solid line) and a forecast probability distribution (dotted
line) in two different situations. The forecast probability distribution in (a) is
obviously predictable. In a theoretical approach to predictability, ρ(X, t) − ρC (X ) in
(b) may not be significantly different from zero overall. However, considered more
pragmatically, the forecast probability distribution in (b) can be considered
predictable if the prediction that it is unlikely that X will exceed Xcrit can influence
decision-makers.

some climatic variable and t denotes time. In this way, ρ(X, t)dV represents the
probability that, at time t, the true value of X lies in some small volume dV of state
space. Prognostic equations for ρ, the Liouville and Fokker–Planck equations, are
described in Ehrendorfer (this volume). In practice these equations are solved by
ensemble techniques, as described in Buizza (this volume).

The question of whether or not X is predictable depends on whether the forecast
probability density ρ(X, t) is sufficiently different from some prior estimate ρC (X ),
usually taken as the climatological probability density of X. What do we mean by
‘sufficiently different’? One could, for example, apply a statistical significance test
to the difference ρ(X, t) − ρC (X ). On this basis, the hypothetical forecast probabil-
ity distribution shown as the dotted curve in Figure 1.1(a) is certainly predictable;
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but the forecast probability distribution shown in Figure 1.1(b) may well not be
predictable.

However, this notion of predictability is a rather idealised one and takes no account
of how ρ(X, t) might be used in practice. In a more pragmatic approach to predictabil-
ity, one would ask whether ρ(X, t) is sufficiently different from ρC (X ) to influence
decision-makers. For example, in Figure 1.1, an aid agency might be interested only
in the right-hand tail of the distribution, because disease A only becomes prevalent
when X > Xcrit. On the basis of Figure 1.1(b), the agency may decide to target scarce
resources elsewhere in the coming season, since the forecast probability that X >

Xcrit is rather low.
These two perspectives on the problem of how to define predictability reflect

the evolving nature of the study of predictability of weather and climate predic-
tion; from a rather theoretical and idealised pursuit to one which recognises that
quantification of predictability is an essential part of operational activities in a wide
range of applications. The latter perspective reflects the fact that the full economic
value of meteorological predictions will only be realised when quantitatively reli-
able flow-dependent predictions of weather and climate risk are achievable (Palmer,
2002).

The scientific basis for ensemble prediction is illustrated in Figure 1.2, based
on the famous Lorenz (1963) model. Figure 1.2 shows that the evolution of some
isopleth of ρ(X, t) depends on starting conditions. This is a consequence of the fact
that the underlying equations of motion

Ẋ = F[X ] (1.1)

are non-linear, so that the Jacobian d F/d X in the linearised equation

d δX

dt
= d F

d X
δX (1.2)

depends at least linearly on the state X about which Equation (1.1) is linearised. As
such, the so-called tangent propagator

M(t, t0) = exp
∫ t

t0

d F

d X
dt ′ (1.3)

depends on the non-linear trajectory X (t) about which the linearisation is performed.
Hence, the evolved perturbations

δX (t) = M(t, t0) δX (t0) (1.4)

depend not only on δX (t0), but also on the region of phase space through which the
underlying non-linear trajectory passes.

It is of interest to note that the formal solution of the Liouville equation, which
describes the evolution of ρ(X, t) arising from initial error only (Ehrendorfer, this
volume, Eq. (4.49)), can be written using the tangent propagator (for all time in
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Figure 1.2 Finite time ensembles of the Lorenz (1963) system illustrating the fact
that in a non-linear system, the evolution of the forecast probability density ρ(X, t)
is dependent on initial state.

the future, not just the time for which the tangent-linear approximation is valid).
Specifically

ρ(X, t) = ρ(X ′, t0)/|det M(t, t0)| (1.5)

where X′ corresponds to the initial state which, under the action of Eq. (1.1), evolves
into the state X at time t. Figure 1.2 shows solutions to Eq. (1.5) using an ensemble-
based approach.

To illustrate the more practical implications of the fact that ρ(X, t) depends on
initial state, I want to reinterpret Figure 1.2 by introducing you to Charlie, a builder
by profession, and a golfing colleague of mine! Charlie, like many members of my
golf club, takes great pleasure in telling me when (he thinks) the weather forecast
has gone wrong. This is mostly done in good humour, but on one particular occasion
Charlie was in a black mood. ‘I have only four words to say to you,’ he announced,
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‘How do I sue?’ I looked puzzled. He continued: ‘The forecast was for a night-time
minimum temperature of five degrees. I laid three thousand square yards of concrete.
There was a frost. It’s all ruined. I repeat – how do I sue?’

If only Charlie was conversant with Lorenz (1963) I could have used Figure 1.2 to
illustrate how in future he will be able to make much more informed decisions about
when, and when not, to lay concrete! Suppose the Lorenz equations represent part of
an imaginary world inhabited by builders, builders’ customers, weather forecasters
and lawyers. In this Lorenz world, the weather forecasters are sued if the forecasts
are wrong! The weather in the Lorenz world is determined by the Lorenz (1963)
equations where all states on the right-hand lobe of the attractor are ‘frosty’ states,
and all states on the left-hand lobe of the attractor are ‘frost-free’ states. In this
imaginary world, Charlie is planning to lay a large amount of concrete in a couple of
days’ time. Should he order the ready-mix concrete lorries to the site? He contacts the
Lorenzian Meteorological Office for advice. On the basis of the ensemble forecasts
in the top left of Figure 1.2 he clearly should not – all members of the ensemble
predict frosty weather. On the basis of the ensemble forecasts in the bottom left of
Figure 1.2 he also should not – in this case it is almost impossible to predict whether
it will be frosty or not. Since the cost of buying and laying concrete is significant, it
is not worth going ahead when the risk of frost is so large.

How about the situation shown in the top right of Figure 1.2? If we took the
patronising but not uncommon view that Charlie, as a member of the general public,
would only be confused by a probability forecast, then we might decide to collapse
the ensemble into a consensus (i.e. ensemble-mean) prediction. The ensemble-mean
forecast indicates that frost will not occur. Perhaps this is equivalent to the real-world
situation that got Charlie so upset. Lorenzian forecasters, however, will be cautious
about issuing a deterministic forecast based on the ensemble mean, because, in the
Lorenz world, Charlie can sue!

Alternatively, the forecasters could tell Charlie not to lay concrete if there is even
the slightest risk of frost. But Charlie will not thank them for that either. He cannot
wait forever to lay concrete since he has fixed costs, and if he doesn’t complete this
job, he may miss out on other jobs. Maybe Charlie will never be able to sue, but
neither will he bother obtaining the forecasts from the Lorenzian Meterorological
Office.

Suppose Charlie’s fixed costs are C, and that he loses L by laying concrete when
a frost occurs. Then a logical decision strategy would be to lay concrete when the
ensemble-based estimate of the probability of frost is less than C/L. The meteorol-
ogists don’t know Charlie’s C/L, so the best they can do is provide him with the full
probability forecast, and allow him to decide whether or not to lay concrete.

Clearly the probability forecast will only be of value to Charlie if he saves money
using these ensemble forecasts. This notion of ‘potential economic value’ (Murphy,
1977; Richardson, this volume) is conceptually quite different from the notion of
skill (in the meteorological sense of the word), since value cannot be assessed by
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analysing meteorological variables alone; value depends also on the user’s economic
parameters.

The fact that potential economic value does not depend solely on meteorology
means that we cannot use meteorological skill scores alone if we want to assess
whether one forecast system is more valuable than another (e.g. to Charlie). This is
relevant to the question of whether it would be better to utilise computer resources to
increase ensemble size or increase model resolution. As discussed in Palmer (2002),
the answer to this question depends on C/L. For users with small C/L, more value
may accrue from an increase in ensemble size (since decisions depend on whether
or not relatively small probability thresholds have been reached), whilst for larger
C/L more value may accrue from the better representation of weather provided by a
higher-resolution model.

In the Lorenz world, Charlie never sues the forecasters for ‘wrong’ forecasts.
When the forecast is uncertain, the forecasters say so, and with precise and reliable
estimates of uncertainty. Charlie makes his decisions based on these forecasts and if
he makes the wrong decisions, only he, and lady luck, are to blame!

1.3 Why are forecasts uncertain?

Essentially, there are three reasons why forecasts are uncertain: uncertainty in the
observations used to define the initial state, uncertainty in the model used to assimilate
the observations and to make the forecasts, and uncertainty in ‘external’ parameters.

Let’s consider the last of these uncertainties first. For example, the aerosol content
of the atmosphere can be significantly influenced by volcanic eruptions, which are
believed to be unpredictable more than a few days ahead. Also, uncertainty in the
change in atmospheric CO2 over the coming decades depends on which nations sign
agreements such as the Kyoto protocol.

In principle, perhaps, ‘stochastic volcanoes’ could be added to an ensemble pre-
diction system – though this seems a rather fanciful idea. Also, uncertainties in
humankind’s activities can, perhaps, be modelled by coupling our physical climate
model to an econometric model. However, we will not deal further with such uncer-
tainties of the ‘third kind’ but rather concentrate on the first two.

1.3.1 Initial uncertainty

At ECMWF, for example, the analysed state Xa of the atmosphere is found by
minimising the cost function

J (X ) = 1
2 (X − Xb)T B−1 (X − Xb) + 1

2 (H X − Y )T O−1 (H X − Y ) (1.6)

where Xb is the background state, B and O are covariance matrices for the probability
density functions (pdf) of background error and observation error, respectively, H is
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Figure 1.3 Isopleths of probability that the region enclosed by the isopleths contains
truth at initial and forecast time. The associated dominant singular vector at initial
and final time is also shown.

the so-called observation operator, and Y denotes the vector of available observations
(e.g. Courtier et al., 1998). The Hessian

∇∇ J = B−1 + H T O−1 H ≡ A−1 (1.7)

of J defines the inverse analysis error covariance matrix.
Figure 1.3 shows, schematically, an isopleth of the analysis error covariance

matrix, and its evolution under the action of the tangent propagator M (see Eqs. 1.3
and 1.4). The vector pointing along the major axis at forecast time corresponds to the
leading eigenvector of the forecast error covariance matrix. Its pre-image at initial
time corresponds to the leading singular vector of M, determined with respect to
unit norm in the metric given by A. The singular vectors of M correspond to the
eigenvectors of MT M in the generalised eigenvector equation

MT M δx(t0) = −λA−1δx(t0). (1.8)

Given pdfs of uncertainty based on Eq. (1.6), we can in principle perform a Monte
Carlo sampling of the Hessian-based initial pdf and produce an ensemble forecast
system based on this initial sampling.

There are three reasons for not adopting this strategy.
Firstly, there is the so-called ‘curse of dimensionality’. The state space of a weather

prediction model has about 107 dimensions. Many of these dimensions are not dynam-
ically unstable (i.e. are not associated with positive singular values). In this sense, a
random sampling of the initial probability density would not be a computationally
efficient way of estimating the forecast probability density. This point was made
explicitly in Lorenz’s analysis of his 28-variable model (Lorenz, 1965):
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If more realistic models . . . also have the property that a few of the eigenvalues
of MMT are much larger than the remaining, a study based upon a small
ensemble of initial errors should . . . give a reasonable estimate of the growth rate
of random error. . . . It would appear, then, that the best use could be made of
computational time by choosing only a small number of error fields for
superposition upon a particular initial state.

Studies of realistic atmospheric models show that the singular values of the first 20–
30 singular vectors are indeed much larger than the remainder (Molteni and Palmer,
1993; Buizza and Palmer, 1995; Reynolds and Palmer, 1998).

The second reason for not adopting a Monte Carlo strategy is that in practice
Eq. (1.6) only provides an estimate of part of the actual initial uncertainty; there are
other sources of initial uncertainty that are not well quantified – what might be called
the ‘unknown unknowns’. Consider the basic notion of data assimilation: to assimilate
observations that are either made at a point or over a pixel size of kilometres into
a model whose smallest resolvable scale is many hundreds of kilometres (bearing
in mind the smallest resolvable scale will be many times the model grid). Now
sometimes these point or pixel observations may be representative of circulation
scales that are well resolved by the model (e.g. if the flow is fairly laminar at the
time the observation is made); on other occasions the observations may be more
representative of scales which the model cannot resolve (e.g. if the flow is highly
turbulent at the time the observation is made, or if the observation is sensitive to
small-scale components of the circulation, as would be the case for humidity or
precipitation).

In the latter case, the practice of using simple polynomial interpolation in the
observation operator H in Eq. (1.6) to take the model variable X to the site of the
observation, is likely to be poor. However, this is not an easily quantified uncertainty–
since, ultimately, the uncertainty relates to numerical truncation error in the forecast
model (see the discussion below). Similarly, consider the problem of quality control.
An observation might be rejected as untrustworthy by a quality-control procedure if
the observation does not agree with its neighbours and is different from the back-
ground (first-guess) field. Alternatively, the observation might be providing the first
signs of a small-scale circulation feature, poorly resolved by either the model or
the observing network. For these types of reason, a Monte Carlo sampling of a pdf
generated by Eq. (1.6) is likely to be an underestimate of the true uncertainty.

The third reason for not adopting a Monte Carlo strategy is not really independent
of the first two, but highlights an issue of pragmatic concern. Let us return to Charlie,
as discussed above. Charlie is clearly disgruntled by the occasional poor forecast of
frost, especially if it costs him money. But just imagine how much more disgruntled
he would be, having invested time and money to adapt his decision strategies to a
new weather risk service based on the latest, say, Multi-Centre Ensemble Forecast
System, if no member of the new ensemble predicts severe weather, and severe
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Figure 1.4 May–July 2002 average root-mean-square (rms) error of the ensemble-
mean (solid lines) and ensemble standard deviation (dotted lines) of the ECMWF,
NCEP and MSC ensemble forecast systems. Values refer to the 500 hPa geopotential
height over the Northern Hemisphere latitudinal band 20–80 N. From Buizza et al.
(2003, 2005).

weather occurs! Just one failure of this sort will compromise the credibility of the
new system.

To take this into account, a more conservative approach to sampling initial pertur-
bations is needed, conservative in the sense of tending towards sampling perturbations
that are likely to have significant impact on the forecast.

For these three reasons (together with the fact that instabilities in the atmosphere
are virtually never of the normal-mode type: Palmer, 1988; Molteni and Palmer,
1993; Farrell and Ioannou, this volume and Ioannou and Farrell, this volume), the
initial perturbations of the ECMWF ensemble prediction system are based on the
leading singular vectors of M (Buizza, this volume).

The relative performance of the singular-vector perturbations can be judged from
Figure 1.4 (Buizza et al., 2003), based on a comparison of ensemble prediction sys-
tems at ECMWF (Palmer et al., 1993; Molteni et al., 1996), NCEP (US National
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Centers for Environmental Prediction; Toth and Kalnay, 1993) and MSC (Meteo-
rological Service of Canada; Houtekamer et al., 1996); the latter systems based on
bred vectors and ensemble data assimilation respectively. The solid lines show the
ensemble-mean root-mean-square error of each of the three forecast systems, the
dashed lines show the spread of the ensembles about the ensemble mean. At initial
time, both NCEP and MSC perturbations are inflated in order that the spread and
skill are well calibrated in the medium range. The growth of perturbations in the
ECMWF system, by contrast, appears to be more realistic, and overall the system
appears better calibrated to the mean error.

1.3.2 Model uncertainty

From the discussion in the last section, part of the reason initial conditions are
uncertain is that (e.g. in variational data assimilation) there is no rigorous operational
procedure for comparing a model state X with an observation Y. The reason that
there is no rigorous procedure is directly related to the fact that the model cannot
be guaranteed to resolve well the circulation or weather features that influence the
observation. In this respect model error is itself a component of initial error. Of
course, model error plays an additional role as one integrates, forward in time, the
model equations from the given initial state.

Unfortunately, there is no underlying theory which allows us to estimate the statis-
tical uncertainty in the numerical approximations we make when attempting to inte-
grate the equations of climate on a computer. Moreover, an assessment of uncertainty
has not, so far, been a requirement in the development of subgrid parametrisations.

Parametrisation is a procedure to approximate the effects of unresolved processes
on the resolved scales. The basis of parametrisation, at least in its conventional form,
requires us to imagine that within a grid box there exists an ensemble of incoherent
subgrid processes in secular equilibrium with the resolved flow, and whose effect
on the resolved flow is given by a deterministic formula representing the mean (or
bulk) impact of this ensemble. Hence a parametrisation of convection is based on
the notion of the bulk effect of an incoherent ensemble of convective plumes within
the grid box, adjusting the resolved scales back towards convective neutrality; a
parametrisation of orographic gravity-wave drag is based on the notion of the bulk
effect of an incoherent ensemble of breaking orographic gravity waves applying a
retarding force to the resolved scale flow.

A schematic representation of parametrisation in a conventional weather or climate
prediction model is shown in the top half of Figure 1.5. Within this framework,
uncertainties in model formulation can be represented in the following hierarchical
form:

� the multimodel ensemble whose elements comprise different weather or
climate prediction models;
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Figure 1.5 (Top) Schematic for conventional weather and climate prediction models
(the ‘Reynolds/Richardson Paradigm’). (Bottom) Schematic for weather and climate
prediction using simplified stochastic-dynamic model representations of unresolved
processes.

� the multiparametrisation ensemble whose elements comprise different
parametrisation schemes P(X, α) within the same dynamical core;

� the multiparameter ensemble whose elements are all based on the same
weather or climate prediction model, but with perturbations to the parameters
α of the parametrisation schemes.

The DEMETER system (Palmer et al., 2004; Hagedorn et al., this volume) is
an example of the multimodel ensemble; the ensemble prediction system of the
Meteorological Service of Canada (Houtekamer et al., 1996) is an example of a
multiparametrisation scheme; the Met Office QUMP system (Murphy et al., 2004)
and the climateprediction.net ensemble system (Stainforth et al., 2005) are examples
of multiparameter ensemble systems.

The hierarchical representation of model error as discussed above should be con-
sidered a pragmatic approach to the problem – it certainly should not be considered
a complete solution to the problem. The fundamental reason why parametrisations
are uncertain is that in reality there is no scale separation between resolved and unre-
solved motions: according to Nastrom and Gage (1985), the observed spectrum of
atmospheric motions shallows from a −3 slope to a −5/3 slope as the truncation
limit of weather and climate models is approached. That is to say, the spectrum of
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Figure 1.6 Schematic examples of the failure of conventional parametrisation to
account for tendencies associated with subgrid processes: (a) when the subgrid
topographic forcing is coherent across grid boxes; (b) when the convective motions
have mesoscale organisation.

unresolved motions is dominated by a range of near grid-scale motions. Figure 1.6
gives schematic examples of near-grid-scale motions (a) for orographic flow and
(b) for organised deep convection. In the case of orography, the flow is forced
around the orographic obstacle. In the grid box containing the tip of the orogra-
phy, a parametrisation will detect unresolved orography and apply a drag force, the
very opposite of what may actually be required. In the case of convection, the grid box
containing the bulk of the updraught may not be warming (through environmental
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subsidence); moreover, there is no requirement for the vertical momentum transfer
to be upgradient, or for the implied kinetic energy generated by convective available
potential energy within a grid box to be dissipated within that grid box.

Hence, in neither case can the impact of the unresolved orographic or convective
processes be represented by conventional parametrisations, no matter what formulae
are used or what values the underlying parameters take. In other words, part of the
uncertainty in the representation of unresolved scales is structural uncertainty rather
than parametric uncertainty.

In order to represent such structural uncertainty in ensemble prediction systems,
we need to broaden the standard paradigmatic representation of subgrid scales. In
considering this generalisation, it can be noted that in the conventional approach
to weather and climate modelling, there is in fact a double counting of subgrid
processes within an ensemble prediction system. By averaging across an ensemble
prediction system with identical resolved-scale flow but different subgrid circula-
tions, the ensemble prediction system effectively provides us with a mean of subgrid
processes. But this averaging process has already been done by the parametrisation
scheme, which itself is defined to be a mean of putative subgrid processes. Apart
from possible inefficiency, what danger is there in such double counting?

The danger is that we miss a key element of the interaction between the resolved
flow and the unresolved flow, leading to a component of systematic error in the climate
models. Let us represent the grid-box tendency associated with unresolved scales
by a probability density function ρm(X ) where X is some resolved-scale variable.
Consider an ensemble prediction system where the grid-box mean variable is equal
to X0 across all members of the ensemble. Suppose now that instead of using the
deterministic subgrid parametrisation P(X0; α) across all ensemble members, we
force the ensemble prediction system by randomly sampling ρm(X0). Would the
ensemble-mean evolve differently? Yes, because of non-linearity!

It is therefore being suggested here that we change our paradigm of parametrisation
as a deterministic bulk formula representing an ensemble of some putative ‘soup’ of
incoherent subgrid processes, to one where each ensemble member is equipped with
a possible realisation of a subgrid process. Hence, Figure 1.6(b) illustrates a possible
generalisation in which the subgrid scales are represented by a simplified compu-
tationally efficient stochastic-dynamic system, potentially coupled to the resolved
scales over a range of scales.

There are three reasons why the representation of model uncertainty through
stochastic-dynamic parametrisation may be superior to the multimodel and related
representations. Firstly, model uncertainty may be more accurately represented, and
the corresponding ensembles may be more reliable. Secondly, as discussed above,
noise-induced drift may lead to a reduction in model systematic error in a way impos-
sible in a multimodel ensemble. Thirdly, estimates of ‘natural climate variability’ may
be more accurate in a model with stochastic-dynamic representation of unresolved
scales. This is important for the problem of detecting anthropogenic climate change.



14 T. N. Palmer

A simple example of stochastic parametrisation has been discussed in Buizza
et al. (1999) and Palmer (2001). Let us write, schematically, the equations of motion
of our climate or weather prediction model as

Ẋ = F[X ] + P + e (1.9)

e = εP

where P denotes the conventional parametrisation term and ε is a non-dimensional
stochastic parameter with mean zero. The physical basis for such a multiplicative-
noise form of stochastic parametrisation is that stochastic model perturbations are
likely to be largest when the parametrisation tendencies themselves are largest, e.g.
associated with intense convective activity, when the individual convective cells have
some organised mesoscale structure, and therefore where the parametrisation concept
breaks down. This notion of multiplicative noise has been validated from a coarse-
grained budget analysis in a cloud-resolving model (Shutts and Palmer, 2004, 2006;
Palmer et al., 2005). Buizza et al. (1999) showed that probabilistic skill scores for
the medium-range ensemble prediction systems (EPS) were improved using this
stochastic parametrisation scheme.

From a mathematical point of view the addition of stochastic noise in Eq. (1.9)
is straightforward. However, adding the noise term e makes a crucial conceptual
difference to Eq. (1.9). Specifically, without stochastic noise, the subgrid parametri-
sation represents an averaged tendency associated with a supposed ensemble of
subgrid processes occurring inside the grid box. With stochastic noise, the subgrid
parametrisation represents a possible realisation of the subgrid tendency.

We can go further than this and ask whether some dynamical meteorology could
be built into this stochastic realisation of the subgrid world. A possible stochastic-
dynamic model could be associated with the cellular automaton, a computationally
simple non-linear dynamical system introduced by the mathematician John von Neu-
mann (Wolfram, 2002). Figure 1.7 (from Palmer, 2001) is a snapshot from a cellular
automaton model where cells are either convectively active (‘on’) or convectively
inhibited (‘off’). The probability of a cell being ‘on’ is dependent on the convective
available potential energy in the grid box and on the number of adjacent ‘on’ cells.
Agglomerations of ‘on’ cells have the potential to feed vorticity from the parametrisa-
tion to the resolved scales. ‘On’ cells can be made to advect with the grid-mean wind.
In a further development of this scheme (J. Berner, personal communication) a two-
level multiscale cellular automaton has been developed. The smallest level represents
individual convective plumes, whilst the intermediate level represents convectively
coupled wave motions which can force the Madden–Julian Oscillation. It is planned
to try to include characteristics of the dispersion equation of convectively coupled
Kelvin waves in the intermediate cellular automaton.

Independently, cellular automata based on the Ising model have been devel-
oped as a stochastic-dynamic parametrisation of deep convection (Khouider et al.,
2003). Recently Shutts (2005) has built a hybrid stochastic-dynamic parametrisa-
tion scheme which combines the cellular automaton with the notion of stochastic
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Figure 1.7 A snapshot in time from a cellular automaton model for convection.
Black squares correspond to convectively active sites, white squares to convectively
inhibited sites. From Palmer (2001).

backscatter (e.g. Leith, 1990; Frederiksen and Davies, 1997). Specifically, estimates
of dissipation are made based on four components of the ECMWF model: convec-
tion, orographic gravity-wave drag, numerical diffusion, and the implicit dissipation
associated with the semi-lagrangian scheme. The basic assumption is that a fraction
(e.g. 10%) of the implied energy dissipation is actually fed back on to the model grid,
through the cellular automaton.

Preliminary results with this scheme are very promising: there is quantifiable
reduction in midlatitude systematic error which can be interpreted in terms of an
increased frequency of occurrence of basic circulation regimes (Molteni et al., this
volume; Jung et al., 2005) which are underestimated in the version of the model with
conventional parametrisation. In this way, one can say that the stochastic parametri-
sation has reduced systematic error through a non-linear noise-induced drift effect.

1.4 Ensemble forecasts: some examples

In this section, some examples of ensemble forecasts from different forecast
timescales will be shown, illustrating some of the ideas discussed above. Logically,
one should perhaps order these examples by timescale, e.g. starting with the short
range, finishing with centennial climate change. However, in this section the examples
will be presented more or less in the historical order in which they were developed.

1.4.1 Extended range

Much of the early work on ensemble forecasting with comprehensive weather predic-
tion models arose in trying to develop dynamical (as opposed to statistical-empirical)
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Figure 1.8 State-space trajectories from an unreliable time-lagged ensemble (solid),
and verifying analysis (dashed). See Palmer et al. (1990).

techniques for monthly forecasting. One of the basic motivations for such work was
that whilst the monthly timescale was clearly beyond the mean limit [PW] of pre-
dictability of daily weather, as shown by Miyakoda et al. (1986), from time to time the
actual predictability of the atmospheric circulation would far exceed [PW]. Ensemble
forecasts were seen as a necessary means of determining ahead of time whether such
enhanced predictability existed. The first ever operational probabilistic ensemble
forecast was made for the 30-day timescale (Murphy and Palmer, 1986).

In these early days, methodologies to produce initial ensemble perturbations were
rather simple, e.g. based on adding random noise to the initial conditions, or using
the time-lagged technique, where ensemble members were taken from consecutive
analyses (Hoffman and Kalnay, 1983).

Unfortunately, early results did not always live up to hopes. Figure 1.8 shows one
of the pitfalls of ensemble forecasting. The figure shows the evolution in phase space
(spanned by leading empirical orthogonal functions of the forecast ensemble) of an
ensemble of five-day mean forecasts made using the time-lagged technique, based
on an early version of the ECMWF model (Palmer et al., 1990). Unfortunately the
evolution of the verifying analysis is in a class of its own! A probability forecast
based on this ensemble would clearly be unreliable. Charlie would not be impressed!

During the 1990s, work on 30-day forecasting went into a period of decline.
However, in 2004, an operational 30-day forecast system was finally imple-
mented at ECMWF, using singular-vector ensemble perturbations in a coupled
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ocean–atmosphere model (Vitart, 2004). Unlike the early example shown above,
probability forecasts have been shown to be reliable in the extended range. This
improvement results from developments in data assimilation, in deterministic fore-
casting, and in medium-range ensemble forecasting as discussed in this chapter and
in Buizza (this volume).

1.4.2 Medium range

A general assessment of predictability in the medium range, based on the ECMWF
system, is given in Simmons (this volume). Even though early results on 30-day
forecasting were disappointing, it was nevertheless clear that the idea of using ensem-
ble forecasts to determine periods where the atmospheric circulation was either espe-
cially predictable, or especially unpredictable, was also relevant to the medium range.
Based on the experience outlined above, there was clearly a need to ensure that the
resulting ensembles were not underdispersive. The initial work in this area was done at
ECMWF and NCEP, using different methods for obtaining initial perturbations (see
section above). The ECMWF ensemble prediction system comprises 51 forecasts
using both singular vector initial perturbations and stochastic physics (more details
are given in Buizza, this volume).

In late December 1999, two intense storms, subsequently named Lothar and Mar-
tin, ran across continental Europe leaving behind a trail of destruction and misery,
with over 100 fatalities, over 400 million trees blown down, over 3 million homes
without electricity and water. Figure 1.9 shows the ensemble ‘stamp maps’ (based
on a TL255 version of the ECMWF model) for Lothar, at initialisation time on
24 December and for forecast time 6 UTC on 26 December. This storm was excep-
tionally unpredictable, and even at 42 hours lead time there is considerable spread in
the ensemble. The best-guidance deterministic forecast only predicts a weak trough
in surface pressure. A number of members of the ensemble support this forecast;
however, a minority of ensemble members also show an intense vortex over France.
In this sense, the ensemble was able to predict the risk of a severe event, even though
it was impossible to give a precise deterministic forecast. More recent deterministic
reforecasts with a T799 version of the ECMWF model also fail to predict this storm
(Martin Miller, personal communication) – this is clearly a case which demonstrates
the value of ensemble forecasts even at intermediate resolution (Palmer, 2002).

1.4.3 Seasonal and decadal prediction

The scientific basis for seasonal prediction lies in the interaction of the atmosphere
with slowly varying components of the climate system: notably the oceans and
land surface (Timmermann, this volume; Shukla and Kinter, this volume). Early
work showed firstly that El Niño events are predictable seasons ahead of time using
intermediate-complexity coupled ocean–atmosphere models of the tropical Pacific
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(Zebiak and Cane, 1987), and secondly that sea surface temperature (SST) anoma-
lies in the tropical Pacific Ocean have a global impact on atmospheric circulation
(e.g. Shukla and Wallace, 1983). Putting these factors together has led to global sea-
sonal prediction systems based on comprehensive global coupled ocean–atmosphere
models (Stockdale et al., 1998). Inevitably such predictions have been based on
ensemble forecast techniques, where initial perturbations represent uncertainties in
both atmosphere and ocean analyses.

In addition to initial uncertainty, representing forecast model uncertainty is a
key element in reliably predicting climate risk on seasonal and longer timescales.
The ability of multimodel ensembles to produce more reliable forecasts of seasonal
climate risk over single-model ensembles was first studied by the PROVOST (Predic-
tion of Climate Variations on Seasonal to Interannual Timescales) project funded by
the European Union IVth Framework Environment Programme, and a similar ‘sis-
ter’ project DSP (Dynamical Seasonal Prediction) undertaken in the United States
(Palmer and Shukla, 2000).

As part of the PROVOST project, three different atmospheric general circulation
models (including one model at two different resolutions) were integrated over four-
month timescales with prescribed observed SSTs. Each model was run in ensemble
mode, based on nine different initial conditions from each start date; results were
stored in a common archive. One of the key results from PROVOST and DSP was that,
despite identical SSTs, ensembles showed considerable model-to-model variability
in estimates both of the SST-forced seasonal-mean signal, and the seasonal-mean
‘noise’ generated by internal dynamics (Straus and Shukla, 2000). Consistent with
this, probability scores based on the full multimodel ensemble scored better overall
than any of the individual model ensembles (e.g. Doblas-Reyes et al., 2000; Palmer
et al., 2000).

Based on such results, the DEMETER project (Development of a European Mul-
timodel Ensemble System for Seasonal to Interannual Prediction; Palmer et al.,
2004, Hagedorn et al., this volume) was conceived, and successfully funded under
the European Union Vth Framework Environment Programme. The principal aim
of DEMETER was to advance the concept of multimodel ensemble prediction by
installing a number of state-of-the-art global coupled ocean–atmosphere models on
a single supercomputer, and to produce a series of six-month ensemble reforecasts
with common archiving and common diagnostic software.

Figure 1.10 shows an example of results from DEMETER. Forecasts of El Niño
are seen to be more reliable in the multimodel ensemble than in the ECMWF single-
model ensemble; more specifically, the observed SSTs do not always lie in the range
of the ECMWF-model ensembles, but do lie in the range of the DEMETER mul-
timodel ensembles. Other results supporting the notion that multimodel ensembles
are more reliable than single-model ensembles are given in Hagedorn et al. (this
volume). However, it is not necessarily the case that multimodel ensembles are reli-
able for all variables. As discussed in Palmer et al. (2005), seasonal forecasts of
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Figure 1.10 Time series of forecast NINO-3 SST anomalies for DJF, initialised
1 November, based on (a) ECMWF ensemble, (b) DEMETER multimodel ensemble.
Bars and whiskers show terciles, the ensemble-mean values are shown as solid
circles, and the actual SST anomalies are shown as open circles.

upper-tercile precipitation over Europe are neither reliable in single-model nor
DEMETER multimodel ensemble systems. Consistent with the discussion above,
this latter result suggests that multimodel systems may not represent model uncer-
tainty completely. In the European Union FP6 project ENSEMBLES, it is proposed
to compare the reliability of seasonal ensemble forecasts, made using the multimodel
technique, with stochastic parametrisation.

At the beginning of this chapter, the existence or otherwise of predictability was
discussed from the perspective of decision-making: are the forecast probability densi-
ties sufficiently different from climatological densities to influence decision-making?
In DEMETER quantitative crop and malaria prediction models were linked to
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individual ensemble members; based on this, the probability of crop failure or malaria
epidemic could be estimated. See Hagedorn et al. (this volume) for details.

Many observational and modelling studies document pronounced decadal and
multidecadal variability in the Atlantic, Pacific and Southern Oceans. For example,
decadal variability in Atlantic sea surface temperatures is in part associated with
fluctuations in the thermohaline circulation (e.g. Broecker, 1995); decadal variability
in the Pacific is associated in part with fluctuations in the Pacific Decadal Oscillation
(e.g. Barnett et al., 1999). Variations in the Atlantic thermohaline circulation appear
to be predictable one or two decades ahead, as shown by a number of perfect model
predictability studies, e.g. Griffies and Bryan (1997), Latif et al. (this volume). The
SST anomalies (both tropical and extratropical) associated with decadal variations
in the thermohaline circulation appear to impact the North Atlantic Oscillation in the
extratropics. A weakening of the thermohaline circulation is likely to lead to a cooling
of northern European surface temperatures. There is also evidence (Landerer et al.,
2006) that decadal variability in the thermohaline circulation could lead to significant
decadal sea level fluctuations in Europe.

Variations in the thermohaline circulation may also be associated with climate
fluctuations in the tropics. For example, there is some evidence that long-lasting
drought over the African Sahel is associated with decadal-timescale variability in
the so-called sea surface temperature dipole in the tropical Atlantic (Folland et al.,
1986).

In order for decadal prediction to evolve into a possible operational activity, suit-
able observations from which the thermohaline circulation can be initialised must
exist. Programmes such as ARGO (Wilson, 2000) may help provide such observa-
tions. These need to be properly assimilated in the ocean component of a coupled
forecast model. It is clearly essential that the model itself has a realistic representation
of the thermohaline circulation.

On the timescale of a decade, anticipated changes in greenhouse gas concentrations
will also influence the predictions of future climate (Smith et al., 2006). In this sense,
decadal timescale prediction combines the pure initial value problem with the forced
climate problem, discussed in the next subsection.

1.4.4 Climate change

Climate change has been described by the UK Government’s Chief Scientific Advi-
sor as one of the most serious threats facing humanity – more serious even than
the terrorist threat. Nevertheless, there is uncertainty in the magnitude of climate
change; this uncertainty can be quantified using ensemble techniques (Allen et al.,
this volume). For example, Palmer and Räisänen (2002) used the multimodel ensem-
ble technique to assess the impact of increasing levels of CO2 on the changing
risk of extreme seasonal rainfall over Europe in winter (Figure 1.11; colour plate),
and also for the Asian summer monsoon, based on the CMIP multimodel ensemble
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Figure 1.12 Probability distributions of global average annual warming associated
with a 53-member ensemble for a doubling of carbon dioxide concentration.
Ensemble members differ by values of key parameters in the bulk formulae used to
represent unresolved processes, in a version of the Hadley Centre climate model.
Solid curve: based on ‘raw model output’. Dashed curve: the probability distribution
weighted according to the ability of different model versions to simulate observed
present day climate. From Murphy et al. (2004).

(Meehl et al., 2000). More recently Murphy et al. (2004) and Stainforth et al. (2005)
have quantified uncertainty in climate sensitivity (the global warming associated with
a doubling of CO2) based on multiparameter ensembles (see also Allen et al., this
volume).

Figure 1.12 shows a probability distribution of climate sensitivity based on the
multiparameter ensemble of Murphy et al. (2004). The solid line shows the raw
output; the dashed line shows results when the individual ensemble members are
weighted according to the fit of control integrations to observations. It is interesting
to note that this fit to data does not change the range of uncertainty – rather the
forecast probability distribution is shifted to larger values of climate sensitivity.

As yet, probability distributions in global warming have not been estimated using
the stochastic physics approach. It will be interesting to see how estimates of uncer-
tainty in climate sensitivity are influenced by the methodology used to represent
model uncertainty.

How can the uncertainty in global warming be reduced? It can be noted that much
of the ensemble spread in Figure 1.12 is associated with uncertainty in parame-
ters from parametrisations of clouds and boundary layer processes. These are fast-
timescale processes. Hence it may be possible to reduce the spread in Figure 1.12 by



24 T. N. Palmer

assessing how well the contributing models perform as short-range weather predic-
tion models. More specifically, the type of budget residual technique pioneered by
Klinker and Sardeshmukh (1992) could be applied to the multiparameter ensemble.
On this basis, models with large residuals, obtained by integrating over just a few time
steps but from many different initial conditions, could be rejected from the ensemble
(Rodwell and Palmer, 2006).

Ultimately, the uncertainties in climate prediction arise because we are not solving
the full partial differential equations of climate – for example, the important cloud
processes mentioned above are parametrised, and, as noted, parametrisation theory
is rarely a justifiable procedure. On this basis, further reduction of the uncertainty in
global warming may require significantly larger computers so that at least major con-
vective cloud systems can be resolved. Of course, this will not eliminate uncertainty,
as cloud microphysics will still have to be parametrised.

In truth, reducing uncertainty in forecasts of climate change will require a com-
bination of significantly greater computer resources and the use of sophisticated
validation techniques as used in numerical weather prediction studies.

1.4.5 Short-range forecasting

For many years, it was generally assumed that while ensemble techniques may well
be important for medium and longer range predictions, the short-range weather pre-
diction problem, up to day 2, let’s say, should essentially be considered deterministic.
Such a view is no longer held today – predictions of flash floods and other types of
mesoscale variability are not likely to be strongly predictable on timescales of a
day. To quantify uncertainty in such forecasts, ensemble prediction systems based on
multiple integrations of fine-scale limited area models are now being actively devel-
oped around the world. To create such ensembles, ensemble boundary conditions
are taken from a global ensemble prediction system, and these are combined with
initial perturbations within the limited-area model domain. Insofar as some of the
principal forecast variables are related to processes close to the model resolution, a
representation of model uncertainty is also necessary.

An example of an ensemble of limited-area model integrations is shown in
Figure 1.13, based on the COSMO-LEPS system (Tibaldi et al., this volume; Waliser
et al., 2006). The boundary conditions for this limited-area model ensemble have
been taken from ECMWF ensemble integrations (in this case using moist singular
vectors; M. Leutbecher, personal communication). The example shown here is for
the storm Lothar (see Figure 1.9). It can be seen that the limited-area model ensem-
ble is predicting a significant risk of damaging wind gusts – in a situation where the
deterministic forecast from the most likely initial state had no warning of severe gusts
at all.

Development of short-range ensemble prediction systems using limited-area mod-
els is now a significant growth area.
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Figure 1.13 Probability that wind gusts exceed 40 m/s for the storm Lothar based on
an ensemble (COSMO-LEPS) of limited-area model integrations using ECMWF
ensemble boundary conditions. From Waliser et al. (2005).

1.5 Discussion

In this chapter, we have charted a revolution in the way weather and climate predic-
tions are produced and disseminated as probability forecasts. The revolution started
in studies of monthly predictability, spread to medium range and seasonal timescales,
finally permeating extremes of meteorological predictions, the climate change and
short-range weather forecast problems. The revolution is based on the notion that
in many cases the most relevant information for some user is not necessarily what
is most likely to happen, but rather a quantified probability of weather or climate
events to which the user is sensitive. We introduced the case of Charlie, who wants
to know if he can lay concrete. If Charlie’s cost/loss ratio is less than 0.5, he may
decide not to lay concrete even when frost is not likely to occur. If Charlie were
one day to become minister for the environment, he might be faced with similar
risk-based decisions on the adequacy of the current Thames barrier, one of London’s
key flood defences. A prediction of an 11 K warming associated with a doubling
of CO2 (Stainforth et al., 2005) doesn’t have to be likely in order for the replace-
ment of the barrier to be in need of urgent consideration. However, the decision
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to replace may need better quantified estimates of uncertainty than we currently
have.

Predicting the probability of occurrence of weather and climate events requires us
to be able to quantify the sources of uncertainty in weather and climate prediction,
and to estimate how these sources actually impact on the predictions themselves. In
practice, these sources of uncertainty are not easy to quantify. This is not because we
don’t know the accuracy of instruments used to observe the atmosphere (and oceans).
Rather, it is because the approximations used in making computational models of
the essentially continuum multiphase fluid equations are themselves hard to quan-
tify. Hence, for example, when model variables are compared with observations in
data assimilation, the observation operator doesn’t recognise the fact that the obser-
vation may be strongly influenced by scales of motion that the model is unable to
resolve well. On many occasions and for certain types of observation (e.g. surface
pressure) this may not be a serious problem, but occasionally and for other types
of observation (e.g. humidity) it is. At present, this type of uncertainty is unquan-
tified in operational data assimilation – from this perspective it is an example of
an ‘unknown unknown’. In the presence of such ‘unknown unknowns’, operational
ensemble prediction systems run the danger of being underdispersive. This is poten-
tially disastrous: if Charlie lays concrete when the risk of frost is predicted to be
zero, and frost occurs, Charlie will never use ensemble prediction again! If, in his
future career as politician, Charlie decides against replacing the Thames barrier on
the basis of underdispersive ensemble climate forecasts, history may not be kind to
him!

One specific conclusion of this chapter is that the development of accurate ensem-
ble prediction systems on all timescales, hours to centuries, relies on a better quan-
tification of model uncertainties. It has been argued that this may require a funda-
mental change in the way we formulate our models, from deterministic to stochastic
dynamic. This change has been anticipated by Lorenz (1975) who said: ‘I believe that
the ultimate climatic models . . . will be stochastic, i.e. random numbers will appear
somewhere in the time derivatives’. Stochastic representations of subgrid processes
are particularly well suited to ensemble forecasting.
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Predictability from a dynamical
meteorological perspective

Brian Hoskins
University of Reading

2.1 Introduction: origins of predictability

Predictability of weather at various timescales has its origins in the physics and
dynamics of the system. The annual cycle is an example of very predictable behaviour
with such an origin, though this predictability is of little other than general background
use to the forecaster. The rapid rotation of the Earth with its shallow, generally stably
stratified atmosphere leads to the dominance of phenomena with balance between
their thermodynamic and dynamic structures. These structures evolve on timescales
comparable to, or longer than, a day. This balanced motion is best described by con-
sideration of two properties that are materially conserved under adiabatic conditions,
potential temperature (θ , or equivalently entropy) and potential vorticity (PV). A
feature of particular importance, leading to potentially predictable behaviour, is the
ability of the atmosphere to support balanced, large-scale Rossby waves.

Atmospheric phenomena with recognised structures tend to exhibit characteristic
evolutionary behaviour in time and thus to have a level of predictability. Particular
examples of such phenomena are the midlatitude cyclone on synoptic timescales, the
tropical Intra-Seasonal Oscillation and the El Niño–Southern Oscillation (ENSO) on
annual timescales.

Slower parts of the climate system can leave an imprint on shorter timescales and
hence give an element of predictability to them. Tropical sea surface temperature
(SST) anomalies tend to persist and can lead to anomalous convective activity in
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z

Figure 2.1 The balanced structure typically associated with a positive potential
vorticity (PV) anomaly. Features shown are the cyclonic circulation in the region and
the isentropes ‘sucked’ towards the anomaly in the vertical, consistent with high
static stability there.

their region. This activity can trigger Rossby waves that communicate anomalous
conditions to other regions of the globe. Soil moisture anomalies in tropical or extra-
tropical regions can persist a month or more and similarly trigger both local and
remote responses.

Here aspects of balanced motion and its description with PV and Rossby waves
will be discussed in Section 2.2. The focus in Section 2.3 is on particular phenomena,
midlatitude weather systems, blocking highs, and a particular mode of variability,
the North Atlantic Oscillation (NAO). Section 2.4 gives some discussion of aspects
of the summer of 2002 and their possible predictability. Some concluding comments
are given in Section 2.5.

2.2 Balanced motion, potential vorticity and
Rossby waves

Hydrostatic balance and geostrophic balance together lead to so-called thermal wind
balance between the wind and temperature fields. The development of such motion is
described by the quasi-geostrophic version of the conservation of PV. As discussed in
detail in Hoskins et al. (1985), more general balanced motion is uniquely determined
through an elliptic problem by the PV/θ distribution. Its development is described
by the material conservation of PV on θ surfaces and θ on the lower boundary. Alter-
natively it is often convenient to summarise the upper tropospheric PV/θ distribution
by the distribution of θ on the PV = 2PVU surface (here northern hemisphere signs
are used for convenience), which away from the tropics can be considered to be the
dynamical tropopause (Hoskins, 1997).

Because of the elliptic nature of the inversion problem, a positive PV anomaly
is generally associated with both cyclonic motion and increased static stability
(Figure 2.1). Similarly a negative PV anomaly is associated with anticyclonic motion
and reduced static stability. As in Figure 2.2, the tip of PV ‘trough’ often elongates,
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y

x
Figure 2.2 An upper air development of a geopotential trough, indicated by a PV
contour on a θ surface or a θ contour on a PV surface in the tropopause region. Shown
is the elongation of the trough, and the development and movement away of a cut-off.

develops its own cyclonic circulation and cuts itself off. Once it has done this, the
cut-off low must continue to exist until either the PV anomaly is eroded by diabatic
processes or it moves back into the higher PV region. This implies some extended
predictability of such a cut-off low once it has formed.

+y

High PV

Low PV

+ -

(a)

(b)
Figure 2.3 Rossby wave development. In (a) PV contours are shown displaced to the
south, leading to a PV anomaly and cyclonic circulation. This circulation advects the
PV meridionally, leading to the PV distribution and anomalies shown in (b).

If a contour is displaced equatorwards as in Figure 2.3(a), the associated cyclonic
anomaly advects the PV distribution as shown in Figure 2.3(b). This gives a negative
(anticyclonic) PV anomaly to the east and a positive (cyclonic) anomaly to the west.
If there is a basic westerly flow, the net result is that the original PV anomaly will
move to the east at less than the speed of the basic flow and could be stationary.
However, the wave activity develops downstream, to the east, at a speed greater than
that of the basic flow. The motion described is that of Rossby waves and the two
speeds described respectively their phase and group speeds.
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Figure 2.4 (See also colour plate section.) September–November 2000 300hPa
geopotential height anomalies from climate. From Blackburn and Hoskins (personal
communication).

On a β-plane Rossby wave activity spreads eastwards along regions of large
meridional PV gradients as these provide the restoring mechanism for them. However,
on the sphere, the path of long wavelength quasi-stationary Rossby wave activity is
closer to great circles. Such Rossby waves generated in the tropics can arc polewards
and eastwards into middle latitudes. Figure 2.4 (colour plate) shows the 300 hPa
geopotential height anomalies for October 2000. As discussed by M. Blackburn and
B. J. Hoskins (personal communication), the record rainfall over the UK is associated
with the anomalous low over and to the west of the UK. It can be seen that this
cyclone is preceded upstream, to the south-west, by an anticyclone. Streamfunction
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Day 7 Day 12

Figure 2.5 Surface pressure fields 7 days and 12 days after a baroclinically unstable
zonal flow was disturbed near ‘3 o’clock’. The contours are drawn every
4 hPa. From Simmons and Hoskins (1979).

anomalies indicate a further cyclone south-west of this. The strong suggestion is that
anomalous rainfall in the South American–Caribbean region triggered a stationary
Rossby wave pattern that in turn led to the anomalous weather in the UK. If this
hypothesis is correct, there is potential predictability of such anomalous midlatitude
months. However, there must be the ability to represent the tropical anomalies in
large-scale rainfall if it is to be realised.

2.3 Some phenomena

Middle latitude synoptic systems tend to have a characteristic structure including
surface fronts and upper tropospheric troughs. They also have characteristic evo-
lutions in time and therefore there is the implication of some predictability. These
structural and evolutionary characteristics can be usefully interpreted in terms of
theoretical descriptions in terms of normal mode baroclinic waves (Charney, 1947;
Eady, 1949), non-linear life cycles (Simmons and Hoskins, 1978), the omega and
vorticity equations (Hoskins et al., 1978), and coupled mid-troposphere and sur-
face Rossby waves (Heifetz et al., 2004). A link with Rossby wave behaviour is
shown by the ordered downstream development of baroclinic instability illustrated in
Figure 2.5. In this numerical experiment from Simmons and Hoskins (1979) an
unstable westerly flow had been perturbed at day zero at ‘3 o’clock’. Successive
lows and highs have developed to the east and occluded, with the newest sys-
tems at day 12 near ‘6 o’clock’. Each system moves at some 10 m s−1. How-
ever, the downstream development propagates at nearer 30 m s−1, like a synoptic
scale Rossby wave on the upper tropospheric jet. The orderly downstream propaga-
tion of baroclinic wave activity has been documented in a number of studies (e.g.
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(a) (b)

Figure 2.6 (See also colour plate section.) The block of 21 September 1998. Shown
are the 250 hPa geopotential height field and the θ on PV2 field. From Pelly and
Hoskins (2003a).

Chang, 1993). It gives the possibility that the development of new weather systems
is predictable much beyond the synoptic timescale on which each individual system
evolves.

The normal progression of middle latitude weather systems is sometimes inter-
rupted by ‘blocking highs’. An example of one of a block in the western European
region is shown in Figure 2.6 (colour plate) in terms of its 300 hPa geopotential and θ

on PV = 2 fields. The reversal of the zonal wind in the region of the block is associ-
ated with a reversal of the negative latitudinal gradient in θ . The formation of blocks,
particularly in the European region, can often be viewed as a breaking of synoptic
waves and, consistent with this, the timescale tends to be synoptic. However, once
there is a low PV cut-off (here high θ cut-off) the decay is on the generally longer
timescale of either diabatic processes or reabsorption into the subtropical region.
Again there is associated enhanced predictability. These ideas are supported by Fig-
ure 2.7 from Pelly and Hoskins (2003a) which shows that on short timescales the
decay of blocking-like features is on a timescale of about two days, but once a feature
has lasted four days, and is probably associated with a PV cut-off, the decay time is
about twice as long. It has indeed been found that the ECMWF Ensemble Predic-
tion System has skill for the onset of blocking for about four days but for blocking
events and the decay of them on timescales of about seven days (Pelly and Hoskins,
2003b).

A classic pattern of variability in the climate system is the North Atlantic Oscil-
lation (NAO; Hurrell et al., 2002) that describes the fluctuation of the surface west-
erly winds in that region. Alternative descriptions that have been used in recent
years are the Arctic Oscillation (AO; Thompson and Wallace, 1998) that emphasises



36 Brian Hoskins

Figure 2.7 The number of blocking events in the period 1 August 2000 to 31 July
2001 lasting at least the number of days shown on the abscissa. The ordinate gives
the logarithm of the number of sector blocking events and a straight line in the figure
indicates a uniform decay rate of the events. For more details, see Pelly and Hoskins
(2003a).

the fluctuations of the pressure in the polar cap and the Northern Annular Mode
(NAM; Thompson and Wallace, 2000) that focuses on the polar vortex and the
analogy with the southern hemisphere vortex. Figure 2.8 shows the autocorrelation
timescales of the NAO and the northern hemisphere stratospheric vortex in winter
(Ambaum and Hoskins, 2002). Synoptic timescale decay in the NAO changes to
longer timescales beyond ten days. One hypothesis is that this reflects a link with the
stratosphere and the longer timescales there, which are indicated in Figure 2.8.

The tropical Intra-Seasonal Oscillation (ISO), or Madden–Julian Oscillation
(MJO), describes the large-scale organisation of tropical convection in the Indian
Ocean that then migrates eastwards to the west Pacific, with its associated circula-
tion changes. Consistent with the name, the timescale for the ISO is 30–60 days,
although the word oscillation perhaps overemphasises its oscillatory nature. Once
an ISO event has started, its typical evolution on the timescale of weeks is known.
Since the convection associated with an ISO generates Rossby wave trains that lead
to characteristic responses, particularly in the winter hemisphere (Matthews et al.,
2004), there is potential predictability on the timescale of weeks both in the tropics
and higher latitudes. However, the current ability of models to simulate the ISO is
generally poor and this potential predictability is yet to be realised.
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Figure 2.8 Lagged autocorrelations for the North Atlantic Oscillation (dashed) and
the 500 K stratospheric vortex (dotted), and the lagged correlation between them
(solid). The measures of the two patterns are the first principal components of daily
mean sea-level pressure and 500 K PV, respectively. For more details, see Ambaum
and Hoskins (2002).

2.4 Summer 2002

The northern summer of 2002 contained a number of climate features and anomalies
that may have been linked. There were strong ISOs in the tropics. The surface westerly
winds associated with these may have triggered the onset of an El Niño event that
was observed to occur. Reduced Indian monsoon rainfall has been found to tend
to occur in El Niño years and this certainly happened in 2002. The reduction in
Indian monsoon rainfall was particularly dramatic in the middle of the season and
was related to one very strong ISO event. The latent heat release associated with
Indian monsoon rainfall leads to ascent in that region. It has been shown (Rodwell
and Hoskins, 1996) that compensating descent occurs in the Mediterranean region
and leads to the characteristic summer weather in the region. The reduction in the
monsoon in 2002 is therefore consistent with the unusual occurrence in that year
of weather systems moving into the Mediterranean region and then up into Europe,
leading to flooding events there.

The possible linkages between all these events are explored by M. Blackburn
et al. (personal communication). These linkages give the possibility of predictability.
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However, they also indicate the range of processes and phenomena that may have to
be modelled well in order to obtain this predictive power.

2.5 Concluding comments

A number of examples have been given in which phenomena and their structures
give predictability. The dynamical perspective illustrated here provides a framework
for consideration of the approach to prediction on various timescales and for the
processes that need to be improved in models if potential predictability is to be found
in practice.
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Predictability – a problem partly solved

Edward N. Lorenz
Massachusetts Institute of Technology, Cambridge

Ed Lorenz, pioneer of chaos theory, presented this work at an earlier ECMWF
workshop on predictability. The paper, which has never been published
externally, presents what is widely known as the Lorenz 1996 model. Ed was
unable to come to the 2002 meeting, but we decided it would be proper to
acknowledge Ed’s unrivalled contribution to the field of weather and climate
predictability by publishing his 1996 paper in this volume.

The difference between the state that a system is assumed or predicted to possess, and
the state that it actually possesses or will possess, constitutes the error in specifying
or forecasting the state. We identify the rate at which an error will typically grow or
decay, as the range of prediction increases, as the key factor in determining the extent
to which a system is predictable. The long-term average factor by which an infinitesi-
mal error will amplify or diminish, per unit time, is the leading Lyapunov number; its
logarithm, denoted by λ1, is the leading Lyapunov exponent. Instantaneous growth
rates can differ appreciably from the average.

With the aid of some simple models, we describe situations where errors behave
as would be expected from a knowledge of λ1, and other situations, particularly
in the earliest and latest stages of growth, where their behaviour is systematically
different. Slow growth in the latest stages may be especially relevant to the long-
range predictability of the atmosphere. We identify the predictability of long-term
climate variations, other than those that are externally forced, as a problem not yet
solved.

Predictability of Weather and Climate, ed. Tim Palmer and Renate Hagedorn. Published by Cambridge University Press.
C© Cambridge University Press 2006.
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3.1 Introduction

As I look back over the many meetings that I have attended, I recall a fair number
of times when I have had the pleasure of being the opening speaker. It’s not that
this is necessarily a special honour, but it does allow me to relax, if not to disappear
altogether, for the remainder of the meeting. On the present occasion, however, I
find it is a true privilege to lead off. This is both because the subject of the seminar,
predictability, is of special interest to me, and because much of the significant work
in this field has taken place here at the European Centre.

Most of us who are here presumably have a special interest in the atmosphere,
but the subject of predictability and the knowledge of it that we presently possess
extend to much more general systems. By and large these systems fall into two
categories, within which, to be sure, there are many subcategories. On the one hand
there are real or realisable physical systems. On the other there are systems defined
by mathematical formulas. The distinction between these categories is not trivial.

The former category includes the atmosphere, but also many much simpler sys-
tems, such as a pendulum swinging in a clock, or a flag flapping in a steady breeze.
Instantaneous states of these systems cannot be observed with absolute precision, nor
can the governing physical laws be expressed without some approximation. Exact
descriptions of the dissipative processes are particularly elusive.

In the latter category, initial states may be prescribed exactly. Likewise, the defin-
ing formulas may be precisely written down, at least if the chosen finite-difference
approximations to any differential equations, and the inevitable round-off proce-
dures, are regarded as part of the system. In some instances the equations are of
mathematical interest only, but in other cases they constitute models of real physical
systems; that is, they may be fair, good, or even the best-known approximations to
the equations that properly represent the appropriate physical laws. The relevance of
mathematically defined systems cannot be too strongly emphasised; much of what
we know, or believe that we know, about real systems has come from the study of
models.

Systems whose future states evolve from their present states according to precise
physical laws or mathematical equations are known as dynamical systems. These
laws or equations encompass not only the internal dynamics of a system, but also
any external factors that influence the system as it evolves. Often the concept of a
dynamical system is extended to include cases where there may be some random-
ness or uncertainty in the evolution process, especially when it is believed that the
general behaviour of the system would hardly be changed if the randomness could
be removed; thus, in addition to mathematical models and abstractions, many real
physical systems will qualify. Stochastic terms sometimes are added to otherwise
deterministic mathematical equations to make them simulate real-system behaviour
more closely.
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In the ensuing discussion I shall frequently assume that our system is the atmo-
sphere and its surroundings – the upper layers of the oceans and land masses –
although I shall illustrate some of the points with rather crude models. By regularly
calling our system the ‘atmosphere’ I do not mean to belittle the importance of the
non-atmospheric portions. They are essential to the workings of the atmospheric
portions, and, in fact, prediction of oceanic and land conditions can be of interest for
its own sake, wholly apart from any coupling to the weather.

A procedure for predicting the evolution of a system may consist of an attempt
to solve the equations known or believed to govern the system, starting from an
observed state. Often, if the states are not completely observed, it may be possible to
infer something about the unobserved portion of the present state from observations
of past states; this is what is currently done, for example, in numerical weather pre-
diction (see, for example, Toth and Kalnay, 1993). At the other extreme, a prediction
procedure may be completely empirical. Nevertheless, whatever the advantages of
various approaches may be, no procedure can do better than to duplicate what the
system does. Any suitable method of prediction will therefore constitute, implicitly
if not explicitly, an attempt at duplication – an attempt to reproduce the result of
marching forward from the present state.

When we speak of ‘predictability’, we may have either of two concepts in mind.
One of these is intrinsic predictability – the extent to which prediction is possible if
an optimum procedure is used. The other is practical predictability – the extent to
which we ourselves are able to predict by the best-known procedures, either currently
or in the foreseeable future. If optimum prediction consists of duplication, it would
appear that imperfect predictability must be due to one or both of two conditions –
inability to observe the system exactly, and inability to formulate a perfect forward-
extrapolation procedure. The latter condition is certainly met if the laws involve some
randomness, or if future external influences cannot be completely anticipated.

When we cannot determine an initial state of a system precisely, there are two
possible consequences. The system may be convergent; that is, two or more rather
similar states, each evolving according to the same laws, may become progressively
more similar. In this event, a precise knowledge of the true initial state is clearly
not needed, and, in fact, the governing laws need not be known, since empirical
methods will perform as well as any others. When we predict the oceanic tides, for
example, which we can do rather well years in advance, we do not start from the
observed present state of the ocean and extrapolate forward; we base our prediction on
known periodicities, or on established relations between the tides and the computable
motions of the sun, earth, and moon.

If, instead, the system is divergent, so that somewhat similar states become less
and less similar, predictability will be limited. If we have no basis for saying which,
if any, of two or more rather similar states is the true initial state, the governing laws
cannot tell us which of the rather dissimilar states that would result from marching
forward from these states will be the one that will actually develop. As will be noted
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in more detail in the concluding section, any shortcoming in the extrapolation pro-
cedure will have a similar effect. Systems of this sort are now known collectively
as chaos. In the case of the atmosphere, it should be emphasised that it may be
difficult to establish the absence of an intrinsic basis for discriminating among sev-
eral estimates of an initial state, and the consequent intrinsic unpredictability; some
estimates that now seem reasonable to us might, according to rules that we do not
yet appreciate, actually be climatologically impossible and hence rejectable, while
others might, according to similar rules, be incompatible with observations of earlier
states.

3.2 First estimates of predictability

Two basic characteristics of individual chaotic dynamical systems are especially rele-
vant to predictability. One quantity is the leading Lyapunov number, or its logarithm,
the leading Lyapunov exponent. Let us assume that there exists a suitable measure for
the difference between any two states of a system – possibly the distance between the
points that represent the states, in a multidimensional phase space whose coordinates
are the variables of the system. If two states are infinitesimally close, and if both
proceed to evolve according to the governing laws, the long-term average factor by
which the distance between them will increase, per unit time, is the first Lyapunov
number. More generally, if an infinite collection of possible initial states fills the sur-
face of an infinitesimal sphere in phase space, the states that evolve from them will
lie on an infinitesimal ellipsoid, and the long-term average factors by which the axes
lengthen or shorten, per unit time, arranged in decreasing order, are the Lyapunov
numbers. The corresponding Lyapunov exponents are often denoted by λ1, λ2, . . . ;
a positive value of λ1 implies chaos (see, for example, Lorenz, 1993). Unit vectors in
phase space pointing along the axes of the ellipsoid are the Lyapunov vectors; each
vector generally varies with time.

Our interest in pairs of states arises from the case when one member of a pair is
the true state of a system, while the other is the state that is believed to exist. Their
difference is then the error in observing or estimating the state, and, if the assumed
state is allowed to evolve according to an assumed law, while the true state follows
the true law, their difference becomes the error in prediction. In the meteorological
community it has become common practice to speak of the doubling time for small
errors; this is inversely proportional to λ1 in the case where the assumed and true
laws are the same.

The other quantity of interest is the size of the attractor; specifically, the aver-
age distance ρ between two randomly chosen points of the attractor. The attractor
is simply the set of points representing states that will occur, or be approximated
arbitrarily closely, if the system is allowed to evolve from an arbitrary state, and
transient effects associated with this state are allowed to die out. Estimation of these
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quantities is fairly straightforward for mathematically defined systems – ordinarily
ρ2 is simply twice the sum of the variances of the variables – but for real systems λ1

may be difficult to deduce.
The third quantity that would seem to be needed for an estimate of the range

of acceptable predictability is the typical magnitude of the error in estimating an
initial state, ostensibly not a property of the system at all, but dependent upon our
observing and inference techniques. For the atmosphere, we have a fair idea of how
well we now observe a state, but little idea of what to expect in the years to come.
Even though we may reject the notion of a future world where observing instruments
are packed as closely as today’s city dwellings, we do not really know what some
undreamed-of remote-sensing technique may some day yield. However, assuming
the size of an initial error, taking its subsequent growth rate to be given by λ1,
and recognising that the growth should cease when the predicted and actual states
become as far apart as randomly chosen states – when the error reaches saturation –
we can easily calculate the time needed for the prediction to become no better than
guesswork.

How good are such naive estimates? We can demonstrate some simple systems
where they describe the situation rather well, at least on the average. One system is
one that I have been exploring in another context as a one-dimensional atmospheric
model, even though its equations are not much like those of the atmosphere. It contains
the K variables X1, . . . , X K , and is governed by the K equations

d Xk/dt = −Xk−2 Xk−1 + Xk−1 Xk+1 − Xk + F, (3.1)

where the constant F is independent of k. The definition of Xk is to be extended to all
values of k by letting Xk−K and Xk+K equal Xk , and the variables may be thought of
as values of some atmospheric quantity in K sectors of a latitude circle. The physics
of the atmosphere is present only to the extent that there are external forcing and
internal dissipation, simulated by the constant and linear terms, while the quadratic
terms, simulating advection, together conserve the total energy (X2

1 + · · · + X2
K )/2.

We assume that K > 3; the equations are of little interest otherwise. The variables
have been scaled to reduce the coefficients in the quadratic and linear terms to unity,
and, for reasons that will presently appear, we assume that this scaling makes the
time unit equal to 5 days.

For very small values of F, all solutions decay to the steady solution X1 = . . . =
X K = F , while, when F is somewhat larger, most solutions are periodic, but for still
larger values of F (dependent on K) chaos ensues. For K = 36 and F = 8.0, for
example, λ1 corresponds to a doubling time of 2.1 days; if F is raised to 10.0, the
time drops to 1.5 days.

Figures 3.1 and 3.2(a) have been constructed with K = 36, so that each sector
covers 10 degrees of longitude, while F = 8.0. We first choose rather arbitrary values
of the variables, and, using a fourth-order Runge–Kutta scheme with a time step 	t
of 0.05 units, or 6 hours, we integrate forward for 14 400 steps, or 10 years. We then



Figure 3.1 (a) Time variations of X1 during a period of 180 days, shown as three
consecutive 60-day segments, as determined by numerical integration of Eq. (3.1),
with K = 36 and F = 8.0. Scale for time, in days, is at bottom. Scales for X1 in
separate segments are at left. (b) Longitudinal profiles of Xk at three times separated
by 1-day intervals, determined as in (a). Scale for longitude, in degrees east, is at
bottom. Scales for Xk in separate profiles are at left.
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use the final values, which should be more or less free of transient effects, as new
‘true’ initial values, to be denoted by Xk0.

From Figure 3.1 we may gain some idea as to the resemblance or lack of resem-
blance between the behaviour of the model variables and some atmospheric variable
such as temperature. Figure 3.1(a) shows the variations of X1 during 720 time steps,
or 180 days, beginning with the new initial conditions. The time series is displayed as
three 60-day segments. There are some regularities – values lie mostly between −5
and +10 units, and about 12 maxima and minima occur every 60 days – but there is
no sign of any true periodicity. Because of the symmetry of the model, all 36 variables
should have statistically similar behaviour. Figure 3.1(b) shows the variations of Xk

with k – a ‘profile’ of Xk about a ‘latitude circle’ – at the initial time, and one and
two days later. The principal maxima and minima are generally identifiable from one
day to the next, and they show some tendency to progress slowly westward, but their
shapes are continually changing.

To produce the upper curve in Figure 3.2(a) we make an initial ‘run’ by choos-
ing errors ek0 randomly from a distribution with mean 0 and standard deviation
ε, here equal to 0.001, and letting X ′

k0 = Xk0 + ek0 be the ‘observed’ initial val-
ues of the K variables. We then use Eq. (3.1) to integrate forward from the true
and also the observed initial state, for N = 200 steps, or 50 days, obtaining K
sequences Xk0, Xk1, . . . , Xk N and K sequences X ′

k0, X ′
k1, . . . , X ′

k N , after which we
let ekn = X ′

kn −Xkn for all values of k and n.
We then proceed to make a total of M = 250 runs in the same manner, in each

run letting the new values of Xk0 be the old values of Xk N and choosing the values
of ek0 randomly from the same distribution. Finally we let e2(τ ) be the average of
the K values e2

kn , where τ = n	t is the prediction range, and let log E2(τ ) be the
average of the M values of log e2(τ ), and plot E(τ ) against the number of days (5τ ),
on a logarithmic scale. (The lower curve is the same except that the vertical scale is
linear.)

For small n we see a nearly straight sloping line, representing uniform expo-
nential growth, with a doubling time of 2.1 days, agreeing with λ1, until saturation
is approached. For large n we see a nearly straight horizontal line, representing
saturation. It should not surprise us that the growth rate slackens before satura-
tion is reached, rather than continuing unabated up to saturation and then ceasing
abruptly.

The alternative procedure of simply letting E2(τ ) be the average value of e2(τ ),
i.e. averaging the runs arithmetically instead of geometrically, would lead to a figure
much like Figure 3.2(a), but with the sloping line in the upper curve indicating a
doubling time of 1.7 days. Evidently the errors tend to grow more rapidly for a while
in those runs where they have already acquired a large amplitude by virtue of their
earlier more rapid growth, and it is these runs that make the major contribution to
the arithmetic average. One could perhaps make equally good cases for studying
geometric or arithmetic means, but only the former fits the definition of λ1.



Figure 3.2 (a) Variations of average prediction error E (lower curve, scale at right)
and log10 E (upper curve, scale at left) with prediction range τ (scale, in days, at
bottom), for 50 days, as determined by 250 pairs of numerical integrations of Eq.
(3.1), with K = 36 and F = 8.0 (as in Fig. 3.1). (b) The same as (a), but for
variations of log10 E only, and as determined by 1000 pairs of integrations of Eq.
(3.1), with K = 4, and with F = 18.0 (upper and middle curves, with different initial
errors), and F = 15.0 (lower curve).
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3.3 Atmospheric estimates

Some three decades ago a historic meeting, organised by the World Meteorological
Organization, took place in Boulder, Colorado. The principal topic was long-range
weather forecasting. At that time numerical modelling of the complete global cir-
culation was just leaving its infancy; the three existing state-of-the-art models were
those of Leith (1965), Mintz (1965), where A. Arakawa also played an essential role,
and Smagorinsky (1965).

At such meetings the greatest accomplishments often occur between sessions.
In this instance Jule Charney, who headed a committee to investigate the fea-
sibility of a global observation and analysis experiment, persuaded the creators
of the three models, all of whom were present, to use their models for pre-
dictability experiments, which would involve computations somewhat like those that
produced Figure 3.2(a). On the basis of these experiments, Charney’s commit-
tee subsequently concluded that a reasonable estimate for the atmosphere’s dou-
bling time was five days (Charney et al., 1966). Taken at face value, this estimate
offered considerable hope for useful two-week forecasts but very little for one-month
forecasts.

The Mintz–Arakawa model that had yielded the five-day doubling time was a two-
layer model. Mintz’s graphs showed nearly uniform amplification before saturation
was approached; presumably they revealed the model’s leading Lyapunov exponent,
although not, as we shall see, the leading exponent for the real atmosphere. As
time passed by and more sophisticated models were developed, estimates of the
doubling time appeared to drop. Smagorinsky’s nine-level primitive-equation model,
for example, reduced the time to three days (Smagorinsky, 1969).

Experiments more than a decade later with the then recently established opera-
tional model of ECMWF, based upon operational analyses and forecasts, suggested
a doubling time between 2.1 and 2.4 days for errors in the 500-millibar height field
(Lorenz, 1982). In the following years the model was continually modified, in an
effort to improve its performance, and the newly accumulated data presently pushed
the estimate below two days. There were small but significant variations of pre-
dictability with the season and the hemisphere, and quantities such as divergence
appeared to be considerably less predictable than 500-m height.

One of the most recent studies (Simmons et al., 1995), again performed with
the ECMWF model, has reduced the estimate to 1.5 days. It is worth asking why
the times should continually drop. Possibly the poorer physics of the earlier models
overestimated the predictability, but it seems likely that a major factor has been spatial
resolution. The old Mintz–Arakawa model used about 1000 numbers to represent the
field of one variable at one level; the present ECMWF model uses about 45 000.
Errors in features that formerly were not captured at all may well amplify more
rapidly than those in the grossest features.
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As with the Mintz–Arakawa model, the doubling times of the recent models
appear consistent with the values of λ1 for these models. Obviously not all of them
can indicate the proper value of the exponent for the real atmosphere, and presumably
none of them does.

Our reason for identifying the time unit in the model defined by Eq. (3.1) with five
days of atmospheric time is now apparent. With K = 36 and F = 8.0 or 10.0, and
indeed with any reasonably large value of K and these values of F, the doubling time
for the model is made comparable to the times for the up-to-date global circulation
models.

3.4 The early stages of error growth

Despite the agreement between the error growth in the simple model, and even in
some global circulation models, with simple first estimates, reliance on the leading
Lyapunov exponent, in most realistic situations, proves to be a considerable over-
simplification. By and large this is so because λ1 is defined as the long-term average
growth rate of a very small error. Often we are not primarily concerned with averages,
and, even when we are, we may be more interested in shorter-term behaviour. Also,
in practical situations the initial error is often not small.

Sometimes, for example, we are interested in how well we can predict on specific
occasions, or in specific types of situation, rather than in some general average skill.
For any particular initial state, the initial growth rate of a superposed error will be
highly dependent on the form of the error – on whether, for example, it assumes its
greatest amplitude in synoptically active or inactive regions. In fact, there will be
one error pattern – in phase space, it is an error vector – that will initially grow more
rapidly than any other. The form and growth rate of this vector will of course depend
upon the state on which the error is superposed.

Likewise, the average initial or early growth rate of randomly chosen errors super-
posed on a particular initial state will depend upon that state. Indeed, the identification
of situations in which the atmosphere is especially predictable or unpredictable – the
prediction of predictability – and even the identifiability of such situations – the pre-
dictability of predictability – have become recognised as suitable subjects for detailed
study (see Kalnay and Dalcher, 1987; Palmer, 1988).

Assuming, however, that we are interested in averages over a wide variety of initial
states, the value of λ1 may still not tell us what we want to know, particularly in the
earliest or latest stages of growth. In fact, in some systems the average initial growth
rate of randomly chosen errors systematically exceeds the Lyapunov rate (see, for
example, Farrell, 1989).

This situation is aptly illustrated by the middle curve in Figure 3.2(b), which has
also been produced from Eq. (3.1), in the same manner as Figure 3.2(a), but with
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K reduced to 4 and F increased to 18.0, and with ε = 0.0001. Also, because so
few variables are averaged together, we have increased M to 1000. Between about
6 and 30 days the curve has a reasonably uniform slope, which agrees with λ1,
and indicates a doubling time of 3.3 days, but during the first 3.3 days the average
error doubles twice. Systems exhibiting anomalously rapid initial error growth are
in fact not uncommon. Certainly there are practical situations where we are mainly
interested in what happens during the first few days, and here λ1 is not always too
relevant.

This phenomenon, incidentally, is in this case not related to the chaotic behaviour
of the model. The lower curve in Figure 3.2(b) is like the middle one, except that
F has been reduced to 15.0, producing a system that is not chaotic at all. Again
the error doubles twice during the first six days, but then it levels off at a value far
below saturation. If ε had been smaller, the entire curve would have been displaced
downward by a constant amount.

When the initial error is not particularly small, as is often the case in operational
weather forecasting, λ1 may play a still smaller role. The situation is illustrated by
the upper curve in Figure 3.2(b), which has been constructed exactly as the middle
curve, except that ε = 0.4, or 5% of saturation, instead of 0.001. The rapid initial
error growth is still present, but, when after four days it ceases, saturation is already
being approached. Only a brief segment between 4 and 8 days is suggestive of 3.3-day
doubling.

The relevance of the Lyapunov exponent is even less certain in systems, such as
more realistic atmospheric models or the atmosphere itself, where different features
possess different characteristic time scales. In fact, it is not at all obvious what
the leading exponent for the atmosphere may be, or what the corresponding vector
may look like. To gain some insight, imagine a relatively realistic model that resolves
larger scales – planetary and synoptic scales – and smaller scales – mesoscale motions
and convective clouds; forget about the fact that experiments with a global model
with so many variables would be utterly impractical with today’s computational
facilities. Convective systems can easily double their intensity in less than an hour,
and we might suppose that an initial error field consisting only of the omission of one
incipient convective cloud in a convectively active region, or improperly including
such a cloud, would amplify equally rapidly, and might well constitute the error
pattern with the greatest initial growth rate.

Yet this growth rate need not be long-term, because the local instability responsible
for the convective activity may soon subside, whereupon the error will cease to grow,
while new instability may develop in some other location. A pattern with convective-
scale errors distributed over many regions, then, would likely grow more steadily
even if at first less rapidly, and might more closely approximate the leading Lyapunov
vector.

Since this reasoning is highly speculative, I have attempted to place it on a slightly
firmer basis by introducing another crude model which, however, varies with two
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distinct time scales. The model has been constructed by coupling two systems, each
of which, aside from the coupling, obeys a suitably scaled variant of Eq. (3.1). There
are K variables Xk plus JK variables Y j,k , defined for k = 1, . . . , K and j = 1, . . . , J ,
and the governing equations are

d Xk/dt = −Xk−1(Xk−2 − Xk+1) − Xk − (hc/b)
J∑

j=1

Y j,k, (3.2)

dY j,k/dt = −cbY j+1,k(Y j+2,k − Y j−1,k) − cY j,k + (hc/b)Xk . (3.3)

The definitions of the variables are extended to all values of k and j by letting Xk−K

and Xk+K equal Xk , as in the simpler model, and letting Y j,k−K and Y j,k+K equal
Y j,k , while Y j−J,k = Y j,k−1 and Y j+J,k = Y j,k+1. Thus, as before, the variables Xk

can represent the values of some quantity in K sectors of a latitude circle, while the
variables Y j,k , arranged in the order Y1,1, Y2,1, . . . , YJ,1, Y1,2, Y2,2, . . . , YJ,2, Y3,1, . . .,
can represent the values of some other quantity in J K sectors. A large value
of J implies that many of the latter sectors are contained in one of the former,
and we may think of the variables Y j,k as representing a convective-scale quan-
tity, while, in view of the form of the coupling terms, the variables Xk should
represent something that favours convective activity, possibly the degree of static
instability.

In our computations we have let K = 36 and J = 10, so that there are ten small
sectors, each one degree of longitude in length, in one large sector, while c = 10.0
and b = 10.0, implying that the convective scales tend to fluctuate ten times as rapidly
as the larger scales, while their typical amplitude is 1/10 as large. We have let h, the
coupling coefficient, equal 1.0, and we have advanced the computations in time steps
of 0.005 units, or 36 minutes. Our chosen value F = 10.0 is sufficient to make both
scales vary chaotically; note that coupling replaces direct forcing as a driver for the
convective scales.

Figure 3.3 reveals some of the typical behaviour of the model, by showing the
distribution of Xk and Y j,k about a latitude circle, at times separated by 2 days. There
are seven active areas (Xk large), generally 30 or 40 degrees wide, that fluctuate in
width and intensity as they slowly propagate westward, while the convective activity,
which is patently strongest in the active areas, tends to propagate eastward (note the
signs in the subscripts in the non-linear terms in Eq. 3.3), but rapidly dies out as it
leaves an active area.

Figure 3.4 presents separate error-growth curves for the large and small scales. For
computational economy we have averaged 25 runs rather than 250. The small-scale
errors begin to amplify immediately, doubling every 6 hours or so and approaching
saturation by the third day. This growth rate is compatible with the computed value
of λ1 for the model. Meanwhile, the large-scale errors begin to grow at a similar
rate once the small-scale errors exceed them by an order of magnitude, the growth
evidently resulting from the coupling rather than the dynamics internal to the large
scales. After the small-scale errors are no longer growing, the large-scale errors
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Figure 3.3 (a) Longitudinal profiles of Xk and Y j,k at one time, as determined by
numerical integration of Eqs. (3.2) and (3.3), with K = 36, J = 10, F = 10.0,
c = 10.0, b = 10.0, and h = 1.0. Scale for longitude, in degrees east, is at bottom.
Common scale for Xk and Y j,k is at left. (b) The same as (a), but for a time two days
later.
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Figure 3.4 Variations of log10 E (scale at left) with prediction range τ (scale, in
days, at bottom), shown separately for large scales (variables Xk , curve a) and small
scales (variables Y j,k , curve b), for 30 days, as determined by 25 pairs of integrations
of Eqs. (3.2) and (3.3), with the parameter values of Figure 3.3.

continue to grow, at a slower quasi-exponential rate comparable to what appears in
Figure 3.2(a), doubling in about 1.6 days. Finally they approach their own saturation
level, an order of magnitude higher than that of the small-scale errors. Thus, after the
first few days, the large-scale errors behave about as they would if the forcing were
slightly weaker, and if the small scales were absent altogether.

In a more realistic model with many time scales or perhaps a continuum, we would
expect to see the growth rate of the largest-scale errors subsiding continually, as, one
after another, the smaller scales reached saturation. Thus we would not expect a large-
scale-error curve constructed in the manner of Figure 3.4 to contain an approximate
straight-line segment of any appreciable length.

We now see the probable atmospheric significance of the error doubling times of
the various global circulation models. Each doubling time appears to represent the rate
at which, in the real atmosphere, errors in predicting the features that are resolvable
by the particular model will amplify, after the errors in unresolvable features have
reached saturation. Of course, before accepting this interpretation, we must recognise
the possibility that some of the small-scale features will not saturate rapidly; possibly
they will act in the manner of coherent structures.
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3.5 The late stages

As we have seen, prediction errors in chaotic systems tend to amplify less rapidly,
on the average, as they become larger. Indeed, the slackening may become apparent
long before the errors are close to saturation, and thus at a range when the predictions
are still fairly good. For Eq. (3.1), and in fact for the average behaviour of some
global atmospheric circulation models, we can construct a crude formula by assuming
that the growth rate is proportional to the amount by which the error falls short of
saturation. We obtain the equation

(1/E)d E/dτ = λ1(E∗ − E)/E∗, (3.4)

where E∗ denotes the saturation value for E. Equation (3.4) possesses the solution

E = E∗ (1 + tanh(λ1τ ))/2, (3.5)

if the origin of τ is the range at which E = E∗/2. The well-known symmetry of the
hyperbolic-tangent curve, when it is drawn with a linear vertical scale, then implies
that the rate at which the error approaches saturation, as time advances, equals the
rate at which it would approach zero, if time could be reversed. This relationship
is evidently well approximated in the lower curve of Figure 3.2(a), and it has even
been exploited to estimate growth rates for small errors, when the available data
have covered only larger errors (see Lorenz, 1969b, 1982). It is uncertain whether
the formula is more appropriate when E is the root-mean-square error or simply the
mean-square error.

For many systems, however, Eq. (3.4) and hence Eq. (3.5) cannot be justified in
the later stages. This may happen when, as in the case where the early growth fails
to follow Eq. (3.4), the system possesses contrasting time scales. Here, however, the
breakdown can occur because some significant feature varies more slowly than the
features of principal interest – the ones that contribute most strongly to the chosen
measure of total error.

Perhaps the feature most often cited as falling into this category is the sea surface
temperature (SST), which, because of the ocean’s high heat capacity, sometimes
varies rather sluggishly. Along with the atmospheric features most strongly under its
influence, the SST may therefore be expected to be somewhat predictable at a range
when migratory synoptic systems are not. A slow final approach to saturation may
thus be anticipated, particularly if the ‘total error’ includes errors in predicting the
SST itself.

A perennial feature in which the SST plays a vital role is the El Niño–Southern
Oscillation (ENSO) phenomenon. Phases of the ENSO cycle persist long enough
for predictions of the associated conditions a few months ahead to be much better
than guesswork, while some models of ENSO (e.g. Zebiak and Cane, 1987) suggest
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that the onsets of coming phases may also possess some predictability. Again, the
phenomenon should lead to an ebbing of the late-stage growth rate.

Perhaps less important but almost certainly more predictable than the ENSO-
related features are the winds in the equatorial middle-level stratosphere, dominated
by the quasi-biennial oscillation (QBO). Even though one cannot be certain just
when the easterlies will change to westerlies, or vice versa, nor how the easterlies or
westerlies will vary from day to day within a phase, one can make a forecast with
a fairly low expected mean-square error, for a particular day, a year or even several
years in advance, simply by subjectively extrapolating the cycle, and predicting the
average conditions for the anticipated phase. Any measure of the total error that gives
appreciable weighting to these winds is forced to approach saturation very slowly in
the latest stages.

Looking at still longer ranges, we come to the question, ‘Is climate predictable?’
Whether or not it is possible to predict climate changes, aside from those that result
from periodic or otherwise predictable external activity, may depend on what is
considered to be a climate change.

Consider again, for example, the ENSO phenomenon. To some climatologists,
the climate changes when El Niño sets in. It changes again, possibly to what it had
previously been, when El Niño subsides. We have already suggested that climatic
changes, so defined, possess some predictability.

To others, the climate is not something that changes whenever El Niño arrives or
leaves. Instead, it is something that often remains unchanged for decades or longer,
and is characterised by the appearance and disappearance of El Niño at rather irregular
intervals, but generally every two to seven years. A change of climate would be
indicated if El Niño should start to appear almost every year, or only once in twenty
years or not at all. Whether unforced changes of climate from one half-century or
century to another, or one millennium to another, are at all predictable is much less
certain.

Let us then consider the related question, ‘Is climate a dynamical system?’ That
is, is there something that we can conscientiously call ‘climate’, determined by the
state of the atmosphere and its surroundings, and undergoing significant changes
over intervals of centuries but usually remaining almost unchanged through a sin-
gle ENSO cycle or a shorter-period oscillation, whose future states are determined
by its present and past according to some exact or approximate rule? To put the
matter in perspective, let us first re-examine the justification for regarding the
ever-changing synoptic pattern, and possibly the ENSO phenomenon, as dynamical
systems.

Experience with numerical weather prediction has shown that we can forecast the
behaviour of synoptic systems fairly well, far enough in advance for an individual
storm to move away and be replaced by the next storm, without observing the super-
posed smaller-scale features at all, simply by including their influence in parametrised
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form. If instead of parametrising these features we omit them altogether, the models
will still produce synoptic systems that behave rather reasonably, even though the
actual forecasts will suffer from the omission. Evidently this is because the features
that are small in scale are relatively small in amplitude, so that their influence acts
much like small random forcing.

Moving to longer time scales, we find that some models yield rather good sim-
ulations of the behaviour of the ENSO phenomenon, even if not good forecasts of
individual occurrences, without including the accompanying synoptic systems in any
more than parametrised form. Here the synoptic systems do not qualify as being small
in amplitude, but they appear to be rather weakly coupled to ENSO, so that again
they may act like small random forcing.

Similarly, climatic fluctuations with periods of several decades or longer have
more rapid oscillations superposed on them, ranging in timescale all the way from
ENSO and the QBO to synoptic and small-scale features. Certainly these fluctuations
are not small. Is their effect on the climate, if large, determined for the most part by
the climate itself, so that climate can constitute a dynamical system? If this is not
the case, are these features nevertheless coupled so weakly to the climate that they
act like small random forcing, so that climate still constitutes a dynamical system?
Or do they act more like strong random forcing, so that climate does not qualify as
a dynamical system, and prospects for its prediction are not promising? At present
the reply to these questions seems to be that we do not know.

3.6 Concluding remarks

In this overview I have identified the rate at which small errors will amplify as the
key quantity in determining the predictability of a system. By an error we sometimes
mean the difference between what is predicted and what actually occurs, but ordinarily
we extend the concept to mean the difference, at any designated time, between two
evolving states. We assume that there would be no prediction error if we could observe
an initial state without error, and if we could formulate an extrapolation procedure
without error, recognising that such formulation is not possible if the governing laws
involve any randomness.

In my discussions and numerical illustrations I have found it convenient to consider
the growth of errors that owe their existence to errors in the initial state, disregarding
the additional influence of any inexactness in the extrapolation procedure. However,
if the fault lies in the extrapolation and not in the initial state, the effect will be similar;
after a reasonable time interval there will be noticeable errors in the predicted state,
and these will proceed to grow about as they would have if they had been present
initially. If the assumed and actual governing laws define systems with different lead-
ing Lyapunov exponents, the larger exponent will be the relevant one. Randomness
in the governing laws will have the same effect as any other impediment to perfect


