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THE PHYSICS OF SYNCHROTRON RADIATION

This book explains the underlying physics of synchrotron radiation and derives its main
properties. It is divided into four parts. The first covers the general case of the electromag-
netic fields created by an accelerated relativistic charge. The second part concentrates on
the radiation emitted by a charge moving on a circular trajectory, deriving its distribution
in angle, frequency, and polarization modes. The third part looks at undulator radiation.
Starting from the simple case of a plane weak undulator with a spatially periodic field that
emits quasi-monochromatic radiation, the author then discusses strong undulators, emit-
ting more complicated radiation and containing higher harmonics. More general undulators
are also considered, with a non-planar (helical) electron trajectory or non-harmonic field.
The final part deals with applications and investigates the optics of synchrotron radiation
dominated by diffraction due to the small opening angle. It also includes a description of
electron-storage rings as radiation sources and the effect of the emitted radiation on the
electron beam.

This book provides a valuable reference for scientists and engineers in the field of accel-
erators, and for all users of synchrotron radiation.
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Preface

Under the rubric of synchrotron radiation we understand the electromagnetic waves emitted
by a charge moving with relativistic velocity and undergoing a transverse acceleration. It
is characterized by a small opening angle and a high frequency caused by the velocity of
the charge being close to that of light. Owing to the relatively simple motion of the charge,
the radiation has clear polarization properties. Ordinary synchrotron radiation is emitted
by a charge moving on a circular arc determined by a deflecting magnetic field. It has a
broad spectrum, a typical frequency being 3 times higher than the Larmor frequency of the
charge. This spectrum can be modified by varying the curvature of the trajectory 1/p within
a distance smaller than the formation length of the radiation, as is realized in undulators.

Synchrotron radiation has been investigated theoretically for over a century and experi-
mentally for about half this time. Thanks to its unique properties, this radiation has become
a research tool for many fields of science and electron-storage rings serving as radiation
sources are spread over the whole globe.

This book tries to explain synchrotron radiation from basic principles and to derive its
main properties. It is divided into four parts. First the general case of the electromagnetic
fields created by an accelerated relativistic charge is investigated. This gives the angular
distribution with the small opening angle of the emitted radiation and distinguishes between
the ‘near’ (Coulomb) and the ‘far’ (radiation) field. The second part concentrates on the
radiation emitted by a charge moving on a circular trajectory, which we usually call syn-
chrotron radiation. Its distributions in angle, frequency, and polarization modes are derived.
Undulator radiation is treated in the next part. We start with the simple case of a plane
weak undulator with a spatially periodic field that emits quasi-monochromatic radiation. A
strong undulator emits radiation that is more complicated and contains higher harmonics.
There are more general undulators having a non-planar (helical) electron trajectory or a
non-harmonic field. The last part deals with applications and investigates first the optics of
synchrotron radiation, which is dominated by diffraction due to the small opening angle.
This is followed by a description of electron-storage rings serving as radiation sources and
the effect of the emitted radiation on the electron beam.

There are some technical remarks to be made. Throughout the book MKSA units are
used. With very few exceptions the radiation field refers to a single positive elementary
charge e as a source. For convenience sometimes the radiation emitted by a current [ is

Xvii



XViii Preface

also given and, in the last chapter, the temporal coherence of the radiation from different
particles is considered. As a basis for the properties of the radiation we give first the total
emitted power or energy. In the case of ordinary synchrotron radiation we denote by P the
power radiated by the electron while it is going through the magnet and by Uy the energy
radiated during one revolution. For undulators we denote by P, the power radiated in the
undulator but averaged over one period and by Uy the energy emitted during one traversal
through the undulator. These powers and energies can also be expressed in terms of the
photon number or photon flux. Distributions in terms of angle and frequency are then given
with these total values as a factor that makes it easy to express them in terms of power,
energy, photon-number or photon-flux distributions or in other units. Vectors are printed
in bold. They are also written as an array with three components between square brackets,
like E = [E, E,, E.]. For radiation fields the z-component can often be neglected. The
remaining two-component vector is written as E, = [E,, E,]. These field components give
the polarization of the radiated power. To mark the contributions of the horizontal or vertical
polarization to the power, which is of course a scalar, we write it as a sum P = P, + P;.
The calculation of synchrotron radiation leads to some integrals that can be expressed in
terms of modified Bessel functions or Airy functions. Here the second type is chosen, but
the important results are given in both. Some properties, integrals, and sums of Airy and
Bessel functions are given in the appendices, partly for convenience and partly because
they are not so easy to find. However, this is not meant to provide rigorous mathematical
derivations but rather to provide some insight into how some results are obtained.

There are lots of publications on synchrotron radiation and related topics. Apart from
well-known books and journals they appear often in laboratory reports and proceedings of
workshops. The bibliography to this volume is by no means complete and refers mostly to
the topics covered and the methods used to investigate them.
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Part 1

Introduction






1

A qualitative treatment of synchrotron radiation

1.1 Introduction

We consider the radiation emitted by a charged particle moving with constant, relativistic
velocity on a circular arc. It is called synchrotron radiation, or sometimes also ordinary
synchrotron radiation, abbreviated as SR, to distinguish it from the related case of undulator
radiation, abbreviated as UR. We start with a qualitative discussion of synchrotron radiation
in order to obtain some insight into its physical properties such as the opening angle, spec-
trum, and polarization. This will also help us to judge the validity of some approximations
used in later calculations.

The physical properties of synchrotron radiation have their basis in the fact that the charge
moves with relativistic velocity towards the observer. The charge and the emitted radiation
travel with comparable velocities in about the same direction. The fields created by the
charge over a relatively long time are received by the observer within a much shorter time
interval. This time compression determines the spectrum of synchrotron radiation.

1.2 The opening angle

We consider a charge moving in the laboratory frame F on a circular trajectory with radius
of curvature p, Fig. 1.1. We go into a frame F’ that moves with a constant velocity that is
the same as that of the charge at the instant it traverses the origin. The particle trajectory has
in this frame the form of a cycloid with a cusp at the origin. At this location the particle is
momentarily at rest, but undergoes an acceleration in the —x’-direction. Like any accelerated
charge, it emits radiation having an approximately uniform distribution in this frame F'.

We go back to the laboratory frame F by applying a Lorentz transformation. The emitted
radiation is now peaked in the forward direction. A photon emitted along the x’-axis in the
moving frame F appears in the laboratory frame at an angle 6 given by

sinf =— or O~
14

) (1.1)

R |~

where y = 1/,/1 — B2 is the Lorentz factor and B = v/c is the normalized velocity. The
typical opening angle of the emitted synchrotron radiation is therefore expected to be of
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Fig. 1.1. The opening angle of synchrotron radiation.

order 1/y. For ultra-relativistic particles, y >> 1, the radiation is confined to very small
opening angles around the direction of the particle velocity.

1.3 The spectrum emitted in a long magnet

Next we estimate the typical frequency of the emitted radiation. We consider a charge
moving on a circular trajectory through a long magnet as shown in Fig. 1.2. We try to
estimate the length At of the radiation pulse received by the observer P. Owing to the small
natural opening angle the observer receives only radiation that was emitted along an arc of
approximate angle £1/y. Therefore, the radiation observed first was emitted at point A,
where the trajectory has an angle 1/y with respect to this direction pointing towards the
observer, whereas the radiation observed last was emitted at point A’, where the trajectory
has a corresponding angle —1/y. The length of the radiation pulse seen by the observer is
therefore just the difference in travel time between the charge and the radiation for going
from point A to point A’:
2p  2psin(l/y)
Bre T ¢

For the ultra-relativistic velocities considered here we have 1/y < 1 and the trigonometric
function can be expanded to give

At =t —ty =

2 1 1 4
Ar~ 2 1—ﬁ+i ~ (=)= L
Byc 62 ye\y?  3y? 3cy3

Here we use the ultra-relativistic approximation

1-8 1
~ (1.2)
1+8 22

l—ﬂ:

From the length Ar of the radiation pulse we get the typical frequency of the spectrum,

1 3cy?

N — A . 1.3
@ At 4p (1.3)



1.4 The spectrum emitted in a short weak magnet 5

observer
- - f
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E(t)| pulse shape

E(w) spectrum

Fig. 1.2. The typical frequency of the synchrotron-radiation spectrum.

Later, on the basis of a quantitative treatment, we will introduce the critical frequency,
which is twice as large, w. = 2wyyp. For a large value of the Lorentz factor y the radiation
pulse can become very short and the resulting typical frequency very high.

The above derivation of the typical frequency is quite simple but illustrates some of the
most important physical principles of synchrotron radiation. The length of the radiation
pulse received is given by the difference in travel time between the particle and the photon
for going from point A to point A’. The observed radiation originates from a trajectory arc
of approximate length £, ~ 2p/y. The length L of the magnet has to be larger than this for
the above treatment to be valid.

1.4 The spectrum emitted in a short weak magnet

We consider a short weak magnet as shown in Fig. 1.3 with length L < p/y. It deflects the
particle by an angle

. (L L 1
A¢p =2arcsin| — |~ — < —,
2p oy
which is less then the natural opening angle of the radiation. The length Aty of the radiation
pulse now becomes
L L

2p . L L
Atsmzte—tyzﬁarcsm Z —?%E(l—ﬁ)ww,

assuming again that we have the ultra-relativistic case 8 & 1. The length of the radiation
pulse is now proportional to the magnet length L. Reducing it will therefore lead to shorter
wavelengths.

The spectrum of the emitted radiation is also modified if the magnetic field changes
within the length L, which is the case for undulators. In order for synchrotron radiation to
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Fig. 1.3. The spectrum radiated in a short magnet.

have a spectrum described by (1.3) it has to be emitted from a magnet with a field that is
homogeneous over at least a length of L > 2p/y. By ‘synchrotron radiation” we usually
mean the radiation from a long magnet. Sometimes it is also called ‘ordinary’ synchrotron
radiation or ‘long-magnet’ radiation and will sometimes be abbreviated here to ‘SR’. This
distinguishes it from undulator or ‘short-magnet’ radiation. This term ‘short magnet’ is now
commonly used but describes a magnet that is short and weak such that the trajectory angle
is everywhere smaller than 1/y with respect to the main direction.

1.5 The wave front of synchrotron radiation

In estimating the typical frequency of synchrotron radiation we found that the field which
is received by the observer P at the time ¢ within a very short time interval A¢ has been
emitted by the particle at a different location and at a time ¢’ over a longer time interval
At’. Let us consider a particle moving in the general direction towards an observer with
a speed close to that of light, emitting pulses of radiation at regular intervals along its
trajectory. These pulses are received by the observer at time intervals that are much shorter.
The compression of the time sequences At of reception compared with the time sequences
At’ of emission is stronger the closer the particle velocity is to that of light and the closer
its direction to that pointing towards the observer. This is well known from the Doppler
effect.

We illustrate this situation in Fig. 1.4 for a charged particle moving with a constant speed
v = Bc (B = 0.8) anti-clockwise on a circle of radius p and emitting a pulse of radiation at
regular intervals indicated by small full circles (bullets). These pulses of radiation propagate
at the speed of light on circular wave fronts around the sources in their centers. At a certain
time ¢ they have reached the situation shown in Fig. 1.4. The pulse emitted first at the time
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Fig. 1.4. Global propagation of synchrotron radiation for 8 = 0.9.

Fig. 1.5. Forward propagation of synchrotron radiation for 8 = 0.8 and 0.9.

t' = 0 originates from the bottom point and has reached the largest circle. The particle takes
some time At’ to reach the next point of emission. Since it moves slower than light the
wave emitted at this second point can never catch up with the first one but lags behind only
by a small amount in the forward direction indicated by the arrow. Figure 1.4 shows the
wave fronts emitted during one revolution of the particle executed at an earlier time. At a
certain distance in the forward direction these wave fronts are concentrated in the radial
direction. As a consequence an observer at this location receives within a short time interval
At the radiation emitted during a large interval At’ of the particle motion. In Fig. 1.5 this is
illustrated in more detail for the radiation emitted from a finite arc of the trajectory for two
velocities v = B¢ of the particle. Clearly the higher velocity (8 = 0.9) leads to a stronger
concentration of the wave front than does the lower one (8 = 0.8).
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Fig. 1.6. Linear and elliptical polarization of synchrotron radiation.

The emission of short pulses is an artificial picture that we can use in order to obtain a
simple illustration. In reality the charge radiates continuously, which is more difficult to
draw. Very nice displays of the actual emission of radiation are presented in [1, 2].

We saw at the beginning of this chapter that the radiation is emitted mainly in the forward
direction. Therefore, from the wave-front circles drawn in Figs. 1.4 and 1.5 only a limited
arc around the forward direction contributes to the field received by the observer.

1.6 The polarization

Since the acceleration of the charge is radial and lies in the plane of the trajectory, we
expect that the emitted radiation is mostly linearly polarized, with the electric-field vector
also lying in this plane. The radiation observed at a finite angle above or below this plane
has some elliptic polarization of opposite helicities, as illustrated in Fig. 1.6.
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Fields of a moving charge

2.1 Introduction

In the previous chapter we used some qualitative arguments to estimate the basic nature
of synchrotron radiation. The results of this exercise are very useful for understanding the
underlying physics, estimating the quantities involved, and judging the validity of certain
approximations we will make. Now synchrotron radiation is treated in a quantitative man-
ner. We will distinguish between the time ¢ at which the radiation is observed and ¢ when
it was created by the moving charge at a distance r. Since the relation between the two
is in general rather complicated, some of the derivations are lengthy. As final results we
obtain expressions for the radiation field and the emitted power, which will be applied to
calculate synchrotron and undulator radiation in the next two parts. Treatments of syn-
chrotron radiation can be found in many books, journal publications, articles, proceedings
of conferences and workshops, and laboratory reports. The first book on the topic of syn-
chrotron radiation [3] was published in 1912. Complete coverage of the topic is presented
in [4-8], some of which give also a quantum-mechanical treatment. Many books on elec-
trodynamics treat the radiation from relativistic particles and cover also theoretical aspects
of synchrotron radiation [9—13]. On the other hand, many publications on particle accel-
erators have chapters on synchrotron radiation, giving details of its properties and effects
on the electron beam. Among those are the books [14—17]. There are many proceedings
from conferences, workshops, and schools and laboratory reports concerned mainly with
accelerators but containing also articles on synchrotron radiation [18-20]. Furthermore,
there are several handbooks and proceedings concerned mainly with the science done with
synchrotron radiation [21-24], which describe the properties and technical possibilities of
this source [25]. There are overviews on the history of synchrotron radiation, such as [26],
which gives mainly the early development, and [27], which concentrates on the work done
in the U.S.S.R.

2.2 The particle motion relevant to the
retarded potentials

To relate the observed radiation to the motion of charge and vice versa we invoke so-called
retarded potentials and fields, which have their basis in the finite propagation velocity ¢
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Fig. 2.1. The particle trajectory and radiation geometry.

of the electromagnetic radiation. To calculate the fields measured at time ¢ by a stationary
observer we have to know the position and motion of the charge at this earlier time ¢’ of
emission.

We discuss now the motion relevant for these two time scales and consider an elementary
positive charge e moving on a trajectory given by the vector R(#’) and creating an electric
field E and a magnetic field B. These fields are measured at time ¢ by the observer located
at P as illustrated in Fig. 2.1. We introduce a vector r with absolute value r, pointing from
the location P’ of emission to the observer P. Owing to the finite propagation velocity c, the
field received at time ¢ by the observer P had to have been emitted by the source P’ at the
earlier time ¢’ given by the relation

t=f+ﬂQ. 2.1
c

Therefore, we have to know the position R(¢) and velocity v(¢') = dR/dt’ of the charged
particle at this earlier time ¢'. We have for the vectors R (pointing from the origin to the
radiating charge), r, (pointing from the origin to the observer), and r (pointing from the
charge to the observer) the relation

R(t') + (') = r, = constant. (2.2)

Differentiating this with respect to ¢’ gives the change of the vector r,

dr¢)  dR
o = g = V) =B, 23)

from which we obtain the corresponding change of its absolute value r = |r|:

dr 1 d@r?) _ dr

r— = =r —
de 2 dr dr’

= —(r-v).
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Introducing the unit vector

n=r/r (2.4)
pointing from the charge in the direction towards the observer gives for the change of the

distance between the source and the observer at time 7/
dr
dr’
which is just the negative particle-velocity component of the particle in the direction towards

the observer as shown in Fig. 2.1. The differential relation between the two time scales ¢’
and ¢ is obtained from (2.1):

=—m-v) = —c(n-p), (2.5)

1 dr , ,
dt=<1+——)dt =(1—n-g)dr. (2.6)
c dr’

2.3 The retarded electromagnetic potentials

In this section we derive expressions for the electromagnetic potentials A(¢) and V(r)
observed at P and created by a charge moving along a trajectory given by the vector R(z").
This result will be used in the next section to obtain the electric and magnetic fields E and B
which are related to the scalar and vector potentials V and A through Maxwell’s equations,
which can be found in standard textbooks on electrodynamics listed earlier:

0A 0A
E=-VV—-—=gadV - —
at ot 2.7)
B=[VxA]= curlA
with the Lorentz convention V - A = —V /c2. The vector potential A is measured in units

of Vsm™!.
The potentials created by time-dependent charge 7(¢") and current density J(z') are given
by the expressions

1 t'
V() = / n( )dx/dy/dz/

drey J r(t)
wo I .,
A@t) = — [ —dx'dy’d7.
® 4z ) r(t) v A&

The above expressions are very similar to those used to calculate the potentials of static
charge and stationary current distributions. However, here the charges move and the local
charge and current densities change. Since the potentials created propagate at the speed of
light, the signals received by the observer P depend on the positions of the charges at the
earlier time #’. The integration is carried out over the coordinates x’, y’, and 7’ of the earlier
distribution.



