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1.1 Mask used by Stéphan on the Marseilles telescope. This mask provides
a pair of identical apertures with the largest separation possible. 3

1.2 Michelson’s 20-foot beam stellar interferometer. (a) Optical diagram;
(b) a photograph of the instrument, as it is today in the Mount Wilson
Museum (reproduced by permission of the Huntington Library). 5

2.1 Young’s fringes between light passing through two pinholes separated
vertically: (a) from a monochromatic source; (b) from a polychromatic
line source; (c) from a broad-band source. 10

2.2 Template for preparing your own double slit. Photocopy this diagram
onto a viewgraph transparency at 30% of full size, to give a slit spacing
of about 1 mm. 11

2.3 A typical observation of an urban night scene photographed through a
pair of slits separated vertically by about 1 mm. Approximate distances
to the street lights are shown on the right. 12

2.4 Waves on a still pond, photographed at (a) t = 0, (b) t = 2 and
(c) t = 4 sec. The radius r of a selected wavefront, measured from the
source point, is shown on each of the pictures. 13

2.5 Huygens, principle applied to (a) propagation of a plane wave,
(b) propagation of a spherical wave, (c) diffraction after passage
through an aperture mask. 16

2.6 Huygens’ principle applied to gravitational lensing. (a) The distortion
of the wavefront of a plane wave in the region of a massive body,
causing a dimple on the axis, propagation of the dimpled wavefront,
and the way in which multiple images result; (b) an example of the
gravitationally distorted image of a quasar in the near infrared
(courtesy of NASA). 17

2.7 Speckle pattern amplitude resulting from the superposition of 17
real-valued plane waves with random phases traveling in random
directions. Black is most negative and white most positive. 19

2.8 Simulation of the development of an image out of noise as the number
of photons in each white pixel increases. 21

xii



List of illustrations xiii

3.1 The Michelson interferometer: (a) optical layout; (b) a typical fringe
pattern from an extended source, when the configuration of figure 3.2
(b) is used. 25

3.2 The two virtual images I2B and IB1 of a source point S as seen through
the mirrors M1, M2 and beam-splitter BS of a Michelson
interferometer. Image I2B , for example, is formed by reflecting S first
in M2, giving image I2, and then reflecting I2 in BS. The fringe
patterns result from the interference between the two virtual images. In
(a) the two images are side-by-side, and equidistantly spaced straight
fringes are seen; in (b) they are one behind the other, and the concentric
ring interference pattern is like figure 3.1(b). 27

3.3 Fraunhofer diffraction by an aperture, using Huygens’ principle. When
|x | < H � L , φ is small and OQ − PQ = OT ≈ x sin θ. 29

3.4 Three experimental arrangements for observing Fraunhofer diffraction
patterns: (a) with an expanded laser beam illuminating the mask, and a
converging lens which gives the diffraction pattern in its focal plane;
(b) visually, viewing a distant point source of monochromatic light and
putting the mask directly in front of the eye pupil; (c) a point star
observed by a telescope, where the mask is the telescope aperture. 30

3.5 The Fraunhofer diffraction pattern of a pair of slits each having width
2b separated by 2a when a = 6b: (a) amplitude; (b) intensity;
(c) amplitude when there is a phase difference 2� = 1 rad between the
slits. 33

3.6 The diffraction pattern of a square aperture: (a) the calculated pattern,
[sinc(ua)sinc(va)]2; (b) an experimental observation. In both cases the
central region has been “over-saturated” so as to emphasize the
secondary peaks. 34

3.7 Description of a limited periodic array of finite apertures by means of
multiplication and convolution. (a) Two infinite vectors of δ-functions
at angles 0 and γ are convolved to give a two-dimensional array of
δ-functions. (b) This is multiplied by the bounding-aperture function
c(r) (a circle). (c) The resulting finite array of δ-functions is convolved
with the individual aperture g(r). 35

3.8 Schematic description of the transform of the array in figure 3.7. The
individual transforms of the vector of δ-functions, c(r) and g(r); then
(a), (b) and (c) are the transforms of the corresponding processes in that figure. 36

3.9 (a) A finite array of apertures and (b) its diffraction pattern. 36
3.10 The diffraction pattern of a circular aperture: (a) the calculated pattern,

[2π R2 J1(ρR)/ρR]2; (b) an experimental observation. In both cases the
central region has been “over-saturated” so as to emphasize the
rings. 38

3.11 The diffraction pattern of an annular aperture: (a) the calculated pattern
[π Rt J0(ρR)]2, on the same scale as that of figure 3.10; (b) an
experimental observation. 39

3.12 Showing the relationship between the autocorrelation function (overlap
area between the aperture and itself, shifted by R) and the optical



xiv List of illustrations

transfer function. The spatial frequency is related to R by u = R/ f λ,
where f is the focal length, in the paraxial approximation. 40

3.13 The phase difference between the waves from a point source Q
reaching the pinholes A and B depends on their separation r . Drawing
A′ such that QA = QA′, the phase difference is seen to be
k0BA′ ≈ k0rα for small α. On the screen, the zero-order fringe is at P ,
where QP passes through the mid-point of the two pinholes. The
fringes from O and Q as shown have π phase difference, so that r is
about equal to rc. 42

3.14 A schematic picture of the coherence region; interference can be
observed between points separated in space and time by a vector lying
within this region. 44

3.15 Fringes observed between sources with degrees of coherence
(a) γ = 0.97, (b) 0.50 and (c) −0.07. Notice in (c) that there is
minimum intensity on the center line, indicating that � = π . 47

3.16 Direction cosines (
, m, n) of a vector. The components 
, m and n are
the cosines of the angles shown as L , M and N. 48

3.17 Geometry of the proof of the Van Cittert–Zernike theorem. 48
3.18 Phase and value of the coherence function γ (w) for a circular star of

angular diameter α = 10−3 arcsec. 50
3.19 Coherence function for limb-darkened circular disks. (a) shows γ (r )

for three degrees of limb-darkening, and (b) shows the same data when
scaled so that the first zeros of the three curves coincide. 51

3.20 Value and phase of the coherence function γ (u, v) for a pair of
disk-like stars with angular diameter 0.5 mas, separated by 1.5 mas and
with intensity ratio 1:2. (a) shows |γ (u, v)| as a contour plot with
contours at 0.05, 0.1, 0.2, 0.4, 0.6, and 0.8. (b) shows cos � in gray
scale (1 = white to −1 = black); in both figures u and v are in units of
108λ. 52

3.21 Image of the double star Capella, obtained by the COAST group in
1997 at 1.29 µm (Young 1999). The circle at (−100, −100) indicates
the resolution limit. 53

3.22 Incoherent waves simulated by adding 20 components with unit
amplitude and randomly chosen frequencies within the band ω0 ± δω.
(a) ω/δω0 = 6; (b) ω/δω0 = 16. In both cases the phase, relative to the
phase at the start of the example, and the amplitude measured during
periods T0 are shown. The coherence time τc = (δω)−1 is the length of
a typical wave group. 55

3.23 The intensity coherence function γ (2)(τ ) for a partially coherent wave
with Gaussian profile and linewidth δω = τ−1

c . 56
3.24 Super-Poisson statistics. (a) Typical intensity fluctuations in a wave,

generated as in figure 3.22; (b) corresponding photo-electron sequence;
(c) photo-electron sequence for a steady wave with the same mean
intensity as (a). 58

4.1 The (u, v) plane and time-difference compensation. 65
4.2 Geometry of aperture synthesis. 66



List of illustrations xv

4.3 Synthetic point spread functions for a polar star: (a) single baseline B
compared to (b) the optical point spread function for a circular aperture
of diameter B and (c) sum of baselines 0.5B, 0.75B and B
with equal weights. 67

4.4 Two examples of (u, v) plane coverage (arbitrary units) and calculated
equally-weighted point spread functions for a group of three receivers
observing sources (a) on the Earth’s axis and (b) at 6◦ to the equator.
The receivers are arranged in a 3-4-5 triangle with the 4-unit side EW,
situated at latitude 60◦. 68

4.5 Annular and “Y” receiver arrays, and the corresponding autocorrelation
functions. (a) A circular array of five receivers and
(b) its autocorrelation function; (c) five receivers in a “Y” array and
(d) their autocorrelation. The black circles A to E represent receiver
positions and the open circles peaks in the autocorrelation function.
The lines represent the construction vectors. 70

4.6 The Reuleaux triangle. 71
4.7 Autocorrelation functions for 24 receivers around a Reuleaux triangle:

(a) on the triangle, but spaced non-uniformly around it;
(b) with deviations from the triangle to optimize autocorrelation
uniformity. The triangles show the receiver positions, and the dots the
autocorrelation points. From Keto (1997). 72

4.8 (a) A nonredundant array of four receivers; (b) a redundant array, in
which vectors 13 and 34 are equal. 74

4.9 Normalized fringe visibilities and phases determined by phase closure
for Capella at 830 nm (Baldwin et al. 1996). 76

4.10 Illustrating the principle of heterodyne detection: (a) the signal, as a
function of time; (b) the local oscillator; (c) the square of the sum of
the amplitudes of (a) and (b), which is the instantaneous intensity
measured by the detector; (d), (e) and (f) the detector output after
filtering through a filter which passes frequencies between fmin and
fmax ((d) – real part, (e) – imaginary part and (f) – modulus). The
filtering is illustrated in figure 4.11. The observer is interested in the
envelope of the signal (a), which is retrieved in (f); its phase can also be
found from (d) and (e). 80

4.11 The spectra of the wave (c) in figure 4.10, (a) before, and (b) after
filtering through the band-pass filter window shown. Note that the
signal shown contains two basic frequencies, so that the sum and
difference spectra each contain two peaks. Fourier synthesis based on
the filtered spectrum (b) returns the demodulated signals (d), (e) and (f)
in figure 4.10. 81

4.12 An experiment in which two lasers interfere, and four output signals
are obtained. BS is a beam-splitter and D is a detector. The individual
signals from detectors D1 to D4 consist of randomly arriving photons
and contain no signs of the interference (i.e. dependence on the phase
shifter P) but correlation between the signals shows the expected
sinusoidal dependence on the phase. 83



xvi List of illustrations

4.13 Demonstration of aperture synthesis: (a) the optical bench layout;
(b) stationary fringe pattern with a single “star” and two holes in the
rotating mask; (c) as (b), but with a double star. 84

4.14 In (a) and (b) we see integrated images when the mask rotates,
corresponding to figure 4.13(b) and (c). Deconvolution of (b) using (a)
as the point spread function gives the “clean” image (c). 85

4.15 Mask holder to simulate diurnal rotation of two antennas at different
latitudes observing a non-polar star. 86

5.1 Image of a point star through a 5-m telescope with an exposure of a few ms. 89
5.2 Laboratory image of a point source through a polyethylene sheet. 89
5.3 Typical height profile of atmospheric turbulence. 91
5.4 Effects of inhomogeneous refractive index on light rays. 92
5.5 Schematic diagram of the structure function Dn(r ). A typical value of

Cn2 is 10−17m− 2
3 . 96

5.6 Power spectrum for phase fluctuations, measured interferometrically
using a 1 m baseline at λ = 633 nm (Nightingale and Buscher 1991).
The two lines show f − 2

3 and f − 8
3 at low and high frequencies, respectively. 104

5.7 The function hµC2
n (h) indicating the relative importance of turbulence

at different heights in determining (a) the phase correlations (µ = 0),
(b) the size of the isoplanatic patch (µ = 5

3 ), (c) scintillations for a
small telescope (µ = 5

6 ), (d) scintillations averaged by a large telescope
(µ = 2). 107

5.8 Schematic diagram of a telescope with adaptive optical correction,
operating with negative feedback. 111

5.9 Hartman–Shack wavefront distortion sensor. The deviation of each
focus is proportional to the local wavefront slope. 112

5.10 Deformable mirrors of different types: (a) monolithic piezoelectric
block, (b) discrete piezoelectric stacks, (c) bimorph mirror,
(d) electrostatically deformed membrane (courtesy E. Ribak). 113

5.11 Simulated speckle images, using the structure function (5.28), with
r0 = 7 units. (a) The phase field across a circular aperture, radius 64
units. Phase, modulo 2π , is indicated by gray level from white to black.
(b) The point spread function corresponding to the phase field (a). (c)
The ideal point spread function for the same circular aperture. (d)
Long-exposure average of 50 random simulations like (b). 116

5.12 More simulated speckle images, as in figure 5.11. (a) When the range
of the phase fluctuations is less than 2π , a strong spot develops at the
center. The range here is 1.95π which is close enough to 2π to allow
both the speckle image and the strong spot to be seen at the same time;
otherwise the image looks the same as figure 5.11(c). (b) The shape of
each individual speckle is approximately a diffraction limited point
spread function; in this case a small square aperture was used. (c) and
(d) Single-slit and double-slit apertures. For the double-aperture
telescope, each speckle is crossed by Young’s fringes. 118

6.1 Fringes due to two small (< r0) circular holes in a mask, with an
arbitrary phase difference and partial coherence (γ ∼ 0.3) between them. 124



List of illustrations xvii

6.2 Fringes due to three small circular holes in a mask, each with an
arbitrary phase and each pair having a different separation: (a) mask,
(b) the diffraction pattern and (c) the transform of the measured
diffraction pattern (autocorrelation function). 124

6.3 Nonredundant aperture mask used by Tuthill et al. (2000a) on the 10-m
Keck multimirror telescope. 126

6.4 Four high-resolution image reconstructions of IRC+10216 at 2.2 µm
on different dates (Tuthill et al. 2000b). 127

6.5 Reconstructions of WR-104 with all phases assumed zero or π , and
with phases deduced by phase closure (Monnier 2000). 127

6.6 Speckle images (above) and corresponding spatial power spectra
(below). From left to right, Betelgeuse (resolved disk), Capella
(resolved binary) and an unresolved reference star. The scales are r/F
which are angular stellar coordinates (the bar shows 1 arcsec) and
correspondingly uF which are reciprocal angular coordinates (the bar
shows 50 arcsec−1). The power spectra are each the sums of about 250
frames (Labeyrie 1970). 129

6.7 Optics originally used by Labeyrie, Stachnik and Gezari for speckle
interferometry. Atmospheric dispersion was compensated by
translating the TV camera axially, the entire instrument being rotatable
and oriented so that the grating dispersion was in the direction of the
zenith. Analogue Fourier analysis of the recorded images used
Fraunhofer diffraction. 130

6.8 Schematic diagram of a speckle camera with atmospheric dispersion
corrector and band-limiting optical filter used at the Bernard Lyot
telescope at Pic du Midi (Prieur et al. 1998). This speckle camera uses
a PAPA detector. 130

6.9 A channel-plate image intensifier. 131
6.10 The PAPA camera. 133
6.11 A short-exposure speckle image of the double star Capella (α-Aur), in

which each speckle can clearly be identified as a pair, separated along
the diagonal. 135

6.12 A diffraction-limited image retrieved by triple-correlation, courtesy of
G. Weigelt: (a) shows the long-exposure image of R136 in the 30
Doraldus nebula; (b) a single short-exposure image; and (c) the
reconstructed image of the source. The scale bars correspond to
1 arcsec. (Pehlemann et al. 1992). 136

6.13 The idea behind triple correlation, illustrated for a binary with unequal
components. (a) shows the true image of the binary star and (b) the
vector separating the two elements, as determined by speckle
interferometry. (c) shows the atmospheric point spread function, i.e. the
image of a point star. (d) is the convolution of (a) and (c), i.e. the
speckle image observed. (e) shows the overlap of (d) with itself shifted
by the vector (b), the product (f) being the retrieved speckle image of a
point star, which should be compared with (c). (g) shows the
correlation of (d) with (f), created by rotating (b) by 180◦ and centering



xviii List of illustrations

it on each of the speckles of (f) successively. At its center, one image of
(a) stands out above the noisy background. 138

7.1 A partially coherent wave simulated by superposing waves with
random frequencies in a band of width 0.05 times the center
frequency. (a) shows the wave amplitude, (b) the phase (compared with
a pure sine wave at the center frequency) and (c) the fluctuating
intensity of the wave. 143

7.2 Hanbury Brown and Twiss’s experiments to show correlation between
intensity fluctuations of two waves from the same source:
(a) temporal correlation, as a function of the time delay z/c; (b) spatial
correlation, as a function of the lateral displacement r . PMT indicates a
photomultiplier tube. 144

7.3 Results of Hanbury Brown and Twiss’s second experiment
(figure 7.2b) showing spatial correlation between intensity
fluctuations in waves from a pinhole 0.19 mm diameter in Hg light
λ = 435.8 nm. The curve shows the theoretical result (Hanbury Brown
and Twiss 1956b). 145

7.4 Correlation between intensity fluctuations and individual photon
events. (a) The intensity of the wave shown in figure 7.1. The mean
intensity is shown by the broken line. (b) and (c) Two independent
streams of photons generated randomly with probability at each time
proportional to the intensity of (a) at that time. These have
“super-Poisson” distributions. (d) A stream of photons generated
randomly with probability proportional to the mean intensity of (a),
showing a Poisson distribution. The three sequences (b)–(d) total the
same number of events. (e) Coincidences between the photon events in
(b) and (c) using time-slots narrower than the average interval between
the photons in (d). The coincidences are almost nonexistent, which is
why photon coincidence experiments failed to confirm the original
intensity-correlation experiments. 147

7.5 Correlation measured for Sirius with baselines up to 9 m in 1956
(Hanbury Brown 1974). This can be compared with the later
data in figure 7.9. 149

7.6 Layout of the Narrabri intensity interferometer. Notice that the baseline
is always normal to the direction of the star, so that with equal-length
cables, the signals arrive simultaneously at the correlator. 150

7.7 Schematic diagram of the correlator and integrator system (after
Hanbury Brown 1974). 151

7.8 Correlation data measured for three stars, showing the dependence on
their angular diameters (after Hanbury Brown 1974) 153

7.9 Correlation data measured at Narrabri for Sirius, showing in particular
the second peak, whose height is critical in determining details of limb
darkening (Hanbury Brown 1974). 155

8.1 The blocks, or subsystems, from which a stellar interferometer is
composed. Extra optics for focusing, filtering, etc. may be inserted at
any of the positions indicated by vertical double broken lines. 159



List of illustrations xix

8.2 Michelson stellar interferometer, showing the path-length corrector and
the tilt plate used to ensure overlap of the two images. 160

8.3 Cassegrain optics (a) as a telescope, (b) as a beam-compressor. In
(a), the flat folding mirror could equivalently, although not in terms of
cost, be a large mirror before the telescope, in which case the telescope
is fixed in orientation. Otherwise, the telescope is pointed towards the
star, and the small flat mirror is best located at the mechanical node
where both axes of rotation intersect. The vertical axis of rotation does
not coincide with the optical axis of the telescope, but intersects the
horizontal one on the folding mirror. See also figure 8.4. 165

8.4 Example of the sequence of mirrors in one beam line at CHARA,
designed in order to control polarization effects. Each beam line has the
same number of mirrors reflecting at the same angles. 166

8.5 Dispersion correctors: (a) path-length and dispersion; (b) angular, using
two Risley prism pairs. 167

8.6 (a) Typical design of a path equalizer, using a cat’s-eye reflector.
(b) shows the alternative corner-cube reflector. (c) Delay lines at CHARA. 169

8.7 Power spectrum of the mixed signals from three telescopes at COAST
observing Vega in 1993. Each peak occurs at the difference frequency
corresponding to a particular pair of telescopes. After Baldwin et al. (1994). 170

8.8 A Gregorian beam reducer for two parallel beams, with a common field
stop in the real image plane (SUSI). 171

8.9 Two-beam combiner at SUSI for shorter visible wavelengths.
Polarizing beam-splitters (PBS) are first used to extract one
polarization for tip–tilt guidance by the quadrant detectors (QD) and
the slits (S) are used for spectral selection. RQD is a reference
quadrant detector. 172

8.10 Beam-combining optics designs for NPOI: (a) three inputs and three
pairwise outputs; (b) six inputs and three outputs, each combining four
of the inputs (NPOI). 173

8.11 A Sagnac interferometer used to create a square matrix of interference
patterns between elements of an array of inputs: (a) optical design;
(b) example of the observed matrix for a laboratory double star; note
that symmetrically placed off-diagonal elements have similar contrasts. 174

8.12 Optical layout of the fiber-linked beam-combiner for the near infrared
(FLUOR). 174

8.13 Integrated optic infrared beam-combiner for three inputs (IONIC).
Photograph courtesy of Alain Delboulbe, LAOG. 175

8.14 Fringes at λ = 1.65 µm between the pairs of three telescopes at IOTA
obtained using the integrated-optics combiner shown in figure 8.13.
Figure courtesy of P. Schuller, IOTA. 176

8.15 Star image slightly off-center on a quad cell. 177
8.16 One-dimensional point spread function (sinc x) with the masking

function sign(d f/dx). (a) shows the PSF centered with respect to the
mask, and (b) shows the situation after a small movement; the shaded
regions indicate signals which contribute to the detected output, with



xx List of illustrations

their signs indicated. All the positive signals are greater than the
adjacent negative ones. 178

8.17 Polychromatic fringe groups with (a) λ/δλ = 3 and (b) λ/δλ = 10. 179
8.18 Two spectrally dispersed interferograms (wavelength range

2.0–2.4 µm) (a) path-length compensated; (b) with an error in
path-length compensation (GI2T: Weigelt et al. 2000). 179

8.19 Light from two inputs 1 and 2 interferes at an ideal beam-splitter with
an optional additional phase shift of π/2 and goes to two detectors A and B. 180

8.20 Plots of series of M = 100 observations as points in the
((n1 − n3), (n2 − n4)) plane. (a) N0 = 8000, γ = 0.8;
(b) N0 = 8000, γ = 0.3; (c) N0 = 80, γ = 0; (d) N0 = 80, γ = 0.3. 182

8.21 Measurement of spatial correlation of sunlight at 10 µm using
heterodyne detection with a CO2 laser local oscillator
(Gay and Journet 1973). 185

8.22 I2T. In the drawing of the optical layout, M is a 250-mm primary
mirror, m is a Cassegrain secondary, F a coudé flat, L a field lens, RM a
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Preface

Although the optical telescope is the most venerated instrument in astronomy, it
developed relatively little between the time of Galileo and Newton and the beginning
of the twentieth century. In contrast to the microscope, which enjoyed considerable
conceptual development during the same period from the application of physical
optics, telescopes suffered from atmospheric disturbances, and therefore physical
optics was considered irrelevant to their design. The realization that wave inter-
ference could be employed to overcome the atmospheric resolution limit was first
recorded by Fizeau and put into practice by Michelson around 1900, but his experi-
ence then lay dormant until the 1950s. Since then, first in radio astronomy and later
in optical and infrared astronomy, interferometric methods have improved in leaps
and bounds. Today, many optical interferometric observatories around the world
are adding daily to our knowledge about the cosmos.

The aim of this book is to build on a basic knowledge of physical optics to
describe the ideas behind the various interferometric techniques, the way in which
they are being put into practice in the visible and the infrared regions of the spectrum,
and how they can be projected into the future. Some techniques consist of optical
additions to existing large telescopes; others require complete observatories which
have been built specially for interferometry. Today all these are being used to make
accurate measurements of stellar angular positions, to discern features on stellar
surfaces and to study the structure of clusters and galaxies. Tomorrow, maybe they
will be able to image planetary systems other than our own. To this end, many
new ideas are being generated and tested with the eventual aim of looking at an
extrasolar Earth-like planet, either from the ground or from a space platform.

The book contains some introductory chapters on basic optics, which establish
an unsophisticated physical and mathematical framework which is used to discuss
the various ideas and instruments presented in the later chapters. It is hoped that,
despite the inevitable use of mathematics, the physical principles of the astronom-
ical interferometric techniques in the following chapters will be clear. In the final
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chapters, some astrophysical results achieved by interferometry are discussed, and
some untested future ideas are presented. The level of detail is hopefully sufficient
for senior undergraduate and graduate students who are interested in understanding
the ideas and implementations of astronomical interferometry. We have attempted
to give fair credit to all those whose work has substantially advanced the field,
without overloading the book with references to every detail.

Peter Nisenson first conceived of this book in 2002, and asked us to join him
in writing it. Sadly, he never lived to see its publication, but he was active in
determining its layout and he wrote fairly complete drafts of two chapters. As
a result of this, we decided to continue the work as a memorial to his life-long
dedication to astronomy, although his further contributions are sorely missing.

Many people have helped us in collecting and understanding the material pre-
sented, and have spent time showing us round their interferometric observatories.
SGL wishes in particular to thank Dr Erez Ribak, from whom he has learnt such a
lot through innumerable discussions on optics and astronomical interferometry. He
is also grateful to Mark Colavita, Amir Giveon, David Snyder Hale, Chris Haniff,
Pierre Kern, Nachman Lupu and Nils Turner for their time, help and comments. AL
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wishes to thank the late Prof. André Lallemand and Pierre Charvin for their early
support. Emile Blum, James Lequeux, Françoise Praderie and Arthur Vaughan gave
crucial encouragement and Deane Peterson also encouraged, in the critical early
stages, part of the work described in the book.

In addition, we should like to thank Laurent Koechlin, John Davis, Chris Haniff,
Chris Dainty, Andrew Booth and Noam Soker, who have read and made useful com-
ments on parts of the manuscript. Itzik Klein carried out the experiments described
in section 4.6 and Carni Lipson drew some of the figures. We are also grateful
to the many authors and journals for permission to reproduce figures and data, as
indicated in the figure captions. SGL wishes to acknowledge the support of the
Norman and Helen Asher Space Science Institute at Technion, and the hospitality
of the Kavli Institute for Theoretical Physics, UCSB, where part of the manuscript
was researched and written.

We should also like to thank our wives and families for their understanding during
the periods when we have been necessarily absorbed in research and writing.

Antoine Labeyrie
Stephen Lipson
Plateau de Calern, August 2005.



Peter Nisenson, 1941–2004

This book was Peter Nisenson’s idea. Peter received his BS degree from Bard Uni-
versity in New York, and continued with post-graduate work in Physics and Optics
at Boston University. He was then employed as an optical scientist by the Itek Cor-
poration in Lexington, MA, where he worked for 14 years. Both of us first met him
there in 1973. At that time he was working on a programmable optical memory
device (the PROM) which used a photoconducting crystal as a recording medium.
When he first heard about speckle interferometry, he realized that this device could
carry out the required Fourier transform on-line and therefore provide directly the
image power spectrum. The three of us then met for the first time; an observing plan
was proposed, supported by Itek, and carried out at Kitt Peak in December 1973.
Although this particular project was not successful, it was probably the turning
point in Pete’s life, at which he decided to become a professional astronomer. In
the same period, under the leadership of John Hardy with whom he had a life-long
friendship, his group at Itek became heavily involved in adaptive optics, an involve-
ment which led to his making some important measurements of atmospheric optical
properties.

Pete was for five years a Research Associate at the Center for Earth and Planetary
Physics at Harvard before joining the Harvard Smithsonian (CfA) in 1982, where
he remained for 22 years. He worked on various exciting and innovative projects
including the development of programs for high-resolution image reconstruction
of solar and other astrophysical data, using speckle interferometry. Together with
Costas Papaliolios and Steven Ebstein he developed the “Precision Analog Photon
Address” (PAPA) image detector, which gave the digital addresses of individual
photon events, one of a new generation of image detectors for astronomy, and which
he used extensively for speckle interferometry.

He highlighted the use of interferometry during observations in Chile of the
Supernova SN1987a, which received television prominence, as well as several

xxxi



xxxii Peter Nisenson, 1941–2004

Peter Nisenson

publications. He then became involved in the extrasolar planet search, and con-
tributed greatly to the creation and successful use of the “Advanced Fiber Optic
Echelle” (AFOE) spectrograph, a technique that has been successfully used in
recent years to discover several planets outside of our solar system. In addition he
developed original concepts for imaging extrasolar planets using high-dynamical-
range apodization techniques. He possessed a commanding knowledge of optics
and his ability to envisage alternative ways to achieve a goal was invaluable to many
projects.

During his period at CfA he became involved with the IOTA interferometer.
In 2002 he originated the idea of writing a textbook about optical interferometric
astronomy, with the feeling that this was becoming a mature technique and was
already beginning to provide important astrophysical data. This book is the result,
and is dedicated to his memory.

As a young man, Peter chose the study of math and physics over becoming a
professional cello player but continued a life-long love of music. He was an avid
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golf and tennis player and an active member of the Harvard College Observatory
Tennis Club for years. Somewhat of a terror on the tennis court, he nevertheless
delighted in encouraging others amongst his colleagues to join in the game, and
the HCO Tennis Clinic has been named in his memory. Peter had been in poor
health for the last year of his life, but throughout this time he stayed as active as
his condition allowed him to be. He was survived by his wife Sarah (Sally), his son
Kyle and his daughter Elizabeth.
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Introduction

1.1 Historical introduction

The Earth orbits a star, the Sun, at a distance of 140 million km, and the distance
to the next closest star, α-Centauri, is more than 4 · 1013 km. The Sun is one star
in our galaxy, the Milky Way. The Milky Way has 1011 stars and the distance
from the Sun to its center is 2.5 · 1017 km; it is one galaxy in a large group of
galaxies, called the Local Group and the distance to the next nearest group, called
the Virgo Cluster, is about 5 · 1020 km. The Universe is made up of a vast number
of clusters and superclusters, stretching off into the void for enormous distances.
How can we learn anything about what’s out there, and how can we understand its
nature?

We can’t expect to learn anything about distant galaxies, black holes or quasars,
or even the nearest stars by traveling to them. We can maybe explore our own solar
system but, for the foreseeable future, we will learn about the Universe by using
telescopes, on the ground and in space.

The principal methods of astronomy are spectroscopy and imaging. Spectroscopy
measures the colors of light detected from distant objects. The strengths and wave-
lengths of spectral features tell us how an object is moving and what is its compo-
sition. Imaging tells us what an object looks like. Because distant stars are so faint,
the critical characteristic of a telescope used for spectroscopy is its light-gathering
power and this is determined principally by its size, or “collecting area.” For imag-
ing, the critical characteristic is its resolution. In general, we don’t know the distance
to the objects we are looking at; we can only measure the angle they subtend at the
location of the observer. So we use the term “angular” rather than spatial resolution
to characterize the imaging capability of a telescope. In principle, the larger the tele-
scope aperture, the better is its inherent resolution. However, in practice, telescopes
operating on the ground, observing through the Earth’s turbulent atmosphere, are
limited by atmospheric turbulence.
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