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A signal processing practitioner often asks themselves, “How accurate is my
parameter estimator?” There may be no answer to this question if an ana-
lytic analysis is too cumbersome and the measurements sample is too small.
The statistical bootstrap, an elegant solution, re-uses the original data with
a computer to re-estimate the parameters and infer their accuracy.

This book covers the foundations of the bootstrap, its properties, its strengths,
and its limitations. The authors focus on bootstrap signal detection in
Gaussian and non-Gaussian interference as well as bootstrap model selec-
tion. The theory presented in the book is supported by a number of useful
practical examples written in Matlab.

The book is aimed at graduate students and engineers, and includes ap-
plications to real-world problems in areas such as radar, sonar, biomedical
engineering and automotive engineering.
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Preface

The bootstrap genesis is generally attributed to Bradley Efron. In 1977 he
wrote the famous Rietz Lecture on the estimation of sampling distributions
based on observed data (Efron, 1979a). Since then, a number of outstanding
and nowadays considered classical statistical texts have been written on the
topic (Efron, 1982; Hall, 1992; Efron and Tibshirani, 1993; Shao and Tu,
1995), complemented by other interesting monographic exposés (LePage and
Billard, 1992; Mammen, 1992; Davison and Hinkley, 1997; Manly, 1997;
Barbe and Bertail, 1995; Chernick, 1999).

Efron and Tibshirani (1993) state in the Preface of their book Our goal in
this book is to arm scientists and engineers, as well as statisticians, with
computational techniques that they can use to analyze and understand com-
plicated data sets. We share the view that Efron and Tibshirani (1993) have
written an outstanding book which, unlike other texts on the bootstrap,
is more accessible to an engineer. Many colleagues and graduate students
of ours prefer to use this text as the major source of knowledge on the
bootstrap. We believe, however, that the readership of (Efron and Tibshi-
rani, 1993) is more likely to be researchers and (post-)graduate students in
mathematical statistics than engineers.

To the best of our knowledge there are currently no books or monographs
on the bootstrap written for electrical engineers, particularly for signal pro-
cessing practitioners. Therefore the decision for us to fill such a gap. The
bootstrap world is a great one and we feel strongly for its discovery by en-
gineers. Our aim is to stimulate interest by engineers to discover the power
of bootstrap methods. We chose the title Bootstrap Techniques for Signal
Processing not only because we work in this discipline and because many of
the applications in this book stem from signal processing problems, but also
owing to the fact that signal processing researchers and (post-)graduate stu-
dents are the more likely engineers to use the book. In particular, we would
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x Preface

like to reach researchers and students in statistical signal processing such as
those working on problems in areas that include radar, sonar, telecommuni-
cations and biomedical engineering.

We have made every attempt to convey the “how” and “when” to use
the bootstrap rather than mathematical details and proofs. The theory of
the bootstrap is well established and the texts mentioned above can give
the necessary details if the reader so wishes. We have included at least one
example for every introduced topic. Some of the examples are simple, such
as finding a confidence interval for the mean. Others are more complicated
like testing for zero the frequency response of a multiple-input single-output
linear time-invariant system.

It was difficult to decide whether we should include Matlab† codes for
the examples provided. After some deliberation, and given the fact that
many graduate students and researchers ask for Matlab codes to reproduce
published results, we decided to include them. We have also provided a
Matlab toolbox which comprises frequently used routines. These routines
have been purposely written for the book to facilitate the implementation
of the examples and applications. All the Matlab routines can be found in
the Appendices.

A few tutorial papers on the bootstrap for signal processing exist. The in-
terested readers can refer to the work of Zoubir (1993); Zoubir and Boashash
(1998), and Zoubir (1999).

We are grateful to our colleagues Hwa-Tung Ong, Ramon Brcich, and
Christopher Brown for making very helpful comments and suggestions on
the manuscript. Additional words of thanks are for Hwa-Tung Ong for his
help in the development of the Bootstrap Matlab Toolbox. We would like
to thank our current and past colleagues and graduate students who con-
tributed directly or indirectly to the completion of the book. In particular,
we would like to thank Johann Böhme, Don Tufts, David Reid, Per Pelin,
Branko Ristic, Jonathon Ralston, Mark Morelande, Said Aouada, Amar
Abd El-Sallam and Luke Cirillo. The authors are grateful to all honours
and PhD students and colleagues of the Communications and Signal Pro-
cessing Group at Curtin University of Technology in Perth, Australia and
special thanks are due to Tanya Vernon for her continued support to the
group.

Many government agencies and industries supported our research on the
bootstrap over the years. Thanks are due to Boualem Boashash at Queens-
land University of Technology and John Hullett and Zigmantas Budrikis at

† Matlab is a registered trademark of The MathWorks, Inc.
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Curtin University of Technology. The data from the JINDALEE over-the-
horizon radar system was provided by the Defence Science and Technology
Organisation (DSTO) in Edinburgh, South Australia. Special thanks are
due to Stuart Anderson and Gordon Frazer for their generous support. The
data from the GPR system was also collected at the DSTO in Edinburgh,
South Australia. Words of gratitude are for Ian Chant and Canicious Abey-
nayake for their support with the landmine project. Zoubir acknowledges
the financial support of the Australian Research Council. We also thank
Michael Collins from the Centre for Eye Research at Queensland University
of Technology for his support and encouragement during the preparation of
this book. The encouragement of Phil Meyler from the Cambridge Univer-
sity Press is also gratefully acknowledged.

We thank our families, wives and children for their support, understanding
and love. Without their patience this work could not be completed.

Last, we wish to refer the reader to a recent exposition by Bradley Efron
(2002) on the role of bootstrap methods in modern statistics and wish the
reader a “happy bootstrapping”.



Notations

This list gives in alphabetical order the symbols that are frequently used
throughout this book. Special notation that is used less frequently will be
defined as needed.

General notation

A scalar
A column vector or matrix
A′ transpose of a vector or a matrix A

A complex conjugate of a vector or a matrix
AH Hermitian operation (transpose and complex conjugate) on a vector or a

matrix
A−1 inverse of a matrix
‖A‖ Euclidean vector norm
|A| magnitude of A

�A� largest integer ≤ A

�A� largest integer ≥ A

Â estimator or estimate of A

j imaginary unit, j2 = −1
E expectation operator

mod modulo operator
Prob probability

Prob∗ probability conditioned on observed data
tanh hyperbolic tangent

var variance operation

xii



Notations xiii

Latin symbols

cXX(t) covariance function of a stationary signal Xt

CXX(ω) spectral density of a stationary signal Xt

F distribution function
h kernel width or bandwidth
I identity matrix

IXX(ω) periodogram of an observed stationary signal Xt

k discrete frequency parameter
K(·) kernel function

n size of a random sample
N (µ, σ2) Gaussian distribution with mean µ and variance σ2

o(·) order notation: “of smaller order than”
O(·) order notation: “of the same order as”
PD probability of detection
PF probability of false alarm
R the set of real numbers
t discrete or continuous time index

tn t-distribution with n degrees of freedom
Tn test statistic

U(a, b) uniform distribution over [a, b].
Xt random signal
X random sample
X ∗ bootstrap resample of X

Z the set of integers

Greek symbols

α level of significance
δ(·) Kronecker’s delta function
χ2

n chi-square distribution with n degrees of freedom
Γ mean-square prediction error
θ parameter
µ mean
τ time delay or lag

σ2 variance
Φ(x) standard Gaussian distribution function

ω radial frequency



xiv Notations

Acronyms

AIC Akaike information criterion
AR autoregression

CDF cumulative distribution function
CFAR constant false alarm rate
CFD central finite difference
FIR finite impulse response

GPR ground penetrating radar
GPS global positioning system
HF high frequency
IF instantaneous frequency
iid independent and identically distributed

MDL minimum distance length (criterion)
MISO multiple input single output
MLE maximum likelihood estimator/estimation
ROC receiver operating characteristic
SNR signal-to-noise ratio
SRB sequentially rejective Bonferroni (procedure)

UMP uniformly most powerful (test)
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Introduction

Signal processing has become a core discipline in engineering research and
education. Many modern engineering problems rely on signal processing
tools. This could be either for filtering the acquired measurements in order to
extract and interpret information or for making a decision as to the presence
or absence of a signal of interest. Generally speaking, statistical signal
processing is the area of signal processing where mathematical statistics is
used to solve signal processing problems. Nowadays, however, it is difficult
to find an application of signal processing where tools from statistics are not
used. A statistician would call the area of statistical signal processing time
series analysis.

In most statistical signal processing applications where a certain parame-
ter is of interest there is a need to provide a rigorous statistical performance
analysis for parameter estimators. An example of this could be finding the
accuracy of an estimator of the range of a flying aircraft in radar. These
estimators are usually computed based on a finite number of measurements,
also called a sample. Consider, for example, a typical radar scenario, in
which we aim to ascertain whether the received signal contains information
about a possible target or is merely interference. The decision in this case,
based on calculating the so-called test statistic, has to be supported with
statistical measures, namely the probability of detection and the probability
of false alarm. Such a decision can be made if the distribution of the test
statistic is known in both cases: when the received signal contains target
information and when the target information is absent.

Another important problem in signal processing is to make certain proba-
bility statements with respect to a true but unknown parameter. For exam-
ple, given some estimator of a parameter, we would like to determine upper
and lower limits such that the true parameter lies within these limits with

1



2 Introduction

a preassigned probability. These limits constitute the so-called confidence
interval (Cramér, 1999).

Two main questions arise in a parameter estimation problem. Given a
number of measurements and a parameter of interest:

(i) What estimator should we use?

(ii) Having decided to use a particular estimator, how accurate is it?

A signal processing practitioner would first attempt to use the method
of maximum likelihood or the method of least squares to answer the first
question (Scharf, 1991; Kay, 1993). Having computed the parameter esti-
mate, its accuracy could be measured by the variance of the estimator or
a confidence interval for the parameter of interest. In most cases, however,
techniques available for computing statistical characteristics of parameter
estimators assume that the size of the available set of samples is sufficiently
large, so that asymptotic results can be applied. Techniques that invoke
the Central Limit Theorem and the assumption of Gaussianity of the noise
process are examples of such an approach (Bhattacharya and Rao, 1976;
Serfling, 1980).

Let us consider an example where we are interested in finding the 100α,
0 < α < 1, percent confidence interval for the power spectral density of a sta-
tionary real-valued signal, given a finite number of observations. If we were
to assume that the number of observations is large, we would use an asymp-
totic approach so that the spectral density estimates at distinct frequencies
could be considered independent with a limiting scaled χ2 distribution.

Let us mathematically formalise this problem. Assume X1, . . . , Xn to be
a finite set of observations from a real-valued, strictly stationary signal Xt,
t ∈ Z, with mean zero and a finite variance. Define the spectral density of
Xt by

CXX(ω) =
1

2 π

∞∑

τ=−∞
E
[
Xt Xt−|τ |

]
e−j ω τ , (1.1)

where E[·] denotes expectation, and let

IXX(ω) =
1

2πn

∣
∣
∣
∣
∣

n∑

t=1

Xt e−j ω t

∣
∣
∣
∣
∣

2

, −π < ω ≤ π, (1.2)

denote the periodogram of the sample (Brillinger, 1981; Marple Jr, 1987).
Consider estimating the spectral density CXX(ω) by a kernel spectral
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density estimate (the smoothed periodogram), given by

ĈXX(ω; h) =
1

n h

M∑

k=−M

K

(
ω − ωk

h

)

IXX(ωk), −π < ω ≤ π, (1.3)

where the kernel K(·) is a symmetric, nonnegative function on the real line,
h is its bandwidth, and M is the largest integer less than or equal to n/2.
Let the discrete frequencies ωk be given by

ωk = 2 π k/n, −M ≤ k ≤M .

A variety of kernels can be used in Equation (1.3) but let us choose the
Bartlett-Priestley window (Priestley, 1981, p. 444) for K(·). Given the
estimate of the power spectral density (1.3), one can approximate its distri-
bution asymptotically, as n→∞ by

CXX(ω)χ2
4 m+2/(4 m + 2),

where m = �(hn − 1)/2�, �·� denotes the floor operator and χ2
4 m+2 is the

χ2 distribution with 4m + 2 degrees of freedom. This leads to the following
100α percent confidence interval (Brillinger, 1981)

(4 m + 2) ĈXX(ω; h)

χ2
4 m+2

(
1 + α

2

) < CXX(ω) <
(4 m + 2) ĈXX(ω; h)

χ2
4 m+2

(
1− α

2

) , (1.4)

where χ2
ν(α) denotes a number such that the probability

Prob
[
χ2

ν < χ2
ν(α)

]
= α .

The analytical result in (1.4) is pleasing, but it assumes that n is suffi-
ciently large so that ĈXX(ω1), . . . , ĈXX(ωM ) are independent χ2 random
variables. In many signal processing problems, as will be seen throughout
the book, large sample methods are inapplicable. This is either because
of time constraints or because the signal of interest is non-stationary and
stationarity can be assumed over a small portion of data only.

There are cases where small sample results, obtained analytically, do ex-
ist (Shenton and Bowman, 1977; Field and Ronchetti, 1990). However, more
often it is the case that these results cannot be attained and one may have
to resort to Monte Carlo simulations (Robert and Casella, 1999). We will
recall the problem of estimating the 100α percent confidence interval for
power spectral densities in Chapter 2, where a bootstrap-based solution is
described.

The bootstrap was introduced by Bradley Efron (1979a,b, 1981, 1982)
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more than two decades ago, mainly to calculate confidence intervals for pa-
rameters in situations where standard methods were not applicable (Efron
and Gong, 1983). An example of this would be a situation where the number
of observations is so small that asymptotic results are unacceptably inac-
curate. Since its invention, the bootstrap has seen many more applications
and has been used to solve problems which would be too complicated to
be solved analytically (Hall, 1992; Efron and Tibshirani, 1993). Before we
continue, let us clarify several questions that we have been frequently asked
in the past.

What is the bootstrap? Simply put, the bootstrap is a method which does
with a computer what the experimenter would do in practice if it were pos-
sible: they would repeat the experiment. With the bootstrap, a new set of
experiments is not needed, instead, the original data is reused. Specifically,
the original observations are randomly reassigned and the estimate is re-
computed. These assignments and recomputations are done a large number
of times and considered as repeated experiments. One may think that the
bootstrap is similar to Monte Carlo simulations. However, this is not the
case. The main advantage of the bootstrap over Monte Carlo simulations is
that the bootstrap does not require the experiment to be repeated.

From a data manipulation point of view, the main idea encapsulated by
the bootstrap is to simulate as much of the “real world” probability mech-
anism as possible, substituting any unknowns with estimates from the ob-
served data. Through the simulation in the “bootstrap world”, unknown
entities of interest in the “real world” can be estimated as indicated in Fig-
ure 1.1. The technical aspects of such simulation are covered in the next
chapter.

Why is the bootstrap so attractive? The bootstrap does not make the
assumption of a large number of observations of the signal. It can answer
many questions with very little in the way of modelling, assumptions or
analysis and can be applied easily. In an era of exponentially declining
computational costs, computer-intensive methods such as the bootstrap are
becoming a bargain. The conceptual simplicity of bootstrap methods can
sometimes undermine the rich and difficult theory upon which they are
based (Hall, 1992; Shao and Tu, 1995). In the next chapter, we will provide
a review of the bootstrap theory in a manner more accessible to signal
processing practitioners.

What can I use the bootstrap for? In general, the bootstrap is a method-
ology for answering the question we posed earlier, that is, how accurate is
a parameter estimator? It is a fundamental question in many signal pro-
cessing problems and we will see later how one, with the bootstrap, can
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Estimated

probability

model
data

Observed

X = {X1, X2, . . . , Xn}

Statistic

of interest

θ̂ = s(X )

Unknown

probability

model
sample

Bootstrap

Bootstrap

replication

F̂F

θ̂∗ = s(X∗)

BOOTSTRAP
WORLD

REAL WORLD

X∗ = {X∗
1 , X∗

2 , . . . , X∗
n}

Fig. 1.1. The bootstrap approach, adapted from Efron and Tibshirani (1993,
Fig. 8.3). See Chapter 2 for a technical interpretation of this figure.

solve many more problems encountered by a signal processing engineer to-
day, for example, signal detection. This text will also provide an answer to
the question regarding the choice of an estimator from among a family of
estimators using the bootstrap. We briefly discuss this topic in Chapter 5,
where we consider the optimisation of trimming for the trimmed mean in a
radar application (see also the work of Léger et al. (1992), for example).

Is the bootstrap always applicable? Theoretical work on the bootstrap
and applications have shown that bootstrap methods are potentially supe-
rior to large sample techniques. A danger, however, does exist. The signal
processing practitioner may well be attracted to apply the bootstrap in an
application to avoid the use of methods that invoke strong assumptions, such
as asymptotic theory, because these are judged inappropriate. But in this
case the bootstrap may also fail (Mammen, 1992; Young, 1994). Special
care is therefore required when applying the bootstrap in real-life situa-
tions (Politis, 1998). The next chapter provides the fundamental concepts
and methods needed by the signal processing practitioner to decide when
and how to apply the bootstrap successfully.

Applications of bootstrap methods to real-life engineering problems have
been reported in many areas, including radar and sonar signal processing,
geophysics, biomedical engineering and imaging, pattern recognition and
computer vision, image processing, control, atmospheric and environmental
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research, vibration analysis and artificial neural networks. In almost all these
fields, bootstrap methods have been used to approximate the distribution of
an estimator or some of its characteristics. Let us list in no particular order
some of the bootstrap engineering applications that we found interesting.

Radar and sonar: The bootstrap has been applied to radar and sonar
problems for more than a decade. Nagaoka and Amai (1990, 1991) discuss
an application in which the distribution of the estimated “close approach
probability” is derived to be used as an index of collision risk in air traffic
control. Hewer et al. (1996) consider a wavelet-based constant false alarm
rate (CFAR) detector in which the bootstrap is used to derive the statistics
of the detector from lexicographically ordered image vectors. Anderson and
Krolik (1998a,b, 1999) use the bootstrap in a hidden Markov model approx-
imation to the ground range likelihood function in an over-the-horizon radar
application.

Ong and Zoubir (1999a,b, 2000b, 2003) consider bootstrap applications
in CFAR detection for signals in non-Gaussian and correlated interference,
while Zoubir et al. (1999) apply bootstrap methods to the detection of land-
mines. Böhme and Maiwald (1994) apply bootstrap procedures to signal
detection and location using sensor arrays in passive sonar and to the anal-
ysis of seismic data.

Krolik et al. (1991) use bootstrap methods for evaluating the performance
of source localisation techniques on real sensor array data without precise
a priori knowledge of true source positions and the underlying data distri-
bution (see also (Krolik, 1994)). Reid et al. (1996) employ bootstrap based
techniques to determine confidence bounds for aircraft parameters given only
a single acoustic realisation, while Bello (1998) uses the bootstrap to cal-
culate cumulative receiver operating characteristic (ROC) curve confidence
bounds for sets of side-scan sonar data.

Geophysics: A similar interest in bootstrap methods has taken place in
geophysics. Fisher and Hall (1989, 1990, 1991) apply the bootstrap to the
problem of deciding whether or not palaeomagnetic specimens sampled from
a folded rock surface were magnetised before or after folding occurred. They
conclude that the bootstrap method provides the only feasible approach in
this common palaeomagnetic problem. Another application of bootstrap
methods in palaeomagnetism has been reported by Tauxe et al. (1991).
Kawano and Higuchi (1995) estimate with the bootstrap the average com-
ponent in the minimum variance direction in space physics.
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Ulrych and Sacchi (1995) propose an extended information criterion based
on the bootstrap for the estimation of the number of harmonics actually
present in geophysical data. Later, Sacchi (1998) uses the bootstrap for
high-resolution velocity analysis.

Lanz et al. (1998) perform quantitative error analyses using a bootstrap
technique while determining the depth and geometry of a landfill’s lower
boundary. Mudelsee (2000) uses bootstrap resampling in ramp function
regression for quantifying climate transitions, while Rao (2000) uses the
bootstrap to assess and improve atmospheric prediction models.

Biomedical engineering: Biomedical signal and image processing has
been another area of extensive bootstrap applications. Haynor and Woods
(1989) use the bootstrap for estimating the regional variance in emission
tomography images. Banga and Ghorbel (1993) introduce a bootstrap sam-
pling scheme to remove the dependence effect of pixels in images of the
human retina. Coakley (1996) computes bootstrap expectation in the re-
construction of positron emission tomography images. Locascio et al. (1997)
use the bootstrap to adjust p-values in multiple significance tests across pix-
els in magnetic resonance imaging. Maitra (1998) applies the bootstrap in
estimating the variance in parametric biomedical images. Verotta (1998)
investigates the use of the bootstrap to obtain the desired estimates of vari-
ability of system kernel and input estimates, while Bullmore et al. (2001)
use bootstrap based techniques in the time and wavelet domains in neu-
rophysiological time series analysis. Another interesting application of the
bootstrap is reported by Iskander et al. (2001) where it is used to find the op-
timal parametric model for the human cornea. Recently, Chen et al. (2002)
have employed the bootstrap for aiding the diagnosis of breast cancer in
ultrasound images.

Image processing: Bootstrap methods have been widely applied in im-
age processing, pattern recognition and computer vision. Jain et al. (1987)
apply several bootstrap techniques to estimate the error rate of nearest-
neighbour and quadratic classifiers. Hall (1989b) calculates confidence re-
gions for hands in degraded images. Archer and Chan (1996) apply the boot-
strap to problems in blind image restoration where they calculate confidence
intervals for the true image. Cabrera and Meer (1996) use the bootstrap to
eliminate the bias of estimators of ellipses, while Saradhi and Murty (2001)
employ the bootstrap technique to achieve higher classification accuracy in
handwritten digit recognition.
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Control: Bootstrap methods have found applications in statistical control.
Dejian and Guanrong (1995) apply bootstrap techniques for estimating the
distribution of the Lyapunov exponent of an unknown dynamic system using
its time series data. Seppala et al. (1995) extend the bootstrap percentile
method to include a series of subgroups, which are typically used in assessing
process control limits. They show that the method achieves comparatively
better control limit estimates than standard parametric methods. Ming and
Dong (1997) utilise the bootstrap to construct a prediction interval for fu-
ture observations from a Birnbaum–Saunders distribution that is used as a
failure time model. Jones and Woodall (1998) use the bootstrap in control
chart procedures, while Aronsson et al. (1999), apply bootstrap techniques
to control linear stochastic systems. They derive the optimal future control
signal so that the unknown noise distribution and uncertainties in parameter
estimates are taken into account. Recently, Tjärnström and Ljung (2002)
have used the bootstrap to estimate the variance of an undermodelled struc-
ture that is not flexible enough to describe the underlying control system
without the need for Monte Carlo simulations.

Environmental engineering: Bootstrap techniques have found several
applications in atmospheric and environmental research. Hanna (1989) uses
the related jackknife procedure and the bootstrap for estimating confidence
limits for air quality models. The resampling procedures have been ap-
plied to predictions by a number of air quality models for the Carpentaria
coastal dispersion experiment. Downton and Katz (1993) use the bootstrap
to compute confidence intervals for the discontinuity in variance of temper-
ature time series, while Krzyscin (1997) infers about the confidence limits of
the trend slope and serial correlation coefficient estimates for temperature
using the bootstrap.

Artificial neural networks: Bootstrap techniques have also been applied
in the area of artificial neural networks. Bhide et al. (1995) demonstrate the
use of bootstrap methods to estimate a distillation process bottoms’ compo-
sition. Tibshirani (1996) discusses a number of methods for estimating the
standard error of predicted values from a multilayered perceptron. He finds
that bootstrap methods perform best, partly because they capture variabil-
ity due to the choice of starting weights. LeBaron and Weigend (1998) use
the bootstrap to compare the uncertainty in the solution stemming from the
data splitting with neural-network specific uncertainties in application to fi-
nancial time series. Franke and Neumann (2000) investigate the bootstrap
methods in the context of artificial neural networks used for estimating a


