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Relativity

An Introduction to Special and General Relativity

Thoroughly revised and updated, and now also including special relativ-
ity, this book provides a pedagogical introduction to relativity. It is based
on lectures given by the author in Jena over the last decades, and covers
the material usually presented in a three-term course on the subject. It
is self-contained, but the reader is expected to have a basic knowledge of
theoretical mechanics and electrodynamics. The necessary mathematical
tools (tensor calculus, Riemannian geometry) are provided. The author
discusses the most important features of both special and general rel-
ativity, as well as touching on more difficult topics, such as the field
of charged pole–dipole particles, the Petrov classification, groups of mo-
tions, exact solutions and the structure of infinity.

The book is written as a textbook for undergraduate and introduc-
tory graduate courses, but will also be useful as a reference for practising
physicists, astrophysicists and mathematicians. Most of the mathemati-
cal derivations are given in full and exercises are included where
appropriate. The bibliography gives many original papers and directs
the reader to useful monographs and review papers.

hans stephani (1935–2003) gained his Diploma, Ph.D. and Habili-
tation at the Friedrich-Schiller Universität, Jena. He became Professor
of Theoretical Physics in 1992, and retired in 2000. He began lecturing in
theoretical physics in 1964 and published numerous papers and articles
on relativity over the years. He is also the author of four books.
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Preface

Special Relativity originally dealt with the symmetries of the electromag-
netic field and their consequences for experiments and for the
interpretation of space and time measurements. It arose at the end of
the nineteenth century from the difficulties in understanding the proper-
ties of light when this light was tested by observers at rest or in relative
motion. Its name originated from the surprise that many of the con-
cepts of classical non-relativistic physics refer to a frame of reference
(‘observer’) and are true only relative to that frame.

The symmetries mentioned above show up as transformation proper-
ties with respect to Lorentz transformations. It was soon realized that
these transformation properties have to be the same for all interacting
fields, they have to be the same for electromagnetic, mechanic, thermo-
dynamic, etc. systems. To achieve that, some of the ‘older’ parts of the
respective theories had to be changed to incorporate the proper transfor-
mation properties. Because of this we can also say that Special Relativity
shows how to incorporate the proper behaviour under Lorentz transfor-
mation into all branches of physics. The theory is ‘special’ in that only
observers moving with constant velocities with respect to each other are
on equal footing (and were considered in its derivation).

Although the words ‘General Relativity’ indicate a similar interpreta-
tion, this is not quite correct. It is true that historically the word ‘general’
refers to the idea that observers in a general state of motion (arbitrary
acceleration) should be admitted, and therefore arbitrary transforma-
tion of coordinates should be discussed. Stated more generally, for a
description of nature and its laws one should be able to use arbitrary
coordinate systems, and in accordance with the principle of covariance
the form of the laws of nature should not depend essentially upon the
choice of the coordinate system. This requirement, in the first place

xv



xvi Preface

purely mathematical, acquires a physical meaning through the replace-
ment of ‘arbitrary coordinate system’ by ‘arbitrarily moving observer’.
The laws of nature should be independent of the state of motion of the
observer. Here also belongs the question, raised in particular by Ernst
Mach, of whether an absolute acceleration (including an absolute rota-
tion) can really be defined meaningfully, or whether every measurable
rotation means a rotation relative to the fixed stars (Mach’s principle).

But more important for the evolution of General Relativity was the
recognition that the Newtonian theory of gravitation was inconsistent
with Special Relativity; in it gravitational effects propagate with an
infinitely large velocity. So a really new theory of gravitation had to be
developed, which correctly reflects the dynamical behaviour of the whole
universe and which at the same time is valid for stellar evolution and
planetary motion.

General Relativity is the theory of the gravitational field. It is based
on Special Relativity in that all laws of physics (except those of the
gravitational field) have to be written in the proper special-relativistic
way before being translated into General Relativity. It came into being
with the formulation of the fundamental equations by Albert Einstein
in 1915. In spite of the success of the theory (precession of the per-
ihelion of Mercury, deflection of light by the Sun, explanation of the
cosmological redshift), it had retained for a long time the reputation of
an esoteric science for specialists and outsiders, perhaps because of the
mathematical difficulties, the new concepts and the paucity of applica-
tions (for example, in comparison with quantum theory, which came into
existence at almost the same time). Through the development of new
methods of obtaining solutions and the physical interpretation of the
theory, and even more through the surprising astrophysical discoveries
(pulsars, cosmic background radiation, centres of galaxies as candidates
for black holes), and the improved possibilities of demonstrating general
relativistic effects, in the course of the last thirty years the general theory
of relativity has become a true physical science, with many associated
experimental questions and observable consequences.

The early neglect of relativity by the scientific community is also
reflected by the fact that many Nobel prizes have been awarded for the
development of quantum theory, but none for Special or General Rela-
tivity. Only in 1993, in the laudation of the prize given to J. H. Taylor, Jr.
and R. A. Hulse for their detection of the binary pulsar PSR 1913+16,
was the importance for relativity (and the existence of gravitational
waves) explicitly mentioned.



Preface xvii

Modern theoretical physics uses and needs ever more complicated
mathematical tools – this statement, with its often unwelcome conse-
quences for the physicist, is true also for the theory of gravitation. The
language of the general theory of relativity is differential geometry, and
we must learn it, if we wish to ask and answer precisely physical ques-
tions. The part on General Relativity therefore begins with some chap-
ters in which the essential concepts and formulae of Riemannian geom-
etry are described. Here suffix notation will be used in order to make
the book easier to read for non-mathematicians. An introduction to the
modern coordinate-free notation can be found in Stephani et al. (2003).

This book is based on the lectures the author gave in Jena through
many years (one term Special and two terms General Relativity), and
thus gives a rather concise introduction to both theories. The reader
should have a good knowledge of classical mechanics and of Maxwell’s
theory.

My thanks go to all colleagues (in particular in Jena), with whom
and from whom I have learnt the theory of relativity. I am especially
indebted to J. Stewart and M. Pollock for the translation of most of the
parts on General Relativity for the foregoing edition, M. MacCallum
for his critical remarks and suggestions, and Th. Lotze for his help in
preparing the manuscript.





Notation

Minkowski space: ds2 = ηab dxa dxb = dx2 + dy2 + dz2 − c2dt2

= dr2 − c2dt2 = −c2dτ2.

Lorentz transformations: xn′
= Ln′

m xm, Ln′
aLn′b = δba.

Special Lorentz transformation:

x′ =
x− vt√
1 − v2/c2

, ct′ =
ct− vx/c√
1 − v2/c2

.

Addition of velocities: v =
v1 + v2

1 + v1v2/c2
.

Four-velocity: un = dxn/dτ.

Riemannian space: ds2 = gab dxa dxb = −c2dτ2,

gabgbm = δam = gam, g = |gab|.
ε-pseudo-tensor: εabmn; ε1234 = 1/

√−g,

εabcdε
abmn = −2(gnc g

m
d − gmc gnd ).

Dualization of an antisymmetric tensor: F̃ ab = 1
2ε

abmnFmn.

Christoffel symbols: Γa
mn = 1

2g
ab(gbm,n + gbn,m − gmn,b).

Partial derivative: Ta,m = ∂Ta/∂x
m.

Covariant derivative: T a
;m = DT a/Dxm = T a

,m − Γa
mnTn,

Ta;m = DTa/Dxm = Ta,m − Γn
amTn.

Geodesic equation:
D2xi

Dλ2
=

d2xi

dλ2
+ Γi

nm

dxn

dλ
dxm

dλ
= 0.

Parallel transport along a curve xi(λ): DT a/Dλ = T a
;b dxb/dλ = 0.

Fermi–Walker transport:
DTn

Dτ
− 1
c2

Ta

(
dxn

dτ
D2xa

Dτ2
− dxa

dτ
D2xn

Dτ2

)
= 0.

xix



xx Notation

Lie derivative in the direction of the vector field ak(xi):

LaT
n = Tn

,ka
k − T kan,k = Tn

;ka
k − T kan;k,

LaTn = Tn,ka
k + Tka

k
,n = Tn;ka

k + Tka
k
;n.

Killing equation: ξi;n + ξn;i = Lξgin = 0.

Divergence of a vector field: ai;i =
1√−g

(
√−gai),i.

Maxwell’s equations: Fmn
;n = (

√−gFmn),n/
√−g = jm/c,

F̃mn
;n = 0.

Curvature tensor:

am;s;q − am;q;s = abR
b
msq,

Rb
msq = Γb

mq,s − Γb
ms,q + Γb

nsΓ
n
mq − Γb

nqΓ
n
ms,

Ramsq = 1
2 (gaq,ms + gms,aq − gas,mq − gmq,as) + non-linear terms.

Ricci tensor: Rmq = Rs
msq = −Rs

mqs; Rm
m = R.

Field equations: Gab = Rab − 1
2Rgab = κTab.

Perfect fluid: Tab = (µ + p/c2)uaub + pgab.
Schwarzschild metric:

ds2 =
dr2

1 − 2M/r
+ r2(dϑ2 + sin2 ϑ dϕ2) − (1 − 2M/r)c2dt2.

Robertson–Walker metric:

ds2 = K2(ct)
[

dr2

1 − εr2
+ r2(dϑ2 + sin2 ϑ dϕ2)

]
− c2dt2.

Hubble parameter: H(ct) = K̇/K.

Acceleration parameter: q(ct) = −KK̈/K̇2.

κ = 2.07 × 10−48 g−1cm−1s2, cH = 55 km/s Mpc.

2MEarth = 0.8876 cm, 2MSun = 2.9533 × 105 cm.



I. Special Relativity

1

Introduction: Inertial systems and the
Galilei invariance of Classical Mechanics

1.1 Inertial systems

Special Relativity became famous because of the bewildering proper-
ties of length and time it claimed to be true: moving objects become
shorter, moving clocks run slower, travelling people remain younger. All
these results came out from a theoretical and experimental study of light
propagation as seen by moving observers. More technically, they all are
consequences of the invariance properties of Maxwell’s equations.

To get an easier access to invariance properties, it is appropriate
to study them first in the context of Classical Mechanics. Here they
appear quite naturally when introducing the so-called ‘inertial systems’.
By definition, an inertial system is a coordinate system in which the
equations of motion take the usual form

mẍα = Fα, α = 1, 2, 3 (1.1)

(Cartesian coordinates x1 = x, x2 = y, x3 = z, ẍα = d2xα/dt2). Expe-
rimentally, an inertial system can be realized in good approximation
by a system in which the stars are at rest. Inertial systems are not
uniquely defined; if Σ is such a system, then all systems Σ′ which orig-
inate from Σ by performing a spatial translation, a rotation about a
constant (time-independent) angle, a shift of the origin of time, or a
motion with constant velocity, are again inertial systems. Accelerated
systems such as steadily rotating systems are not inertial systems, cp.
also (15.2).

We shall now study the abovementioned transformations in more
detail.

1



2 Introduction: Inertial systems and Galilei invariance

1.2 Invariance under translations

Experimental results should not depend on the choice of the origin of
the Cartesian coordinate system one is using (‘homogeneity of space’).
So if there is a system of masses mN , then their equations of motion

mN r̈N = FN (1.2)

should be invariant under a translation by a constant vector b, i.e. under
the substitution

r′N = rN + b, ṙ′N = rN , F′
N = FN . (1.3)

Substituting (1.3) into (1.2), the invariance seems to hold trivially. But
a closer inspection of (1.2) shows that if we write it out as

mN r̈N = FN (rM , ṙM , t) (1.4)

(the forces may depend on the positions and velocities of all masses),
then the substitution r′N = rN + b leads to

mN r̈′N = FN (r′M − b, ṙ′M , t). (1.5)

This has the form (1.4) only if the force on a mass does not depend
on the positions rM of the (other) masses, but only on the distances
rN − rM , because then we have FN = FN (rN − rM , ṙM , t) → F′

N =
FN (r′N − r′M , ṙ′M , t); the b drops out. Closed systems, for which the
sources of all forces are part of the system, usually have that property.

Examples of equations of motion which are invariant against transla-
tion are mr̈ = g (motion in a homogeneous gravitational field) and the
motion of a planet (at position r) in the field of the Sun (at position rS)

mr̈ = f
r− rS

|r− rS |3
. (1.6)

In a similar way, experimental results should not depend on the choice
of the origin of time (‘homogeneity of time’), the equations of motion
should be invariant under a time translation

t′ = t+ b. (1.7)

An inspection of equations (1.4) shows that the invariance is only guar-
anteed if the forces do not explicitly depend on time (they are then
time-dependent only via the motion of the sources of the forces); this
again will hold if there are no external sources of the forces.

We thus can state that for closed systems the laws of nature do not
permit an experimental verification, or a sensible definition, of an abso-
lute location in space and time.



1.3 Invariance under rotations 3

1.3 Invariance under rotations

Rotations such as the simple rotation about the z-axis

x′ = x cosϕ+ y sinϕ, y′ = −x sinϕ+ y cosϕ, z′ = z, (1.8)

are best described using matrices. To do this, we first denote the Carte-
sian coordinates by

x1 = x1 = x, x2 = x2 = y, x3 = x3 = z. (1.9)

The convention of using xα as well as xα for the same set of variables
looks rather strange and even clumsy; the reason for this will become
clear when dealing with vectors and tensors in both Special and General
Relativity. As usual in relativity, we will use the Einstein summation
convention: summation over two repeated indices, of which always one
is lowered and one is raised.

The general rotation (orthogonal transformation) is a linear transfor-
mation and can be written in the two equivalent forms

xα′
= Dα′

β x
β , xα′ = Dα′βxβ (1.10)

(note the position of the indices on the Ds!). Here, and on later
occasions in Special and General Relativity, we prefer a notation which
distinguishes the new coordinates from the old not by a new symbol
(say yα instead of xα), but by a prime on the index. This convention
is advantageous for many calculations of a general kind, although we
shall occasionally deviate from it. The transformation matrices Dα′

β

mediating between the two systems thus have two kinds of indices.
Rotations leave angles and lengths fixed; so if there are two arbitrary

vectors xα and ξα, then their scalar product has to remain unchanged.
With

xα′ = Dα′βxβ , ξα′
= Dα′

γ ξ
γ (1.11)

that gives the condition

xα′ξα′
= Dα′βDα′

γ xβξ
γ = xβξ

β . (1.12)

For arbitrary vectors x and ξ this can be true only for

Dα′βDα′
γ = δβ

γ , α, β, γ = 1, 2, 3. (1.13)

Equation (1.13) characterizes the general orthogonal transformation. By
taking the determinants on both sides of it (note that Dα′β and Dα′

γ

are numerically identical) we get
∥∥Dα′β

∥∥2 = 1. (1.14)
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The transformations with
∥∥Dα′β

∥∥ = +1 are rotations; an example is the
rotation (1.8) with

Dα′β =


 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


 . (1.15)

Transformations with
∥∥Dα′β

∥∥ = −1 contain reflections such as, for
example, the inversion

x′ = −x,
y′ = −y,
z′ = −z,

⇒ Dα′β =


−1 0 0

0 −1 0
0 0 −1


 . (1.16)

To apply a rotation to the equations of motion, we first observe that
for time-independent rotations we have

xα′
= Dα′

β x
β ⇒ ẍα′

= Dα′
β ẍ

β . (1.17)

We then note that the force F is a vector, i.e. its components Fα trans-
form in the same way as the components of the position vector xα. If we
now multiply both sides of equation (1.1) by Dα′

β , we get

Dα′
β ẍ

β = mẍα′
= Dα′

β F
β = Fα′

; (1.18)

the form of the equation remains unchanged. But if we also take into
account the arguments in the components of the force,

mẍα′
= Dα′

β F
α(xβ , ẋβ , t) = Fα′

(xβ , ẋβ , t), (1.19)

we see that the Fα′
may depend on the wrong kind of variables. This

will not happen if the Fα depend only on invariants, which in practice
happens in most cases.

An example of an invariant equation is given by (1.6): the r− rS is a
vector, and the distance |r− rS | is rotationally invariant.

We thus can state: since the force is a vector, and for closed sys-
tems the force-components depends only on invariants, the equations of
motions are rotationally invariant and do not permit the definition of an
absolute direction in space.

1.4 Invariance under Galilei transformations

We consider two systems which are moving with a constant velocity v
with respect to each other:

r′N = rN − vt, t′ = t (1.20)
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(Galilei transformation). Because of ṙ′N = ṙN − v, r̈′N = r̈N , the equa-
tions of motion (1.4) transform as

mN r̈′N = mN r̈N = FN (r′M + vt, ṙ′M + v, t). (1.21)

Although the constant v drops out when calculating the acceleration,
the arguments of the force may still depend on v. The equations are
invariant, however, if only relative positions rM−rN (as discussed above)
and relative velocities ṙN − ṙM enter. This is usually the case if the
systems are closed and the equations are properly written. Take for
example the well known example of a motion in a constant gravitational
field g under the influence of friction,

mr̈ = −aṙ−mg. (1.22)

At first glance, because of the explicit ṙ occurring in it, this equation
seems to be a counterexample. But what is really meant, and is the
cause of the friction, is the relative velocity with respect to the air. The
equation (1.22) should correctly be written as

mr̈ = −a(ṙ− vAir)−mg, (1.23)

and the invariance is now obvious.
For closed systems, the equations of motions are invariant under Gali-

lei transformations; an absolute velocity cannot be defined. Stated dif-
ferently: only relative motions can be defined and measured (Galilei’s
principle of relativity).

We close this section with two remarks. In all three cases of invariances
we had to refer to closed systems; how far do we have to go to get a
really closed system? Is our Galaxy sufficient, or have we to take the
whole universe? Second, we saw that only relative velocities matter;
what about acceleration – why is this absolute?

1.5 Some remarks on the homogeneity of time

How can one check that space and time are really homogeneous? We
want to discuss that problem a little bit for the case of time.

We start with the notion ‘constant velocity’. How can one check that a
mass is moving with constant velocity? Of course by measuring distances
and reading clocks. How does one know that the clocks are going uni-
formly? After some consideration, and looking at standard procedures,
one concludes that good clocks are made by taking a periodic process
(rotation of the Earth, harmonic oscillator, vibration of a molecule) and
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dividing that into smaller parts. But how does one know that this fun-
damental process is really periodic – no clock to measure it is available!
The only way out is to define that process as being periodic. But which
kind of process should one use for that?

Of course, one has to consult Newton’s equations of motion

mr̈ =
d2r
dt2

= F (1.24)

and to take a process, such as the rotation of the Earth around the Sun,
which is periodic when these equations hold.

To see that really a definition of the time is hidden here in the equa-
tions of motion, consider a transformation

T = f(t) ⇒ dT = f ′dt, d/dt = f ′d/dT (1.25)

of the time. In the new time variable T the equations of motion (1.24)
read

f ′2
d2r
dT 2

+ f ′f ′′
dr
dT

= F; (1.26)

they no longer have the Newtonian form.
We conclude that the correct, appropriate time coordinate is that in

which the equations of motion take the simple form (1.24); the laws of
mechanics guarantee that such a time really exists. But it here remains
an open question whether this time coordinate, which is derived from
planetary motion, is also the appropriate time to describe phenomena
in other fields of physics such as light propagation. This questions will
be answered by Special Relativity – in the negative.

Exercises

1.1 Is the equation mr̈ − kr = 0 (harmonic oscillator) invariant
under translations?

1.2 Show that a rotation Dα′
β always has one real eigenvector w

with Dα′
β w

β = λwα, and that wα = (1, i, 0) is a complex eigen-
vector of the rotation (1.15). What are the corresponding eigen-
values?

1.3 Is mr̈ = f(x)r rotationally invariant?
1.4 Show that the Laplacian is invariant under rotations, i.e. that

∂2/∂xα∂xα = ∂2/∂xα′
∂xα′ holds.
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Light propagation in moving coordinate
systems and Lorentz transformations

2.1 The Michelson experiment

At the end of the nineteenth century, it was a common belief that light
needs and has a medium in which it propagates: light is a wave in a
medium called ether, as sound is a wave in air. This belief was shattered
when Michelson (1881) tried to measure the velocity of the Earth on its
way around the Sun. He used a sensitive interferometer, with one arm
in the direction of the Earth’s motion, and the other perpendicular to
it. When rotating the instrument through an angle of 90◦, a shift of the
fringes of interference should take place: light propagates in the ether,
and the velocity of the Earth had to be added that of the light in the
direction of the respective arms. The result was zero: there was no
velocity of the Earth with respect to the ether.

This negative result can be phrased differently. Since the system of
the ether is an inertial system, and that of the Earth is moving with a
(approximately) constant velocity, the Earth’s system is an inertial sys-
tem too. So the Michelson experiment (together with other experiments)
tells us that the velocity of light is the same for all inertial systems which
are moving with constant velocity with respect to each other (principle
of the invariance of the velocity of light). The speed of light in empty
space is the same for all inertial systems, independent of the motion of
the light source and of the observer.

This result does not violate Galilei’s principle of relativity as stated
at the end of Section 1.4: it confirms that also the ether cannot serve to
define an absolute velocity. But of course something is wrong with the
transformation law for the velocities: light moving with velocity c in the
system of the ether should have velocity c+v in the system of the Earth.

This contradiction can be given a geometric illustration (see Fig. 2.1).
Consider two observers Σ (coordinates x, y, z, t) and Σ′ (coordinates x′ =
x − vt, y′ = y, z′ = z, t′ = t), moving with constant velocity v with
respect to each other. At t = 0, when their coordinate systems coincide,
a light signal is emitted at the origin. Since for both of them the light
velocity is c, after a time T the light signal has reached the sphere

7
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Σ Σ′
νT

y, z y′, z′

x, x′

Fig. 2.1. Light propagation as seen by two observers in relative motion; t =
t′ = T.

x2 + y2 + z2 = c2T 2 for Σ, and (x− vT )2 + y2 + z2 = c2T 2 for Σ′. But
this a contradiction, the light front cannot be simultaneously at the two
spheres!

It will turn out that it is exactly this ‘simultaneously’ which has to be
amended.

2.2 The Lorentz transformations

Coordinates The wave front of light emitted at t = 0 at the origin has
reached the three-dimensional light sphere

x2 + y2 + z2 − c2t2 = 0 (2.1)

at the time t. Space and time coordinates enter here in a very symmetric
way. Therefore we adapt our coordinates to this light sphere and take
the time as a fourth coordinate x4 = ct. More exactly, we use

xa = (x, y, z, ct), xa = (x, y, z,−ct), a = 1, . . . , 4. (2.2)

The two types of coordinates are obviously related by means of a matrix
η, which can be used to raise and lower indices:

xa = ηabx
b,

xa = ηabxb,
ηab = ηab =




1
1

1
−1


, ηa

b = δa
b . (2.3)

Using these coordinates, (2.1) can be written as

xaxa = ηab x
axb = x2 + y2 + z2 − c2t2 = 0. (2.4)

Invariance of light propagation and Lorentz transformations We now
determine the coordinate transformations which leave the light sphere
(2.4) invariant, thus ensuring that the light velocity is the same in both
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systems. Unlike the Galilei transformations (1.20), where the time co-
ordinate was kept constant, it too is transformed here: the definition of
the time scale will be adjusted to the light propagation, as it is adjusted
to the equations of motion in Newtonian mechanics, cp. Section 1.4.

The transformations we are looking for should be one-to-one, and no
finite point should go into infinity; they have to be linear. Neglecting
translations, they have the form

xn′
= Ln′

a x
a, xm′ = Lm′b xb, Lm′b = ηm′n′ηabLn′

a (2.5)

(for the notation, see the remarks after equation (1.10); note that ηm′n′

and ηab have the same numerical components).
To give the light sphere the same form xnx

n = 0 = xn′
xn′ in both

coordinates, the transformations (2.5) have to satisfy

xn′
xn′ = Ln′

aLn′bxaxb = xbxb, (2.6)

which for all xa is possible only if

Ln′
aLn′b = δb

a, a, b, n′ = 1, . . . , 4. (2.7)

These equations define the Lorentz transformations, first given by Walde-
mar Voigt (1887). The discussion of these transformations will fill the
next chapters of this book.

If we also admit translations,

xn′
= Ln′

a x
a + cn

′
, cn

′
= const., (2.8)

we obtain the Poincaré transformations.

Lorentz transformations, rotations and pseudorotations Equation (2.7)
looks very similar to the defining equation (1.13) for rotations, Dv′

αDν′β

= δβ
α, to which it reduces when the time (the fourth coordinate) is kept

fixed:

Ln′
a =
(
Dν′

α 0
0 1

)
. (2.9)

Rotations leave xαxα = x2 + y2 + z2 invariant, Lorentz transformations
xaxa = x2 + y2 + z2 − c2t2.

We now determine the special Lorentz transformation which corre-
sponds to a motion (with constant velocity) in the x-direction. We start
from

x′ = Ax+Bct, y′ = y

ct′ = Cx+Dct, z′ = z
⇐⇒ Ln′

a =




A 0 0 B
0 1 0 0
0 0 1 0
C 0 0 D


. (2.10)
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When we insert this expression for Ln′
a into (2.7), we get the three

conditions A2 − C2 = 1, D2 − B2 = 1, AB = CD, which can be
parametrically solved by A = D = coshϕ, B = C = − sinhϕ, so that
the Lorentz transformation is given by

x′ = x coshϕ− ct sinhϕ, y′ = y,

ct′ = −x sinhϕ+ ct coshϕ, z′ = z.
(2.11)

The analogy with the rotations

x′ = x cosϕ− y sinϕ, z′ = z,

y′ = −x sinϕ+ y cosϕ, t′ = t
(2.12)

is obvious – but what is the physical meaning of ϕ in the case of the
pseudorotations (2.11)?

To see this, we consider the motion of the origin x′ = 0 of the moving
coordinate system Σ′ as seen from Σ. From x′ = 0 and (2.11) we have

v =
dx
dt

=
c sinhϕ
coshϕ

⇒ tanhϕ =
v

c
, (2.13)

ϕ is in a simple way related to the velocity v. If we substitute v for ϕ
in the pseudorotations (2.11), we get the well-known form

x′ =
x− vt√
1− v2/c2

, ct′ =
ct− vx/c√
1− v2/c2

, y′ = y, z′ = z (2.14)

of the special Lorentz transformation. This transformation describes the
transformation between a system Σ and a system Σ′ which moves in the
x-direction with constant velocity v with respect to Σ.

For small velocities, v/c � 1, we regain x′ = x − vt, i.e. the Galilei
transformation; we see that Newtonian mechanics is valid for small ve-
locities, discrepancies will appear only if the particles are moving very
fast. We shall come back to this question in Chapter 4.

If we solve (2.14) for the xa, we will get the same equations, with the
primed and unprimed coordinates exchanged and v replaced by −v.

2.3 Some properties of Lorentz transformations

In this section we shall discuss some of the more mathematical properties
of the Lorentz transformations. Many of the physical implications will
be dealt with in the following chapters, in particular in Chapter 3.

Group property The Lorentz transformations form a group. To prove
this, we remark that matrix multiplication is associative, and see by



2.3 Some properties of Lorentz transformations 11

inspection that the identity Ln′
a = δn

a is contained. Two successive
transformations yield

xm′′
= Lm′′

n′ xn′
= Lm′′

n′Ln′
a x

a = Lm′′
a x

a. (2.15)

This will be a Lorentz transformation if Lm
a satisfies (2.7), which is

indeed the case:

Lm′′
aLm′′d = Lm′′

n′Ln′
aLm′′b

′
Lb′

d = δb
nL

n′
aLb′

d = Lb′
aLb′

d = δd
a. (2.16)

In a similar way one can show that the inverse of a Lorentz transforma-
tion is again such a transformation.

Classification of Lorentz transformations The 4×4 matrices Ln′
a which

describe Lorentz transformations have 16 parameters which are subject
to the ten conditions (2.5); there are six independent Lorentz transfor-
mations, corresponding to three motions (e.g. in the direction of the
axes) and three rotations. As we shall show now, there are four distinct
types of Lorentz transformations.

From the defining equations (2.5) and (2.7) we immediately get∥∥Ln′
aLn′b

∥∥ =
∥∥δb

a

∥∥ = 1,
∥∥Ln′b

∥∥ =
∥∥ηn′m′

∥∥ · ∥∥ηab
∥∥ · ∥∥Lm′

a

∥∥ =
∥∥Lm′

a

∥∥,
(2.17)

so that ∥∥∥Ln′
a

∥∥∥ =
{

+1
−1

(2.18)

holds. Evaluating the (4,4)-component of (2.5), we obtain (remember
that indices are raised and lowered by means of η!)

1 = −η44Ln′
4Ln′4

= −ηn′m′
Ln′4Lm′4 = (L4′4)2 − (L1′4)2 − (L2′4)2 − (L3′4)2

(2.19)

and conclude that

L4′
4 =
{≥ +1
≤ −1

. (2.20)

Equations (2.18) and (2.20) show that there are four distinct classes of
Lorentz transformations. Those which do not contain reflections have
‖Ln

a‖ = +1 and are called proper. Transformations with L4
4 ≥ +1

are called orthochronous; because of ct′ = L4
4 ct+ · · · they preserve the

direction of time.

Normal form of a proper orthochronous Lorentz transformation By us-
ing an adapted coordinate system, any proper orthochroneous Lorentz
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transformation can be written in the form

Ln′
a =




♥ 0 0 ♥
0 × × 0
0 × × 0
♥ 0 0 ♥


 (2.21)

of direct product of a special Lorentz transformation (motion) (♥) and
a rotation (×) in the plane perpendicular to that motion. We leave the
proof to the reader, see Exercise 2.2.

Lorentz transformation for an arbitrarily directed velocity We start with
a question: how does a Lorentz transformation between two systems
whose spatial axes are parallel, as in Fig. 2.2, look ? By ‘parallel’ we
mean that, for a fixed time, x′ (for example) does not change if only y
and z vary: in

x′ = L1′
a x

a = L1′
1 x+ L1′

2 y + L1′
3 z + L1′

4 ct (2.22)

the L1′
2 and L1′

3 are assumed to be zero, and from the y′- and z′-
equations we see that also L2′

1, L2′
3, L

3′
1and L3′

2 should vanish. There
should be at least one component of the velocity, so we assume L1′

4 	= 0.
Inserting all this into the defining equations (2.7), the result may be
a surprise to the reader: the Lorentz transformation necessarily is of
the form (2.11) of a motion in the x-direction (which is preferred here
because of the assumption L1′

4 	= 0). So if the spatial axes of the two
systems should be parallel, then the motion must be in the direction of
one of the axes! For all other cases, the Lorentz transformations contain
also terms which cause a rotation of the spatial system. For rotations the
analogous effect is well known: none of the axes of a coordinate system
can remain unchanged unless it coincides with the axis of the rotation.

So one should not be surprised that the Lorentz transformation de-
scribing the motion of the system Σ′ with an arbitrarily directed velocity
V α (with no ‘extra’ rotation) looks rather complicated:

Σ

Σ′

νT

x

y

z

x′

y′

z′

Fig. 2.2. Lorentz transformations between parallel systems.
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La′
b =
(

(γ − 1)nαnβ + δα
β −vγnα/c

−vγnβ/c γ

)
, V α = vnα/c,

nαnα = 1, γ ≡ (1− v2/c2)−1/2, α, β = 1, 2, 3.

(2.23)

Note that the rotational part in (2.23), the term (γ−1)nαnβ , is of second
order in v/c.

Velocity addition formula for parallel velocities What is the result if we
perform two successive Lorentz transformations, both corresponding to
motions in the x-direction? Since the Lorentz transformations form a
group, of course again a transformation of that type – but with what
velocity?

Lorentz transformations are pseudorotations, i.e. they satisfy

x′ = x coshϕ1 − ct sinhϕ1, ct′ = −x sinhϕ1 + ct coshϕ1,

x′′ = x′ coshϕ2 − ct′ sinhϕ2, ct′′ = −x′ sinhϕ2 + ct′ coshϕ2.
(2.24)

To get (x′′, ct′′) in terms of (x, ct), we observe that one adds rotations
about the same axis by adding the angles:

x′′ = x coshϕ− ct sinhϕ,
ct′′ = −x sinhϕ− ct coshϕ,

ϕ = ϕ1 + ϕ2. (2.25)

To translate this relation into one for the velocities, we have to use
(2.13), i.e. tanhϕ = v/c, and the well-known theorem for the hyperbolic
tangent,

tanhϕ = tanh(ϕ1 + ϕ2) =
tanhϕ1 + tanhϕ2

1 + tanhϕ1 tanhϕ2
. (2.26)

We obtain
v =

v1 + v2
1 + v1v2/c2

. (2.27)

For small velocities, vn/c � 1, we get the Galilean addition formula
v = v1 + v2. If we take the velocity of light as one of the velocities (as a
limiting case, since the Lorentz transformations (2.14) are singular for
v = c), we get

v =
c+ v2

1 + v2/c
= c, (2.28)

the velocity of light cannot be surpassed.
On the other hand, if we take two velocities smaller than that of light,

we have, with v1 = c− λ, v2 = c− µ, λ, µ > 0,
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v =
2c− λ− µ

1 + (c− λ)(c− µ)/c2
= c

2c− λ− µ
2c− λ− µ+ λµ/c

=
c

1 + λµ/[c(2c− λ− µ)]
≤ c,

(2.29)

it is not possible to reach the velocity of light by adding velocities less
than that of light. The velocity addition formula (2.27) seems to indicate
that the velocity of light plays the role of a maximum speed; we shall
come back to this in the next chapter.

The addition of two non-parallel velocities will be considered in Sec-
tion 4.4.

Exercises

2.1 Show that the inverse of a Lorentz transformation is again a
Lorentz transformation.

2.2 Show by considering the eigenvalue equation La′
b xb = λxa that

the four eigenvalues λa of a proper orthochroneous Lorentz trans-
formation obey λ1λ2 = 1 = λ3λ4, and that by using the eigen-
vectors the Lorentz transformation can be written as indicated
in (2.21).

2.3 Show that the transformation (2.23) is indeed a Lorentz trans-
formation, and that origin of the system Σ′ obtained from Σ by
(2.23) moves with the velocity V α.

2.4 Show by directly applying (2.14) twice that (2.26) is true.
2.5 In a moving system Σ′, a rod is at rest, with an angle ϕ′ with

respect to the x′-axis. What is the angle ϕ with respect to the
x-axis?

3

Our world as a Minkowski space

In this chapter we will deal with the physical consequences of the Lorentz
transformations. Most of them were first found and understood by Ein-
stein (1905), although most of the more technical properties considered
in the last chapter were known before him.
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3.1 The concept of Minkowski space

We have seen that the velocity of light is the same for all inertial systems,
i.e. for all observers which move with constant velocity with respect to
each other. The velocity of light is just one aspect of Maxwell equations,
so that in fact the Michelson experiment shows that Maxwell equations
are the same in all inertial systems. Since the elements of our world
interact not only by electromagnetic fields, but also by gravitation, heat
exchange, and nuclear forces, for example, the same must be true for
all these interactions. The laws of physics are the same for all inertial
systems (principle of relativity).

The principle of relativity does not exclude the Galilei transformations
of mechanics, if one does not specify the transformations between inertial
systems. This can be done by demanding that the velocity of light is the
same for all inertial systems (principle of the invariance of the velocity
of light).

Both principles together characterize Special Relativity. They are
most easily incorporated into the laws of physics if one uses the concept
of Minkowski space.

The four-dimensional Minkowski space, or world, or space-time, com-
prises space and time in a single entity. This is done by using Minkowski
coordinates

xa = (xα, ct) = (r, ct), xa = ηab x
b = (xα,−ct). (3.1)

A point in this space is characterized by specifying space and time; it
may be called an event.

The metrical properties of Minkowski space (in Minkowski coordi-
nates) are given by its line element

ds2 = dx2 + dy2 + dz2 − c2 dt2 = dr2 − c2 dt2 = ηab dxa dxb. (3.2)

This line element is invariant under Lorentz transformations

xn′
= Ln′

a x
a, Ln′

aLn′b = δb
a (3.3)

since xnxn is. Note that ds2 is not positive definite!

3.2 Four-vectors and light cones

A four-vector an = (a1, a2, a3, a4) = (a, a4) is a set of four elements
which transforms like the components xn of the position vector,

an′
= Ln′

m am. (3.4)

An example is the vector connecting two points P1 and P2 of Minkowski
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space,
−−→
P1P2 = (x2 − x1, y2 − y1, z2 − z1, ct2 − ct1).

Obviously, a Lorentz transformation mixes the spacelike and the time-
like parts of a four-vector, but leaves the ‘length’ fixed:

an′
an′ = Ln′

mLn′bamab = anan = inv. (3.5)

This invariant can have either sign, or can be zero, depending on the
relative size of the spacelike and timelike parts of the vector. This leads
to the following invariant classification of four-vectors:

anan = a2 − (a4)2



> 0 spacelike vector
= 0 null vector
< 0 timelike vector

. (3.6)

For a given vector an, one can always perform a (spatial) rotation of the
coordinate system so that a points in the x-direction: an = (a1, 0, 0, a4).
A special Lorentz transformation (2.14) then yields

a1′
=

a1 − va4/c√
1− v2/c2

, a4′
=

a4 − va1/c√
1− v2/c2

. (3.7)

For
∣∣a1/a4

∣∣ > 1, one can make a4′
vanish by choice of v (note that v has

to be smaller than c !), and similarly in the other cases. So one gets the
following normal forms of four-vectors.

Normal forms:
spacelike vector: an = (a, 0, 0, 0)

null vector: an = (a, 0, 0, a)
timelike vector: an = (0, 0, 0, a).

(3.8)

If we have two four-vectors an and bn, then we can define the scalar
product of the two by

|ab| = aibi = ηina
ibn. (3.9)

This is of course an invariant under Lorentz transformations. When |ab|
is zero, the two vectors are called orthogonal, or perpendicular, to each
other. Note that in this sense a null vector is perpendicular to itself.

A light wave emanating at t = 0 from the origin of the coordinate
system will at time t have reached the points r with

r2 − c2t2 = 0. (3.10)

If we suppress one of the spatial coordinates, equation (3.10) describes
a cone in (x, y, ct)-space. Therefore one calls (3.10) the light cone. As
Fig. 3.1 shows, the light cone separates timelike vectors inside it from
the spacelike vectors outside; null vectors are tangent to it.
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ct

r

null

spacelike

spacelike

timelike

Fig. 3.1. Light cone structure of Minkowski space.

One can attempt to visualize the special Lorentz transformation (2.14)
in Minkowski space by drawing the lines x′ = 0 and ct′ = 0 as ct′-axis
or x′-axis, respectively, for a given value of v/c, see Fig. 3.2. This figure
clearly shows that the new ct′-axis always lies inside the light cone (and
the new x′-axis outside), that the transformation becomes singular for
v = c, and that any timelike (spacelike) vector can be given its normal
form by a suitable Lorentz transformation. But it does not show that
the two coordinate systems are completely equivalent as in fact they are.

light cone

x

x′

ct ct′

Fig. 3.2. Visualization of a Lorentz transformation.

3.3 Measuring length and time in Minkowski space

The problem One may argue that the results of any measurement should
be independent of the observer who made them. If we admit observers
in relative motion, then only invariants with respect to Lorentz transfor-
mations will satisfy that condition. So for example (spacelike) distances
which occur only as a part of a four-vector do not have an invariant
meaning.

In practice one is accustomed to measuring spatial distances and time-
intervals separately, and one often insists on using these concepts. But
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then the results of a measurement depend on the state of motion of the
observer, as the components of a three-vector depend on the orientation
of the Cartesian coordinate system one uses. The typical question which
then arises is the following: suppose two observer Σ and Σ′ (in relative
motion) make some measurements; how are their results related? The
answer to this question leads to some of the most spectacular results of
Special Relativity theory.

The notion of simultaneity As a prerequisite, we will consider the mean-
ing of ‘same place at different times’. If an observer Σ states this for
an object, it means the object is at rest at x = 0 (for example). For
an observer Σ′ moving with respect to Σ and to the object, the object
changes its position; from (2.14) one gets

x′ =
x− vt√
1− v2/c2

, x = 0 ⇒ x′ =
−vt√

1− v2/c2
. (3.11)

There is no absolute being at the same place for different times.
This is trivial – but the corresponding result obtained by interchanging

the role of space and time is not. If an observer Σ states that two events
at different places xA and xB are simultaneous (observed at the same
time t0), then the application of a Lorentz transformation gives

ct′A =
ct0 − vxA/c√

1− v2/c2
, ct′B =

ct0 − vxB/c√
1− v2/c2

, c(t′A−t′B) =
(xB − xA)v
c
√

1− v2/c2
.

(3.12)
For an observer Σ′ the two events are no longer simultaneous: there is
no absolute simultaneity at different places.

This result has been much debated. In the beginning many people
objected to that statement, and most of the attempts to disprove Special
Relativity rely on the (hidden) assumption of an absolute simultaneity.
There seems to be a psychological barrier which makes us refuse to
acknowledge that our personal time which we feel passing may be only
relative.

We now shall analyze the notion of simultaneity in more detail, just
for a single observer. How can we judge and decide that two events
at different places A and B happen at the same time? Just to assume
‘we know it’ is tantamount to assuming that there are signals with an
infinite velocity coming from A and B which tell us that events have
taken place; also, though not said in those terms, Newtonian physics
uses this concept. To get a more precise notion, our first attempt may be
to say: two events are simultaneous if two synchronized clocks situated
at A and B show the same time. But how can we be sure that the
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two clocks are synchronized? We cannot transport one of two identical
clocks from A to B, since the transport may badly disturb the clock and
we have no way of checking that. Nor can we send a signal from A to B,
divide the distance AB by the signal’s velocity V to get the travelling
time, and compare thus the clocks: without a clock at B, we cannot
know the velocity V !

Considerations like this tell us that we need to define simultaneity. As
with the definition of time discussed in Section 1.5, simultaneity has to be
defined so that the laws of nature become simple, which means here: so
that the Lorentz transformations hold. Einstein showed that a possible
definition is like this: two events at A and B are simultaneous if light
signals emitted simultaneously with those events arrive simultaneously
in the middle of the line AB. Note that here ‘simultaneously’ has been
used only for events occurring at the same place!

By procedures like this, an observer Σ can synchronize his system of
clocks in space-times; for a different observer Σ′, this system is of course
no longer synchronized.

Time dilatation At r = 0, an event takes place between tB = 0 and
tE = T ; for an observer Σ at rest with that event the corresponding
time-interval is of course ∆t = T. Because of the Lorentz transforma-
tion (2.14) we then have ct′B = 0, c t′E = cT/

√
1− v2/c2; for a moving

observer Σ′ this event lasts

∆t′ =
∆t√

1− v2/c2
. (3.13)

A moving clock runs slower than one at rest, any clock runs fastest for
an observer who is at rest with respect to it.

Length contraction When we measure the length of a rod at rest, the
times tA and tB at which we look at the two endpoints xA = 0 and xB =
L are unimportant, its length is always L = ∆x. For a moving observer
Σ′ this is different: since the rod is moving in his system of reference,
he has to take care to determine its two endpoints simultaneously ! So
when using the relations

x′A =
−vtA√

1− v2/c2
, ct′A =

ctA√
1− v2/c2

,

x′B =
L− vtB√
1− v2/c2

, ct′B =
ctB − vL/c√

1− v2/c2
,

(3.14)

he has to set t′A = t′B . Choosing t′A = 0, this amounts to tA = 0,
tB = vL/c2, and thus to x′A = 0, x′B = L

√
1− v2/c2, or to
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∆x′ = ∆x
√

1− v2/c2. (3.15)

A moving rod is shorter than one at rest, a rod is longest for an observer
at rest with respect to it.

3.4 Two thought experiments

The two effects explained above, the time dilatation and the length con-
traction, are experimentally well confirmed. To get a better understand-
ing of them, we will now discuss in some detail two gedanken (thought)
experiments.

3.4.1 A rod moving through a tube

We take a rod of length 2L, and a tube of length L (both measured at
rest), see Fig. 3.3.

L L/2

2L

Σ – rod moving Σ′
– tube moving

Fig. 3.3. Rod and tube.

System Σ (Tube at rest, rod moving) The length of the tube is L. If
the rod moves with velocity v = c

√
3/2, application of (3.15) yields

2L
√

1− v2/c2 = L as the length of the rod; if it moves through the
tube, it just fits in!

System Σ′ (Rod at rest, tube moving) The rod is four times as long as
the tube, it never can fit into the tube!

How can the two results both be true? Observer Σ′ will state that Σ
did not measure the position of the rod’s endpoints simultaneously: Σ
determined the position of its tip when it had already reached the end of
the tube, and then waited until the end of the rod just entered the tube.

3.4.2 The twin paradox

Imagine a pair of twins; one is travelling around in space with a high
velocity, the other just stays on Earth.

System Σ (Earth at rest) The travelling twin, assumed to have a constant
velocity (except at the turning point), experiences a time dilatation, his
biological clock runs slower; when coming back to Earth he is younger.


