HANNE ANDERSEN PETER BARKER XIANG CHEN

The Cognitive Structure of Scientific Revolutions

CAMBRIDGE

CAMBRIDGE www.cambridge.org/9780521855754

This page intentionally left blank

The Cognitive Structure of Scientific Revolutions

Thomas Kuhn's Structure of Scientific Revolutions became the most widely read book about science in the twentieth century. His terms "paradigm" and "scientific revolution" entered everyday speech, but they remain controversial. In the second half of the twentieth century, the new field of cognitive science combined empirical psychology, computer science, and neuroscience. In this book, recent theories of concepts developed by cognitive scientists are used to evaluate and extend Kuhn's most influential ideas. Based on case studies of the Copernican revolution, the discovery of nuclear fission, and an elaboration of Kuhn's famous "ducks and geese" example of concept learning, the volume offers new accounts of the nature of normal and revolutionary science, the function of anomalies, and the nature of incommensurability. This new approach to the intellectual content of science and its historical development incorporates insights from both traditional philosophy of science and constructivist sociology of science. The main technique presented, the dynamic frame model of human concepts, may be applied to any field where the nature of concepts is important.

Hanne Andersen is associate professor of history and philosophy of science at the University of Aarhus, Denmark.

Peter Barker is professor of history of science at the University of Oklahoma.

Xiang Chen is professor of philosophy at California Lutheran University.

The Cognitive Structure of Scientific Revolutions

HANNE ANDERSEN

University of Aarhus

PETER BARKER

University of Oklahoma

XIANG CHEN California Lutheran University

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521855754

© Hanne Andersen, Peter Barker, Xiang Chen 2006

This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published in print format 2006

ISBN-13 978-0-511-21788-3 eBook (Adobe Reader) ISBN-10 0-511-21788-9 eBook (Adobe Reader) ISBN-13 978-0-521-85575-4 hardback ISBN-10 0-521-85575-6 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLS for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. For C.S. C.M.W. and L.L. Perhaps the best way to express our position is by proposing a ten year moratorium on cognitive explanations of science....We hereby promise that if anything remains to be explained at the end of this period, we too will turn to the mind!

Bruno Latour and Steve Woolgar, 1986

Contents

Lis	t of Figures	page x
Ack	knowledgments	XV
1	Revolutions in Science and Science Studies	1
	1.1 The Place of Kuhn's Work in Studies of Science	1
	1.2 Revolutions in Science	2
	1.3 Theories of Concepts	5
	1.3.1 The Classical Theory of Concepts	6
	1.3.2 The Roschian Revolution	9
	1.3.3 Three Responses to the Roschian Revolution	12
	1.4 Nature and Scope of the Present Work	14
2	Kuhn's Theory of Concepts	19
	2.1 Exemplars	19
	2.2 The Learning Procedure	20
	2.3 Similarity, Dissimilarity, and Kind Hierarchies	24
	2.4 Knowledge of Ontology and Knowledge of Regularities	27
	2.5 Individual Differences and Graded Structures	29
	2.6 Generalization to Scientific Concepts	30
	2.7 Nomic and Normic Concepts	31
	2.8 A Scientific Conceptual Structure: Early Nuclear	
	Physics	33
3	Representing Concepts by Means of Dynamic Frames	42
	3.1 Constituents of Dynamic Frames	42
	3.2 Frames in Human Cognition	46
	3.2.1 Evidence for Attribute-Value Sets	47
	3.2.2 Evidence for Intraconceptual Relations	49

Contents

	3.3 Family Resemblance and Graded Structure in Frames	52
	3.4 Frames and Kind Hierarchies	56
	3.5 Knowledge of Regularities and Ontological Knowledge	59
	3.6 Value Constraints and Causal Theories	60
4	Scientific Change	65
	4.1 The Phase Model of Scientific Development	66
	4.2 Hierarchical Principles of Stable Conceptual Structures	67
	4.2.1 The No-Overlap Principle	67
	4.2.2 The Exhaustion Principle	68
	4.2.3 The Inclusion Principle	68
	4.3 Anomalies as Violations of the Hierarchical Principles	69
	4.3.1 Sundevall's Taxonomy: Conceptual Revision	
	in Normal Science	72
	4.3.2 Core Concepts of Nuclear Physics in the 1930s	75
	4.3.3 Anomalies in Nuclear Physics during the 1930s	78
	4.4 Types of Conceptual Change	83
	4.5 Revolutionary Change	86
	4.5.1 The Gadow Taxonomy: Revolutionary Change	
	without Communication Failure	87
	4.5.2 Noddack, Fermi, and Fission: Revolutionary	
	Change with Communication Failure	91
	4.6 Conclusion: A Place for the Cognitive History of	
	Science	97
5	Incommensurability	104
	5.1 Introduction	104
	5.2 The Development of Kuhn's Concept of	
	Incommensurability	105
	5.3 Representing Incommensurability in Frames	108
	5.4 Galileo's Discoveries and the Conceptual Structure	
	of Astronomy	117
6	The Copernican Revolution	130
	6.1 The Conceptual Structure of Ptolemaic Astronomy	130
	6.2 The Conceptual Structure of Copernican Astronomy	135
	6.3 The Problem of the Equant Point	138
	6.4 From Orbs to Orbits	146
	6.5 The Conceptual Structure of Kepler's Astronomy	151
	6.6 Incommensurability, Incremental Change, and the	
	Copernican Revolution	161
$\overline{7}$	Realism, History, and Cognitive Studies of Science	164
	7.1 Results	164
	7.2 Realism	168

169
170
nal
172
173
174
181
195

Contents

ix

Figures

1	Instances of waterfowl	page 21
2	The similarity classes of ducks, swans, and geese	22
3	Similarity classes are established by both similarity	
	between members of the same class and dissimilarity	
	between members of contrasting classes	25
4	Contrast set constituted by similarity and dissimilarity	
	relations represented as a kind hierarchy	26
5	Becquerel's proposal for a new correlation of features	34
6	Becquerel's new concept 'uranium ray'	35
$\overline{7}$	Correlation between differentiating features in the kind	
	hierarchy of 'radioactivity'	36
8	Checkerboard diagrams of possible nuclear	
	disintegrations	39
9	The contrast set of possible nuclear reactions after	
	neutron bombardment	40
10	Partial frame for 'bird'	43
11	Feature lists used in Rosch et al. 1976	46
12	A counterexample of feature independence	50
13	Partial frame for 'bird' with values for subordinate	
	concept 'goose'	53
14	Partial frames for 'duck', 'goose', and 'swan' with	
	activated values indicated by shading	55
15		58
16	A frame representation of a multiple-level kind hierarchy	58
17	Kind hierarchy showing the contrast set of water birds	
	and land birds	70

18	A partial frame for the concept 'bird' with the two	H 0
	subordinates 'water bird' and 'land bird'	70
19	Horned screamer (Anhima cornuta)	71
20	1 1	-
	frame representation	72
21	A partial frame representation of the Ray taxonomy	73
22	A partial frame for Sundevall's concept 'bird' and its	
	taxonomy	74
23	A partial frame for 'induced nuclear reaction' in the case	
	of uranium bombarded with neutrons	76
24	Partial frame for 'induced nuclear reaction'; the	
	subordinate concept ' α emission' is instantiated	77
25	Partial frame for 'daughter nucleus'	78
26	Violation of the hierarchical principles during the	
	production of eka-Re by slow neutrons	79
27	Resolving an anomaly by changing a value constraint	80
28	Violation of the hierarchical principle during the primary	
	process in eka-Re production	81
29	Resolving the anomaly by introducing a new subordinate	
	concept, 'neutron chipping'	82
30	A partial frame for a kind hierarchy with two subordinate	
	concepts	83
31	Violation of the no-overlap principle in a kind hierarchy	
	with two subordinate concepts	84
32	Resolution of an anomaly that violates the no-overlap	
	principle by changing value constraints between	
	Al and Bl	85
33	Resolution of an anomaly violating the no-overlap	
	principle by adding a new subordinate concept	85
34	Resolution of an anomaly that violates the no-overlap	00
01	principle by changing value constraints between	
	A2 and B2	86
35	A partial frame for Gadow's concept 'bird' and its	00
55	taxonomy	88
36	Partial frame for 'chemical element'	92
37	The periodic table of the elements in 1934	92
38	For the chemist Ida Noddack the precipitation with	54
50	manganese did not point to element 93, but rather	
	to a long list of light elements	93
39	Modified frame for 'induced nuclear reaction' including	90
59	the new subordinate 'division of nucleus', required to	
		94
	accommodate Noddack's suggestion	94

Figures

xi

Figures

40	Hahn and Strassmann added the attribute 'chemical	
	separation' to the frame for 'daughter nuclei', revealing a violation of the hierarchical principles	96
41	Partial frame for 'decay product'	90 97
41	Taxonomy for 'physical object', circa 1500	109
43	Partial frame for 'physical object', circa 1500	109
44	Taxonomy for 'physical object', circa 1500	109
45	Partial frame for 'physical object', circa 1700	110
46	Partial frame for 'celestial object', circa 1700	110
47	Partial frame for 'celestial object' in astronomy,	111
47	circa 1700, showing subordinate concepts	113
10	Partial frame for 'celestial object' in astronomy, circa	115
48	1700, showing new subconcepts 'returning comet'	
	and 'nonreturning comet'	114
40	Partial frame for 'celestial object', circa 1500	114
49 50	Partial frame for 'circular motion' as applied to	115
50		110
F 1	astronomy, circa 1500	118
51	Geocentric system of the world	119
52	Averroist orb cluster, showing concentric orbs for daily	101
20	motion, proper motion, and retrogression	121
53	Partial recursive frame for 'path' of a celestial object,	100
۲.4	Averroist version	122
54	(a) Ptolemaic eccentric-plus-epicycle model for the	
	proper motion and retrogressions of an outer planet.	
	(b) Cross section through a set of Ptolemaic spherical	100
	shells that reproduce the circles of (a) as they rotate	123
55	Partial recursive frame for 'path' of a celestial object,	10.1
~ 0	simple Ptolemaic version	124
56	Partial frame for 'path', circa 1500	131
57	Partial frame for 'circular motion', circa 1500	132
58	Partial recursive frame for 'path', circa 1500	133
59	Partial recursive frame for 'path', circa 1500, with	
	activated value nodes representing a Ptolemaic theorica	
	for Saturn	134
60	Partial recursive frame for 'path', circa 1543, with	
	activated value nodes representing a Copernican theorica	
	for Saturn	136
61	(a) Ptolemaic eccentric-plus-equant model for an outer	
	planet, compared with (b) Copernican model with	
	'concealed equant' at E'	139
62	Partial frame for 'circular motion' showing modifications	
	required to accommodate Ptolemaic equant	140

63	Partial recursive frame for 'path', circa 1500, with activated value nodes representing a Ptolemaic theorica	
	for Saturn, showing modifications required to	
	accommodate Ptolemaic equant	141
64	(a) Copernican model for an outer planet, heliocentric	
	arrangement, compared with (b) Copernican model	
	for an outer planet, geocentric arrangement	143
65	Combined orb diagrams for the theoricae of Venus	
	and the sun	148
66	Kepler's illustration of the geocentric trajectory of Mars,	
	1580–1596	152
67	Partial frame for 'orbit' as introduced by Kepler	
	in the Astronomia Nova (1609)	156
68	Partial recursive frame for 'path' showing modifications	
	introduced by Kepler in the Astronomia Nova (1609)	157
69	Partial frame for the event concept 'engine cycle'	160
70	Partial frame for the event concept 'orbit'	161
	-	

Acknowledgments

Over the last ten years, the three authors of this book have collaborated on a series of studies applying ideas from cognitive psychology to issues in the philosophy of science, and particularly to the work of Thomas Kuhn. In our previous papers we have included a statement that each work was a collaboration to which all three authors contributed equally. The same is true of the current book, which consolidates and extends our ten years of joint work. None of us could have written this book without the help of the others; our discussions have now continued for so long that it is not appropriate to connect particular points in the overall argument with individual contributors.

Our earlier papers on the themes treated in this book include, in chronological order: Andersen, H., Barker, P., and Chen, X. (1996), "Kuhn's mature philosophy of science and cognitive science," *Philosophical Psychology*, 9: 347–363, used by permission of the Taylor & Francis Group (http://www.tandf.co.uk); Andersen, H. (1996), "Categorization, anomalies, and the discovery of nuclear fission," *Studies in History and Philosophy of Modern Physics* 27: 463–492, © 1996, material used here by permission of Elsevier; Chen, X., Andersen, H., and Barker, P. (1998), "Kuhn's theory of scientific revolutions and cognitive psychology," *Philosophical Psychology* 11: 5–28, used by permission of the Taylor & Francis Group (http://www.tandf.co.uk); Andersen, H. (2000), "Kuhn's account of family resemblance: A solution to the problem of wide-open texture," *Erkenntnis* 53: 313–337, © 2000, with kind permission of Springer Science and Business Media;

Andersen, H. (2000), "Learning by ostension: Thomas Kuhn on science education," Science & Education 9: 91-106, © 2000, with kind permission of Springer Science and Business Media; Chen, X., and Barker, P. (2000), "Continuity through revolutions: A frame-based account of conceptual change," Philosophy of Science (Proceedings) 67: 208-223, © 2000 by the Philosophy of Science Association, all rights reserved; Andersen, H. (2001), "Reference and resemblance," Philosophy of Science (Proceedings) 68: S50–S61, © 2001 by the Philosophy of Science Association, all rights reserved; Barker, P. (2001), "Kuhn, incommensurability and cognitive science," Perspectives on Science 9: 433-462, © the Massachusetts Institute of Technology; Barker, P. (2001), "Incommensurability and conceptual change during the Copernican Revolution," in P. Hoyningen-Huene & H. Sankey (eds.), Incommensurability and Related Matters, Boston Studies in the Philosophy of Science (Boston: Kluwer), 241-273, material used with kind permission of Springer Science and Business Media; Chen, X. (2002), "The 'platforms' for comparing incommensurable taxonomies: A cognitive-historical analysis," Journal of General Philosophy of Science 33: 1-22, © 2002, used with kind permission of Springer Science and Business Media; Barker, P., Chen, X., and Andersen, H. (2003), "Kuhn on concepts and categorization," in T. Nickles (ed.), Thomas Kuhn (Cambridge: Cambridge University Press), 212-245, material reprinted with permission.

While portions of the present work recapitulate or rework material presented in some of these papers, this book presents a new setting for all our earlier work. In addition to new historical material, we here present completely new accounts of the nature of anomaly, the nature of normal and revolutionary science, and the nature of incommensurability, which supersede the accounts given in our previous papers. This book is the only complete statement of our current views.

The authors wish to thank Adena Alvis, Roger Ariew, Lawrence W. Barsalou, William Bechtel, William F. Brewer, Bernard R. Goldstein, Catherine Hobbs, Li Ping, Nancy Nersessian, Stig Andur Pedersen, and Sylwester Ratowt for their support and advice at different times during the writing of this book, without necessarily implying that they endorse the opinions expressed here.

Hanne Andersen acknowledges the Danish Institute for Advanced Studies in the Humanities (Danmarks humanistiske forskningscenter), the Carlsberg Foundation, and the Danish Natural Science Research Council, for supporting different portions of the research contributing to this work.

Peter Barker acknowledges the support of a sabbatical leave from the University of Oklahoma and a senior research fellowship from the Danish Institute for Advanced Studies in the Humanities (Danmarks humanistiske forskningscenter), together with assistance from the University of Copenhagen and Danmarks Nationalbank.

Xiang Chen acknowledges the support of Hewlett grants from California Lutheran University.

The Cognitive Structure of Scientific Revolutions

Revolutions in Science and Science Studies

1.1 THE PLACE OF KUHN'S WORK IN STUDIES OF SCIENCE

Thomas Kuhn's Structure of Scientific Revolutions became one of the most influential books of the twentieth century, although its author suffered the fate of many prophets: he was ignored by the people he most hoped to influence. His technical terms became so widely known that a popular cartoonist could depict a newly hatched chick greeting the world with the cry "Oh! Wow! Paradigm shift!" (Taves 1998) and a bestselling guide to success in life and business would tell its readers, "[W]e need to understand our own 'paradigms' and how to make a 'paradigm shift'" (Covey 1990: 26). But there is no Kuhnian school of history, and many philosophers of science remain skeptical about his ideas. At the close of the twentieth century philosophers generally rejected paradigm shifts and normal science as useful categories for understanding scientific change and were still arguing about another key idea, incommensurability (Curd and Cover 1998; Hoyningen-Huene and Sankey 2001). Meanwhile Kuhn's emphasis on the historical variability of scientific standards and the role of research communities in scientific change was embraced by a new generation of sociologists of scientific knowledge. The new sociologists of science adopted Kuhn as a founding father, if not an intellectual guide: Kuhn's emphasis on the cognitive content of science was marginalized. Our aim in this book is to rectify this situation, by legitimizing the study of the cognitive content of science, in a new way, and providing the tools needed to write a