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The mathematical construct that runs through the analysis of each of the topics
covered in this book, and which therefore unifies the mathematical treatment, is the
generating function. Although the reader is introduced to modern analytical tools,
such as path integrals and field-theoretical formalism, the book is self-contained in
that basic concepts are developed and relevant fundamental findings fully discussed.
The book also provides an excellent introduction to frontier topics such as fractals,
scaling and critical exponents, path integrals, application of the GLW Hamiltonian
formalism, and renormalization group theory as they relate to the random walk
problem. Mathematical background is provided in supplements at the end of each
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Preface

We begin this preface by reporting the results of an experiment. On April 23, 2003,
we logged onto INSPEC – the physical science and engineering online literature
service – and entered the phrase “random walk.” In response to this query, INSPEC
delivered a list of 5010 articles, published between 1967 and that date. We then
tried the plural phrase, “random walks,” and were informed of 1966 more papers.
Some redundancy no doubt reduces the total number of references we received to
a quantity less than the sum of those two figures. Nevertheless, the point has been
made. Random walkers pervade science and technology.

Why is this so? Think of a system – by which we mean just about anything – that
undergoes a series of relatively small changes and that does so at random. It is more
likely than not that important aspects of this system’s behavior can be understood
in terms of the random walk. The canonical manifestation of the random walk is
Brownian motion, the jittering of a small particle as it is knocked about by the
molecules in a liquid or a gas. Chitons meandering on a sandy beach in search of
food leave a random walker’s trail, and the bacteria E. coli execute a random walk
as they alternate between purposeful swimming and tumbling. Go to a casino, sit
at the roulette wheel and see what kind of luck you have. The height of your pile of
chips will follow the rules governing a random walk, although in this case the walk
is biased (see Chapter 5), in that, statistically speaking, your collection of chips
will inevitably shrink.

We could go on. Random walks play a role in the analysis of the movements of
stock prices. A Random Walk down Wall Street, by Burton Malkiel has just been
published completely revised, following eight previous editions. Random Walks,
Critical Phenomena, and Triviality in Quantum Field Theory, by Roberto Fernandez
et al. focuses on the behavior of quantum field theory in higher dimensions. There
are also Random Walks and Other Essays: Ruminations of a so-so Manager,
by René Azurin; Random Walk: A Novel for a New Age, by Lawrence Block,
and the record Random Walks Piano Music, by David Kraehenbuehl and Martha

xi
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Braden. Which is to say, the idea of the random walk has seeped into our collective
unconscious.

In this book, we hope to acquaint the reader with powerful techniques for the
analysis of random walks. The book is intended for the interested student or re-
searcher in physics, chemistry, engineering, or mathematics. It is our hope that
the level, style, and content of the book will be appealing and useful to advanced
undergraduate students, graduate students, and research scientists in all disciplines.
The mathematical techniques used in developing the theory are either explained
in the text proper or relegated to supplements at the end of each chapter when it
was thought that their inclusion would interrupt the flow of the discussion. We are
hopeful that a student with a good understanding of calculus ought to be able to
follow much of the analytical manipulations. However, there are instances where
more advanced mathematical familiarity would be helpful.

The first five chapters of this book focus on features of a variety of unrestricted
walks – that is to say, the trails left by walkers that retain no memory of where they
have visited previously – including biased walks, persistent walks, continuous time
walks, continuous flow walks, and walks confined to restricted regions of space.
The treatment is standard for the most part. However, we attempt to introduce a
language and a point of view based on generating functions, which is consistent
with a more modern field-theoretical approach to the subject. This method will be
fully developed in the later chapters, when we must confront the complications
introduced by requiring the walk to be self-avoiding, meaning that the walker’s
path can never intersect itself. The generating function not only provides for a
field-theoretical representation of the walker’s statistical behavior, but also allows
for the connection to a statistical mechanical model of magnetism. The identification
of random walks and magnetism has led to a quantum jump in our understanding
of the effects of self-avoidance; it makes available to the theorist the full arsenal of
analytical techniques that proved so successful in unraveling the complex properties
of systems that undergo continuous phase transitions.

A brief overview of the subjects covered in this book is as follows. Chapter 1
begins with a discussion of the properties of a one-dimensional walk. The chapter
is intended as a sort of overture, in that points of view and tricks are introduced that
we develop more fully in later chapters. Chapter 2 contains a serious discussion of
the meaning, nature, and implementation of the generating function in the context
of the random walk. In Chapter 3, we utilize the generating function to investigate
various aspects of unrestricted walks, including recurrence, mean number of sites
visited, and first passage times. Chapter 4 – which relies heavily on the wonderful
little book Random Walks in Biology, by Berg, and contains discussions of the
effects of boundary conditions on walks – introduces the electrostatic analogy for
the analysis of a walk in the steady state. Biased and persistent walks make their
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appearance in Chapter 5. We generalize the method of treating persistent walks
in one dimension to higher dimensional walks and present complete solutions for
persistent walks in two and three spatial dimensions. Chapter 6 is devoted entirely
to the problem of characterizing the average shape of the trail left by a random
walker. We focus on a particular quantitative measure of the shape of an object
that is unusually well suited to the kind of analytical tools that now exist for the
characterization of the properties of a random walk.

It should be mentioned that, in each of these chapters, we attempt to point out the
usefulness of the concepts of models of actual physical and biological processes
as the subject is developed. No attempt is made at a comprehensive comparison
between predictions of the model and experiments on particular systems. We direct
the reader to Weiss’ book Aspects and Applications of the Random Walk for such
detailed comparisons.

The random walk is one of the most important and intuitively appealing examples
of a statistical field theory. It is a useful pedagogical model with which to introduce
someone to the latest techniques of such a theory, such as Ginzburg–Landau–Wilson
effective Hamiltonians, renormalization group theory, and graphical techniques.
Finding and understanding the original literature, particularly when one is branching
out beyond his or her field of specialty, can be a daunting task. We have tried
to reorganize and synthesize the most recent advances in the subject, which in
many cases are quite formidable in formulation. In so doing, we intended to make
these theories of random walks accessible to those who will find the model useful
but are not well versed in the mathematical techniques upon which many recent
theoretical developments are based. We set out to accomplish this task in Chapters 7
through 12.

A reading of the table of contents clearly indicates what each of these chapters
entails. Here we only point out a few of the features which we found to be particularly
interesting. In Chapter 7 we embark on a field theory formulation of the random
walk problem à la S.F. Edwards, by establishing a path integral expression for the
generating function. Once this is accomplished, it is straightforward to generate a
perturbation expansion in a quantity which measures “self-avoidance.” Doing this
allows for a gentle introduction to Feynman-like graphs and an exposition of the
associated graphical algebraic techniques. Using rather simple scaling arguments,
we clearly demonstrate the crucial role played by dimensionality in determining
the behavior of the walker, a feature that is stressed throughout the book. Finally,
a mean field theory of self-avoidance is identified which then permits the infinite
perturbation series to be summed. The mean field generating function yields an
expression for statistical properties of the walk which shows it is exactly equivalent
to Flory’s treatment of self-avoidance. Chapter 8 contains a brief review of general
scaling notions as they apply to the random walk.
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In Chapter 9, we establish the connection between the generating function and
the correlation function of a fictional magnetic system, the O(n) model. This is an
extremely important result, for it brings to the theorist a new set of mathematical
tools developed over years by statistical physicists in their study of critical phe-
nomena, which can now be applied to the random walk problem. Critical point
scaling, critical exponents, universality, effective Hamiltonians, and renormaliza-
tion group theory are now at our disposal. These topics are covered in the remaining
chapters.

Once the connection between magnetism and random walks has been established,
mean field theory and its extensions can be studied in well-known ways. This
is done in Chapters 9 and 10. The mean field result is shown to be identical to
that found previously, thereby independently demonstrating the correctness of the
O(n) representation of random walks. Fluctuations are incorporated in a spin wave
approximation, leading to a reasonable physical rendering of the condensed state of
the magnetic system as it relates to the random walker. We outline the conceptual
underpinnings of the renormalization group approach and present some simple
realizations of the method in Chapter 11. Chapter 12 contains a full treatment of
the renormalization group as it applies to self-avoiding random walks.

We have interspersed problems throughout each chapter. These are intended to be
an aid in understanding the material and to provide a way for the reader to participate
in the exploration of the subject. They were not designed to be excessively long or
difficult. We suggest students attempt their solution as they work their way through
the chapter as a way of gauging their understanding of the material. This book is
intended to be a textbook, appropriate for a stand-alone course on random walks
or as a supplemental text in a field in which an understanding of random walks
is required. For example, this text might prove useful in a course on polymers,
or one on advanced topics in statistical mechanics, or even quantum field theory.
Since our purpose here is to create a textbook, we have decided not to encumber
the presentation with a plethora of footnotes and an associated comprehensive
bibliography. It is our hope that the references we have included can be used to
track down the original articles dealing with the various aspects of the book. We
apologize to all those researchers who have made major contributions to the field
and whose work is not cited herein.

This book took shape over several years, and the authors have benefited from the
contributions of a number of people. We would like to express our gratitude to
Professor Fereydoon Family, who stimulated our initial interest in the subject of
random walks, and to Arezki Beldjenna whose contributions to the joint research
that underlies much of our chapter on shapes were especially important. We are
grateful to the students who sat in on the graduate seminar on random walks at
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UCLA for their enthusiasm and useful comments. Special thanks go to Maria R.
D’Orsogna for her careful reading of the notes that eventually became the text of
this book. The problem of the shape of a random walk was brought to our attention
by Professor Vladimir Privman, and for this we extend our heartfelt thanks.

The possibility of our writing a book on random walks was initially raised by
Professor Lui Lam. Our decision to publish with Cambridge University Press arose
from discussions with Rufus Neal. We thank him for brokering what has turned
out to be an enjoyable relationship with CUP, and for introducing us to Simon
Capelin, who has proven to be everything we could want in an editor. We thank
Fiona Chapman for her careful, and most cheerful, efforts as copy editor. We are
also grateful to Professor Warren Esty for permission to reproduce the images used
in Figures 1.1 and 1.2.

Finally, we are especially indebted to Professor Peter Young, who carefully read
the next-to-final version of this manuscript. His queries, comments, and suggestions
resulted in a greatly improved final version.

One of the authors (GG) expresses his appreciation to Tara and Bami Das for
making the early years among the best. He is also indebted to Nancy for her loving
support from the beginning to the end of this project. The other author (JR) thanks
his wife Alice for support, love, advice, and forbearance.





1

Introduction to techniques

This entire book is, in one way or another, devoted to a single process: the random
walk. As we will see, the rules that control the random walk are simple, even when
we add elaborations that turn out to have considerable significance. However, as
often occurs in mathematics and the physical sciences, the consequences of simple
rules are far from elementary. We will also discover that random walks, as interesting
as they are in themselves, provide a basis for the understanding of a wide range
of phenomena. This is true in part because random walk processes are relevant to
so many processes in such a wide range of contexts. It also follows from the fact
that the solution of the random walk problem requires the use of so many of the
mathematical techniques that have been developed and applied in contemporary
twentieth-century physics. We’ll start out simply, but it won’t be long before we
enounter aspects to the problem that invite – indeed require – intense scrutiny.

We begin our investigations by looking at the random walk in its most elementary
manifestation. The reader may find that most of what follows in this chapter is
familiar material. It is, nevertheless, useful to read through it. For one thing, review
is always helpful. More importantly, connections that are hinted at in the early
portions of this book will play an important role in later discussion.

1.1 The simplest walk

In the simplest example of a random walk the walker is confined to a straight line.
This kind of walk is called, appropriately enough, a one-dimensional walk. In this
case, steps take the walker in one direction or the other. We will call those two
directions “right” and “left.” This makes everything easy, as we can now describe
the location of the walker by drawing a horizontal line on the page and showing
where on the line the walker happens to be. Let’s imagine that the walker decides
where its next step takes it by flipping a coin. If the coin falls heads up the walker
takes a step to the right; if the coin falls tails up the walker takes a step to the left.

1
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The outcome of a flip of the coin is equally likely to be heads or tails, so the walk is
clearly unbiased, in that there is no preference for progress to the left or the right.

Suppose the walker has taken N steps. It will have flipped the coin N times. If
there were n heads and N − n tails, the walker will have taken n steps to the right
and N − n steps to the left. Suppose that each step is l meters long. Then the walker
will have moved a distance

d = nl − (N − n)l

= l(2n − N ) (1.1)

to the right. The walker will thus end up Nl meters to the left of where it started,
Nl meters to the right, or somewhere in between.

Before proceeding with the analysis of the behavior of the one-dimensional
walker, it is useful to inquire as to the relevance of the notion of such a walker to the
real world. As it turns out, the one-dimensional walk models a number of interesting
physical and mathematical processes. There is, for example, the diffusive spreading,
in one dimension, of a group of molecules or small particles as the result of thermal
motion. The one-dimensional walk also represents an idealization of a chain-like
polymer whose monomeric units can take on one of two possible conformations.
The outcome of a simple game of chance – for instance, one governed by the
flip of a coin – can also be described in terms of the eventual location of a one-
dimensional random walker. In this last context, one of the first applications of
notions eventually associated with the random walk is due to the mathematician de
Moivre in the solution of the “gambler’s ruin” problem (Montroll and Shlesinger,
1983).

An immediate and fairly obvious question about the walker is the sort one gener-
ally asks about the outcome of a random process, and that is with what probability
the walker ends up at a given location. That question is equivalent to asking with
what probability the walker throws a certain number of heads and tails in N tosses
of the coin. Another way to visualize this problem is to consider the act of flipping
a coin a “trial” and to call all flips that lead to heads a success. Then, clearly, the
above probability is the same as the probability of obtaining n successes in N trials.
Note that this interpretation applies to trials with more than two outcomes.

Back to the random walker. Suppose we want to know the probability that the
walker has gone a distance d to the right of its original position. In terms of the net
distance traveled, d = l(2n − N ), the number of heads that were thrown is given
by

n = 1

2

(
d

l
+ N

)
(1.2)
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Fig. 1.1. A particular outcome of three flips of a Roman coin displaying an image
of Emperor Septimius Severus (AD 193–211). Shown, left to right, is a head, then
a tail, then a head.

and the number of tails is

N − n = 1

2

(
N − d

l

)
(1.3)

Now, the probability of throwing a specific sequence that consists of n heads and
N − n tails in N coin tosses is equal to (1/2)N . See Figure 1.1. We arrive at the
result (1/2)N for this probability by noting that the probability of either result is one
half. Specifying the exact sequence of heads and tails is the same as specifying the
sequence of outcomes in a set of N trials, each of which has two possible results.
To obtain the probability of this sequence of outcomes, we multiply together the
probabilities of each outcome in the sequence. We obtain the probability in this
way because each toss of the coin is statistically independent of all other coin flips.
That is, the probability of a given flip yielding a head is 1/2, regardless of how all
previous tosses turned out.

The probability of throwing n heads and N − n tails in any order is (1/2)N

multiplied by the number of sequences of n heads and N − n tails. See, for example,
Figure 1.2. This number is simply the binomial coefficient:(

N
n

)
= N !

n!(N − n)!
. (1.4)

To derive the combinatorial factor in (1.4) in the case of the coin flips depicted
in Figures 1.1 and 1.2, imagine the sequence of flips in Figure 1.1 as an array of
coins. Then shuffle the coins in all possible ways. There are 3 × 2 × 1 = 3! ways
of doing this (three possibilities for the leftmost coin, two for the next in line and
only one left to place at the far right). However, in shuffling the coins, you have
overcounted the number of ways in which heads and tails can turn out. Switching
the first and third coins in Figure 1.1 does not change the sequence of heads and
tails as both are heads. To compensate for this overcounting, we divide 3! by 2!, the
number of ways of shuffling, or permuting, the two heads. This leaves us with three
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Fig. 1.2. All outcomes of three flips of the Roman coin in Figure 1.1 in which one
of the flips turns up tails and the other two turn up heads.

distinct ways of having two heads and a tail turning up. In general, one computes
the number ways in which one can end up with n heads and N − n tails in N flips of
a coin by imagining the results of the flip being lined up as in Figure 1.1. Then one
shuffles the coins in all possible ways, leading to the factor N !, which one divides
by the number of ways of shuffling the n heads among themselves and the number
of ways of shuffling the N − n tails among themselves (Boas, 1983).

The factor in (1.4) is clearly the one that accounts for all distinct walks. It is not
hard to see that the combinatorial factor N !/n!(N − n)! is also equal to the number
of different ways that the walker can take n steps to the right and N − n steps to
the left. Put another way, the factor N !/n!(N − n)! is equal to the number of walks
that consist of n steps to the right and N − n steps to the left.

All this leads to the result that the likelihood that the one-dimensional walker
will take n steps to the right and N − n steps to the left is

1

2N

N !

n!(N − n)!
(1.5)

Exercise 1.1
How does the result (1.5) change when the coin is “biased” and the probability of a
heads at each toss is p �= 1/2? Assume that p does not change from one coin toss
to the next.

We can recast our expressions in terms of the location of the walker. Using (1.2)
and (1.3), we have for the number of N -step walks that take the walker a distance
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d to the right of its original location

C(N , d) = N !

/(
N + d/ l

2

)
!

(
N − d/ l

2

)
! (1.6)

and for the probability that the walker ends up a distance d to the right of its starting
point

P(N , d) = 1

2N
C(N , d)

= 1

2N
N !

/(
N + d/ l

2

)
!

(
N − d/ l

2

)
! (1.7)

The quantity P(N , d) in (1.7) is called the binomial probability distribution.
The results above allow one to calculate a good deal about the one-dimensional

random walk. However, there is much that can be found out without direct recourse
to them. In the next few sections we will see how much information can be extracted
from fairly simple and general arguments.

1.2 Some very elementary calculations on the simplest walk

The first question that we will answer about the walker is where, on the average, it
ends up. Now, the answer to that question is one that you can come up with without
having to do an actual calculation. On the average, the walker will take as many
steps to the right as it does to the left. The mean distance to the right from the point
of departure is equal to zero.

We can do a little better than the above argument. We imagine an ensemble of
walkers, performing their walks in lockstep. We note the location of each of them,
and we calculate the average position by adding up the locations of all the walkers
and dividing by the number of walkers in the ensemble. If the position of the i th
walker is xi , then the mean position of a set of M walkers is

x = 1

M

M∑
i=1

xi (1.8)

If we denote by w(x) the number of walkers who have ended up at x , then x as
given by the above equation is also equal to

x = 1

M

∑
x

xw(x) (1.9)

Given that it is equally likely that a walker will take a step to the right as to the left,
we know that there will be as many walkers at −x as at x , at least on the average.
This means that the two terms xw(x) and −xw(−x) will cancel each other out in
the sum in (1.9).
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Of course, the cancellation will not be perfect in an actual ensemble of walkers.
However, if we consider an enormous number of such ensembles, and take a sort
of “super” average, then such cancellation is, indeed, achieved.

This doesn’t mean that a given walker inevitably ends up where it started, or even
that it ends up near its starting point. To refine our picture of the random walk, let’s
calculate the mean square displacement from the point of departure. This quantity,
x2, is given for a particular walk by

x2 =
(

N∑
j=1

� j

)2

(1.10)

Here, � j is the displacement at the j th step.1 That is to say that at the j th step the
walker moves a distance � j to the right. Using

x =
N∑

j=1

� j (1.11)

one can argue that x = 0 by pointing out that � j = 0. This is an alternative deriva-
tion of the result immediately above. In the case of x2, we expand the right hand
side of (1.10) and then average.

x2 =
(

N∑
j=1

� j

)2

=
∑

j

�2
j +

∑
j �=k

� j�k

=
∑

j

�2
j +

∑
j �=k

� j × �k (1.12)

The last line in Equation (1.12) expresses the fact that each decision to take a step
to the right or left is independent of every other decision. Because � j = 0 for all

� j , the contribution of the cross terms is equal to zero. We are left with
∑

j �2
j . We

suppose that the length of each step is the same, so the square of the displacement
at each step is equal to a fixed number, which we will call l. This means that

x2 = Nl2. (1.13)

The root mean square displacement, which measures how far away from its starting
point the walker has gotten, on the average, is, then given by√

x2 = l
√

N (1.14)

1 If the walker takes a step to the left, then � j is negative
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The distance that the one-dimensional random walker has wandered away from its
starting point goes as the square root of the number of steps it has taken.

Note that (1.14) implies that the net displacement of a random walker from the
origin scales as a fractional power of the number of steps that the walker has taken.
We will see that power laws pervade any quantitative discussion of the average
behavior of a random walker.

Worked-out example
Generate a formula for xn for arbitrary values of n.

Solution
The quantities on the left hand sides of (1.8) – (1.14) are known as moments of the
random walk distribution. The quantity xn is referred to as the nth moment of the
distribution. The general form of this quantity is

xn = 1

2N

N∑
m=0

((2m − N ) l)n N !

m!(N − m)!
(1.15)

Here, we have made use of (1.1) and (1.5). Suppose we were interested in one of
the higher moments of the distribution. For example, suppose we wanted to find
x4. How would we go about doing that? We might expand the sum of the �i ’s,
raised to the fourth power, in a version of the calculation indicated in (1.12). This
would lead, in due course, to an answer. In fact, calculations of x3 and x4 using
(1.11) are posed as a problem later on in this chapter. However, there is another
approach, based on the notion of a generating function (Wilf, 1994), that yields a
straightforward algorithm for obtaining all moments of the distribution. What we
do is note that the quantity N !/m!(N − m)! is a binomial coefficient. That is, this
quantity appears as the coefficient of the term wm in the expansion of (1 + w)N in
powers of w:

(1 + w)N =
N∑

m=0

N !

m!(N − m)!
wm (1.16)

Replace w by ey , and divide by 2N . We have

1

2N

(
1 + ey

)N = 1

2N

N∑
m=0

N !

m!(N − m)!
emy (1.17)

Let’s call the function on the left hand side of (1.17) g(y). Suppose we set y = 0
in (1.17). We generate the equality g(0) = (1/2N )

∑N
m=0 N !/m!(N − m)! = (1 +

1)N/2N = 1.
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To find the moments, we take derivatives. For example,

d

dy
g(y)

∣∣∣∣
y=0

= 1

2N

N∑
m=0

N !

m!(N − m)!
memy

∣∣∣∣∣
y=0

= 1

2N

N∑
m=0

N !

m!(N − m)!
m

≡ m

= d

dy

1

2N
(1 + ey)N

∣∣∣∣
y=0

= Ney (1 + ey)N−1

2N

∣∣∣∣
y=0

= N
(1 + 1)N−1

2N

= N

2
(1.18)

This tells us both that m = N/2 and that m = dg(y)/dy|y=0. We can readily gen-
eralize this result to

mn = dn

dyn
g(y)

∣∣∣∣
y=0

(1.19)

Making use of this result – and noting that x = N − 2m – we can rewrite the
expression for xn as follows:

xn = ln

(
N − 2

d

dy

)n

g(y)

∣∣∣∣
y=0

(1.20)

We can do a bit more. We rewrite the function g(y) as follows:

g(y) = eN y/2

(
ey/2 + e−y/2

2

)N

= eN y/2 cosh(y/2)N (1.21)

Then, we note that(
N − 2

d

dy

)
eN y/2 cosh(y/2)N

= cosh(y/2)N

(
N − 2

d

dy

)
eN y/2 − 2

d

dy
cosh(y/2)N

= 0 − 2
d

dy
cosh(y/2)N (1.22)
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We can carry this calculation out for the case of higher powers of N − 2d/dy as
applied to the function g(y), and we find in general that

(
N − 2

d

dy

)n

g(y) = (−2)n dn

dyn
cosh(y/2)N (1.23)

Exercise 1.2
Prove (1.23) by induction, or any other method you like.

This means that

xn = (−2l)n dn

dyn
cosh(y/2)N

∣∣∣∣
y=0

(1.24)

Then,

x2 = 4l2 d2

dy2
cosh(y/2)N

∣∣∣∣
y=0

= 4

(
N cosh(y/2)N

4
+ (−1 + N )N cosh(y/2)−2+N sinh(y/2)2

4

)∣∣∣∣
y=0

= Nl2 (1.25)

as found earlier (see (1.13)).
The next non-zero moment is x4. We find

x4 = 16l4 d4

dy4
cosh(y/2)N

∣∣∣∣
y=0

= l4

8
N cosh

(
y

2

)−4+N (
(−4 + N ) (8 + 3(−4 + N )N )

− 4 (−4 + (−4 + N ) (−2 + N )N ) cosh(y) + N 3 cosh(2 y)
)∣∣

y=0

= l4 N (−2 + 3N ) (1.26)

Note that the average of the fourth power of the distance of a one-dimensional
random walker from its point of origin has a term going as the square of the number
of steps, N , and also a term going linearly in N . At large values of N , the term
going as N 2 dominates the expression. Comparing (1.26) and (1.25), we see that
when N is very large

x4/(x2)2 ≈ 3 (1.27)
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Exercise 1.3
Use the relationship x = ∑N

j=1 � j for a one-dimensional walk – where � j is the

displacement to the right of the walker at the i th step – to find x3 and x4. Make use of
the fact that �n

i is equal to zero when n is odd and also that �n
i = ln when n is even.

You will also make use of the fact that �
n1
j1
�

n2
j2

· · · �nm
jm

= �
n1
j1

× �
n2
j2

× · · · × �
nm
jm

when j1 �= j2 �= · · · �= jm .

1.3 Back to the probability distribution

Let’s return to the combinatorial factor in (1.4). Although the expression is complete,
in that we know perfectly well how to calculate each term in it, it is not of immediate
analytical use, especially when N , the number of random walk steps, is large. We
will now remedy this shortcoming by making use of Stirling’s formula for the
factorial to produce an expression more amenable to calculation. Stirling’s formula
is

ln n! ≈ n ln
(n

e

)
+ 1

2
ln (2πn) (1.28)

An approximation that holds with greater accuracy as n is increased.

1.3.1 Derivation of Stirling’s formula

The approximate form that we will use follows from the well-known expression
for the gamma function

�(x) =
∫ ∞

0
wx−1e−w dw (1.29)

The relationship between the gamma function and the factorial is

N ! = �(N + 1) (1.30)

This means

N ! =
∫ ∞

0
wN e−w dw (1.31)

The proof of the equality is readily established by integration by parts.
Figure 1.3 is a plot of the integrand in (1.31) when N = 10. Superimposed on

that plot is a Gaussian, shown as a dashed curve, which will be used to approx-
imate the integrand in the derivation of Stirling’s formula. How do we arrive at
the approximation by a Gaussian? First, we notice that the integrand is maximized
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Fig. 1.3. The integrand wN e−w, in (1.31), when N = 10, along with the Gaussian
curve, shown dashed here, which will be used to approximate that integrand, in
the derivation of Stirling’s formula.

with w = N . We notice this by replacing w in the integrand by N + δ, and then by
exponentiating everything in the integrand. This exponentiation yields

N ! =
∫ ∞

−N
dw exp [N ln(N + δ) − N − δ] (1.32)

Focusing on the exponent and expanding in powers of δ:

N ln(N + δ) − (N + δ) = N ln N + N ln (1 + δ/N ) − N − δ

= (N ln N − N ) + N

(
δ

N
− 1

2

δ2

N 2
+ · · ·

)
− δ

= (N ln N − N ) − δ2

2N
+ O

(
δ3

)
≡ (N ln N − N ) − (w − N )2

2N
+ · · · (1.33)

The Gaussian curve in Figure 1.3 is the function exp[10 ln 10 − 10 − (w −
10)2/20]. Suppose we replace the integrand by that Gaussian approximation. We
then get the following result for the integration, leading to the factorial

N ! ≈
√

2π N exp [N (ln N − N )] (1.34)

To see how good an approximation it is, let’s compare the natural logarithm of 10!
with the natural logarithm of the right hand side of (1.34).

ln 10! = 15.1 044 (1.35)

ln
(√

2π N exp [N (ln N − N )]
)

= 15.0 961 (1.36)
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The fractional difference between the right hand side of (1.35) and the right hand
side of (1.36) is about five parts in 104. The approximation gets even better as
N increases. When N = 100, the fractional difference between the logarithm of
Stirling’s formula and the log of the exact factorial is two parts in 106.

The formula works if n is large compared to 1. This means that the combinatorial
factor in (1.4) is well-approximated by

exp

[
N ln

(
N

e

)
+ 1

2
ln (2π N ) − n ln

(n

e

)
+ 1

2
ln (2πn)

− (N − n) ln

(
N − n

e

)
+ 1

2
ln (2π (N − n))

]
(1.37)

Let n = N
2 + m with m � N . Then the exponent in (1.37) can be expanded as

follows. We start with

ln

(
N

2
+ m

)
= ln

(
N

2

)
+ 2m

N
+ 1

2

(
2m

N

)2

+ · · · (1.38)

With the use of this equation, one obtains

N ln 2 − n2

2N
− 1

2
ln 2π N + O

(
n3

N 2
,

n

N

)
(1.39)

so the combinatorial factor has the form

2N

√
2π N

exp

[
− n2

2N
+ O

(
n3

N 2
,

n

N

)]
(1.40)

The number m is equal to n − N/2, and since by (1.2) n = d/2l + N/2, we have
m = d/2l. This means that the likelihood that a walker will end up a distance d
from its point of departure is given by

1√
2π N

exp

(
− d2

2Nl2

)
. (1.41)

In arriving at (1.41), we have divided by the requisite factor of 2N to arrive at a
probability density that is normalized to one.

The expression in (1.41) is a Gaussian. We will encounter this ubiquitous form
repeatedly in the course of our investigation of random walk statistics. It reflects the
consequences of the central limit theorem of statistics (Feller, 1968), as it applies
to the random walk process.
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Exercise 1.4
If N is large, then we can approximate the derivative of the log of N ! as follows:

d

d N
ln N ! ≈ ln N ! − ln(N − 1)!

N − (N − 1)

Use this approximation to derive the leading contribution to Stirling’s formula for
N ! (the first term on the right hand side of (1.28)).

1.4 Recursion relation for the one-dimensional walk

There is another way to investigate the one-dimensional random walk. The number
of N -step walks that begin at a given location and end up at another one can be
related to the number of N − 1-step walks that start at the same location and end
up nearby. If C(N ; x, y) is equal to the number of walks that start at x and end up
at y then

C(N ; x, y) = C(N − 1; x, y − l) + C(N − 1; x, y + l) (1.42)

The formula (1.42) states mathematically that the number of N -step walks starting
at x and ending at y is equal to the sum of the number of N − 1-step walks that
start at x and end up at all points adjacent to y. This statement reflects the fact
that the last step that a walker takes before ending up at the point y is from a
neighboring location. This fact tells us that the sequence of steps taken by our
walker, considered as a sequence of random events has the form of a Markovian
process of the first order (Boas, 1983; Feller, 1968). That is, the probability of
occurrence of a given event is independent of the history consisting of all previous
events. In future chapters we will encounter higher order Markovian chains, and
even some that are non-Markovian.

The recursion relation (1.42) can be utilized to derive a familiar formula for the
combinatorial factors. Recall (1.4). This expression is for the number of N -step
walks that consist of n steps to the right and N − n steps to the left. Replacing the
terms in (1.42) by the equivalent expressions in terms of the combinatorial factors,
we have

N !

n!(N − n)!
= (N − 1)!

(n − 1)!(N − n)!
+ (N − 1)!

n!(N − n − 1)!
(1.43)

That (1.43) is true can be readily verified. It is also the relation between combina-
torial factors that leads to Pascal’s triangle.

There is more that can be done with this recursion relation. If one assumes a
gentle dependence on the end point y – which is, in fact, the case when N is
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large – the recursion relation can be approximated by a differential equation. This
is accomplished by rewriting (1.42) as follows:

C(N + 1; x, y) = (C(N ; x, y − l) + C(N ; x, y + l) − 2C(N ; x, y))

+ 2C(N ; x, y)

= l2

(
C(N ; x, y − l) + C(N ; x, y + l) − 2C(N ; x, y)

l2

)
+ 2C(N ; x, y)

≈ l2 ∂2C(N ; x, y)

∂y2
+ 2C(N ; x, y) (1.44)

Another way to write this equation is

C(N + 1; x, y) − 2C(N ; x, y) = l2 ∂2C(N ; x, y)

∂y2
(1.45)

Suppose we replace C(N ; x, y) by 2N P(N ; x, y), where P(N ; x, y) is the proba-
bility that a walker starting out at y ends up at x after N steps. Equation (1.45)
becomes

P(N + 1, x, y) − P(N ; x, y) = l2

2

∂2 P(N ; x, y)

∂y2
(1.46)

Again, imagine that N is large and that P(N ; x, y) is a slowly varying function of
N . Then, we approximate the right hand side of (1.46) by ∂ P(N ; x, y)/∂ N , and
we are left with the equation

∂ P(N ; x, y)

∂ N
= l2

2

∂2 P(N ; x, y)

∂y2
(1.47)

This equation occupies a place of central importance, not only in the study of the
random walk, but also in physical and biological sciences, as well as in engineering.
It is the diffusion equation. While there are a variety of ways in which it can be
solved, we will write down a solution with the understanding that one can verify that
it works. We assume that the reader has encountered the equation and its solution
previously, and assert that it is

P(N ; x, y) = α√
N

exp

(
(x − y)2

2l2 N

)
(1.48)

Exercise 1.5
Verify (1.48) by direct substitution into (1.47).
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1.5 Backing into the generating function for a random walk

So far our analysis of the statistics of the one-dimensional random walk problem is
the standard introduction to the subject that one finds in any elementary exposition
of the process. In the remaining portion of the section we would like to play some
games with the solution that we derived in (1.6) as a gentle way of initiating the
reader to the more advanced analytical techniques presented in subsequent sections.
It may seem at first that the development represents a retreat from the results
obtained earlier on, in that the solution is, in a sense, “hidden” in the expressions
to be derived. However, what we will have at the end is a set of definitions and
relationships that can be generalized into a powerful approach to the properties of
more generally defined random walks.

Recall that the expression on the right hand side of that equation is the combi-
natorial factor in (1.4), with n, the number of steps to the right, expressed in terms
of d through (1.2). The factor N !/n!(N − n)! also appears in the expansion of the
expression (1 + w)N in powers of w. That is

(1 + w)N =
N∑

n=0

N !

n!(N − n)!
wn (1.49)

It is a straightforward exercise to verify that the right hand side of (1.6) is the
coefficient of eiqd in (

eiql + e−iql
)N ≡ χ (q)N (1.50)

The above means that the number of N -step walks that take the walker a distance
d to the right of its starting point is the coefficient of eiqd in the expansion in terms
of eiq of the expression (2 cos q)N . There is a simple way to obtain that term. One
merely performs the integral

l

2π

∫ π/ l

−π/ l
e−iqdχ (q)N dq (1.51)

In other words, the number of walks of interest is obtained by taking the inverse
Fourier transform of χ (q) raised to the N th power. How (1.51) comes about is more
fully explained in the next section.

It is possible to regain the Gaussian form for the number of N -step walks by
performing the integral above, with the use of a couple of tricks and approximations.
First, we rewrite the expression for χ (q) as follows.

χ (q) = 2 cos ql

= eln(2 cos ql)

= 2eln(cos ql)

= 2eln(1−q2l2/2+··· )

= 2e−q2l2/2+O(q4) (1.52)
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If we neglect the terms of order q4 in the exponent,

χ (q)N ≈ 2N e−Nq2l2/2 (1.53)

Plugging this result into (1.51), we obtain

l

2π

∫ π/ l

−π/ l
e−iqd2N e−Nq2l2/2 dq ≈ 2N

√
2π N

e−d2/2Nl2
(1.54)

This is the same result as is given in (1.41). The integral was evaluated by assuming
that the upper and lower limits can be taken to plus and minus infinity. The error
that this assumption entails can be shown to be negligible.

There is more. Suppose we perform the geometrical sum

g(z, q) =
∞∑

N=0

χ (q)N zN = 1

1 − zχ (q)
(1.55)

The quantity χ (q)N , entering into (1.51), is the coefficient of zN in the expansion
of the right hand side of (1.55) in powers of the quantity z. The functions defined
by expansions of the kind given in (1.55) are called generating functions. A large
portion of this book is devoted to the exploration of their properties. If we perform
a further expansion of the “structure function” χ (q) in powers of q, we have

χ (q) ≈ 2e−q2l2/2 ≈ 2

(
1 − q2l2

2

)
(1.56)

This expansion is accurate for our purposes as long as the number of steps in the
walk, N , is large and the end-to-end distance, d, is not too great. As a practical
matter, we require d � N .

The right hand side of (1.55) is, then, replaced by

1

1 − 2z + zq2l2
(1.57)

and the number of N -step walks that displace the walker a distance d from its
starting point is equal to the inverse Fourier transform of the coefficient of zN of
the expression in (1.57).

At this point, it may have seemed as if the transformations that have been per-
formed have had the effect of complicating, rather than simplifying, the problem
at hand. After all, the inverse Fourier transform is bad enough. The extraction of
a coefficient in a power series can be an arbitrarily difficult procedure. In the case
at hand, one has the right hand side of (1.55). As it turns out, there are also some
general prescriptions and a class of tricks that ease the difficulty of the latter pro-
cedure. To find the coefficient of zN in the function f (z), one simply performs the
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z = 1/χ(q)

Fig. 1.4. Contour for the integral in (1.58). The pole at z = 1/χ (q) when f (z) is
given by (1.55) is indicated.

following contour integral

1

2π i

∮
c

f (z)

zN+1
dz. (1.58)

The contour encircles the origin, as shown in Figure 1.4. It is assumed that there is no
significant singularity of the function f (z) inside the closed contour. The alert reader
will recognize this as Cauchy’s formula (Jeffreys, 1972) for N !dN/dzN f (z)|z=0.
The evaluation of the contour integral when f (z) looks like the right hand side of
(1.55) is relatively straightforward. One deforms the contour so that it encloses the
pole at z = 1/χ (k). Applying the formulas that apply to integration around simple
poles, one recovers the appropriate coefficient.

There is another way to recover the result for the number of walks from the
generating function. This method simplifies the extraction of the desired expression
when the number of steps, N , is large. Let the generating function be given by the
approximate form in (1.57). The integral over z is accomplished by exponentiating
the generating function and the denominator zN+1. The integral is now over the
function

exp
[−(N + 1) ln z − ln

(
1 − 2z + zq2l2

)]
(1.59)

The integral is evaluated by looking for an extremum in the exponent of the expres-
sion above. The equation for the extremum is

− N + 1

z
+ (2 − q2l2)

1 − 2z + zq2l2
= 0 (1.60)

Because N is large, the denominator of the second term on the left hand side of
(1.60) will be small. Writing z = 1/(2 − q2l2) + δ, we find δ of order 1/(N + 1).


