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Introduction

The theory of automorphic forms and L-functions for the group of n × n invert-
ible real matrices (denoted GL(n,R)) with n ≥ 3 is a relatively new subject.
The current literature is rife with 150+ page papers requiring knowledge of a
large breadth of modern mathematics making it difficult for a novice to begin
working in the subject. The main aim of this book is to provide an essentially
self-contained introduction to the subject that can be read by someone with a
mathematical background consisting only of classical analysis, complex vari-
able theory, and basic algebra – groups, rings, fields. Preparation in selected
topics from advanced linear algebra (such as wedge products) and from the
theory of differential forms would be helpful, but is not strictly necessary for
a successful reading of the text. Any Lie or representation theory required is
developed from first principles.

This is a low definition text which means that it is not necessary for the reader
to memorize a large number of definitions. While there are many definitions,
they are repeated over and over again; in fact, the book is designed so that a
reader can open to almost any page and understand the material at hand without
having to backtrack and awkwardly hunt for definitions of symbols and terms.

The philosophy of the exposition is to demonstrate the theory by simple, fully
worked out examples. Thus, the book is restricted to the action of the discrete
group SL(n,Z) (the group of invertible n × n matrices with integer coefficients)
acting on GL(n,R). The main themes are first developed for SL(2,Z) then
repeated again for SL(3,Z), and yet again repeated in the more general case of
SL(n,Z) with n ≥ 2 arbitrary. All of the proofs are carefully worked out over
the real numbers R, but the knowledgeable reader will see that the proofs will
generalize to any local field. In line with the philosophy of understanding by
simple example, we have avoided the use of adeles, and as much as possible
the theory of representations of Lie groups. This very explicit language appears

xi



xii Introduction

particularly useful for analytic number theory where precise growth estimates
of L-functions and automorphic forms play a major role.

The theory of L-functions and automorphic forms is an old subject with roots
going back to Gauss, Dirichlet, and Riemann. An L-function is a Dirichlet series

∞∑
n=1

an

ns

where the coefficients an, n = 1, 2, . . . , are interesting number theoretic func-
tions. A simple example is where an is the number of representations of n as a
sum of two squares. If we knew a lot about this series as an analytic function of
s then we would obtain deep knowledge about the statistical distribution of the
values of an . An automorphic form is a function that satisfies a certain differ-
ential equation and also satisfies a group of periodicity relations. An example
is given by the exponential function e2π i x which is periodic (i.e., it has the
same value if we transform x → x + 1) and it satisfies the differential equa-
tion d2

dx2 e2π i x = −4π2e2π i x . In this example the group of periodicity relations
is just the infinite additive group of integers, denoted Z. Remarkably, a vast
theory has been developed exposing the relationship between L-functions and
automorphic forms associated to various infinite dimensional Lie groups such
as GL(n,R).

The choice of material covered is very much guided by the beautiful paper
(Jacquet, 1981), titled Dirichlet series for the group GL(n), a presentation of
which I heard in person in Bombay, 1979, where a classical outline of the theory
of L-functions for the group GL(n,R) is presented, but without any proofs. Our
aim has been to fill in the gaps and to give detailed proofs. Another motivating
factor has been the grand vision of Langlands’ philosophy wherein L-functions
are akin to elementary particles which can be combined in the same way as
one combines representations of Lie groups. The entire book builds upon this
underlying hidden theme which then explodes in the last chapter.

In the appendix a set of Mathematica functions is presented. These have
been designed to assist the reader to explore many of the concepts and results
contained in the chapters that go before. The software can be downloaded by
going to the website given in the appendix.

This book could not have been written without the help I have received from
many people. I am particularly grateful to Qiao Zhang for his painstaking read-
ing of the entire manuscript. Hervé Jacquet, Daniel Bump, and Adrian Diaconu
have provided invaluable help to me in clarifying many points in the theory.
I would also like to express my deep gratitude to Xiaoqing Li, Elon Linden-
strauss, Meera Thillainatesan, and Akshay Venkatesh for allowing me to include
their original material as sections in the text. I would like to especially thank
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Dan Bump, Kevin Broughan, Sol Friedberg, Jeff Hoffstein, Alex Kontorovich,
Wenzhi Luo, Carlos Moreno, Yannan Qiu, Ian Florian Sprung, C. J. Mozzochi,
Peter Sarnak, Freydoon Shahidi, Meera Thillainatesan, Qiao Zhang, Alberto
Perelli and Steve Miller, for clarifying and improving various proofs, defini-
tions, and historical remarks in the book. Finally, Kevin Broughan has provided
an invaluable service to the mathematical community by creating computer
code for many of the functions studied in this book.

Dorian Goldfeld





1

Discrete group actions

The genesis of analytic number theory formally began with the epoch making
memoir of Riemann (1859) where he introduced the zeta function,

ζ (s) :=
∞∑

n=1

n−s, (�(s) > 1),

and obtained its meromorphic continuation and functional equation

π−s/2�
( s

2

)
ζ (s) = π−(1−s)/2�

(
1 − s

2

)
ζ (1 − s), �(s) =

∞∫
0

e−uus du

u
.

Riemann showed that the Euler product representation

ζ (s) =
∏

p

(
1 − 1

ps

)−1

,

together with precise knowledge of the analytic behavior of ζ (s) could be used
to obtain deep information on the distribution of prime numbers.

One of Riemann’s original proofs of the functional equation is based on the
Poisson summation formula∑

n∈Z

f (ny) = y−1
∑
n∈Z

f̂ (ny−1),

where f is a function with rapid decay as y → ∞ and

f̂ (y) =
∫ ∞

−∞
f (t)e−2π i t y dt,

is the Fourier transform of f . This is proved by expanding the periodic function

F(x) =
∑
n∈Z

f (x + n)

1



2 Discrete group actions

in a Fourier series. If f is an even function, the Poisson summation formula
may be rewritten as

∞∑
n=1

f (ny−1) = y
∞∑

n=1

f̂ (ny) − 1

2
(y f̂ (0) − f (0)),

from which it follows that for �(s) > 1,

ζ (s)
∫ ∞

0
f (y)ys dy

y
=
∫ ∞

0

∞∑
n=1

f (ny)ys dy

y

=
∫ ∞

1

∞∑
n=1

(
f (ny)ys + f (ny−1)y−s

) dy

y

=
∫ ∞

1

∞∑
n=1

(
f (ny)ys + f̂ (ny)y1−s

) dy

y
− 1

2

(
f (0)

s
+ f̂ (0)

1 − s

)
.

If f (y) and f̂ (y) have sufficient decay as y → ∞, then the integral above
converges absolutely for all complex s and, therefore, defines an entire function
of s. Let

f̃ (s) =
∫ ∞

0
f (y)ys dy

y

denote the Mellin transform of f , then we see from the above integral rep-

resentation and the fact that ˆ̂f (y) = f (−y) = f (y) (for an even function f )
that

ζ (s) f̃ (s) = ζ (1 − s) ˜̂f (1 − s).

Choosing f (y) = e−πy2
, a function with the property that it is invariant under

Fourier transform, we obtain Riemann’s original form of the functional equa-
tion. This idea of introducing an arbitrary test function f in the proof of the
functional equation first appeared in Tate’s thesis (Tate, 1950).

A more profound understanding of the above proof did not emerge until
much later. If we choose f (y) = e−πy2

in the Poisson summation formula, then
since f̂ (y) = f (y), one observes that for y > 0,

∞∑
n=−∞

e−πn2 y = 1√
y

∞∑
n=−∞

e−πn2/y .

This identity is at the heart of the functional equation of the Riemann zeta
function, and is a known transformation formula for Jacobi’s theta function

θ(z) =
∞∑

n=−∞
e2π in2z,
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where z = x + iy with x ∈ R and y > 0. If

(
a b
c d

)
is a matrix with integer

coefficients a, b, c, d satisfiying ad − bc = 1, c ≡ 0 (mod 4), c �= 0, then the
Poisson summation formula can be used to obtain the more general transfor-
mation formula (Shimura, 1973)

θ

(
az + b

cz + d

)
= ε−1

d χc(d)(cz + d)
1
2 θ (z).

Here χc is the primitive character of order ≤ 2 corresponding to the field exten-
sion Q(c

1
2 )/Q,

εd =
{

1 if d ≡ 1 (mod 4)

i if d ≡ −1 (mod 4),

and (cz + d)
1
2 is the “principal determination” of the square root of cz + d , i.e.,

the one whose real part is > 0.
It is now well understood that underlying the functional equation of the

Riemann zeta function are the above transformation formulae for θ (z). These
transformation formulae are induced from the action of a group of matrices(

a b
c d

)
on the upper half-plane h = {x + iy | x ∈ R, y > 0} given by

z → az + b

cz + d
.

The concept of a group acting on a topological space appears to be absolutely
fundamental in analytic number theory and should be the starting point for any
serious investigations.

1.1 Action of a group on a topological space

Definition 1.1.1 Given a topological space X and a group G, we say that G
acts continuously on X (on the left) if there exists a map ◦ : G →Func(X → X )
(functions from X to X), g → g◦ which satisfies:

� x → g ◦ x is a continuous function of x for all g ∈ G;
� g ◦ (g′ ◦ x) = (g · g′) ◦ x, for all g, g′ ∈ G, x ∈ X where · denotes the

internal operation in the group G;
� e ◦ x = x, for all x ∈ X and e = identity element in G.

Example 1.1.2 Let G denote the additive group of integers Z. Then it is easy
to verify that the group Z acts continuously on the real numbers R with group
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action ◦ defined by

n ◦ x := n + x,

for all n ∈ Z, x ∈ R. In this case e = 0.

Example 1.1.3 Let G = GL(2,R)+ denote the group of 2 × 2 matrices(
a b
c d

)
with a, b, c, d ∈ R and determinant ad − bc > 0. Let

h := {x + iy
∣∣ x ∈ R, y > 0

}
denote the upper half-plane. For g =

(
a b
c d

)
∈ GL(2,R)+ and z ∈ h define:

g ◦ z := az + b

cz + d
.

Since

az + b

cz + d
= ac|z|2 + (ad + bc)x + bd

|cz + d|2 + i · (ad − bc) · y

|cz + d|2

it immediately follows that g ◦ z ∈ h. We leave as an exercise to the reader, the
verification that ◦ satisfies the additional axioms of a continuous action. One
usually extends this action to the larger space h∗ = h ∪ {∞}, by defining

(
a b
c d

)
◦∞ =

{
a/c if c �= 0,

∞ if c = 0.

Assume that a group G acts continously on a topological space X . Two
elements x1, x2 ∈ X are said to be equivalent (mod G) if there exists g ∈ G
such that x2 = g ◦ x1. We define

Gx := {g ◦ x
∣∣ g ∈ G

}
to be the equivalence class or orbit of x , and let G\X denote the set of equiva-
lence classes.

Definition 1.1.4 Let a group G act continuously on a topological space X.
We say a subset � ⊂ G is discrete if for any two compact subsets A, B ⊂ X,
there are only finitely many g ∈ � such that (g ◦ A) ∩ B �= φ, where φ denotes
the empty set.
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Example 1.1.5 The discrete subgroup SL(2,Z). Let

� = SL(2,Z) :=
{(

a b
c d

) ∣∣∣∣ a, b, c, d ∈ Z, ad − bc = 1

}
,

and let

�∞ :=
{(

1 m
0 1

) ∣∣∣∣ m ∈ Z

}
be the subgroup of � which fixes ∞. Note that �∞\� is just a set of coset

representatives of the form

(
a b
c d

)
where for each pair of relatively prime

integers (c, d) = 1 we choose a unique a, b satisfying ad − bc = 1. This fol-
lows immediately from the identity(

1 m
0 1

)
·
(

a b
c d

)
=
(

a + mc b + md
c d

)
.

The fact that SL(2,Z) is discrete will be deduced from the following lemma.

Lemma 1.1.6 Fix real numbers 0 < r, 0 < δ < 1. Let Rr,δ denote the
rectangle

Rr,δ =
{

x + iy
∣∣ − r ≤ x ≤ r, 0 < δ ≤ y ≤ δ−1

}
.

Then for every ε > 0, and any fixed set S of coset representatives for
�∞\SL(2,Z), there are at most 4 + (4(r + 1)/εδ) elements g ∈ S such that
Im(g ◦ z) > ε holds for some z ∈ Rr,δ.

Proof Let g =
(

a b
c d

)
. Then for z ∈ Rr,δ ,

Im(g ◦ z) = y

c2 y2 + (cx + d)2
< ε

if |c| > (yε)−
1
2 . On the other hand, for |c| ≤ (yε)−

1
2 ≤ (δε)−

1
2 , we have

y

(cx + d)2
< ε

if the following inequalities hold:

|d| > |c|r + (yε−1)
1
2 ≥ |c|r + (εδ)−

1
2 .

Consequently, Im(g ◦ z) > ε only if

|c| ≤ (δε)−
1
2 and |d| ≤ (εδ)−

1
2 (r + 1),

and the total number of such pairs (not counting (c, d) = (0,±1), (±1, 0)) is at
most 4(εδ)−1(r + 1). �



6 Discrete group actions

It follows from Lemma 1.1.6 that � = SL(2,Z) is a discrete subgroup of
SL(2,R). This is because:

(1) it is enough to show that for any compact subset A ⊂ h there are only
finitely many g ∈ SL(2,Z) such that (g ◦ A) ∩ A �= φ;

(2) every compact subset of A ⊂ h is contained in a rectangle Rr,δ for some
r > 0 and 0 < δ < δ−1;

(3) ((αg) ◦ Rr,δ) ∩ Rr,δ = φ, except for finitely many α ∈ �∞, g ∈ �∞\�.

To prove (3), note that Lemma 1.1.6 implies that (g ◦ Rr,δ) ∩ Rr,δ = φ except
for finitely many g ∈ �∞\�. Let S ⊂ �∞\� denote this finite set of such ele-
ments g. If g �∈ S, then Lemma 1.1.6 tells us that it is because Im(gz) < δ for all
z ∈ Rr,δ.Since Im(αgz) = Im(gz) forα ∈ �∞, it is enough to show that for each
g ∈ S, there are only finitely many α ∈ �∞ such that ((αg) ◦ Rr,δ) ∩ Rr,δ �= φ.

This last statement follows from the fact that g ◦ Rr,δ itself lies in some other

rectangle Rr ′,δ′ , and every α ∈ �∞ is of the form α =
(

1 m
0 1

)
(m ∈ Z), so

that

α ◦ Rr ′,δ′ =
{

x + iy
∣∣ − r ′ + m ≤ x ≤ r ′ + m, 0 < δ′ ≤ δ′−1}

,

which implies (α ◦ Rr ′,δ′ ) ∩ Rr,δ = φ for |m| sufficiently large.

Definition 1.1.7 Suppose the group G acts continuously on a connected topo-
logical space X. A fundamental domain for G\X is a connected region D ⊂ X
such that every x ∈ X is equivalent (mod G) to a point in D and such that no
two points in D are equivalent to each other.

Example 1.1.8 A fundamental domain for the action of Z on R of
Example 1.1.2 is given by

Z\R = {0 ≤ x < 1 | x ∈ R}.

The proof of this is left as an easy exercise for the reader.

Example 1.1.9 A fundamental domain for SL(2,Z)\h can be given as the
region D ⊂ h where

D =
{

z

∣∣∣∣ −1

2
≤ Re(z) ≤ 1

2
, |z| ≥ 1

}
,

with congruent boundary points symmetric with respect to the imaginary axis.
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-1 -1/2 0 1/2 1

i

Note that the vertical line V ′ := {− 1
2 + iy

∣∣ y ≥
√

3
2

}
is equivalent to the

vertical line V := { 1
2 + iy

∣∣ y ≥
√

3
2

}
under the transformation z → z + 1.

Furthermore, the arc A′ := {z ∣∣ − 1
2 ≤ Re(z) < 0, |z| = 1

}
is equivalent to

the reflected arc A := {z ∣∣ 0 < Re(z) ≤ 1
2 , |z| = 1

}
, under the transformation

z → −1/z. To show that D is a fundamental domain, we must prove:

(1) For any z ∈ h, there exists g ∈ SL(2,Z) such that g ◦ z ∈ D;
(2) If two distinct points z, z′ ∈ D are congruent (mod SL(2,Z)) then

Re(z) = ± 1
2 and z′ = z ± 1, or |z| = 1 and z′ = −1/z.

We first prove (1). Fix z ∈ h. It follows from Lemma 1.1.6 that for every
ε > 0, there are at most finitely many g ∈ SL(2,Z) such that g ◦ z lies in the
strip

Dε :=
{
w

∣∣∣∣ −1

2
≤ Re(w) ≤ 1

2
, ε ≤ Im(w)

}
.

Let Bε denote the finite set of such g ∈ SL(2,Z). Clearly, for sufficiently small
ε, the set Bε contains at least one element. We will show that there is at least
one g ∈ Bε such that g ◦ z ∈ D. Among these finitely many g ∈ Bε , choose one

such that Im(g ◦ z) is maximal in Dε . If |g ◦ z| < 1, then for S =
(

0 −1
1 0

)
,
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T =
(

1 1
0 1

)
, and any m ∈ Z,

Im(T m Sg ◦ z) = Im

( −1

g ◦ z

)
= Im(g ◦ z)

|g ◦ z|2 > Im(g ◦ z).

This is a contradiction because we can always choose m so that T m Sg ◦ z ∈ Dε .

So in fact, g ◦ z must be in D.

To complete the verification that D is a fundamental domain, it only remains

to prove the assertion (2). Let z ∈ D, g =
(

a b
c d

)
∈ SL(2,Z), and assume

that g ◦ z ∈ D. Without loss of generality, we may assume that

Im(g ◦ z) = y

|cz + d|2 ≥ Im(z),

(otherwise just interchange z and g ◦ z and use g−1). This implies that
|cz + d| ≤ 1 which implies that 1 ≥ |cy| ≥

√
3

2 |c|. This is clearly impossi-
ble if |c| ≥ 2. So we only have to consider the cases c = 0,±1. If c = 0
then d = ±1 and g is a translation by b. Since − 1

2 ≤ Re(z),Re(g ◦ z) ≤ 1
2 ,

this implies that either b = 0 and z = g ◦ z or else b = ±1 and Re(z) = ± 1
2

while Re(g ◦ z) = ∓ 1
2 . If c = 1, then |z + d| ≤ 1 implies that d = 0 unless

z = e2π i/3 and d = 0, 1 or z = eπ i/3 and d = 0,−1. The case d = 0 implies
that |z| ≤ 1 which implies |z| = 1. Also, in this case, c = 1, d = 0, we
must have b = −1 because ad − bc = 1. Then g ◦ z = a − 1

z . It follows that
a = 0. If z = e2π i/3 and d = 1, then we must have a − b = 1. It follows that
g ◦ e2π i/3 = a − 1

1+e2π i/3 = a + e2π i/3, which implies that a = 0 or 1. A similar
argument holds when z = eπ i/3 and d = −1. Finally, the case c = −1 can be
reduced to the previous case c = 1 by reversing the signs of a, b, c, d.

1.2 Iwasawa decomposition

This monograph focusses on the general linear group GL(n,R) with n ≥ 2.
This is the multiplicative group of all n × n matrices with coefficients in R

and non-zero determinant. We will show that every matrix in GL(n,R) can be
written as an upper triangular matrix times an orthogonal matrix. This is called
the Iwasawa decomposition (Iwasawa, 1949).

The Iwasawa decomposition, in the special case of GL(2,R), states that
every g ∈ GL(2,R) can be written in the form:

g =
(

y x
0 1

)(
α β

γ δ

)(
d 0
0 d

)
(1.2.1)
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where y > 0, x, d ∈ R with d �= 0 and(
α β

γ δ

)
∈ O(2,R),

where

O(n,R) = {g ∈ GL(n,R)
∣∣ g · tg = I

}
is the orthogonal group. Here I denotes the identity matrix on GL(n,R) and tg

denotes the transpose of the matrix g. The matrix

(
y x
0 1

)
in the decomposition

(1.2.1) is actually uniquely determined. Furthermore, the matrices

(
α β

γ δ

)

and

(
d 0
0 d

)
are uniquely determined up to multiplication by

(±1 0
0 ±1

)
.

Note that explicitly,

O(2,R) =
{(± cos t − sin t

± sin t cos t

) ∣∣∣∣ 0 ≤ t ≤ 2π

}
.

We shall shortly give a detailed proof of (1.2.1) for GL(n,R) with n ≥ 2.
The decomposition (1.2.1) allows us to realize the upper half-plane

h = {x + iy
∣∣ x ∈ R, y > 0

}
as the set of two by two matrices of type{(

y x
0 1

) ∣∣∣∣ x ∈ R, y > 0

}
,

or by the isomorphism

h ≡ GL(2,R)
/〈

O(2,R), Z2
〉
, (1.2.2)

where

Zn =

⎧⎪⎨
⎪⎩
⎛
⎜⎝

d 0
. . .

0 d

⎞
⎟⎠
∣∣∣∣∣∣∣ d ∈ R, d �= 0

⎫⎪⎬
⎪⎭

is the center of GL(n,R), and 〈O(2,R), Z2〉 denotes the group generated by
O(2,R) and Z2.

The isomorphism (1.2.2) is the starting point for generalizing the classical
theory of modular forms on GL(2,R) to GL(n,R) with n > 2. Accordingly,
we define the generalized upper half-plane hn associated to GL(n,R).
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Definition 1.2.3 Let n ≥ 2. The generalized upper half-plane hn associated
to GL(n,R) is defined to be the set of all n × n matrices of the form z = x · y
where

x =

⎛
⎜⎜⎜⎜⎜⎝

1 x1,2 x1,3 · · · x1,n

1 x2,3 · · · x2,n

. . .
...

1 xn−1,n

1

⎞
⎟⎟⎟⎟⎟⎠ , y =

⎛
⎜⎜⎜⎜⎜⎝

y′n−1

y′n−2
. . .

y′1
1

⎞
⎟⎟⎟⎟⎟⎠ ,

with xi, j ∈ R for 1 ≤ i < j ≤ n and y′i > 0 for 1 ≤ i ≤ n − 1.
To simplify later formulae and notation in this book, we will always express

y in the form:

y =

⎛
⎜⎜⎜⎜⎜⎝

y1 y2 · · · yn−1

y1 y2 · · · yn−2

. . .

y1

1

⎞
⎟⎟⎟⎟⎟⎠ ,

with yi > 0 for 1 ≤ i ≤ n − 1. Note that this can always be done since y′i �= 0
for 1 ≤ i ≤ n − 1.

Explicitly, x is an upper triangular matrix with 1s on the diagonal and y
is a diagonal matrix beginning with a 1 in the lowest right entry. Note that x
is parameterized by n · (n − 1)/2 real variables xi, j and y is parameterized by
n − 1 positive real variables yi .

Example 1.2.4 The generalized upper half plane h3 is the set of all matrices
z = x · y with

x =
⎛
⎝ 1 x1,2 x1,3

0 1 x2,3

0 0 1

⎞
⎠ , y =

⎛
⎝ y1 y2 0 0

0 y1 0
0 0 1

⎞
⎠ ,

where x1,2, x1,3, x2,3 ∈ R, y1, y2 > 0. Explicitly, every z ∈ h3 can be written
in the form

z =
⎛
⎝ y1 y2 x1,2 y1 x1,3

0 y1 x2,3

0 0 1

⎞
⎠ .

Remark 1.2.5 The generalized upper half-plane h3 does not have a com-
plex structure. Thus h3 is quite different from h2, which does have a complex
structure.
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Proposition 1.2.6 Fix n ≥ 2. Then we have the Iwasawa decomposition:

GL(n,R) = hn · O(n,R) · Zn,

i.e., every g ∈ GL(n,R) may be expressed in the form

g = z · k · d, (· denotes matrix multiplication)

where z ∈ hn is uniquely determined, k ∈ O(n,R), and d ∈ Zn is a non-zero
diagonal matrix which lies in the center of GL(n,R). Further, k and d are also
uniquely determined up to multiplication by ±I where I is the identity matrix
on GL(n,R).

Remark Note that for every n = 1, 2, 3, . . . , we have Zn
∼= R×. We shall,

henceforth, write

hn ∼= GL(n,R)/(O(n,R) · R×).

Proof Let g ∈ GL(n,R). Then g · tg is a positive definite non–singular
matrix. We claim there exists u,  ∈ GL(n,R), where u is upper triangular with
1s on the diagonal and  is lower triangular with 1s on the diagonal, such that

u · g · tg =  · d (1.2.7)

with

d =

⎛
⎜⎝

d1

. . .

dn

⎞
⎟⎠ , d1, . . . , dn > 0.

For example, consider n = 2, and g =
(

a b
c d

)
. Then

g · tg =
(

a b
c d

)
·
(

a c
b d

)
=
(

a2 + b2 ac + bd
ac + bd c2 + d2

)
.

If we set u =
(

1 t
0 1

)
, then u satisfies (1.2.7) if

(
1 t
0 1

)
·
(

a2 + b2 ac + bd
ac + bd c2 + d2

)
=
(∗ 0
∗ ∗

)
,

so that we may take t = (−ac − bd)/(c2 + d2). More generally, the upper
triangular matrix u will have n(n − 1)/2 free variables, and we will have to
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solve n(n − 1)/2 equations to satisfy (1.2.7). This system of linear equations
has a unique solution because its matrix g · tg is non–singular.

It immediately follows from (1.2.7) that u−1d = g · tg = d · t(t u)−1, or
equivalently

 · d · t u︸ ︷︷ ︸
lower �

= u · d · t︸ ︷︷ ︸
upper �

= d.

The above follows from the fact that a lower triangular matrix can only equal an
upper triangular matrix if it is diagonal, and that this diagonal matrix must be
d by comparing diagonal entries. The entries di > 0 because g · tg is positive
definite.

Consequently d = d(t u)−1. Substituting this into (1.2.7) gives

u · g · tg · t u = d = a−1 · (t a)−1

for

a =

⎛
⎜⎜⎝

d
− 1

2
1

. . .

d
− 1

2
n

⎞
⎟⎟⎠ .

Hence aug · (tg · t u · t a) = I so that aug ∈ O(n,R). Thus, we have expressed
g in the form

g = (au)−1 · (aug),

from which the Iwasawa decomposition immediately follows after dividing and

multiplying by the scalar d
− 1

2
n to arrange the bottom right entry of (au)−1 to

be 1.
It only remains to show the uniqueness of the Iwasawa decomposition.

Suppose that zkd = z′k ′d ′ with z, z′ ∈ hn, k, k ′ ∈ O(n,R), d, d ′ ∈ Zn. Then,
since the only matrices in hn and O(n,R) which lie in Zn are ±I where I is the
identity matrix, it follows that d ′ = ±d.Further, the only matrix inhn ∩ O(n,R)
is I . Consequently z = z′ and k = ±k ′. �

We shall now work out some important instances of the Iwasawa decompo-
sition which will be useful later.
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Proposition 1.2.8 Let I denote the identity matrix on GL(n,R), and for every
1 ≤ j < i ≤ n, let Ei, j denote the matrix with a 1 at the {i, j}th position and
zeros elsewhere. Then, for an arbitrary real number t, we have

I + t Ei, j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1

(t2 + 1)
1
2
· · · t

(t2 + 1)
1
2

. . .
...

(t2 + 1)
1
2

. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
mod (O(n,R) · R×)

)
,

where, in the above matrix, 1

(t2 + 1)
1
2

occurs at position { j, j}, (t2 + 1)
1
2 occurs

at position {i, i}, all other diagonal entries are ones, t

(t2 + 1)
1
2

occurs at position

{ j, i}, and, otherwise, all other entries are zero.

Proof Let g = I + t Ei, j . Then

g · tg = (I + t Ei, j ) · (I + t E j,i ) = I + t Ei, j + t E j,i + t2 Ei,i .

If we define a matrix u = I − (t/(t2 + 1))E j,i , then u · g · tg · t u must be a
diagonal matrix d . Setting d = a−1 · (t a)−1, we may directly compute:

u · g · tg · t u = I + t2 Ei,i − t2

t2 + 1
E j, j ,

u−1 = I + t

t2 + 1
E j,i ,

a−1 = I +
(

1√
t2 + 1

− 1

)
E j, j +

(√
t2 + 1 − 1

)
Ei,i .

Therefore,

u−1a−1 = I +
(

1√
t2 + 1

− 1

)
E j, j +

(√
t2 + 1 − 1

)
Ei,i + t√

t2 + 1
E j,i .

As in the proof of Proposition 1.2.6, we have g = u−1 · a−1

(mod (O(n,R),R×)). �
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Proposition 1.2.9 Let n ≥ 2, and let z = xy ∈ hn have the form given in
Definition 1.2.3. For i = 1, 2, . . . , n − 1, define

ωi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

0 1
1 0

. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

to be the n × n identity matrix except for the i th and (i + 1)th rows where we

have

(
0 1
1 0

)
on the diagonal. Then

ωi z ≡

⎛
⎜⎜⎜⎜⎜⎝

1 x ′
1,2 x ′

1,3 · · · x ′
1,n

1 x ′
2,3 · · · x ′

2,n
. . .

...
1 x ′

n−1,n

1

⎞
⎟⎟⎟⎟⎟⎠·

⎛
⎜⎜⎜⎜⎜⎝

y′1 y′2 · · · y′n−1

y′1 y′2 · · · y′n−2
. . .

y′1
1

⎞
⎟⎟⎟⎟⎟⎠

(
mod (O(n,R) · R×)

)
, where y′k = yk except for k = n − i + 1, n − i, n − i − 1,

in which case

y′n−i =
yn−i

x2
i,i+1 + y2

n−i

, y′n−i±1 = yn−i±1 ·
√

x2
i,i+1 + y2

n−i ,

and xk, = x ′
k, except for  = i, i + 1, in which case

x ′
i− j,i = xi− j,i+1 − xi− j,i xi,i+1, x ′

i− j,i+1 = xi− j,i y2
n−i + xi− j,i+1xi,i+1

x2
i,i+1 + y2

n−i

,

for j = 1, 2, . . . , i − 2.

Proof Brute force computation which is omitted. �

Proposition 1.2.10 The group GL(n,Z) acts on hn.

Proof Recall the definition of a group acting on a topological space given in
Definition 1.1.1. The fact that GL(n,Z) acts on GL(n,R) follows immediately
from the fact that GL(n,Z) acts on the left on GL(n,R) by matrix multiplication
and that we have the realization hn = GL(n,R)/(O(n,R) · R×), as a set of
cosets, by the Iwasawa decomposition given in Proposition 1.2.6. �
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1.3 Siegel sets

We would like to show that �n = GL(n,Z) acts discretely on the generalized
upper half-plane hn defined in Definition 1.2.3. This was already proved for
n = 2 in Lemma 1.1.6, but the generalization to n > 2 requires more subtle
arguments. In order to find an approximation to a fundamental domain for
GL(n,Z)\hn , we shall introduce for every t, u ≥ 0 the Siegel set �t,u .

Definition 1.3.1 Let a, b ≥ 0 be fixed. We define the Siegel set �a,b ⊂ hn to
be the set of all⎛
⎜⎜⎜⎜⎜⎝

1 x1,2 x1,3 · · · x1,n

1 x2,3 · · · x2,n

. . .
...

1 xn−1,n

1

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

y1 y2 · · · yn−1

y1 y2 · · · yn−2

. . .

y1

1

⎞
⎟⎟⎟⎟⎟⎠

with |xi, j | ≤ b for 1 ≤ i < j ≤ n, and yi > a for 1 ≤ i ≤ n − 1.

Let �n = GL(n,Z) and �n
∞ ⊂ �n denote the subgroup of upper triangular

matrices with 1s on the diagonal. We have shown in Proposition 1.2.10 that �n

acts on hn . For g ∈ �n and z ∈ hn , we shall denote this action by g ◦ z. The
following proposition proves that the action is discrete and that �√

3
2 , 1

2
is a good

approximation to a fundamental domain.

Proposition 1.3.2 Fix an integer n ≥ 2. For any z ∈ hn there are only finitely
many g ∈ �n such that g ◦ z ∈ �√

3
2 , 1

2
. Furthermore,

GL(n,R) =
⋃

g∈�n

g ◦�√
3

2 , 1
2
. (1.3.3)

Remarks The bound
√

3
2 is implicit in the work of Hermite, and a proof can

be found in (Korkine and Zolotareff, 1873). The first part of Proposition 1.3.2
is a well known theorem due to Siegel (1939). For the proof, we follow the
exposition of Borel and Harish-Chandra (1962).

Proof of Proposition 1.3.2 In order to prove (1.3.3), it is enough to show that

SL(n,R) =
⋃

g∈SL(n,Z)

g ◦�∗√
3

2 , 1
2

, (1.3.4)

where �∗
t,u denotes the subset of matrices �t,u · Zn which have determinant 1

and ◦ denotes the action of SL(n,Z) on �∗
0,∞. Note that every element in �∗

a,b
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is of the form⎛
⎜⎜⎜⎜⎜⎝

1 x1,2 x1,3 · · · x1,n

1 x2,3 · · · x2,n

. . .
...

1 xn−1,n

1

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

dy1 y2 · · · yn−1

dy1 y2 · · · yn−2

. . .

dy1

d

⎞
⎟⎟⎟⎟⎟⎠

(1.3.5)

where the determinant

Det

⎛
⎜⎜⎜⎜⎜⎝

dy1 y2 · · · yn−1

dy1 y2 · · · yn−2

. . .

dy1

d

⎞
⎟⎟⎟⎟⎟⎠ = 1,

so that

d =
(

n−1∏
i=1

yn−i
i

)−1/n

.

In view of the Iwasawa decomposition of Proposition 1.2.6, we may identify
�∗

0,∞ as the set of coset representatives SL(n,R)/SO(n,R), where SO(n,R)
denotes the subgroup O(n,R) ∩ SL(n,R). �

In order to prove (1.3.4), we first introduce some basic notation. Let

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1),

denote the canonical basis for Rn . For 1 ≤ i ≤ n and any matrix g ∈
GL(n,R), let ei · g denote the usual multiplication of a 1 × n matrix with
an n × n matrix. For an arbitrary v = (v1, v2, . . . , vn) ∈ Rn , define the norm:

||v|| :=
√
v2

1 + v2
2 + · · · + v2

n . We now introduce a function

φ : SL(n,R) → R>0

from SL(n,R) to the positive real numbers. For all g = (gi, j )1≤i, j≤n in SL(n,R)
we define

φ(g) := ||en · g|| =
√

g2
n,1 + g2

n,2 + · · · + g2
n,n.

Claim The function φ is well defined on the quotient space
SL(n,R)/SO(n,R).
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To verify the claim, note that for k ∈ SO(n,R), and v ∈ Rn , we have

||v · k|| =
√

(v · k) · t (v · k) =
√
v · k · t k · tv =

√
v · tv = ||v||.

This immediately implies that φ(gk) = φ(g), i.e., the claim is true.
Note that if z ∈ �∗

0,∞ is of the form (1.3.5), then

φ(z) = d =
(

n−1∏
i=1

y(n−i)
i

)−1/n

. (1.3.6)

Now, if z ∈ �∗
0,∞ is fixed, then

en · SL(n,Z) · z ⊂ (Ze1 + · · · + Zen − {(0, 0, . . . , 0)}) · z, (1.3.7)

where · denotes matrix multiplication. The right-hand side of (1.3.7) consists
of non–zero points of a lattice in Rn . This implies that φ achieves a positive
minimum on the coset SL(n,Z) · z. The key to the proof of Proposition 1.3.2
will be the following lemma from which Proposition 1.3.2 follows immediately.

Lemma 1.3.8 Let z ∈ �∗
0,∞. Then the minimum of φ on SL(n,Z) ◦ z is

achieved at a point of �∗√
3

2 , 1
2

.

Proof It is enough to prove that the minimum of φ is achieved at a point of
�∗√

3
2 ,∞ because we can always translate by an upper triangular matrix

u =

⎛
⎜⎜⎜⎜⎜⎝

1 u1,2 u1,3 · · · u1,n

1 u2,3 · · · u2,n

. . .
...

1 un−1,n

1

⎞
⎟⎟⎟⎟⎟⎠ ∈ SL(n,Z)

to arrange that the minimum of φ lies in �∗√
3

2 , 1
2

. This does not change the

value of φ because of the identity φ(u · z) = ||en · u · z|| = ||en · z||. We shall
use induction on n. We have already proved a stronger statement for n = 2
in Example 1.1.9. Fix γ ∈ SL(n,Z) such that φ(γ ◦ z) is minimized. We set
γ ◦ z = x · y with

x =

⎛
⎜⎜⎜⎜⎜⎝

1 x1,2 x1,3 · · · x1,n

1 x2,3 · · · x2,n

. . .
...

1 xn−1,n

1

⎞
⎟⎟⎟⎟⎟⎠ , y=

⎛
⎜⎜⎜⎜⎜⎝

dy1 y2 · · · yn−1

dy1 y2 · · · yn−2

. . .

dy1

d

⎞
⎟⎟⎟⎟⎟⎠,
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with d = (
∏n−1

i=1 yn−i
i )−1/n as before. We must show yi ≥

√
3

2 for i = 1, 2, . . . ,
n − 1. The proof proceeds in 3 steps.

Step 1 y1 ≥
√

3
2 .

This follows from the action of α :=
⎛
⎝ In−2

0 −1
1 0

⎞
⎠ on γ ◦ z. Here In−2

denotes the identity (n − 2) × (n − 2)–matrix. First of all

φ(α ◦ γ ◦ z) = ||en · α ◦ γ ◦ z|| = ||en−1 · x · y|| = ||(en−1 + xn−1,nen) · y||
= d

√
y2

1 + x2
n−1,n.

Since |xn−1,n| ≤ 1
2 we see that φ(αγ z)2 ≤ d2(y2

1 + 1
4 ). On the other hand, the

assumption of minimality forcesφ(γ z)2 = d2 ≤ d2
(
y2

1 + 1
4

)
.This implies that

y1 ≥
√

3
2 .

Step 2 Let g′ ∈ SL(n − 1,Z), g =
(

g′ 1
0 1

)
. Then φ(gγ z) = φ(γ z).

This follows immediately from the fact that en · g = en.

Step 3 yi ≥
√

3
2 for i = 2, 3, . . . , n − 1.

Let us write γ ◦ z =
(

z′ · d ′ ∗
d

)
with z′ ∈ SL(n − 1,R) and d ′ ∈ Zn−1

a suitable diagonal matrix. By induction, there exists g′ ∈ SL(n − 1,Z) such
that g′ ◦ z′ = x ′ · y′ ∈ �∗√

3
2 , 1

2

⊂ hn−1, the Siegel set for GL(n − 1,R). This is

equivalent to the fact that

y′ =

⎛
⎜⎜⎜⎝

an−1

an−2

. . .

a1

⎞
⎟⎟⎟⎠

and

a j+1

a j
≥

√
3

2
for j = 1, 2, . . . , n − 2. (1.3.9)

Define g :=
(

g′ 0
0 1

)
∈ SL(n,Z). Then

g ◦ γ ◦ z =
(

g′ 0
0 1

)
◦
(

z′ · d ′ ∗
d

)
=
(

g′ ◦ z′ · d ′ ∗
0 d

)
= x ′′ · y′′,
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where y′′ =
(

y′d ′ 0
0 d

)
, x ′′ =

(
x ′ ∗
0 1

)
. The inequalities (1.3.9) applied to

y′′ =
(

y′d ′ 0
0 d

)
=

⎛
⎜⎜⎜⎝

y1 y2 · · · yn−1d
. . .

y1d
d

⎞
⎟⎟⎟⎠ ,

imply that yi ≥
√

3
2 for i = 2, 3, . . . , n − 1. Step 2 insures that multiplying by

g on the left does not change the value of φ(γ z). Step 1 gives y1 ≥
√

3
2 . �

1.4 Haar measure

Let n ≥ 2. The discrete subgroup SL(n,Z) acts on SL(n,R) by left multipli-
cation. The quotient space SL(n,Z)\SL(n,R) turns out to be of fundamental
importance in number theory. Now, we turn our attention to a theory of inte-
gration on this quotient space.

We briefly review the theory of Haar measure and integration on locally
compact Hausdorff topological groups. Good references for this material are
(Halmos, 1974), (Lang, 1969), (Hewitt and Ross, 1979). Excellent introductary
books on matrix groups and elementary Lie theory are (Curtis, 1984), (Baker,
2002), (Lang, 2002).

Recall that a topological group G is a topological space G where G is also
a group and the map

(g, h) → g · h−1

of G × G onto G is continuous in both variables. Here · again denotes the
internal group operation and h−1 denotes the inverse of the element h. The
assumption that G is locally compact means that every point has a compact
neighborhood. Recall that G is termed Hausdorff provided every pair of distinct
elements in G lie in disjoint open sets.

Example 1.4.1 The general linear group GL(n,R) is a locally compact
Hausdorff topological group.

Let gl(n,R) denote the Lie algebra of GL(n,R). Viewed as a set, gl(n,R)
is just the set of all n × n matrices with coefficients in R. We assign a topology
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to gl(n,R) by identifying every matrix

g =

⎛
⎜⎜⎜⎝

g1,1 g1,2 · · · g1,n

g2,1 g2,2 · · · g2,n
... · · · ...

gn,1 gn,2 · · · gn,n

⎞
⎟⎟⎟⎠

with a point

(g1,1, g1,2, . . . , g1,n, g2,1, g2,2, . . . , g2,n, . . . , gn,n) ∈ Rn2
.

This identification is a one–to–one correspondence. One checks that gl(n,R) is
a locally compact Hausdorff topological space under the usual Euclidean topol-
ogy on Rn2

.The determinant function Det : gl(n,R) → R is clearly continuous.
It follows that

GL(n,R) = gl(n,R) − Det−1(0)

must be an open set since {0} is closed. Also, the operations of addition and
multiplication of matrices in gl(n,R) are continuous maps from

gl(n,R) × gl(n,R) → gl(n,R).

The inverse map

Inv : GL(n,R) → GL(n,R),

given by Inv(g) = g−1 for all g ∈ GL(n,R), is also continuous since each entry
of g−1 is a polynomial in the entries of g divided by Det(g). Thus, GL(n,R)
is a topological subspace of gl(n,R) and we may view GL(n,R) × GL(n,R)
as the product space. Since the multiplication and inversion maps: GL(n,R) ×
GL(n,R) → GL(n,R) are continuous, it follows that GL(n,R) is a topological
group.

By a left Haar measure on a locally compact Hausdorff topological group
G, we mean a positive Borel measure (Halmos, 1974)

µ : {measurable subsets of G} → R+,

which is left invariant under the action of G on G via left multiplication. This
means that for every measurable set E ⊂ G and every g ∈ G, we have

µ(gE) = µ(E).

In a similar manner, one may define a right Haar measure. If every left invariant
Haar measure on G is also a right invariant Haar measure, then we say that G
is unimodular.
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Given a left invariant Haar measure µ on G, one may define (in the usual
manner) a differential one-form dµ(g), and for compactly supported functions
f : G → C an integral ∫

G
f (g) dµ(g),

which is characterized by the fact that∫
E

dµ(g) = µ(E)

for every measurable set E . We shall also refer to dµ(g) as a Haar measure.
The fundamental theorem in the subject is due to Haar.

Theorem 1.4.2 (Haar) Let G be a locally compact Hausdorff topological
group. Then there exists a left Haar measure on G. Further, any two such Haar
measures must be positive real multiples of each other.

We shall not need this general existence theorem, because in the situations
we are interested in, we can explicitly construct the Haar measure and Haar
integral. For unimodular groups, the uniqueness of Haar measure follows easily
from Fubini’s theorem. The proof goes as follows. Assume we have two Haar
measures µ, ν on G, which are both left and right invariant. Let h : G → C be
a compactly supported function satisfying∫

G
h(g) dµ(g) = 1.

Then for an arbitrary compactly supported function f : G → C,∫
G

f (g)dν(g) =
∫

G
h(g′)dµ(g′)

∫
G

f (g)dν(g)

=
∫

G

∫
G

h(g′) f (g)dν(g)dµ(g′)

=
∫

G

∫
G

h(g′) f (g · g′) dν(g) dµ(g′)

=
∫

G

∫
G

h(g′) f (g · g′) dµ(g′) dν(g)

=
∫

G

∫
G

h(g−1 · g′) f (g′) dµ(g′) dν(g)

=
∫

G

∫
G

h(g−1 · g′) f (g′) dν(g) dµ(g′)

= c ·
∫

G
f (g′) dµ(g′)

where c = ∫G h(g−1)dν(g).
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Proposition 1.4.3 For n = 1, 2, . . . , let

g =

⎛
⎜⎜⎜⎝

g1,1 g1,2 · · · g1,n

g2,1 g2,2 · · · g2,n
... · · · ...

gn,1 gn,2 · · · gn,n

⎞
⎟⎟⎟⎠ ∈ GL(n,R),

where g1,1, g1,2, . . . , g1,n, g2,1, . . . , gn,n are n2 real variables. Define

dµ(g) :=

∏
1≤i, j≤n

dgi, j

Det(g)n
, (wedge product of differential one-forms)

where dgi, j denotes the usual differential one–form on R and Det(g) denotes
the determinant of the matrix g. Then dµ(g) is the unique left–right invariant
Haar measure on GL(n,R).

Proof Every matrix in GL(n,R) may be expressed as a product of a diagonal
matrix in Zn and matrices of the form x̃r,s (with 1 ≤ r, s ≤ n) where x̃r,s denotes
the matrix with the real number xr,s at position r, s, and, otherwise, has 1s on
the diagonal and zeros off the diagonal. It is easy to see that

dµ(g) = dµ(ag)

for a ∈ Zn . To complete the proof, it is, therefore, enough to check that

dµ(x̃r,s · g) = dµ(g · x̃r,s) = dµ(g),

for all 1 ≤ r, s ≤ n. We check the left invariance and leave the right invariance
to the reader.

It follows from the definition that in the case r �= s,

dµ(x̃r,s · g) =

⎛
⎜⎝ ∏

1≤i, j≤n
i �=r

dgi, j

⎞
⎟⎠
( ∏

1≤ j≤n
d(gr, j + gs, j xr,s)

)

Det(x̃r,s · g)n
.

First of all,

Det(x̃r,s · g) = Det(x̃r,s) · Det(g) = Det(g)

because Det(x̃r,s) = 1.
Second, for any 1 ≤ j ≤ n,⎛

⎜⎝ ∏
1≤i, j≤n

i �=r

dgi, j

⎞
⎟⎠ ∧ dgs, j = 0
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because gs, j also occurs in the product

⎛
⎜⎝ ∏

1≤i< j≤n
i �=r

dgi, j

⎞
⎟⎠ and dgs, j ∧ dgs, j = 0.

Consequently, the measure is invariant under left multiplication by x̃r,s . �

On the other hand, if r = s, then

dµ(x̃r,s · g) =

⎛
⎜⎝ ∏

1≤i, j≤n
i �=r

dgi, j

⎞
⎟⎠
( ∏

1≤ j≤n
(xr,s · dgr, j )

)

Det(x̃r,s · g)n

= dµ(g) · xn
r,s

Det(x̃r,s)n

= dµ(g).

1.5 Invariant measure on coset spaces

This monograph focusses on the coset space

GL(n,R)/(O(n,R) · R×).

We need to establish explicit invariant measures on this space. The basic prin-
ciple which allows us to define invariant measures on coset spaces, in general,
is given in the following theorem.

Theorem 1.5.1 Let G be a locally compact Hausdorff topological group, and
let H be a compact closed subgroup of G. Letµ be a Haar measure on G, and let
ν be a Haar measure on H, normalized so that

∫
H dν(h) = 1. Then there exists

a unique (up to scalar multiple) quotient measure µ̃ on G/H. Furthermore∫
G

f (g) dµ(g) =
∫

G/H

(∫
H

f (gh) dν(h)

)
dµ̃(gH ),

for all integrable functions f : G → C.

Proof For a proof see (Halmos, 1974). We indicate, however, why the formula
in Theorem 1.5.1 holds. First of all note that if f : G → C, is an integrable
function on G, and if we define a new function, f H : G → C, by the recipe

f H (g) :=
∫

H
f (gh) dν(h),

then f H (gh) = f H (g) for all h ∈ H. Thus, f H is well defined on the coset
space G/H. We write f H (g) = f H (gH ), to stress that f H is a function on
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the coset space. For any measurable subset E ⊂ G/H , we may easily choose
a measurable function δE : G → C so that

δE (g) = δH
E (gH ) =

{
1 if gH ∈ E,

0 if gH �∈ E .

We may then define an H–invariant quotient measure µ̃ satisfying:

µ̃(E) =
∫

G
δE (g) dµ(g) =

∫
G/H

δH
E (gH ) dµ̃(gH ),

and ∫
G

f (g) dµ(g) =
∫

G/H
f H (gH ) dµ̃(gH ),

for all integrable functions f : G → C. �

Remarks There is an analogous version of Theorem 1.5.1 for left coset spaces
H\G. Note that we are not assuming that H is a normal subgroup of G. Thus
G/H (respectively H\G) may not be a group.

Example 1.5.2 (Left invariant measure on GL(n,R)/(O(n,R) · R×))

For n ≥ 2, we now explicitly construct a left invariant measure on the
generalized upper half-plane hn = GL(n,R)/(O(n,R) · R×). Returning to the
Iwasawa decomposition (Proposition 1.2.6), every z ∈ hn has a representation
in the form z = xy with

x =

⎛
⎜⎜⎜⎜⎜⎝

1 x1,2 x1,3 · · · x1,n

1 x2,3 · · · x2,n

. . .
...

1 xn−1,n

1

⎞
⎟⎟⎟⎟⎟⎠ , y =

⎛
⎜⎜⎜⎜⎜⎝

y1 y2 · · · yn−1

y1 y2 · · · yn−2

. . .

y1

1

⎞
⎟⎟⎟⎟⎟⎠ ,

with xi, j ∈ R for 1 ≤ i < j ≤ n and yi > 0 for 1 ≤ i ≤ n − 1. Let d∗z denote
the left invariant measure on hn . Then d∗z has the property that

d∗(gz) = d∗z

for all g ∈ GL(n,R).
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Proposition 1.5.3 The left invariant GL(n,R)–measure d∗z on hn can be
given explicitly by the formula

d∗z = d∗x d∗y

where

d∗x =
∏

1≤i< j≤n

dxi, j , d∗y =
n−1∏
k=1

y−k(n−k)−1
k dyk . (1.5.4)

For example, for n = 2, with z =
(

y x
0 1

)
, we have d∗z = dxdy

y2 , while for

n = 3 with

z =
⎛
⎝ y1 y2 x1,2 y1 x1,3

0 y1 x2,3

0 0 1

⎞
⎠ ,

we have

d∗z = dx1,2dx1,3dx2,3
dy1dy2

(y1 y2)3
.

Proof We sketch the proof. The group GL(n,R) is generated by diagonal
matrices, upper triangular matrices with 1s on the diagonal, and the Weyl group
Wn which consists of all n × n matrices with exactly one 1 in each row and
column and zeros everywhere else. For example,

W2 =
{(

1 0
0 1

)
,

(
0 1
1 0

)}
,

W3 =
⎧⎨
⎩
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠ ,

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠ ,

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ ,

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ ,

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠
⎫⎬
⎭ .

Note that the Weyl group Wn has order n! and is simply the symmetric group on
n symbols. It is clear that d∗(gz) = d∗z if g is an upper triangular matrix with
1s on the diagonal. This is because the measures dxi, j (with 1 ≤ i < j ≤ n) are
all invariant under translation. It is clear that the differential d∗z is Zn-invariant
where Zn

∼= R× denotes the center of GL(n,R). So, without loss of generality,
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we may define a diagonal matrix a with its lower-right entry to be one:

a =

⎛
⎜⎜⎜⎜⎜⎝

a1a2 · · · an−1

a1a2 · · · an−2

. . .

a1

1

⎞
⎟⎟⎟⎟⎟⎠ .

Then

az = axy = (axa−1) · ay

=

⎛
⎜⎜⎜⎜⎜⎝

1 an−1x1,2 an−1an−2x1,3 · · · an−1 · · · a1 x1,n

1 an−2x2,3 · · · an−2 · · · a1 x2,n

. . .
...

1 a1 xn−1,n

1

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

a1 y1 · · · an−1 yn−1

. . .

a1 y1

1

⎞
⎟⎟⎟⎠ .

Thus d∗(axa−1) =
(

n−1∏
k=1

ak(n−k)
k

)
d∗x . It easily follows that

d∗(az) = d∗(axa−1 · ay) = d∗z.

It remains to check the invariance of d∗z under the Weyl group Wn . Now, if
w ∈ Wn and

d =

⎛
⎜⎜⎜⎝

dn

dn−1

. . .

d1

⎞
⎟⎟⎟⎠ ∈ GL(n,R)

is a diagonal matrix, then wdw−1 is again a diagonal matrix whose diagonal
entries are a permutation of {d1, d2, . . . , dn}. The Weyl group is generated
by the transpositions ωi (i = 1, 2, . . . n − 1) given in Proposition 1.2.9 which
interchange (transpose) di and di+1 when d is conjugated by ωi . After a tedious
calculation using Proposition 1.2.9 one checks that d∗(ωi z) = d∗z. �
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1.6 Volume of SL(n,Z)\SL(n,R)/SO(n,R)

Following earlier work of Minkowski, Siegel (1936) showed that the volume
of

SL(n,Z)\SL(n,R)/SO(n,R) ∼= SL(n,Z)\GL(n,R)/(O(n,R) · R×)
∼= SL(n,Z)\hn,

can be given in terms of

ζ (2) · ζ (3) · · · ζ (n)

where ζ (s) is the Riemann zeta function. The fact that the special values (taken
at integral points) of the Riemann zeta function appear in the formula for the
volume is remarkable. Later, Weil (1946) found another method to prove such
results based on a direct application of the Poisson summation formula. A vast
generalization of Siegel’s computation of fundamental domains for the case of
arithmetic subgroups acting on Chevalley groups was obtained by Langlands
(1966). See also (Terras, 1988) for interesting discussions on the history of this
subject.

The main aim of this section is to explicitly compute the volume∫
SL(n,Z)\SL(n,R)/SO(n,R)

d∗z,

where d∗z is the left–invariant measure given in Proposition 1.5.3. We follow
the exposition of Garret (2002).

Theorem 1.6.1 Let n ≥ 2. As in Proposition 1.5.3, fix

d∗z =
∏

1≤i< j≤n

dxi, j

n−1∏
k=1

y−k(n−k)−1
k dyk

to be the left SL(n,R)–invariant measure on hn = SL(n,R)/SO(n,R). Then∫
SL(n,Z)\hn

d∗z = n 2n−1 ·
n∏

=2

ζ ()

Vol(S−1)
,

where

Vol(S−1) = 2(
√
π)

� (/2)

denotes the volume of the (− 1)–dimensional sphere S−1 and ζ () =
∞∑

n=1
n−

denotes the Riemann zeta function.
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Proof for the case of SL(2,R) We first prove the theorem for SL(2,R). The
more general result will follow by induction. Let K = SO(2,R) denote the
maximal compact subgroup of SL(2,R). We use the Iwasawa decomposition
which says that

SL(2,R)/K ∼=
{

z =
(

1 x
0 1

) (
y

1
2 0

0 y−
1
2

) ∣∣∣∣∣ x ∈ R, y > 0

}
.

Let f : R2/K → C be an arbitrary smooth compactly supported function.
Then, by definition, f ((u, v) · k) = f ((u, v)) for all (u, v) ∈ R2 and all k ∈ K .

We can define a function F : SL(2,R)/K → C by letting

F(z) :=
∑

(m,n)∈Z2

f ((m, n) · z).

If γ =
(

a b
c d

)
∈ SL 2(Z), then

F(γ z) =
∑

(m,n)∈Z2

f

(
(m, n) ·

(
a b
c d

)
· z

)

=
∑

(m,n)∈Z2

f
(
(ma + nc,mb + nd) · z

)
= F(z).

Thus, F(z) is SL(2,Z)–invariant.
Note that we may express

{(m, n) ∈ Z2} = (0, 0) ∪
{
 · (0, 1) · γ

∣∣∣ 0 <  ∈ Z, γ ∈ �∞\SL(2,Z)
}
,

(1.6.2)

where

�∞ =
{(

1 r
0 1

) ∣∣∣∣ r ∈ Z

}
.

We now integrate F over �\h2, where h2 = SL(2,R)/K , � = SL(2,Z),
and dxdy/y2 is the invariant measure on h2 given in Proposition 1.5.3. It
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immediately follows from (1.6.2) that∫
�\h2

F(z)
dxdy

y2
= f ((0, 0)) · Vol(�\h2)

+
∑
>0

∑
γ∈�∞\�

∫
�\h2

f
(
(0, 1) · γ · z

) dxdy

y2

= f ((0, 0)) · Vol(�\h2) + 2
∑
>0

∫
�∞\h2

f
(
(0, 1) · z

) dxdy

y2
.

The factor 2 occurs because
(−1 −1

)
acts trivially on h2. We easily observe

that

f
(
(0, 1) · z

) = f

(
(0, 1) ·

(
y

1
2 0

0 y−
1
2

))
= f

((
0, y−

1
2
))

.

It follows, after making the elementary transformations

y → 2 y, y → y−2

that

∫
�\h2

F(z)
dxdy

y2
= f ((0, 0)) · Vol(�\h2) + 22ζ (2)

∞∫
0

f ((0, y)) ydy. (1.6.3)

Now, the function f ((u, v)) is invariant under multiplication by k ∈ K on the

right. Since

(
sin θ − cos θ
cos θ sin θ

)
∈ K , we see that

f ((0, y)) = f ((y cos θ, y sin θ ))

for any 0 ≤ θ ≤ 2π . Consequently∫ ∞

0
f ((0, y)) ydy = 1

2π

∫ 2π

0

∫ ∞

0
f ((y cos θ, y sin θ )) dθ ydy

= 1

2π

∫
R2

f ((u, v)) dudv

= 1

2π
f̂ ((0, 0)). (1.6.4)
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Here f̂ denotes the Fourier transform of f in R2. If we now combine (1.6.3)
and (1.6.4), we obtain∫

�\h2

F(z)
dxdy

y2
= f ((0, 0)) · Vol(�\h2) + 2ζ (2)

π
f̂ ((0, 0)). (1.6.5)

To complete the proof, we make use of the Poisson summation formula (see
appendix) which states that for any z ∈ GL(2,R)

F(z) =
∑

(m,n)∈Z2

f ((m, n)z) = 1

|Det(z)|
∑

(m,n)∈Z2

f̂
(
(m, n) · (t z)−1

)
=

∑
(m,n)∈Z2

f̂
(
(m, n) · (t z)−1

)
,

since z =
(

y
1
2 y−

1
2 x

0 y−
1
2

)
and Det(z) = 1. We now repeat all our computations

with the roles of f and f̂ reversed. Since the group � is stable under transpose–
inverse, one easily sees (from the Poisson summation formula above), by letting
z → (t z)−1, that the integral ∫

�\h2

F(z)
dxdy

y2

is unchanged if we replace f by f̂ .

Also, since ˆ̂f (x) = f (−x), the formula (1.6.5) now becomes∫
�\h2

F(z)
dxdy

y2
= f̂ ((0, 0)) · Vol(�\h2) + 2ζ (2)

π
f ((0, 0)). (1.6.6)

If we combine (1.6.5) and (1.6.6) and solve for the volume, we obtain

(
f ((0, 0)) − f̂ ((0, 0))

) · vol(�\h2) = ( f ((0, 0)) − f̂ ((0, 0))
) · 2ζ (2)

π
.

Since f is arbitrary, we can choose f so that f ((0, 0)) − f̂ ((0, 0)) �= 0. It
follows that

Vol(�\h2) = 2ζ (2)

π
= π

3
. �

Proof for the case of SL(n,R) We shall now complete the proof of
Theorem 1.6.1 using induction on n. �

The proof of Theorem 1.6.1 requires two preliminary lemmas which we
straightaway state and prove. For n > 2, let Un(R) (respectively Un(Z)) denote
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the group of all matrices of the form⎛
⎜⎜⎜⎝

1 u1

. . .
...

1 un−1

1

⎞
⎟⎟⎟⎠

with ui ∈ R (respectively, ui ∈ Z), for i = 1, 2, . . . , n − 1.

Lemma 1.6.7 Let n > 2 and fix an element γ ∈ SL(n − 1,Z). Consider
the action of Un(Z) on Rn−1 given by left matrix multiplication of Un(Z) on(
γ 0
0 1

)
· Un(R). Then a fundamental domain for this action is given by the

set of all matrices

(
γ 0
0 1

)
·

⎛
⎜⎜⎜⎝

1 u1

. . .
...

1 un−1

1

⎞
⎟⎟⎟⎠

with 0 ≤ ui < 1 for 1 ≤ i ≤ n − 1. In particular,

Un(Z)

∖(
γ 0
0 1

)
· Un(R) ∼= (Z\R)n−1 .

Proof of Lemma 1.6.7 Let m be a column vector with (m1,m2, . . . ,mn−1) as
entries. Then one easily checks that(

In−1 m
1

)
·
(
γ

1

)
=
(
γ

1

)
·
(

In−1 γ−1m
1

)
,

where In−1 denotes the (n − 1) × (n − 1) identity matrix. It follows that⋃
m∈Zn−1

(
In−1 m

1

)
·
(
γ

1

)
·
(

In−1 (Z\R)n−1

1

)

=
⋃

m∈Zn−1

(
γ

1

)
·
(

In−1 γ−1m
1

)
·
(

In−1 (Z\R)n−1

1

)

=
(
γ

1

)
·
⋃

m∈Zn−1

(
In−1 (Z\R)n−1 + γ−1m

1

)

=
(
γ

1

)
· Un(R).

It is also clear that the above union is over non-overlapping sets. This is because
γ−1Zn−1 = Zn−1 for γ ∈ SL(n − 1,Z). �

The second lemma we need is a generalization of the identity (1.6.4).



32 Discrete group actions

Lemma 1.6.8 Let n > 2 and let f : Rn → C be a smooth function, with
sufficient decay at ∞, which satisfies f (u1, . . . , un) = f (v1, . . . , vn) whenever
u2

1 + · · · + u2
n = v2

1 + · · · + v2
n . Then∫ ∞

0
f (0, . . . , 0, t) tn−1 dt = 1

Vol(Sn−1)

∫
Rn

f (x1, . . . , xn) dx1 · · · dxn

= f̂ (0)

Vol(Sn−1)
,

where

Vol(Sn−1) = 2(
√
π )n

� (n/2)

denotes the volume of the (n − 1)–dimensional sphere Sn−1.

Proof of Lemma 1.6.8 For n ≥ 2 consider the spherical coordinates:

x1 = t · sin θn−1 · · · sin θ2 sin θ1,

x2 = t · sin θn−1 · · · sin θ2 cos θ1,

x3 = t · sin θn−1 · · · sin θ3 cos θ2, (1.6.9)

...

xn−1 = t · sin θn−1 cos θn−2,

xn = t · cos θn−1,

with

0 < t < ∞, 0 ≤ θ1 < 2π, 0 ≤ θ j < π, (1 < j < n).

Clearly x2
1 + · · · + x2

n = t2. One may also show that the invariant measure on
the sphere Sn−1 is given by

dµ(θ) =
∏

1≤ j<n

(sin θ j )
j−1 dθ j ,

and that dx1dx2 · · · dxn = tn−1dt dµ(θ). Then the volume of the unit sphere,
Vol(Sn−1), is given by

Vol(Sn−1) =
∫

Sn−1
dµ(θ ) = 2(

√
π)n

� (n/2)
.

Since f is a rotationally invariant function, it follows that

f (0, . . . , 0, t) = 1

Vol(Sn−1)

∫
Sn−1

f (x1, . . . , xn) dµ(θ )
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with x1, . . . , xn given by (1.6.9). Consequently∫ ∞

0
f (0, . . . , 0, t) tn−1 dt = 1

Vol(Sn−1)

∫ ∞

0

∫
Sn−1

f (x1, . . . , xn)tn−1dµ(θ )dt

= 1

Vol(Sn−1)

∫
Rn

f (x1, . . . , xn) dx1 · · · dxn.

�

We now return to the proof of Theorem 1.6.1. Let Kn = SO(n,R) denote
the maximal compact subgroup of SL(n,R). In this case, the Iwasawa decom-
position (Proposition 1.2.6) says that every z ∈ SL(n,R)/Kn is of the form
z = xy with

x =

⎛
⎜⎜⎜⎜⎜⎝

1 x1,2 x1,3 · · · x1,n

1 x2,3 · · · x2,n

. . .
...

1 xn−1,n

1

⎞
⎟⎟⎟⎟⎟⎠ ,

(1.6.10)

y =

⎛
⎜⎜⎜⎜⎜⎝

y1 y2 · · · yn−1t
y1 y2 · · · yn−2t

. . .

y1t
t

⎞
⎟⎟⎟⎟⎟⎠ ,

with t = Det(y)−1/n =
(

n−1∏
i=1

yn−i
i

)−1/n

.

In analogy to the previous proof for SL(2,R) we let f : Rn/Kn → C be an
arbitrary smooth compactly supported function. We shall also define a function
F : SL(n,R)/Kn → C by letting

F(z) :=
∑

m∈Zn

f (m · z).

As before, the function F(z) will be invariant under left multiplication by
SL(n,Z).

Let

Pn =
( ∗

0 0 · · · 0 1

)
∈ SL(n,Z)
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denote the set of all n × n matrices in SL(n,Z) with last row (0, 0, . . . , 0, 1).
Let �n = SL(n,Z). Then we have as before:

F(z) = f (0) +
∑

0<∈Z

∑
γ∈Pn\�n

f (en · γ · z),

where f (0) denotes f ((0, 0, . . . , 0)) and en = (0, 0, . . . , 0, 1).
We now integrate F(z) over a fundamental domain for �n\hn. It follows that∫
�n\hn

F(z) d∗z = f (0) · Vol(�n\hn) + 2
∑
>0

∫
Pn\hn

f (en · z) d∗z. (1.6.11)

The factor 2 occurs because −In (In = n × n identity matrix) acts trivially on
hn. The computation of the integral above requires some preparations.

We may express z ∈ hn in the form

z= x ·

⎛
⎜⎜⎜⎜⎜⎝

y1 y2 · · · yn−1t

y1 y2 · · · yn−2t
. . .

y1t

t

⎞
⎟⎟⎟⎟⎟⎠ ·
(

t
1

n − 1 · In−1

t−1

)
·
(

t−
1

n − 1 · In−1

t

)
,

where x and t are given by (1.6.10). It follows that

z =

⎛
⎜⎜⎜⎜⎜⎝

1 x1,n

1 x2,n

. . .
...

1 xn−1,n

1

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

1 x1,2 x1,3 · · · x1,n−1 0
1 x2,3 · · · x2,n−1 0

. . .
...

...
1 0

1

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

y1 y2 · · · yn−1 · t
n

n − 1

y1 y2 · · · yn−2 · t
n

n − 1

. . .

y1 · t
n

n − 1

1

⎞
⎟⎟⎟⎟⎟⎠ ·
(

t−
1

n − 1 · In−1

t

)

=

⎛
⎜⎜⎜⎜⎜⎝

1 x1,n

1 x2,n

. . .
...

1 xn−1,n

1

⎞
⎟⎟⎟⎟⎟⎠ ·
(

z′

1

)
·
(

t−
1

n − 1 · In−1

t

)
,

(1.6.12)
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where

z′ =

⎛
⎜⎜⎜⎜⎜⎝

1 x1,2 x1,3 · · · x1,n−1

1 x2,3 · · · x2,n−1

. . .
...

1 xn−2,n−1

1

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

y1 y2 · · · yn−1 · t
n

n−1

y1 y2 · · · yn−2 · t
n

n−1

. . .

y1 · t
n

n−1

⎞
⎟⎟⎟⎠ .

Now z′ represents the Iwasawa coordinate for SL(n − 1,R)/SO(n − 1,R) =
hn−1, and the Haar measure d∗z′ can be computed using Proposition 1.5.3 and
is given by

d∗z′ =
∏

1≤i< j≤n−1

dxi, j

n−2∏
k=1

y−k(n−1−k)−1
k+1 dyk+1.

If we compare this with

d∗z =
∏

1≤i< j≤n

dxi, j

n−1∏
k=1

y−k(n−k)−1
k dyk

=
∏

1≤i< j≤n

dxi, j

n−2∏
k=0

y−(k+1)(n−1−k)−1
k+1 dyk,

we see that

d∗z = d∗z′
n−1∏
j=1

dx j,n tn dy1

y1
. (1.6.13)

Here, the product of differentials is understood as a wedge product satisfying
the usual rule: du ∧ du = 0, given by the theory of differential forms. Since

t = y−(n−1)/n
1

n−1∏
i=2

y−(n−i)/n
i ,

we see that

dt

t
= −n − 1

n

dy1

y1
+�,

where � is a differential form involving dy j for each j = 2, 3, . . . , n − 1, but


