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Path Integrals and Anomalies in Curved Space

Path integrals provide a powerful method for describing quantum phenomena, first
introduced in physics by Dirac and Feynman. This book introduces the quantum
mechanics of particles that move in curved space by employing the path integral
method, and uses this formalism to compute anomalies in quantum field theories.

The authors start by deriving path integrals for particles moving in curved space
(one-dimensional nonlinear sigma models), and their supersymmetric generalizations.
Coherent states are used for fermionic particles. They then discuss the regularization
and renormalization schemes essential to constructing and computing these path inte-
grals.

In the second part of the book, the authors apply these methods to discuss and
calculate anomalies in quantum field theories, with external gravitational and/or (non)
abelian gauge fields. Anomalies constitute one of the most important aspects of quan-
tum field theory; requiring that there are no anomalies is an enormous constraint in
the search for physical theories of elementary particles, quantum gravity and string
theories. In particular, the authors include explicit calculations of the gravitational
anomalies, reviewing the seminal work of Alvarez-Gaumé and Witten in an original
way, and their own work on trace anomalies.
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Preface

In 1983, L. Alvarez-Gaumé and E. Witten (AGW) wrote a fundamen-
tal article in which they calculated the one-loop gravitational anoma-
lies (anomalies in the local Lorentz symmetry of (4k + 2)-dimensional
Minkowskian quantum field theories coupled to external gravity) of com-
plex chiral spin-1

2 and spin-3
2 fields and real self-dual antisymmetric tensor

fields1 [1]. They used two methods: a straightforward Feynman graph cal-
culation in 4k + 2 dimensions with Pauli–Villars regularization, and a
quantum mechanical (QM) path integral method in which correspond-
ing nonlinear sigma models appeared. The former has been discussed in
detail in an earlier book [3]. The latter method is the subject of this book.
AGW applied their formulas to N = 2B supergravity in 10 dimensions,
which contains precisely one field of each kind, and found that the sum
of the gravitational anomalies cancels. Soon afterwards, M. B. Green and
J. H. Schwarz [4] calculated the gravitational anomalies in one-loop string
amplitudes, and concluded that these anomalies cancel in string theory,
and therefore should also cancel in N = 1 supergravity in 10 dimensions
with suitable gauge groups for the N = 1 matter couplings. Using the
formulas of AGW, one can indeed show that the sum of anomalies in
N = 1 supergravity coupled to super Yang–Mills theory with gauge group
SO(32) or E8 ×E8, though nonvanishing, is in the technical sense exact:

1Just as one can always shift the axial anomaly from the vector current to the axial cur-
rent by adding a suitable counterterm to the action or by using a different regulariza-
tion scheme, one can also shift the gravitational anomaly from the general coordinate
symmetry to the local Lorentz symmetry [2]. Conventionally one chooses to preserve
general coordinate invariance. AGW chose the symmetric vielbein gauge, so that the
symmetry for which they computed the anomalies was a linear combination of a
general coordinate transformation and a compensating local Lorentz transformation.
However, they used a regulator that manifestly preserved general coordinate invari-
ance, so that their calculation yielded the anomaly in the local Lorentz symmetry.

xi
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it can be removed by adding a local counterterm to the action. These two
papers led to an explosion of interest in string theory.

We discussed these two papers in a series of internal seminars for
advanced graduate students and faculty at Stony Brook (the “Friday sem-
inars”). Whereas the basic philosophy and methods of the paper by AGW
were clear, we stumbled on numerous technical problems and details.
Some of these became clearer upon closer reading, some became more baf-
fling. In a desire to clarify these issues we decided to embark on a research
project: the AGW program for trace anomalies. Since gravitational and
chiral anomalies only contribute at the one-worldline-loop level in the
QM method, one need not be careful with definitions of the measure for
the path integral, choice of regulators, regularization of divergent graphs,
etc. This is explicitly discussed in [1]. However, we soon noticed that for
the trace anomalies the opposite is true: if the field theory is defined in
n= 2k dimensions, one needs (k + 1)-loop graphs on the worldline in the
QM method. Consequently, every detail in the calculation matters. Our
program of calculating trace anomalies turned into a program of studying
path integrals for nonlinear sigma models in phase space and configura-
tion space, a notoriously difficult and controversial subject. As already
pointed out by AGW, the QM nonlinear sigma models needed for space-
time fermions (or self-dual antisymmetric tensor fields in spacetime) have
N = 1 (or N = 2) worldline supersymmetry (susy), even though the orig-
inal field theories were not spacetime supersymmetric. Thus, we also had
to wrestle with the role of susy in the careful definitions and calculations
of these QM path integrals.

Although it only gradually dawned upon us, we have come to recognize
the problems with these susy and nonsusy QM path integrals as prob-
lems one should expect to encounter in any quantum field theory (QFT),
the only difference being that these particular field theories have a one-
dimensional (finite) spacetime, as a result of which infinities in the sum
of Feynman graphs for a given process cancel. However, individual Feyn-
man graphs are power-counting divergent (because these models contain
double-derivative interactions just like quantum gravity). This cancella-
tion of infinities in the sum of graphs is perhaps the psychological reason
why there is no systematic discussion of regularization issues in the early
literature on the subject (in the 1950s and 1960s). With the advent of
the renormalization of gauge theories in the 1970s, issues of regulariza-
tion of nonlinear sigma models were also studied. It was found that the
regularization schemes used at that time (the time slicing method and
the mode regularization method) broke general coordinate invariance at
intermediate stages, but it was also noted that by adding noncovariant
counterterms [5–9], the final physical results were still general coordi-
nate invariant (we shall use the shorter term Einstein invariance for this
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symmetry in this book). The question thus arose as to how to determine
those counterterms, and to understand the relation between the coun-
terterms in one regularization scheme and those in other schemes. Once
again, the answer to this question could be found in the general literature
on QFT: the imposition of suitable renormalization conditions.

As we tackled more and more difficult problems (four-loop graphs for
trace anomalies in six dimensions) it became clear to us that a scheme
which needed only covariant counterterms would be very welcome. Dimen-
sional regularization (DR) is such a scheme [10]. It had been used by Klein-
ert and Chervyakov [11] for the QM of a one-dimensional target space on
an infinite worldline time interval (with a mass term added to regulate
infrared divergences). For our purposes we have developed instead a ver-
sion of dimensional regularization on a compact space; because the space
is compact we do not need to add by hand a mass term to regulate the
infrared divergences due to massless fields. The counterterms needed in
such an approach are indeed covariant (both Einstein and locally Lorentz
invariant).

The quantum mechanical path integral formalism can be used to com-
pute anomalies in quantum field theories. This application forms the sec-
ond part of this book. Chiral spin-1

2 and spin-3
2 fields and selfdual anti-

symmetric tensor (SAT) fields can produce anomalies in loop graphs with
external gravitons and/or external gauge (Yang–Mills) fields. The treat-
ment of the spin 3

2 and SAT fields formed a major obstacle. For example,
in the article by AGW the SAT fields are described by a bispinor ψαβ .
However, the vector index of the spin-3

2 field and the β index of ψαβ are
treated differently from the spinor index of the spin-1

2 and spin-3
2 fields

and the α index of ψαβ . In [1] one finds the following transformation rule
for the spin-3

2 field (in their notation):

−δηψA = ηiDiψA + Daηb(T ab)ABψB (1)

where ηi(x) parametrizes an infinitesimal coordinate transformation xi →
xi + ηi(x), and A= 1, 2, . . . , n is the flat vector index of the spin-3

2

(gravitino) field, while (T ab)AB = − i(δaAδ
b
B − δbAδ

a
B) are the matrix ele-

ments of the Euclidean Lorentz group SO(n) in the vector representa-
tion. One would expect that this transformation rule is a linear combi-
nation of an Einstein transformation δEψAα = ηi∂iψAα (the vector index
A of ψAα is flat and α is the spin index) and a local Lorentz rotation
δlLψAα = 1

4η
iωiBC(γBγC)αβψAβ + ηiωiA

BψBα. However, on top of this
Lorentz rotation with parameter ηiωiAB, one finds the second term in (1)
which describes a local Lorentz rotation with parameter (Daηb − Dbηa)
and this local Lorentz transformation only acts on the vector index of
the gravitino. If one assumes (1), one finds a beautiful simple relation
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between the gravitational contribution to the axial (γ5) anomaly in 4k+4
dimensions and the gravitational (local Lorentz) anomaly in 4k+2 dimen-
sions. We shall derive (1) from first principles, and show that it is correct,
but only if one uses a particular regulator R.

The regulators for the spin-1
2 field λ, for the gravitino ψA, and for

the bispinor ψαβ are in all cases the square of the field operators for
the nonchiral spinors λ̃, ψ̃A and ψ̃αβ , where the “twiddled fields” λ̃,
ψ̃A and ψ̃αβ are obtained from λ, ψA and ψαβ by multiplication by
g1/4 = (det eμm)1/2. These regulators are covariant regulators, not consis-
tent regulators, and the anomalies we will obtain are covariant anomalies,
not consistent anomalies [2]. However, when we come to the cancellation
of anomalies, we shall use the descent equations to convert these covari-
ant anomalies to consistent anomalies, and then construct counterterms
whose variations cancel these consistent anomalies.

The twiddled fields were used by Fujikawa, who pioneered the path
integral approach to anomalies [12]. An ordinary Einstein transformation
of λ̃ is given by δλ̃ = 1

2(ξμ∂μ+∂μξ
μ)λ̃, where the second derivative ∂μ can

also act on λ̃, and if one evaluates the corresponding regulated anomaly
AnE = Tr1

2(ξμ∂μ + ∂μξ
μ)e−βR by inserting a complete set of eigenfunc-

tions ϕ̃k of R with non-negative eigenvalues λk, one finds

AnE = lim
β→0

∑
k

∫
dnx ϕ̃∗

k(x)
1
2
(ξμ∂μ + ∂μξ

μ)e−βλk ϕ̃k(x) . (2)

Thus, the Einstein anomaly vanishes (partially integrate the second ∂μ)
as long as the regulator is self-adjoint with respect to the inner product
〈λ̃1|λ̃2〉 =

∫
dx λ̃∗

1(x)λ̃2(x) (so that ϕ̃k form a complete set), and as long as
both ϕ̃k(x) and ϕ̃∗

k(x) belong to the same complete set of eigenstates, as in
the case of plane waves eikx. One can always make a unitary transforma-
tion from ϕ̃k to the set eikx, and using these plane waves, the calculation
of anomalies in the framework of quantum field theory is reduced to a
set of n-dimensional Gaussian integrals over k. We shall use the regulator
R discussed above, and twiddled fields, but then cast the calculation of
anomalies in terms of quantum mechanics and path integrals. Calculating
anomalies using quantum mechanics is much simpler than evaluating the
Gaussian integrals of quantum field theory. Using path integrals simplifies
the calculations even further.

When we first started studying the problems discussed in this book, we
used the shortcuts and plausible arguments which are used by researchers
and sometimes mentioned in the literature. However, the more we tried
to clarify and complete these shortcuts and arguments, the more we were
driven to basic questions and theoretical principles. We have been study-
ing these issues now for over 15 years, and have accumulated a wealth of
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facts and insights. We decided to write a book in which all ideas and cal-
culation were developed from scratch, with all intermediate steps worked
out. The result looks detailed, and at places technical. We have made every
effort to keep the text readable by providing verbal descriptions next to
formulas, and providing introductory sections and historical reviews. In
the end, however, we felt there is no substitute for a complete and funda-
mental treatment.

We end this preface by summarizing the content of this book. In the
first part of this book we give a complete derivation of the path inte-
grals for supersymmetric and nonsupersymmetric nonlinear sigma models
describing bosonic and fermionic point particles (commuting coordinates
xi(t) and anticommuting variables ψa(t) = eai (x(t))ψi(t)) in a curved tar-
get space with metric gij(x) = eai (x)ebj(x)δab. All of our calculations are
performed in Euclidean target space. We consider a finite time interval
because this is what is needed for the applications to anomalies. As these
models contain double-derivative interactions, they are divergent accord-
ing to power-counting, just as in quantum gravity, but ghost loops arising
from the path integral measure cancel the divergences. Only the one-
and two-loop graphs are power-counting divergent, hence in general the
action may contain extra finite local one- and two-loop counterterms, the
coefficients of which should be fixed. They are fixed by imposing suit-
able renormalization conditions. To regularize individual diagrams we use
three different regularization schemes:

(i) time slicing (TS), known from the work of Dirac and Feynman;

(ii) mode regularization (MR), known from instanton and soliton
physics;2 and

(iii) dimensional regularization on a finite time interval (DR), discussed
in this book.

The renormalization conditions relate a given quantum Hamiltonian Ĥ
to a corresponding quantum action S, by which we mean the action that
appears in the exponent of the path integral. The particular finite one-
and two-loop counterterms in S thus obtained are different for each reg-
ularization scheme. In principle, any Ĥ with a definite ordering of the
operators can be taken as the starting point, and gives a correspond-
ing path integral (with different counterterms for different regularization
schemes), but for our physical applications we shall consider quantum
Hamiltonians that maintain reparametrization and local Lorentz invari-
ance in target space (i.e. commute with the quantum generators of these

2Actually, the mode expansion had already been used by Feynman and Hibbs to
compute the path integral for the harmonic oscillator.
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symmetries. The chiral anomaly is then due to the chirality matrix in
the Jacobians). Then there are no one-loop counterterms in the three
schemes, but only two-loop counterterms. Having defined the regulated
path integrals, the continuum limit can be taken and reveals the correct
“Feynman rules” (the rules of how to evaluate the integrals over prod-
ucts of distributions and equal-time contractions) for each regularization
scheme. All three regularization schemes give the same final answer for
the transition amplitude, although the Feynman rules are different.

In the second part of this book we apply our methods to the eval-
uation of anomalies in n-dimensional relativistic quantum field theories
with bosons and fermions in the loops (spin 0, 1

2 , 1,
3
2 and self-dual anti-

symmetric tensor fields) coupled to external gauge fields and/or grav-
ity. We regulate the field-theoretical Jacobian for the symmetries whose
anomalies we want to compute with a factor of exp(−βR), where R is the
covariant regulator which follows from the corresponding quantum field
theory, as discussed before, and β tends to zero only at the end of the
calculation. Next, we introduce a quantum mechanical representation of
the operators which enter in the field-theoretical calculation. The regu-
lator R yields a corresponding quantum mechanical Hamiltonian Ĥ. We
rewrite the quantum mechanical operator expression for the anomalies as
a path integral on the finite time interval −β ≤ t ≤ 0 for a linear or non-
linear sigma model with action S. For given spacetime dimension n, in the
limit β → 0 only graphs with a finite number of loops on the worldline
contribute. In this way the calculation of the anomalies is transformed
from a field-theoretical problem to a problem in quantum mechanics. We
give details of the derivation of the chiral and gravitational anomalies
as first given by Alvarez-Gaumé and Witten, and discuss our own work
on trace anomalies. For the former one only needs to evaluate one-loop
graphs on the worldline, but for the trace anomalies in two dimensions
we need two-loop graphs, and for the trace anomalies in four dimensions
we compute three-loop graphs. Here a technical but important problem
was settled: using time-slicing or mode regularization, counterterms pro-
portional to the product of two Christoffel symbols were found, but it is
incorrect to invoke normal coordinates and to ignore these counterterms.
Their expansion produces products of two Riemann curvatures which do
contribute at 3 loops to trace anomalies. We obtain complete agreement
with the results for these anomalies obtained from other methods. We
conclude with a detailed analysis of the gravitational anomalies in 10-
dimensional supergravities, both for classical and for exceptional gauge
groups.

Twenty years have passed since AGW wrote their renowned article.
We believe we have solved all major and minor problems we initially ran
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into.3 The quantum mechanical approach to quantum field theory can be
applied to more problems than only anomalies. If future work on such
problems will profit from the detailed account given in this book, our
scientific and geographical Odyssey has come to a good ending.

No book is everywhere totally clear and without misprints. We col-
lect and correct them at the following webpage: http://insti.physics.
sunysb.edu/itp/books/anomalies/ and we ask readers who have questions
or spot misprints or errors to contact us by email at bastianelli@bo.infn.it
and vannieu@insti.physics.sunysb.edu.

We would like to thank our respective universities of Bologna and
Stony Brook, and the Istituto Nazionale di Fisica Nucleare (INFN) of
Italy, the Teyler Foundation of the Netherlands, and the National Science
Foundation (NSF) of the USA for financial support. Over the years part
of our work was presented at lecture series, summer schools and confer-
ences in Berlin, Brussels, Leiden, Leuven, Los Angeles, Marseille, Rio de
Janeiro and Vienna, and we thank the organizers for these opportunities.

Bologna and Stony Brook, January 2005

3Except one problem: a rigorous derivation, based only on quantum mechanical path
integrals, of the overall normalization of the gravitational anomaly of self-dual anti-
symmetric tensor fields, see Chapter 8. We fix this normalization by requiring agree-
ment with bosonization formulas of two-dimensional quantum field theories.





Part I

Path integrals for quantum mechanics
in curved space





1
Introduction to path integrals

Path integrals play an important role in modern quantum field theory.
One usually first encounters them as useful formal devices to derive Feyn-
man rules. For gauge theories they yield straightforwardly the Ward iden-
tities. Namely, if BRST symmetry (the “quantum gauge invariance” dis-
covered by Becchi, Rouet, Stora and Tyutin [14]) holds at the quantum
level, certain relations between Green functions can be derived from path
integrals, but details of the path integral (for example, the precise form of
the measure) are not needed for this purpose.1 Once the BRST Ward iden-
tities for gauge theories have been derived, unitarity and renormalizability
can be proven, and at this point one may forget about path integrals if
one is only interested in perturbative aspects of quantum field theories.
One can compute higher-loop Feynman graphs without ever using path
integrals.

However, for nonperturbative aspects, path integrals are essential. The
first place where one encounters path integrals in nonperturbative quan-
tum field theory is in the study of instantons and solitons. Here advanced
methods based on path integrals have been developed. For example, in the
case of instantons the correct measure for integration over their collective
coordinates (corresponding to the zero modes) is needed. In particular, for
supersymmetric nonabelian gauge theories, there are only contributions
from these zero modes, while the contributions from the nonzero modes
cancel between bosons and fermions. Another area where the path integral

1To prove that the BRST symmetry is free from anomalies, one may either use
regularization-free cohomological methods, or one may perform explicit loop graph
calculations using a particular regularization scheme. When there are no anomalies,
but the regularization scheme does not preserve the BRST symmetry, one can always
add local counterterms to the action at each loop level to restore the BRST symmetry.
In these manipulations the path integral measure is usually not taken into account.

3
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measure is important is quantum gravity. In particular, in modern stud-
ies of quantum gravity based on string theory, the measure is crucial in
obtaining the correct correlation functions.

One can compute path integrals at the nonperturbative level by going
to Euclidean space, discretizing the path integrals on lattices and using
powerful computers. In this book we use a continuum approach. We study
a class of simple models which lead to path integrals in which no infinite
renormalization is needed, but some individual diagrams are divergent
and need be regulated, and subtle issues of regularization and measures
can be studied explicitly. These models are the quantum mechanical (one-
dimensional) nonlinear sigma models. The one- and two-loop diagrams in
these models are power-counting divergent, but the infinities cancel in the
sum of diagrams for a given process at a given loop level.

Quantum mechanical (QM) nonlinear sigma models can be described by
path integrals and are toy models for realistic path integrals in four dimen-
sions. They describe curved target spaces and contain double-derivative
interactions (quantum gravity has also double-derivative interactions).
The formalism for path integrals in curved space has been discussed in
great generality in several books and reviews [15–26]. In the first half of
this book we define the path integrals for these models and discuss various
subtleties. However, quantum mechanical nonlinear sigma models can also
be used to compute anomalies of realistic four- and higher-dimensional
quantum field theories, and this application is thoroughly discussed in the
second half of this book. Furthermore, quantum mechanical path integrals
can be used to compute correlation functions and effective actions. For ref-
erences in flat space see [27], and for some work in curved space see [28–30].

The study of path integrals in curved space was pioneered by DeWitt
[15]. He first extended to curved space a result of Pauli [16] for the transi-
tion element for infinitesimal times which was the product of the exponent
of the classical action evaluated for a classical trajectory, times the Van
Vleck–Morette determinant [17]. He verified that this transition element
satisfied a Schrödinger equation with Hamiltonian Ĥ + 1

12 h̄
2R (− 1

12 h̄
2R

in our conventions for R), where Ĥ = 1
2 ĝ

−1/4p̂iĝ
ij ĝ1/2p̂j ĝ

−1/4. He also
claimed that this transition element could be written as a path integral
with a modified action, which was the sum of the classical action and
a term + h̄2

12R. The latter term comes from the Van Vleck determinant.2

His work has led to an enormous literature on this subject, with many
authors proposing various ingenuous definitions or approximations of the

2There exists some confusion in the literature about the coefficient of R in the action
in the path integral for the transition element related to the minimal hamiltonian
operator Ĥ (“the counter term with R”). Initially DeWitt obtained 1

6
[15]. However,

recently in [26] he rectified this to 1
8
, a result with which we agree, at least if one uses

the regularization schemes discussed in this book, see eqs. (2.81), (3.73), (4.28) and
Appendix B. (Note: some of these schemes have additional noncovariant ΓΓ terms.)
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infinitesimal transition element, and various proposals for iterations which
should produce the finite transition amplitude, see for example [31–34].

In Part I of this book we show how to define and compute the transition
element for finite times using path integrals. This yields, in particular,
the transition element for infinitesimal times in a series expansion. Path
integrals are of course just one of many ways of computing the transition
element, but for the calculation of anomalies the path integral method is
far superior as we hope to demonstrate in this book.

1.1 The simplest case: a particle in flat space

Before considering path integrals in curved space, we first review the
simple case of a nonrelativistic particle moving in an n-dimensional flat
space and subject to a scalar potential V (x). We are going to derive the
path integral from the canonical (operatorial) formulation of quantum
mechanics. We will also compute the transition amplitude in the free case
(i.e. with vanishing potential), a useful result to compare with when we
deal with the more complicated case of curved space.

Thus, let us consider a particle with coordinates xi, conjugate momenta
pi and mass m. As the quantum Hamiltonian we take

H(x̂, p̂) =
1

2m
p̂ip̂

i + V (x̂) (1.1)

where, as usual, hats denote quantum mechanical operators. We are inter-
ested in deriving a path integral representation of the transition amplitude

T (z, y;β) ≡ 〈z|e−β
h̄
Ĥ |y〉 (1.2)

for the particle to propagate from the point yi to the point zi in a
Euclidean time β. We use a language appropriate to quantum mechan-
ics (“transition amplitude”, etc.) even though we consider a Euclidean
approach. The usual quantum mechanics in Minkowskian time is obtained
by the substitution β→ it, which corresponds to the so-called Wick rota-
tion, an analytical continuation in the time coordinate that relates statis-
tical mechanics to quantum mechanics, and vice versa.

We use eigenstates |x〉 and |p〉 of the position operator x̂i and momen-
tum operator p̂i, respectively,

x̂i|x〉 = xi|x〉, p̂i|p〉 = pi|p〉, (1.3)

together with the completeness relations

I =
∫

dnx |x〉〈x| =
∫

dnp |p〉〈p| (1.4)

and the scalar products

〈x1|x2〉 = δn(x1 − x2), 〈p1|p2〉 = δn(p1 − p2), 〈x|p〉 =
1

(2πh̄)n/2
e

i
h̄
pix

i
.

(1.5)
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It is easy to show that the transition amplitude should satisfy the
Schrödinger equation (see (2.229) and (2.230))

−h̄
∂

∂β
T (z, y;β) = H(z)T (z, y;β) (1.6)

with the boundary condition

T (z, y; 0) = δn(z − y) (1.7)

where the Hamiltonian in the coordinate representation is, of course, given
by

H(z) = − h̄2

2m
∂

∂zi
∂

∂zi
+ V (z). (1.8)

A similar equation holds at the point yi.
The derivation of a path integral representation for the transition ampli-

tude is rather standard. The transition amplitude can be split into N
factors

T (z, y;β) = 〈z|
(
e−

β
h̄N

Ĥ
)N

|y〉 = 〈z| e− ε
h̄
Ĥe−

ε
h̄
Ĥ · · · e− ε

h̄
Ĥ︸ ︷︷ ︸

N times

|y〉

=
∫ (

N−1∏
k=1

dnxk

)
N∏
k=1

〈xk|e−
ε
h̄
Ĥ |xk−1〉 (1.9)

where we have denoted xi0 = yi, xiN = zi, ε = β/N , and used N − 1 times
the completeness relations with position eigenstates. Then one can use N
times the completeness relations with momentum eigenstates and obtain

T (z, y;β) =
∫ (

N−1∏
k=1

dnxk

)(
N∏
k=1

dnpk

)
N∏
k=1

〈xk|pk〉〈pk|e−
ε
h̄
Ĥ |xk−1〉.

(1.10)
This is still an exact formula, but we are now going to evaluate it using
approximations which are correct in the limit N → ∞ (ε → 0). The key
point for deriving the path integral is to evaluate the following matrix
element

〈p|e− ε
h̄
Ĥ(x̂,p̂)|x〉 = 〈p|

[
1 − ε

h̄
Ĥ(x̂, p̂) + · · ·

]
|x〉

= 〈p|x〉 − ε

h̄
〈p|Ĥ(x̂, p̂)|x〉 + · · ·

= 〈p|x〉
[
1 − ε

h̄
H(x, p) + · · ·

]
= 〈p|x〉 e−

ε
h̄
H(x,p)+···. (1.11)

The replacement 〈p|Ĥ(x̂, p̂)|x〉 = 〈p|x〉H(x, p) follows from the simple
structure of the Hamiltonian in (1.1), which allows to act with the posi-
tion and momentum operators on the corresponding eigenstates, so that
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these operators are simply replaced by the corresponding eigenvalues. In
this way the Hamiltonian operator Ĥ(x̂, p̂) is replaced by the Hamiltonian
function H(x, p) = p2/2m + V (x). These approximations are justified in
the limit N→∞ for many physically interesting potentials (i.e. the “dots”
in (1.11) can be neglected in this limit), in which cases a rigorous math-
ematical proof is also available, and goes under the name of the “Trotter
formula”[21]. Finally, using the expression for 〈x|p〉 given in (1.5), and
recalling that 〈p|x〉 = 〈x|p〉∗, one obtains

〈xk|pk〉〈pk|e−
ε
h̄
Ĥ |xk−1〉 =

1
(2πh̄)n

e
i
h̄
pk·(xk−xk−1)− ε

h̄
H(xk−1,pk) (1.12)

which can now be inserted into (1.10). At this point the expression of the
transition amplitude does not contain any more operators, and reads as

T (z, y;β) = lim
N→∞

∫ (
N−1∏
k=1

dnxk

)(
N∏
k=1

dnpk
(2πh̄)n

)

× exp

{
− ε

h̄

N∑
k=1

[
−ipk ·

(xk − xk−1)
ε

+ H(xk−1, pk)
] }

=
∫

DxDp e−
1
h̄
S[x,p]. (1.13)

This is the path integral in phase space. We recognize in the exponent a
discretization of the classical Euclidean phase space action

S[x, p] =
∫ β

0
dt [−ip · ẋ + H(x, p)]

→ ε
N∑
k=1

[
−ipk ·

(xk − xk−1)
ε

+ H(xk−1, pk)
]

(1.14)

where again β =Nε. The last line in (1.13) is symbolic and indicates a
formal sum over paths in phase space weighted by the exponential of
minus their classical action.

The configuration space path integral is easily derived by integrating
out the momenta in (1.13). Completing squares and using Gaussian inte-
gration one obtains

T (z, y;β) = lim
N→∞

∫ (
N−1∏
k=1

dnxk

)( m

2πh̄ε

)nN/2

× exp

{
− ε

h̄

N∑
k=1

[
m

2

(xk − xk−1

ε

)2
+ V (xk−1)

] }

=
∫

Dx e−
1
h̄
S[x]. (1.15)



8 1 Introduction to path integrals

This is the path integral in configuration space. In the exponent one
finds a discretization of the classical Euclidean configuration space
action

S[x] =
∫ β

0
dt

[
m

2
ẋ2 + V (x)

]

→ ε
N∑
k=1

[
m

2

(xk − xk−1

ε

)2
+ V (xk−1)

]
. (1.16)

Again the last line in (1.15) is symbolic, and indicates a sum over paths
in configuration space.

For the case of a vanishing potential, the path integral can be evalu-
ated exactly [45, 46, 21]. Performing successive Gaussian integrations one
obtains

T (z, y;β) =
( m

2πh̄β

)n/2
e−m(z−y)2/2βh̄. (1.17)

This final result is very suggestive. Up to a prefactor, it consists of the ex-
ponential of the classical action evaluated on the classical trajectory. This
is typical for the cases where the semiclassical approximation is exact. The
prefactor can be considered as containing the “one-loop” corrections which
make up the full result (thus “semiclassical” = “classical + one-loop”).

The preceding approach is called time slicing, and will be applied
to nonlinear sigma models (models in curved target space) in Chapter
2. In Chapters 3 and 4 we shall use two other equivalent methods of
computing path integrals: mode regularization and dimensional regulari-
zation.

We shall actually use a somewhat different way to evaluate path inte-
grals, by decomposing xi(t) as follows. We expand the continuous paths
xi(t) into a fixed classical “background” part xibg(t) plus “quantum fluc-
tuations” qi(t)

xi(t) = xibg(t) + qi(t). (1.18)

Here xibg(t) is a fixed function: it solves the classical equations of motion
and takes into account the boundary conditions (xi(0) = yi and xi(β) = zi)

xibg(t) = yi + (zi − yi)
t

β
, (1.19)

while the arbitrary fluctuations qi(t) vanish at the boundaries. One may
interpret xibg(t) as the origin and qi(t) as the coordinates of the “space of
paths”.

Now one can compute the path integral (1.15) for a vanishing potential

T (z, y;β) =
∫

Dx e−
1
h̄
S[x] =

∫
D(xbg + q) e−

1
h̄
S[xbg+q]
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=
∫

Dq e−
1
h̄
(S[xbg ]+S[q]) = e−

1
h̄
S[xbg ]

∫
Dq e−

1
h̄
S[q]

= Ae−
1
h̄
S[xbg ] = Ae−

m(z−y)2

2βh̄ (1.20)

where we have used the translational invariance of the path integral mea-
sure Dx=D(xbg + q) =Dq (at the discretized level this is evident from
writing dnxk = dn(xk,bg + qk) = dnqk) and the fact that in the action there
is no term linear in qi (the action is quadratic in qi, but the term lin-
ear in qi must also be linear in xbg, but then this term must vanish by
the equations of motion). Finally, the constant A=

∫
Dq exp(− 1

h̄S[q]) is
not determined by this method, but it can be fixed by requiring that
(1.20) solves the Schrödinger equation (1.6) with the boundary condition
in (1.7). The value A= (m/2πh̄β)n/2 is sometimes called the Feynman
measure.

1.2 Quantum mechanical path integrals in curved space
require regularization

The path integrals for the quantum mechanical systems we shall discuss
have a Hamiltonian Ĥ(x̂, p̂) which is more general than T̂ (p̂) + V̂ (x̂).
We shall typically be considering models with a Euclidean Lagrangian
of the form L= 1

2gij(x)dx
i

dt
dxj

dt + iAi(x)dx
i

dt + V (x), where i, j = 1, . . . , n.
These systems are one-dimensional quantum field theories with double-
derivative interactions, and hence they are not ultraviolet finite by power
counting; rather, the one- and two-loop diagrams are divergent as we shall
discuss in detail in the next section. The ultraviolet infinities cancel in the
sum of diagrams, but one needs to regularize individual diagrams which
are divergent. The results of individual diagrams are then regularization-
scheme dependent, and also the results for the sum of diagrams are finite
but scheme dependent. One must then add finite counterterms which
are also scheme dependent, and which must be chosen such that cer-
tain physical requirements are satisfied (renormalization conditions). Of
course, the final physical answers should be the same, no matter which
scheme one uses. Since we shall be working with actions defined on a
compact time-interval, there are no infrared divergences. We shall also
discuss nonlinear sigma models with fermionic point particles ψa(t) with
again a= 1, . . . , n. Also one- and two-loop diagrams containing fermions
can be power-counting divergent. For applications to chiral and gravita-
tional anomalies the most important cases are the rigidly supersymmet-
ric models, in particular the quantum mechanical models with N = 1 and
N = 2 supersymmetry, but nonsupersymmetric models with or without
fermions will also be used as they are needed for applications to trace
anomalies.



10 1 Introduction to path integrals

Quantum mechanical path integrals can be used to compute anoma-
lies of n-dimensional quantum field theories. This was first shown by
Alvarez-Gaumé and Witten (AGW) [1, 35, 36], who studied various chiral
and gravitational anomalies (see also [37, 38]). Subsequently, Bastianelli
and van Nieuwenhuizen [39, 40] extended their approach to trace anoma-
lies. With the formalism developed below one can now, in principle, com-
pute any anomaly, and not only chiral anomalies. In the work of Alvarez-
Gaumé and Witten, the chiral anomalies themselves were written directly
as a path integral in which the fermions have periodic boundary condi-
tions. Similarly, the trace anomalies lead to path integrals with antiperi-
odic boundary conditions for the fermions. These are, however, only spe-
cial cases, and in our approach any Jacobian will lead to a corresponding
set of boundary conditions.

Because chiral anomalies have a topological character, one would expect
details of the path integral to be unimportant and only one-loop graphs
on the worldline to contribute. In fact, in the approach of AGW this is
indeed the case.3 On the other hand, for trace anomalies, which have
no topological interpretation, the details of the path integral do mat-
ter and higher loops on the worldline contribute. In fact, it was pre-
cisely because three-loop calculations of the trace anomaly based on
quantum mechanical path integrals initially did not agree with results
known from other methods, that we started a detailed study of path
integrals for nonlinear sigma models. These discrepancies have been
resolved in the meantime, and the resulting formalism is presented in this
book.

The reason that we do not encounter infinities in loop calculations for
QM nonlinear sigma models is different from a corresponding statement
for QM linear sigma models. For a linear sigma model with a kinetic
term 1

2 ẋ
iẋi on an infinite t-interval, the propagator behaves as 1/k2

for large momenta, and vertices from V (x) do not contain derivatives,
hence loops

∫
dk[· · ·] will always be finite. For nonlinear sigma models

with L = 1
2gij(x)ẋiẋj , propagators still behave like k−2 but vertices now

behave like k2 (as in ordinary quantum gravity), hence single loops are
linearly divergent by power counting and double loops are logarithmically

3Their approach uses a particular linear combination of general coordinate and local
Lorentz transformations, and for this symmetry one only needs to evaluate single
loops on the worldline. However if one directly computes the anomaly of the Lorentz
operator γμνγ5, using the same steps as in the case of the chiral operator γ5 for gauge
fields in flat space, one needs higher loops on the worldline. We discuss this at the
end of Section 6.3.
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divergent. It is clear by inspection of

〈z|e−β
h̄
Ĥ |y〉 =

∫ ∞

−∞
〈z|e−β

h̄
Ĥ |p〉〈p|y〉 dnp (1.21)

that no infinities should be present: the matrix element 〈z| exp(−β
h̄Ĥ)|y〉 is

finite and unambiguous. Indeed, we could in principle insert a complete
set of momentum eigenstates as indicated, and then expand the exponent
and move all p̂ operators to the right and all x̂ operators to the left,
taking commutators into account. The integral over dnp is Gaussian and
converges. To any given order in β we would then find a finite and well-
defined expression.4 Hence, also the path integrals should be finite.

The mechanism by which loops based on path integrals are finite is dif-
ferent in phase space and configuration space path integrals. In the phase
space path integrals the momenta are independent variables and the ver-
tices contained in H(x, p) are without derivatives. (The only derivatives
are due to the term pẋ, whereas the term 1

2p
2 is free from derivatives.)

The propagators and vertices are nonsingular functions (containing at
most step functions but no delta functions) which are integrated over the
finite domain [−β, 0], hence no infinities arise. (We use the interval [−β, 0]
instead of [0, β], but it is easy to change notation to go from one to the
other.) In the configuration space path integrals, on the other hand, there
are divergences in individual loops, as we mentioned. The reason for this
is that although one still integrates over the finite domain [−β, 0], single
derivatives of the propagators are discontinuous and double derivatives
are divergent (they contain delta functions).

However, since the results of configuration-space path integrals should
be the same as those of phase-space path integrals, these infinities should
not be there in the first place. The resolution of this paradox is that
configuration-space path integrals contain a new kind of ghost.
These ghosts are needed to exponentiate the factors (det gij)1/2 which
are produced when one integrates out the momenta. Historically, the can-
cellation of divergences at the one-loop level was first found by Lee and
Yang [41], who studied nonlinear deformations of harmonic oscillators,
and who wrote these determinants as new terms in the action of the form

1
2

∑
t

ln det gij(x(t)) =
1
2
δ(0)

∫
tr ln gij(x(t)) dt. (1.22)

To obtain the right-hand side one may multiply the left-hand side by
Δt/Δt and replace 1/Δt by δ(0) in the continuum limit. For higher loops,

4This program is executed in Section 2.5 to order β. For reasons explained there, we
count the difference (z − y) as being of order β1/2.



12 1 Introduction to path integrals

it is inconvenient to work with δ(0); rather, we shall use the new ghosts
in precisely the same manner as one uses the Faddeev–Popov ghosts in
gauge theories: they occur in all possible manners in Feynman diagrams
and have their own Feynman rules. These ghosts for quantum mechanical
path integrals were first introduced by Bastianelli [39].

In configuration space, loops with ghost particles cancel divergences in
corresponding loop graphs without ghost particles. Generically one has

+ = finite.

However, the fact that the infinities cancel does not mean that the
remaining finite parts are unambiguous. One must regularize the diver-
gent graphs, and different regularization schemes can lead to different
finite parts, as is well known from field theory. Since our actions are of the
form

∫ 0
−β Ldt, we are dealing with one-dimensional quantum field theories

in a finite “spacetime”. If one is not dealing with a circle, translational
invariance is broken, and propagators depend on t and s, not only on t−s.
In configuration space the propagators contain singularities. For example,
the propagator for a free quantum particle q(t) corresponding to L= 1

2 q̇
2

with boundary conditions q(−β) = q(0) = 0 is proportional to Δ(σ, τ),
where σ = s/β and τ = t/β, with −β ≤ s, t ≤ 0 and −1 ≤ σ, τ ≤ 0

〈q(σ)q(τ)〉 ≈ Δ(σ, τ) = σ(τ + 1)θ(σ − τ) + τ(σ + 1)θ(τ − σ). (1.23)

It is easy to check that ∂2
σΔ(σ, τ) = δ(σ−τ) and Δ(σ, τ) = 0 at σ = −1, 0

and τ = −1, 0 (use ∂σΔ(σ, τ) = τ + θ(σ − τ)).
It is clear that Wick contractions of q̇(σ) with q(τ) will contain a factor

of θ(σ− τ), and q̇(σ) with q̇(τ) a factor δ(σ− τ). Also the propagators for
the ghosts contain factors of δ(σ−τ). Thus one needs a consistent, unam-
biguous and workable regularization scheme for products of the distribu-
tions δ(σ− τ) and θ(σ− τ). In mathematics the products of distributions
are ill-defined [42]. Thus, it comes as no surprise that in physics different
regularization schemes give different answers for such integrals. For exam-
ple, consider the following two familiar ways of evaluating the product of
distributions: smoothing of distributions and using Fourier transforms.
Suppose one is required to evaluate

I =
∫ 0

−1

∫ 0

−1
δ(σ − τ)θ(σ − τ)θ(σ − τ) dσ dτ. (1.24)

Smoothing of a distribution can be achieved by approximating δ(σ − τ)
and θ(σ−τ) by some smooth functions and requiring that at the regulated
level one still has the relation δ(σ − τ) = ∂

∂σθ(σ − τ). One then obtains
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I = 1
3

∫ 0
−1

∫ 0
−1

∂
∂σ [θ(σ − τ)]3 dσ dτ = 1

3 . On the other hand, if one were to
interpret the delta function δ(σ − τ) to mean that one should evaluate
the function θ(σ − τ)2 at σ = τ one obtains 1

4 . One could also decide to
use the representations

δ(σ − τ) =
∫ ∞

−∞

dλ

2π
eiλ(σ−τ)

θ(σ − τ) =
∫ ∞

−∞

dλ

2πi
eiλ(σ−τ)

λ− iε
with ε > 0. (1.25)

Formally, ∂σθ(σ − τ) = δ(σ − τ) − ε θ(σ − τ), and upon taking the limit
ε tending to zero one would again expect to obtain the value 1

3 for I.
However, if one first integrates over σ and τ , one finds

I =
[ ∫ ∞

−∞

dy

2π
(2 − 2 cos y)

y2

]( ∫ ∞

−∞

dλ

2πi
1

λ− iε

)2

. (1.26)

Depending on the prescription used to evaluate the last integral, one could
obtain different results. Clearly, using different methods to evaluate I
leads to different answers. Without further specifications, integrals such
as I are indeed ambiguous and make no sense.

In the applications we are going to discuss, we sometimes choose a reg-
ularization scheme that reduces the path integral to a finite-dimensional
integral. For example, for time slicing one chooses a finite set of interme-
diate points, and for mode regularization one begins with a finite number
of modes for each one-dimensional field. Another scheme we use is dimen-
sional regularization: here one regulates the various Feynman diagrams
by moving away from d = 1 dimensions, and performing partial integra-
tions which make the integral manifestly finite at d = 1. Afterwards one
returns to d= 1 and computes the values of these finite integrals. One
omits boundary terms in the extra dimensions; this can be justified by
noting that there are factors of eik(t−s) in the propagators due to trans-
lation invariance in the extra D dimensions. They yield the Dirac delta
functions δD(k1 + k2 + · · · + kn) upon integration over the extra space
coordinates. A derivative with respect to the extra space coordinate which
yields, for example, a factor k1 can be replaced by −k2−k3−· · ·−kn due
to the presence of the delta function, and this replacement is equivalent
to a partial integration without boundary terms. These are formal manip-
ulations which should be viewed as specifying the regularization scheme.

In time slicing we find the value I = 1
4 for (1.24): in fact, as we shall

see, in this case the delta function is a Kronecker delta which gives the
product of the θ functions at the point σ = τ . In mode regularization,
one finds I = 1

3 because now δ(σ − τ) is indeed ∂σθ(σ − τ) at the reg-
ulated level. In dimensional regularization one must first decide which
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derivatives are contracted with which derivatives in D+1 dimensions (for
example, (μΔν)(μΔ)(Δν)). This follows from the form of the action in
D + 1 dimensions. Then one applies the usual manipulations of dimen-
sional regularization in D + 1 dimensions until one reaches a convergent
integral which can directly be evaluated in one dimension.5

As we have seen, different regularization schemes lead to finite well-
defined results for a given diagram which are in general different, but
there are also ambiguities in the vertices: the finite one- and two-loop
counterterms have not been fixed. The physical requirement that the
theory be based on a given quantum Hamiltonian removes the ambigu-
ities in the counterterms: for time slicing Weyl ordering of Ĥ directly
produces the counterterms, while for the other schemes the requirement
that the transition element satisfies the Schrödinger equation with a
given Hamiltonian Ĥ fixes the counterterms. Thus in all of these schemes
the renormalization condition is that the transition element should be
derived from the same particular Hamiltonian Ĥ.

The first scheme, time slicing (TS), has the advantage that one can
deduce it directly from the operatorial formalism of quantum mechanics.
This regularization can be considered to be equivalent to lattice regular-
ization of standard quantum field theories. It is the approach followed
by Dirac and Feynman. One must specify the Hamiltonian Ĥ with an
a priori fixed operator ordering; this ordering corresponds to the renor-
malization conditions in this approach. All further steps are finite and
unambiguous. This approach breaks general coordinate invariance in tar-
get space which is then recovered by a specific finite counterterm ΔVTS in
the action of the path integral. (To simplify the notation, we denote these
counterterms in later sections by VTS instead of ΔVTS .) This counterterm
also follows unambiguously from the initial Hamiltonian and is itself not
coordinate invariant either. However, if the initial Hamiltonian is general
coordinate invariant (as an operator, see Section 2.5) then the final result
(the transition element) will also be general coordinate invariant.

The second scheme, mode regularization (MR), will be constructed
directly without referring to the operatorial formalism. It can be thought

5For an example of an integral where dimensional regularization is applied, consider

J =

∫ 0

−1

dσ

∫ 0

−1

dτ (•Δ•) (•Δ) (Δ•)

=

∫ 0

−1

dσ

∫ 0

−1

dτ [1 − δ(σ − τ)] [τ + θ(σ − τ)] [σ + θ(τ − σ)] (1.27)

where dots on the left and right denote derivatives with respect to the first and second
variable. One finds J = − 1

6
for time slicing, see (2.270). Furthermore, J = − 1

12

for mode regularization, see (3.82). In dimensional regularization one rewrites the
integrand as (μΔν)(μΔ)(Δν) and one finds J = − 1

24
, see (4.24).
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of as the equivalent of momentum cut-off in QFT.6 It is close to the intu-
itive notion of path integrals, that are meant to give a global picture of
the quantum phenomena by summing over entire paths (while one may
view the time discretization method as being closer to the local picture
of the differential Schrödinger equation, since one imagines the particle
propagating by small time steps). Mode regularization gives, in principle,
a nonperturbative definition of path integrals in that one does not have to
expand the exponential of the interaction part of the action. However, this
regularization also breaks general coordinate invariance, and one needs a
different finite noncovariant counterterm ΔVMR to recover it.

Finally, the third regularization scheme, dimensional regularization
(DR), is based on the dimensional continuation of the ambiguous inte-
grals appearing in the loop expansion. It is inherently a perturbative
regularization, but it is the optimal one for perturbative computations
in the following sense. It does not break general coordinate invariance
at intermediate stages and the counterterm ΔVDR is Einstein and local
Lorentz invariant.

All of these different regularization schemes will be presented in sepa-
rate chapters. Since our derivation of the path integrals contains several
steps, each requiring a detailed discussion, we have decided to put all
of these special discussions in separate sections after the main derivation.
This has the advantage that one can read each section independently. The
structure of our discussions is summarized by the flow chart in Fig. 1.1.

We shall first discuss time slicing, the lower part of the flow chart. This
discussion is first given for bosonic systems with xi(t) and afterwards for
systems with fermions. In the bosonic case, we first construct discretized
phase-space path integrals, then discretized configuration-space path inte-
grals, to be followed by the continuous configuration-space path integrals,
and finally the continuous phase-space path integrals. We show that after
Weyl ordering of the Hamiltonian operator Ĥ(x̂, p̂) one obtains a path
integral with a midpoint rule (Berezin’s theorem). Then we repeat the
analysis for fermions.

Next, we consider mode number regularization (the upper part of the
flow chart). Here we define the path integrals ab initio in configuration
space with the naive classical action and a counterterm ΔVMR which is
at first left unspecified. We then proceed to fix ΔVMR by imposing the

6In more complicated cases, such as path integrals in spaces with a topological vacuum
(for example, the kink background in Euclidean quantum mechanics), the mode reg-
ularization scheme and the momentum regularization scheme with a sharp cut-off are
not equivalent (for example, they give different answers for the quantum mass of the
kink). However, if one replaces the sharp energy cut-off by a smooth cut-off, those
schemes become equivalent [43]. We do not consider such topologically nontrivial
backgrounds.



16 1 Introduction to path integrals

�

No products of distributions

Continuous phase-space Continuous configuration-space
path integral with ΔLTS path integral with ΔLTS

�

�

Matthews
� �

LoopsDiscrete phase-space Discrete configuration-space
Products

�
path integral path integral

of
distributions

�

Time slicing
Trotter
Weyl

Berezin

〈z| exp(− β
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Fig. 1.1 Flow chart of Part I of the book.

requirement that the Schrödinger equation be satisfied with a specific
Hamiltonian Ĥ. Having fixed ΔVMR, one can proceed to compute loops
at any desired order.

Finally, we present dimensional regularization along similar lines. The
counterterm 5 is now denoted by ΔVMR. Each section can be read inde-
pendently of the previous ones.

In all three cases we define the theory by the Hamiltonian Ĥ and then
construct the path integrals and Feynman rules which correspond to Ĥ.
The choice of Ĥ defines the physical theory. One may be prejudiced about
which Ĥ makes physical sense (for example, many physicists require that
Ĥ preserves general coordinate invariance), but in our work one does
not have to restrict oneself to these particular Ĥ. Any Ĥ, no matter
how unphysical, leads to a corresponding path integral and correspond-
ing Feynman rules. We repeat that the path integral and Feynman rules
depend on the regularization scheme chosen, but the final result for the
transition element and correlation functions are the same in each scheme.
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In the time-slicing approach we shall solve some of the following basic
problems: given a Hamiltonian operator Ĥ(x̂, p̂) with arbitrary but a-
priori fixed operator ordering, find a path integral expression for the
matrix element7 〈z| exp(−β

h̄Ĥ)|y〉. (The bra 〈z| and ket |y〉 are eigenstates
of the position operator x̂i with eigenvalues zi and yi, respectively. For
fermions we shall use coherent states as bra and ket.) One way to obtain
such a path integral representation is, as we have discussed, to insert
complete sets of x- and p-eigenstates (namely N sets of p-eigenstates and
N −1 sets of x-eigenstates), in the manner first studied by Dirac [44] and
Feynman [45, 46], and leads to the following result:

〈z|e−β
h̄
Ĥ |y〉 ≈

∫
DxDp e−

1
h̄

∫ 0

−β
L dt (1.28)

where L = −ipi(t)dx
i

dt + H(x, p) in our Euclidean phase-space approach.
However, several questions arise if one studies (1.28).

(i) What is the precise relation between the operator Ĥ(x̂, p̂) and the
function H(x, p)? Different operator orderings of Ĥ are expected to
lead to different functions H(x, p). Are there special orderings of Ĥ
for which H(x, p) is particularly simple? And if so, are these special
orderings consistent with general coordinate invariance?

(ii) What is the precise meaning of the measures DxDp in phase space
and Dx in configuration space in theories with external gravitational
fields? Is there a normalization constant in front of the path integral?
Does the measure depend on the metric? The measure DxDp =∏N−1

i=1 dxi
∏N

i=1 dpi is not a canonically invariant measure (not equal
to the Liouville measure) because there is one more dp than dx.
Does this have implications?

(iii) What are the boundary conditions one must impose on the paths
over which one sums? One expects that all paths must satisfy the
Dirichlet boundary conditions xi(−β) = yi and xi(0) = zi, but are
there also boundary conditions on pi(t)? Is it possible to consider
classical paths in phase space which satisfy boundary conditions
both at t = −β and at t = 0?

(iv) How does one compute such path integrals in practice? Perform-
ing the integrations over dxi and dpi for finite N and then taking

7The results in this book are for Euclidean path integrals with L = −ipẋ + H(x, p).
However, they hold equally well in Minkowskian time, at least at the level of pertur-
bation theory, with operators exp(− i

h̄
Ĥt) and path integrals with exp( i

h̄

∫
LM dt),

where LM is the Lagrangian in Minkowskian time, related to the positive-definite
Euclidean Lagrangian L by an inverse a Wick rotation (t → +it) and an extra over-
all minus sign.
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the limit N → ∞ is in practice hardly possible. Is there a simpler
scheme by which one can compute the path integral loop-by-loop,
and what are the precise Feynman rules for such an approach? Does
the measure contribute to the Feynman rules?

(v) It is often advantageous to use a background formalism and to
decompose bosonic fields x(t) into background fields xbg(t) and
quantum fluctuations q(t). One can then require that xbg(t) satis-
fies the boundary conditions so that q(t) vanishes at the endpoints.
However, inspired by string theory, one can also compactify the
interval [−β, 0] to a circle, and then decompose x(t) into a center
of mass coordinate xc and quantum fluctuations about it. What is
the relation between both approaches?

(vi) When one is dealing with N = 1 supersymmetric systems, one has
real (Majorana) particles ψa(t). How does one define the Hilbert
space in which Ĥ is supposed to act? Must one also impose an
initial and a final condition on ψa(t), even though the Dirac equation
is only linear in (time) derivatives? We shall introduce operators
ψ̂a and ψ̂†

a and construct coherent states by contracting them with
Grassmann variables η̄a and ηa. If ψ̂†

a is the hermitian conjugate of
ψ̂a, then is η̄a the complex conjugate of ηa?

(vii) In certain applications, for example the calculation of trace anoma-
lies, one must evaluate path integrals over fermions with antiperiodic
boundary conditions. In the work of AGW the chiral anomalies were
expressed in terms of integrals over the zero modes of the fermions.
For antiperiodic boundary conditions there are no zero modes. How
then should one compute trace anomalies from quantum mechanics?

These are some of the questions which come to mind if one contem-
plates (1.28) for some time. In the literature one can find discussions of
some of these questions [47, 48], but we have made an effort to give a
consistent discussion of all of them. Answers to these questions can be
found in Chapter 8. New material in this book is an exact evaluation of
all discretized expressions in the TS scheme as well as the derivation of
the MR and DR schemes in curved space.

1.3 Power counting and divergences

Let us now give some examples of divergent graphs. The precise form of
the vertices is given later, in (2.85), but for the discussion in this section
we only need the qualitative features of the action. The propagators we
are going to use later in this book are not of the simple form 1/k2 for
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a scalar, rather they have the form
∑∞

n=1(2/π
2n2) sin(πnτ) sin(πnσ) due

to boundary conditions. (Even the propagator for time slicing can be
cast into this form by Fourier transformation.) However, for ultraviolet
divergences the sum of 1/n2 is equivalent to an integral over 1/k2, and
in this section we analyze Feynman graphs with 1/k2 propagators. The
physical justification is that ultraviolet divergences should not feel the
boundaries.

Consider first the self-energy. At the one-loop level the self-energy with-
out external derivatives receives contributions from the following two
graphs

+ .

We used the vertices from 1
2 [gij(x) − gij(z)](q̇iq̇j + aiaj + bicj), where

xi = xi(τ) = zi + qi(τ) and zi = xi(0). Dots indicate derivatives and
dashed lines denote the ghost particles ai, bi, ci. The two divergences are
proportional to δ2(σ − τ) and cancel, but there are ambiguities in the
finite part which must be fixed using suitable conditions. (In quantum
field theories with divergences one calls these conditions “renormalization
conditions”.) In momentum space both graphs are linearly divergent, but
the linear divergence

∫
dk cancels in the sums of the graphs and the two

remaining logarithmic divergences
∫
dk k/k2 cancel by symmetric integra-

tion leaving in general a finite but ambiguous result.
Another example is the self-energy with one external derivative

.

This graph is logarithmically divergent,
∫
dk k3/(k2)2, but using symmet-

ric integration it again leaves a finite but ambiguous part.
All three regularization schemes give the same answer for all one-loop

graphs, so the one-loop counterterms are the same; in fact, there are no
one-loop counterterms at all in any of the schemes if one starts with an
Einstein-invariant Hamiltonian.8

At the two-loop level, there are similar cancellations and ambigui-
ties. Consider the following vacuum graphs (vacuum graphs will play an

8If one were to use the Einstein-noninvariant Hamiltonian g1/4−αp̂i
√
ggij p̂jg

1/4+α, one
would obtain in the TS scheme a one-loop counterterm proportional to h̄pig

ij∂j ln g
in phase space or h̄ẋi∂iln g in configuration space (see Appendix B).
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important role in the applications to anomalies)

+ + .

Again the infinities in the upper loop of the first two graphs cancel, but
the finite part is ambiguous. The last graph is logarithmically divergent
by power counting, and also the two subdivergences are logarithmically
divergent by power counting, but actual calculation shows that it is finite
but ambiguous (the leading singularities are of the form

∫ dk k
k2 and cancel

due to symmetric integration). The sum of the first two graphs yields
(1
4 ,

1
4 ,

1
8) in TS, MR and DR, respectively, while the last graph yields

(−1
6 ,− 1

12 ,− 1
24). This explicitly proves that the results for power counting

logarithmically divergent graphs are ambiguous, even though the diver-
gences cancel.

It is possible to use standard power-counting methods as used in ordi-
nary quantum field theory to determine all possibly ultraviolet-divergent
graphs. Let us interpret our quantum mechanical nonlinear sigma model
as a particular QFT in one Euclidean time dimension. We consider a toy
model of the type

S =
∫

dt

[
1
2
g(φ)φ̇φ̇ + A(φ)φ̇ + V (φ)

]
(1.29)

where the functions g(φ), A(φ) and V (φ) describe the various couplings.
For simplicity we omit the indices i and j.

The choice g(φ) = 1, A(φ) = 0 and V (φ) = 1
2m

2φ2 reproduces a free
massive theory, namely a harmonic oscillator of “mass” (frequency) m.
The action is dimensionless and the Lagrangian then has the dimension
of a mass. From this one deduces that the field φ has mass dimension
M−1/2. Next, let us consider general interactions and expand them in
Taylor series

V (φ) =
∞∑
n=0

Vnφ
n, A(φ) =

∞∑
n=0

An+1φ
n, g(φ) =

∞∑
n=0

gn+2φ
n. (1.30)

These expansions define the coupling constants Vn, An and gn. We easily
deduce the following mass dimensions for such couplings:

[Vn] = Mn/2+1; [An] = Mn/2; [gn] = Mn/2−1. (1.31)

The interactions correspond to the terms with n≥ 3 in (1.31), so all cou-
pling constants have positive mass dimensions. This implies that the the-
ory is super-renormalizable. Namely, from a certain loop level onwards,


