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SPECIAL RELATIVITY
from Einstein to Strings

The traditional undergraduate physics treatment of special relativity is too cursory
to warrant a textbook. The graduate treatment of special relativity is deeper, but
often fragmented between different courses such as general relativity and quantum
field theory. For this reason physics students need one book that ties it all together.
With this in mind, this book is written as a textbook for the self-learner whose
physics background includes a minimum of one year of university physics with
calculus. More advanced mathematical topics, such as group theory, are explained
as they arise. The readership is expected to include high school and college physics
educators seeking to improve and update their own understanding of special rela-
tivity in order that they may teach it better, science and engineering undergradu-
ates who want to extend their cursory knowledge of relativity to greater depth, and
physics graduate students looking for a simple unified treatment of material that
usually appears in the graduate physics curriculum in a somewhat disconnected
fashion.
The main difference between this book and existing books on special relativity is

that it extends the topic list beyond the standard basic topics of spacetime geometry
and physics, to include the more current and more advanced (but still accessible)
topics of relativistic classical fields, causality, relativistic quantum mechanics,
basic supersymmetry, and an introduction to the relativistic string. Another dif-
ference is that in most cases the dimension of space is allowed to be arbitrary.
A companion CD-ROM contains Flash animations of key examples and prob-

lems discussed in the book. Understanding relativity requires that the student be
able to visualize relative motion from different points of view, making animated
diagrams preferable to static diagrams where relative motion has to be decoded
from complicated symbols labeling each observer.
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To spacetime and everyone who has ever tried to understand it
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Preface

Towards the end of the nineteenth century many physicists believed that all the
fundamental laws that describe the physical Universe were known, and that all
that remained to complete the understanding was an elaboration of details. The
mind-boggling error of this viewpoint was laid bare within a few short years. Max
Planck introduced the quantum in 1899 and Albert Einstein’s breakthrough work
on special relativity appeared in 1905. The ensuing relativity and quantum revo-
lutions each led to surprising and unexpected concepts and phenomena that have
profoundly altered our view of physical reality. The science and the history asso-
ciated with each of these revolutions has been told many times before. But they
are worth coming back to again and again with the added benefit of historical per-
spective. After all, they have changed the world scientifically, technologically, and
philosophically. Perhaps due to the lesson from a century ago, very few people
today are so foolish as to speak of an “end of science”. In fact, revolutionary ad-
vances in theoretical physics are currently in progress, and we seem to be a long
way from achieving a settled and final picture of physical reality.
As the title indicates, this book is about the special theory of relativity. This the-

ory overthrew the classical view of space and time as distinct and absolute entities
that provide the backdrop on which physical reality is superimposed. In special
relativity space and time must be viewed together (as spacetime) to make sense of
the constancy of the speed of light and the structure of Maxwell’s electromagnetic
theory. The basic consequences of special relativity can be described by simple
algebraic formulas, but a deeper understanding requires a geometric description.
This becomes absolutely crucial for the extension to include gravity.
This book is divided into two parts – entitled “Fundamentals” and “Advanced

Topics.” The first part gives a detailed explanation of special relativity. It starts
with simple mathematics and intuitive explanations and gradually builds up more
advanced mathematical tools and concepts. Ultimately, it becomes possible to
recast Maxwell’s electromagnetic theory in terms of two simple equations

xi



xii Preface

(dF = 0 and d ∗ F = ∗ j) that incorporate relativistic geometry in a simple and
beautiful way. Each chapter in Part I of the book starts with a “hands-on exer-
cise.” These are intended to help the reader develop spatial awareness. They are
not supposed to be scientific experiments, rather they are exercises to limber up
the mind.
The second part of the book includes advanced topics that illustrate how relativ-

ity has impacted subsequent developments in theoretical physics up to and includ-
ing modern work on superstring theory. Relativity and quantum mechanics each
raised a host of new issues. Their merger led to many more. This is discussed in
Chapter 7. One aspect of the structure of spacetime implied by special relativity is
its symmetry. To describe this properly requires a branch of algebra called group
theory. This is explored in Chapter 8. Chapter 9 raises the question of whether the
symmetry of spacetime can be extended in a nontrivial way, and it describes the
unique answer, which is supersymmetry. The last chapter gives a brief overview
of modern theoretical physics starting with the well-established theories: general
relativity and the standard model of elementary particles. It then discusses more
speculative current research topics, especially supersymmetry and string theory,
and concludes with a list of unsolved problems. These are topics that one would
not ordinarily find in a book about special relativity. We hope the reader will enjoy
finding them in a form that is more detailed than a popular book, but less technical
than a textbook for a graduate-level course.



Part I

Fundamentals
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From Pythagoras to spacetime geometry

Hands-on exercise:1 measuring the lengths of lines

Physics is about describing the physical world. In physics courses we get used to
doing this using mathematics, and sometimes it can seem as if the mathematics is
the physics. But our goal is to learn about the physical world, and so sometimes we
have to just put the math aside and let the physical world be our teacher. It is in this
spirit that we begin this chapter with a hands-on exercise that requires measuring
the physical world with your hands. To complete this exercise you will need the
following supplies:

• Three cloth or paper measuring tapes, preferably from computer printouts of the file
measures.html included on the CD that comes with this book.

• Some Scotch tape.
• One large spherical object such as a large melon, a beach ball or a globe, with a

diameter roughly between 15 and 20 cm.
• One flat table or desk.
• A pencil and some graph paper.

If you have printed out the page with the measuring tapes on them from the
CD, cut them out with the edges of the paper aligned with the measuring edges
of the printed tapes. Tape measures A and B should be taped together at a right
angle to one another with the measuring edges facing one another. We will call
this taped-together object the Side Measurer. The Side Measurer will be used to
measure the lengths of the two sides of a right triangle, while tape measure C,
which we will call the Hypotenuse Measurer, will be used to measure the length
of the hypotenuse, in the common set of units inscribed on the three measures.

1 Each chapter in Part I of the book starts with a “hands-on exercise.” These are intended to help the reader
develop spatial awareness. They are not supposed to be scientific experiments, rather they are exercises to
limber up the mind. The reader is free to skip them, of course.

3



4 From Pythagoras to spacetime geometry

Go to your desk or table and tape the corner of the Side Measurer onto some
convenient location on its surface. Now use the Hypotenuse Measurer to measure
the distances between the locations on the Side Measurer marked by the numbers
1, 2, 3, 4, 5, 6. In other words, measure the distances from 1 to 1, 2 to 2 and so on.
Make a table on your graph paper to record your measurements. Plot the results on
the graph paper with the side lengths on the x axis and the hypotenuse lengths on
the y axis.

Next untape the Side Measurer from the desk or table. Grab your large spherical
object (henceforth referred to as the LSO) and tape the corner of the Side Measurer
onto some convenient location on its surface, taking care to preserve the right
angle where tape measures A and B are taped together. Now use the Hypotenuse
Measurer to measure the same set of distances that you measured previously when
the Side Measurer was taped to the table or desk. Write them down in a table as
you did above, and then plot the data on the plot you made above.

Now on the same plot, draw the line y = √
2 x . Write down any impressions

you have or conclusions you arrive at by looking at these data, and save them for
later.

1.1 Pythagoras and the measurement of space

What does the previous hands-on exercise have to do with special relativity? Spe-
cial relativity is a theory of spacetime geometry. Before we try to understand the
geometry of spacetime, let’s go back over what we’ve already learned about the ge-
ometry of space. In the exercise above we were exploring the applicability of the
Pythagorean theorem on two different surfaces. The Pythagorean theorem states
that:

Given a right triangle, the sum of the squares bounding the two legs of the triangle is equal
to the square bounding the hypotenuse of the triangle.

In Pythagoras’ time, there was only geometry – algebra was still 1300 years
in the future. Pythagoras wasn’t talking about the squares of the lengths of the
sides as numbers. He proved his theorem by cutting up the squares on the legs and
showing that the pieces could be reassembled into the square on the hypotenuse,
so that the two squares truly were equal. But now that we have algebra, we can say
that if the lengths of the two sides of a right triangle are denoted by A and B, then
the length C of the hypotenuse of the right triangle is given by solving the equation

A2 + B2 = C2 (1.1)

for the value of C.
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Fig. 1.1. Data from hands-on exercise.

As you should be able to see in the hands-on exercise, this formula works quite
reliably when we’re measuring right triangles on a desk or table but begins to fail
when we measure right triangles on the LSO. One set of data from this exercise is
plotted in Figure 1.1.

Now let’s use math to explore this issue further. Consider a right isosceles tri-
angle on a two-dimensional sphere of radius R with azimuthal angle θ and polar
angle φ. A triangle in flat space is determined by three straight lines. The closest
analog to a straight line on a sphere is a great circle. Let’s make the legs of our right
triangle extend from the north pole of the sphere along the great circles determined
by φ = 0 and φ = π/2, beginning at θ = 0 and terminating at θ = θ0. The arc of
a great circle of radius R subtending an angle θ0 has arc length Rθ0, so we can say
that A = B = Rθ0. The arc length of the great circle serving as the hypotenuse is
given by

C = R cos−1(cos2 θ0). (1.2)

We leave the derivation of this result as an exercise for the reader.
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Fig. 1.2. Mathematical solution plotted for R = 1.

According to the Pythagorean formula, the hypotenuse should have a length

C =
√

2 Rθ0. (1.3)

For small values of θ , where C/R � 1, the Pythagorean rule works fairly well,
although not exactly, on the sphere, but eventually the formula fails. We can see
how badly it fails in Figure 1.2. This is because the sphere is curved, and the
Pythagorean formula only works on flat surfaces. The formula works approxi-
mately on the sphere when the distance being measured is small compared to
the radius of curvature of the sphere. The mathematical way of saying this is that
the sphere is locally flat.

But what does this have to do with Einstein’s Special Theory of Relativity? In
this book we’re going to develop the concept of spacetime, but we’re only going to
study flat spacetime, because that’s what special relativity is all about. Everything
you will learn in this book will apply to flat spacetime in the same way that the
Pythagorean formula applies to flat space. In the real world we experience the force
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of gravity, and gravity can only be consistently described in terms of a spacetime
that is curved, not flat. But a curved spacetime can be approximated as being flat
when the force of gravity is small, or, equivalently, when distance scales being
measured are small compared to the radius of curvature of spacetime. So we can
learn a lot about the Universe just by studying special relativity and flat spacetime,
even though in the strictest sense there is no such thing as a completely flat space
or spacetime – these geometries exist as mathematical idealizations, not in the
material gravitating world.

Even though the Pythagorean formula is only approximately true, it is true
enough at the distance scales accessible to Newtonian physics that all of classical
physics depends on it. The mathematical and philosophical revolution that made
this possible was the marriage of algebra and geometry in the Cartesian coordinate
grid. In 1619 a young philosopher named René Descartes dreamt that an “Angel of
Truth” came to him from God with the very Pythagorean message that mathemat-
ics was all that was needed to unlock all of the secrets of nature. One outcome of
this insight was the description of space in terms of algebraic coordinates on an in-
finite rectangular grid. If space has two dimensions, the distances between any two
points in this grid can be calculated by applying the Pythagorean rule, with the dis-
tance L12 between the two points P1 and P2 given by the length of the hypotenuse
of the right triangle whose two legs are the differences �x and �y between the x
and y coordinates of the two points as projected on the two orthogonal axes of the
grid

L2
12 = �x2 + �y2 = (x1 − x2)

2 + (y1 − y2)
2. (1.4)

The world we know seems to have three space dimensions, but this is no problem
because a rectangular coordinate system can be defined just as easily in any number
of dimensions. In D space dimensions we can describe each point P at which
an object could be located or an event could take place by a position vector �r
representing a collection of D coordinates (x1, x2, . . . , x D) in a D-dimensional
rectangular grid. The distance r12 between two points �r1 and �r2 is given by the
Pythagorean formula generalized to D dimensions

|r12|2 =
D∑

i = 1

(xi
1 − xi

2)
2. (1.5)

Any position vector �r in this D-dimensional space can be written in terms of the
D coordinate components xi in a basis of D orthonormal vectors êi as

�r =
D∑

i = 1

xi êi . (1.6)
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Fig. 1.3. Space as a flat rectangular coordinate grid.

A set of orthonormal basis vectors has the inner product

êi · ê j = δi j , (1.7)

where δi j is the Kronecker delta symbol given by the relation

δi j =
{

1 i = j
0 i �= j. (1.8)

Any other vector �V in this space can then be represented in this orthonormal
basis as

�V =
D∑

i = 1

V i êi , V i = �V · êi , (1.9)

where the set of D numbers V i are said to be the components of the vector �V in
this specific basis. Note that the same vector can be represented in more than one
basis. This is an extremely important thing to remember, and we will return to it
again and again in this book, in greater and greater detail, because this is one of
the basic mathematical ideas behind the principle of relativity, both special and
general.
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1.2 The differential version, in D dimensions

The Pythagorean formula gives us the length of a straight line between two points
in a D-dimensional flat space. In order to calculate the length of a line that isn’t
straight, we can approximate the line as being made up of an infinite number of tiny
straight lines with infinitesimal length dl, each of which satisfies an infinitesimal
version of the Pythagorean rule. In two space dimensions we write this as

dl2 = dx2 + dy2 (1.10)

and in D dimensions it becomes

dl2 =
D∑

i = 1

(dxi )2. (1.11)

If we use the Kronecker delta function δi j as defined in Eq. (1.8), and adopt the
convention of summing over repeated indices, this expression can be rewritten as

dl2 = δi j dxi dx j . (1.12)

In differential geometry this object is called the Euclidean metric in rectangular
coordinates. Euclidean space is another name for flat space. A metric is another
name for an infinitesimal line element. Using the methods of differential geom-
etry, the curvature of a given space can be calculated from the first and second
derivatives of metric functions gi j (x), which replace the constant δi j if the space
has nonzero curvature. If we were to calculate the curvature of the D-dimensional
space whose metric is Eq. (1.12), we would find that it is exactly zero, because all
of the derivatives of the components of δi j are zero. But that’s a subject for another
book.

Now that we have an infinitesimal line element, we can integrate it to find the
lengths of lines that are not straight but curved, using the differential version of
the Pythagorean formula, also known as the Euclidean metric in rectangular coor-
dinates. If we have some curve C between points P1 and P2 then the length �L of
the curve is given by

�L =
∫ P2

P1

dl. (1.13)

A curve in D-dimensional Euclidean space can be described as a subspace of
the D-dimensional space where the D coordinates xi are given by single-valued
functions of some parameter t , in which case the length of a curve from P1 = x(t1)
to P2 = x(t2) can be written

�L =
∫ t2

t1

√
δi j ẋ i ẋ j dt, ẋ i = dxi

dt
. (1.14)
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For example, we can calculate the circumference of a circle of radius R in two-
dimensional Euclidean space described by {x1 = R cos t, x2 = R sin t}. In this
case,

δi j ẋ
i ẋ j = R2(sin2 t + cos2 t) = R2 (1.15)

and

�L =
∫ 2π

0

√
δi j ẋ i ẋ j dt =

∫ 2π

0
R dt = 2π R. (1.16)

Since it’s guaranteed that δi j ẋ i ẋ j ≥ 0, formula (1.14) for the length of a curve is
always positive as long as the curve itself is well-behaved. This won’t continue to
be the case when we graduate from space to spacetime.

1.3 Rotations preserve the Euclidean metric

At first glance, a description of space as a rectangular coordinate grid seems like
turning the Universe into a giant prison ruled by straight lines that point in fixed
directions and tell us how we have to describe everything around us in their terms.
We know that, in the real world, we possess free will and can turn ourselves around
and look at any object from a different angle, a different point of view. We see that
the object looks different from that point of view, but we know it is not a different
object, but just the same object seen from a different angle.

Luckily for us, the same wisdom emerges from the mathematics of Euclidean
space. We don’t have to stick with one rigid coordinate system – we can turn the
whole coordinate grid around to see the same object from a different angle. This
can be done in any number of dimensions, but for the sake of brevity we will stick
with D = 2 with the traditional choice x1 = x , x2 = y.

A general linear transformation from coordinates (x, y) to coordinates (x̃, ỹ)

can be written in matrix form as
(

x̃
ỹ

)
=

(
a11 a12

a21 a22

) (
x
y

)
+

(
b1

b2

)
. (1.17)

The constants b1 and b2 represent a shift in the origin of the coordinate system.
Taking the differential of this expression automatically gets rid of b1 and b2, and
this reflects the freedom with which we can set the origin of the coordinate system
anywhere in the space without changing the metric. This freedom is called trans-
lation invariance, and ultimately, as we shall show in a later chapter, it leads to
conservation of momentum for objects moving in this space.
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If we require that the metric remain unchanged under the rest of the transforma-
tion, so that

dx̃2 + d ỹ2 = dx2 + dy2, (1.18)

then it must be true that

a2
11 + a2

12 = a2
21 + a2

22 = 1, a11a12 = −a21a22. (1.19)

We have three equations for four variables, so instead of a unique solution, we get
a continuous one-parameter family of solutions that can be written in terms of an
angular parameter θ as

a11 = a22 = cos θ, a12 = −a21 = sin θ. (1.20)

This describes a rotation by an angle θ . We also get a second family of solutions

a11 = −a22 = cos θ, a12 = a21 = sin θ, (1.21)

which represents a reflection about an axis characterized by θ . Transformations
like this will be discussed in more detail in Chapter 8.

Expanding out the matrix multiplication for the solution in (1.20), our coordi-
nate transformation becomes

x̃ = x cos θ + y sin θ

ỹ = −x sin θ + y cos θ. (1.22)

This transformation is a rotation of the rectangular coordinate system by an angle
θ about the origin at x = y = 0. To see this, look at the x̃ and ỹ axes, represented
by the line ỹ = 0 and x̃ = 0, respectively. In the (x, y) coordinate system, they
become

ỹ = 0 → y = x tan θ

x̃ = 0 → x = −y tan θ, (1.23)

and if we plot this we can see that the x̃ and ỹ axes are both rotated counterclock-
wise by an angle θ compared to the x and y axes.

As the angle from which we view an object changes, we don’t expect the object
itself to change. Suppose we have a position vector �r pointing to some object in
two-dimensional Euclidean space. In the (x, y) coordinate system, �r can be written

�r = xêx + yêy . (1.24)

If we require that the position vector itself remain unchanged as we rotate the
coordinate system in which the vector is described, so that

�r = xêx + yêy = x̃ êx̃ + ỹêỹ, (1.25)
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then the transformation of the coordinate components of the vector must cancel
the transformation of the unit basis vectors. Therefore the transformation rule for
the orthonormal basis vectors must be

êx̃ = êx cos θ + êy sin θ

êỹ = −êx sin θ + êy cos θ. (1.26)

The rotation transformation can be written in matrix form as

R(θ) =
(

cos θ sin θ

− sin θ cos θ

)
. (1.27)

The inverse transformation is a rotation in the opposite direction

R(θ)−1 = R(−θ) =
(

cos θ − sin θ

sin θ cos θ

)
. (1.28)

The matrix R(θ) satisfies the conditions det R = 1 and RT I R = I , where I is the
identity matrix

I =
(

1 0
0 1

)
. (1.29)

The first condition classifies R as a special, as opposed to a general, linear transfor-
mation. The second condition classifies R as an orthogonal matrix. The full name
of the group of linear transformations represented by R(θ) is the special orthogo-
nal group in two space dimensions, or SO(2)2 for short. Transformations by R(θ)

take place around a circle, which can be thought of as a one-dimensional sphere,
known as S1 for short.

A transformation matrix can have the properties of being special and orthogonal
in any number of dimensions, so rotational invariance is easily generalized to D
space dimensions, although the matrices get more complicated as D increases. As
one would expect, since we have SO(2) for D = 2, we have SO(D) for arbitrary
D. A rotation in D space dimensions takes place on a (D − 1)-dimensional sphere,
called SD−1 for short. We will examine rotational invariance in D space dimen-
sions in greater detail in a later chapter. For now, everything we want to accomplish
in this chapter can be achieved using the simplest case of D = 2.

1.4 Infinitesimal rotations

So far this seems like elementary stuff. Why are we looking at rotations in space,
when our goal in this book is to learn about spacetime? We will see shortly that the

2 The group becomes known as O(2) if we include reflections in addition to rotations. For a reflection, the
determinant is −1 instead of +1.
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mathematics of rotational invariance of Euclidean space has a very close analog in
the relativistic invariance of spacetime. To build the case for this, and build our first
glimpse of spacetime, we need to study infinitesimal rotations, that is, rotations for
which θ is close to zero.

A very small rotation with θ ∼ 0 can be written:

x̃ � x + θy + O(θ2)

ỹ � y − θx + O(θ2) (1.30)

In this infinitesimal limit, the rotation matrix R(θ) can be written in terms of a
matrix r

R(θ) � I + θr + · · · , r =
(

0 1
−1 0

)
, (1.31)

which we will call the generator of the rotation transformation. Notice that r is an
antisymmetric matrix, that is rT = −r, where the matrix transpose is defined by
(MT )i j = M ji .

Written in this manner, an infinitesimal rotation looks like the first two terms in
the expansion of an exponential

eαx ∼ 1 + αx + · · · (1.32)

This is no coincidence. A non-infinitesimal rotation R(θ) can be obtained from the
exponential of the generator matrix r

R(θ) = exp (θr) =
(

cos θ sin θ

− sin θ cos θ

)
, (1.33)

as you will be asked to prove in an exercise at the end of this chapter.
Now suppose we want to consider unifying space and time into a two-

dimensional spacetime, hopefully something as simple and symmetric as
Euclidean space. What would be the analog of rotational invariance in that case?
The most obvious difference between space and time is that we can’t turn ourselves
around to face backwards in time like we can in space. So a rotation transforma-
tion presents a problem. Is there a transformation that is like a rotation but without
the periodicity that conflicts with the knowledge that we can’t rotate our personal
coordinate frames to face backwards in time?

An antisymmetric generator matrix will always lead to a rotation when we
take the exponential to get the full transformation. Suppose the generator ma-
trix is not antisymmetric but instead symmetric, so that the matrix is equal to its
own transpose? Such a generator matrix yields a new transformation that looks
almost like a rotation, but is not. Let’s call the new generator matrix � and the new
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transformation parameter ξ . The new infinitesimal transformation is

L(ξ) � I + ξ� + · · · , � =
(

0 −1
−1 0

)
. (1.34)

Because of the sign difference in the generator �, the exponential of the generator
gives the unbounded functions cosh ξ and sinh ξ instead of the periodic functions
cos θ and sin θ

L(ξ) = exp (ξ�) =
(

cosh ξ − sinh ξ

− sinh ξ cosh ξ

)
. (1.35)

The action of L(ξ) on a set of rectangular coordinates axes is not to rotate them
but to skew them like scissors. The θ in R(θ) lives on the interval (0, 2π), but
the parameter ξ in L(ξ) can vary between (−∞, ∞). In the limit ξ → ± ∞, the
transformation degenerates and the axes collapse together into a single line, as you
will be asked to show in an exercise.

As with the rotation transformation R(θ), the inverse transformation of L(ξ) is
a transformation in the opposite direction

L(ξ)−1 = L(−ξ) =
(

cosh ξ sinh ξ

sinh ξ cosh ξ

)
. (1.36)

This new transformation satisfies the special condition det L = 1. However, the
orthogonality condition RT I R = I is amended to

LT ηL = η, η =
(−1 0

0 1

)
. (1.37)

Because of the minus sign, this type of transformation is called a special orthogonal
transformation in (1, 1) dimensions, or SO(1, 1) for short. It’s going to turn out
that this (1, 1) refers to one space and one time dimension. In order to develop that
idea further, it’s time to bring time into the discussion.

1.5 Could a line element include time?

The journey towards the description of physical space by an infinite Cartesian
coordinate grid was a rough one, because enormous spiritual and moral signifi-
cance was given to the organization of physical space by European culture in the
Middle Ages. At one time, even the assertion that empty space existed was consid-
ered heresy. By contrast, the question of time was not as controversial. It seemed
obvious from common experience that the passage of time was something absolute
that was universally experienced by all observers and objects simultaneously in the
same way. This didn’t conflict with the story of the Creation told in the Bible, so



Could a line element include time? 15

the concept of absolute time did not present a challenge to devout Christians such
as Isaac Newton, who held it to be an obvious and unquestionable truth.

In this old picture of space and time, space and time are inherently separate, and
both absolute. An object at a location marked in absolute space by the position
vector �r moves along a path in absolute space that can be written as a function of
time such that

�r = �r(t) = xi (t)êi , (1.38)

where the implied sum over the repeated index i runs over all of the dimensions
in the space. For now, let’s restrict space to one dimension, so we’re only dealing
with one function of time x(t).

In Newtonian physics in one space dimension, in the absence of any forces, the
motion of an object is determined by the solution to the differential equation

d2x(t)

dt2
= 0. (1.39)

This equation is invariant under the transformation

t̃ = t

x̃ = x − vt, (1.40)

where v is the velocity of an observer in the x̃ coordinate system relative to an
observer in the x coordinate system.

This invariance principle was first proposed by Galileo based on general phys-
ical and philosophical arguments, long before Newton’s equation existed. Galileo
argued that when comparing a moving ship with dry land, the natural laws govern-
ing the motion of an object on the ship should not depend on the motion of the ship
relative to the dry land, as long as that motion was smooth motion at a constant
velocity.

This sounds suspiciously like what we learned about Euclidean space and
rotations – an object should not change as we rotate the coordinate system used to
describe it. But now we’re not talking about rotating space into space, we’re talk-
ing about space and time, and instead of a rotation, which involves a dimensionless
angle, we have motion, which involves the dimensionful quantity of velocity.

Let’s consider the possibility that Galilean invariance could be an infinitesimal
version of some full spacetime invariance principle, a version valid only for veloc-
ities close to zero. Suppose we use as our candidate spacetime transformation the
SO(1, 1) transformation developed in the previous section.

At first it would appear that Galilean invariance is not consistent with a small
rotation by L(ξ). However, the units by which we measure space and time are not
the same. Time is measured in units of time such as seconds or years, and space
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is measured in units of length such as feet or meters. If we want to compare a
Galilean transformation to a rotation by L(ξ), we should scale the coordinate t
by some dimensionful constant c with units of length/time, so that τ = ct has the
dimension of length

τ = ct, [τ ] = L → [c] = L/T . (1.41)

If we took the transformation L(ξ) literally as a kind of rotation in two-
dimensional spacetime with time coordinate τ and space coordinate x , then this
rotation would change coordinate components (τ, x) to (τ̃ , x̃) by

τ̃ = τ cosh ξ − x sinh ξ

x̃ = −τ sinh ξ + x cosh ξ. (1.42)

The Galilean transformation contains a parameter v with units of velocity. Using
v and c, we can define a dimensionless parameter β ≡ v/c. If we assume that
ξ � β then an infinitesimal rotation by L(ξ) for small ξ looks like

τ̃ � τ − βx

x̃ � x − β τ. (1.43)

So far, this looks nothing like a Galilean transformation. However, maybe one
of the terms is smaller than the others and can be neglected. If we rewrite the above
equations back in terms of t and c then we get:

t̃ � t − vx

c2
� t, c → ∞ (1.44)

x̃ � x − vt. (1.45)

The infinitesimal limit β → 0 corresponds to the limit c → ∞. In this limit the
second term in the first equation can be safely neglected because it’s much smaller
than the others. So our postulated spacetime rotation L(ξ) for very small values of
ξ ∼ β does appear to be consistent with a Galilean transformation.

So here comes the big question: What line element is left invariant by the space-
time rotation L(ξ)? What is the spacetime analog of the differential version of
the Pythagorean theorem? One can show, as you will in an exercise, that the line
element

ds2 = −dτ 2 + dx2 (1.46)

is invariant under the coordinate transformation given by L(ξ) in (1.42) such that

−dτ 2 + dx2 = −d τ̃ 2 + dx̃2. (1.47)
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The metric (1.46) gives us at last the analog of the Pythagorean rule for space-
time. If curvature comes from derivatives of the metric, then this strange met-
ric with a minus sign must be flat. This metric for flat spacetime is called the
Minkowski metric, and flat spacetime is also known as Minkowski spacetime. Note
that unlike the Euclidean metric, the Minkowski metric is not positive-definite.
This is extremely important and we will explore the implications of this fact in
greater detail in later chapters.

What happens for higher dimensions? A flat spacetime with D space dimensions
and one time dimension has a line element

ds2 = −dτ 2 + dl2, dl2 = δi j dxi dx j . (1.48)

The Latin indices (i, j) refer to directions in space, and by convention take the
values (1, 2, . . . , D). When dealing with spacetime, it has become the convention
to use a set of Greek indices (µ, ν) and appoint the 0th direction as being the time
direction so that dx0 = dτ , in which case the Minkowski metric can be written

ds2 = ηµνdxµdxν, (1.49)

where

η00 = −1,

η0i = ηi0 = 0,

ηi j = δi j . (1.50)

In two spacetime dimensions the metric is invariant under an SO(1, 1) trans-
formation of the coordinates. As one might suspect, in d = D + 1 spacetime di-
mensions, the transformation is called SO(1, D) or SO(D, 1). In either case, this
indicates that it pertains to D space dimensions and one time dimension. (We never
consider more than one time dimension!)

1.6 The Lorentz transformation

The transformation L(ξ) is known as the Lorentz transformation, the invariance
principle is called Lorentz invariance and the transformation group SO(1, D) is
known as – no surprise here – the Lorentz group, which we’ll study in greater de-
tail in a later chapter. But we don’t yet know the relationship between the Lorentz
transformation parameter ξ and the velocity parameter β ≡ v/c that gives the rel-
ative velocity between the two coordinate systems in question.

Suppose we have an observer who is at rest in the (τ, x) coordinate frame in a
flat spacetime with metric (1.46). The (τ̃ , ỹ) coordinate frame is moving at velocity
β relative to the (τ, x) frame. (Note: Even though β is a dimensionless parameter
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proportional to the velocity, for the sake of brevity we shall refer to it as the ve-
locity.) Therefore an observer measuring space and time in the (τ̃ , ỹ) coordinate
system sees the observer in the (τ, x) frame not as being at rest, but moving with
velocity −β so that

dx̃

d τ̃
= −β. (1.51)

Since the observer in question is at rest in the (τ, x) coordinate frame, for
her/him dx = 0 and therefore

ds2 = −dτ 2. (1.52)

But according to the (τ̃ , ỹ) coordinate system,

ds2 = −d τ̃ 2 + dx̃2 = −d τ̃ 2 + β2d τ̃ 2. (1.53)

Because the two coordinate systems (τ, x) and (τ̃ , ỹ) differ only by a Lorentz
transformation, and because we’re in flat spacetime, where the metric is Lorentz-
invariant, it must be true that

d τ̃ = dτ√
1 − β2

. (1.54)

Taking the differential of the Lorentz transformation relating the two frames in
Eq. (1.42) gives

d τ̃ = dτ cosh ξ − dx sinh ξ

dx̃ = dx cosh ξ − dτ sinh ξ, (1.55)

so the Lorentz transformation parameter ξ is related to the velocity β by

cosh ξ = γ, sinh ξ = γβ, γ ≡ 1√
1 − β2

. (1.56)

The Lorentz transformation L(ξ), rewritten in terms of γ and β, becomes

L(β) =
(

γ −γβ

−γβ γ

)
. (1.57)

Something very strange and interesting has happened. At first it seemed from the
infinitesimal transformation (1.43) that we would end up with ξ = β, and the ve-
locity β would live in the interval (−∞, ∞). However, the Lorentz transformation
is only real and finite for

−1 < β < 1, (1.58)
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which means that

−c < v < c. (1.59)

So the velocity c, at first introduced only to create a dimensionally balanced coor-
dinate transformation, ends up being the maximum allowed velocity in the space-
time.

It’s probably no secret that this maximum velocity c imposed by the geometry
of flat spacetime is the speed of light. But that association is something physical
that can’t be proven by geometry alone. To show that c is the speed of light, we
need to appeal to the physics of light, which is the subject of the next chapter.

Exercises

1.1 Verify that the rotation R(θ) leaves the Euclidean line element dl2

invariant.
1.2 Let’s look at a two-sphere of radius R whose center is at the origin of

three-dimensional flat Euclidean space, with coordinates related by

(x, y, z) = (R sin θ cos φ, R sin θ sin φ, R cos θ). (E1.1)

Consider the three great circles passing through the north pole �x0 =
(0, 0, R) and the points �x1 = (R sin θ0, 0, R cos θ0) and �x2 = (0, R sin θ0,

R cos θ0) on the sphere. These three circles define the right triangle on the
sphere described at the beginning of the chapter. Recall that the Euclidean
dot product of two vectors �xi · �x j = |xi ||x j | cos θi j , where θi j is the angle
between the two vectors in the two-dimensional plane they determine.
(a) Use this result to verify that the arc length of the hypotenuse of this right

triangle is given by Eq. (1.2).
(b) Expand Eq. (1.2) for small θ0 to check whether the Pythagorean rule is obeyed

in that limit.

1.3 Using the transformation rule for basis vectors, compute the components
of the vector �V in the (x̃, ỹ) coordinate system of Eq. (1.17).

1.4 On a sheet of graph paper, represent the (x, y) coordinate system as a
two-dimensional rectangular grid, with y on the vertical axis and x on the
horizontal axis. Using the transformation R(θ) to relate the two coordinate
systems (x̃, ỹ) and (x, y), plot the two lines x̃ = 0 and ỹ = 0 in the (x, y)

coordinate system for the values θ = π/4, π/2, 3π/4 and π . Then draw
another coordinate grid with (x̃, ỹ) on the axes, and plot the two lines
x = 0 and y = 0 in the (x̃, ỹ) coordinate system for the same values of θ .

1.5 On a sheet of graph paper, represent the (τ, x) coordinate system as a two-
dimensional rectangular grid, as you did above for the (x, y) coordinate
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system, but with τ replacing y on the vertical axis, and x on the horizontal
axis. Using the transformation L(ξ) to relate the two coordinate systems
(τ, x) and (τ̃ , x̃), plot the two lines τ̃ = 0 and x̃ = 0 in the (τ, x) coor-
dinate system for ξ = 1/3, 1/2, 1 and 2. Then draw another coordinate
grid with (τ̃ , x̃) on the axes, and plot the two lines τ = 0 and x = 0 in the
(τ̃ , x̃) coordinate system for the same values of ξ . Using (1.56), calculate
β and γ for ξ = 1/3, 1/2, 1 and 2.

1.6 Given the 2 × 2 antisymmetric matrix

A =
(

0 1
−1 0

)
, (E1.2)

compute the first four terms in the Taylor expansion of the exponential eθ A

around θ = 0 and derive a general formula for the elements of eθ A as an
infinite sum of powers of θ .

1.7 Given the 2 × 2 symmetric matrix

S =
(

0 −1
−1 0

)
, (E1.3)

compute the first four terms in the Taylor expansion of the exponential eξ S

around ξ = 0 and derive a general formula for the elements of eξ S as an
infinite sum of powers of ξ .

1.8 Multiply two rotation matrices R(θ1) and R(θ2). Is the result a third rota-
tion matrix R(θ3)? If so, what is the angle θ3 of the resulting transforma-
tion in terms of θ1 and θ2?

1.9 Multiply two Lorentz transformation matrices L(ξ1) and L(ξ2). Is the
result another Lorentz transformation matrix L(ξ3)? If so, what is the
transformation parameter ξ3 of the resulting matrix in terms of ξ1 and ξ2?
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Light surprises everyone

Hands-on exercise: wave and particle properties

The purpose of this exercise is for you to observe some basic wave and particle
properties. To complete this exercise you will need the following:

• Tub of water, or access to a quiet pond, lake or swimming pool.
• Things to float on the surface of the water.
• Pen or pencil and some drawing paper.
• Small projectile such as a stone.

Disturb the middle of the tub just until you are able to make a visible wave on
the surface. Watch how the wave propagates. Wait until the surface of the water
returns to being flat and make another wave. Keep doing this as many times as
necessary to be able to draw what you see on the paper and answer the following
questions:

• Does the wave have a definite location at any one moment in time?
• Does the wave have a definite direction as it propagates?
• Approximately how far does the wave travel in 1 s?
• Describe the motion of the water in which the wave moves.

Throw your small projectile in the air at various angles, letting it drop down (not
in the water). Keep doing this as many times as necessary to be able to draw what
you see and answer the following questions:

• Does the object have a definite location at any one moment in time?
• Does the object have a definite direction as it propagates?
• Approximately how far does the object travel in 1 s?
• Describe the motion of the air in which the object moves.
• Is there any difference between the vertical and horizontal motion of the object?

21
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2.1 Conflicting ideas about space and light

What we call known physics today, what we learn in school or teach ourselves from
books, at one time was the unknown. It was what people did not understand, and
sought to understand through exhausting and often frustrating intellectual labor. In
the process of moving from the unknown to the known, a lot of wrong ideas can
come up that seem very right at the time. The story of the classical understanding
of space and light from Aristotle to Einstein is a story in which almost everyone
involved was both right and wrong at the same time.

Aristotle started with an idea that seems right enough – Nature abhors a vacuum
– and used it to argue that empty space could not exist, period. Every last tiny
space in the Universe was filled with a universal substance, which later came to
be called the ether. According to Aristotle, the space taken up by a material object
was the surface area, not the volume, of the object. Using Aristotle’s logic, the
amount of space taken up by a round ball of radius R would be 4π R2 rather than
4π R3/3. Aristotle was such a powerful figure in Western culture that it took until
the fifteenth century for his argument against spatial volume to be refuted. But
even so, Aristotle’s argument that empty space could not exist formed the root of
the wrong understandings of both space and light that troubled classical physics
until Einstein showed up with a brilliant idea that put the controversies to rest, at
least until quantum theory showed up.

Even though Descartes’ work on analytic geometry laid the mathematical foun-
dation for the Newtonian description of physical space as an empty and absolute
backdrop for the actions of matter, Descartes shared Aristotle’s abhorrence of the
void. Descartes believed that a type of material substance called the plenum must
fill the entire universe, down to every nook and cranny, and that vortices swirling
in this fluid were what moved the planets in their orbits. Descartes believed that
light was an instantaneous disturbance in the plenum between the observer and
the observed. He believed so strongly that light propagates instantaneously that he
swore that if this were ever proved false, he would confess to knowing absolutely
nothing.

Newton learned geometry by reading Descartes, but he inserted into physics his
own belief that space was both empty and absolute. To Newton, a devout Christian,
to question the absoluteness of space was to question the absoluteness of God –
not merely an intellectual error, but an actual sin against God. In Newton’s Univer-
sal Law of Gravitation, the force between two gravitating objects varies inversely
as the square of the distance between them, and the distance between gravitating
objects is treated as an empty space devoid of any intervening substance. Newton’s
powerful and concise theory was a huge success in explaining all of known astron-
omy at the time, but Newton’s many critics rightly complained that the Universal
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Law of Gravitation provides no mechanical means for transmitting the gravita-
tional force between bodies, other than the literal hand of God – a conclusion that
Newton was not unsatisfied with himself.

Field theory had not been invented yet. This was still the age of mechanics.
Things happened because one thing pushed or pulled on another. Pushing or
pulling is not something that anyone envisioned could be done across empty space.
If there is no material substance filling the space between the planets, then how
would one planet sense the introduction or removal of any other planet?

The lack of any causal mechanism of force transmission in Newton’s theory
of gravity led many of his contemporaries to label his theory as nonsense. One
such person was Dutch physicist Christian Huygens, who, like Newton, learned
his vocation by reading Descartes. Huygens, however, was appointed by fate to
be the undoing of his own master. It was Huygens who made the first numerical
estimate of the speed of light and proved Descartes wrong about the very thing
Descartes was the most certain he was right.

In 1667 Galileo had tried to measure the speed of light using lanterns and moun-
tain tops but he never had a chance, because light travels too fast for the time
interval in question to have been measured by any existing timekeeping device.
The speed of light is 3 × 108 m/s. At such an enormous speed, light only needs
8 min. to cross the 1.5 × 1011 m from the Sun to the Earth. If we can only mea-
sure time to within a few seconds, then in order to measure the speed of light,
we have to observe light propagation over the distance scale of the solar system.
And this is how the first successful measurement of the speed of light was made in
1676.

Danish astronomer Ole Roemer, who spent 10 years making careful observa-
tions of the orbital periods of Jupiter’s moon Io, was quite surprised when the pe-
riod he observed seemed to fluctuate with the distance between Jupiter and Earth,
with the period being longer when Jupiter and Earth were moving farther apart. In
1676 he announced that this discrepancy could only come from the time it took
light to travel from Io to the Earth. Two years later Huygens provided a numeri-
cal estimate for this speed of 144 000 miles/s. Huygens had proved that his hero
Descartes was wrong about light. Luckily for Descartes, he didn’t live long enough
to have to fulfill his promise to confess to knowing absolutely nothing.

Huygens took the finite speed of light as evidence for his wave theory of light.
In his treatise on optics Le traité de la lumière, he put forward his model of wave
propagation that physics students now learn as Huygens’ Principle: given a par-
ticular wave front, each point on that wave front acts as the source point for a
spherical secondary wave that advances the wave front in time. Huygens’ Princi-
ple is illustrated in Figure 2.1.
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t = 0

t = t1

t = t2

Fig. 2.1. According to Huygens’ Principle, each point on a wave front acts as
a source point for a spherical secondary wave that determines the wave front at
some later time. The dashed lines represent a wave front advancing in time t .

Huygens’ optics of wave fronts made little impact in his own time, for he was
living in the age of Isaac Newton, Superstar. Consistent with his belief in absolute
empty space, Newton envisioned light as a swarm of particles he called “corpus-
cles” moving through empty space, each corpuscle moving at a different speed
depending on the color of the light it represented. Newton had a corpuscular ex-
planation for refraction that was wrong, but the error was not experimentally mea-
surable at the time. Snell’s Law of Refraction1 states that if a light ray is incident
on the interface between two transparent media, the angle θ1 made by the incident
ray with the normal to the plane of the interface and the angle θ2 made by the
refracted ray are related through the formula

sin θ1

sin θ2
= v1

v2
, (2.1)

where v1 and v2 are the speeds of light in the two transparent media. Snell’s law is
illustrated in Figure 2.2.

Newton wrongly argued that the ray angle would be smaller in the medium
where the speed of light was the largest. The debate over Huygens’ wave theory
and Newton’s particle theory could have been settled over refraction alone, except
for one problem: the best known value for the speed of light in air was still off by
25 percent, so they had no hope of being able to measure the difference between the
speed of light in air and its speed in water. When this was done in 1850 by Foucault,
Newton’s theory was conclusively ruled out and Huygens was vindicated.

Despite the fact that he was wrong, Newton made enormous contributions to
optics. In 1669 he built the first reflecting telescope, which used a curved mirror
instead of a lens, and revolutionized astronomy. Newton ground the mirror him-
self. When Newton published his book Opticks in 1704, it created a scientific and

1 Also known as Descartes’ Law.
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Fig. 2.2. Snell’s Law of Refraction describes the bending of a ray of light when it
travels from a medium in which the speed of light is v1 into a medium in which
the speed is v2 �= v1.

a popular sensation all over England and Europe. Voltaire published a populariza-
tion of Newton’s work, and discussions of Newtonian optics were all the rage at
amateur science and philosophy clubs throughout the educated upper and middle
class.

No matter how popular it became and how it revolutionized astronomy, Newto-
nian optics could not explain the phenomenon of diffraction, where light appears to
bend around the edges of objects. Diffraction was first observed in 1665 in Italy by
Father Francesco Grimaldi, but both Newton and Huygens regarded it as irrelevant
to the wave vs. particle debate. Diffraction could not be ignored forever, however,
and eventually wave optics had to be brought back into the picture.

In 1746 in his book Nova theoria lucis et colorum (New Theory of Light and
Colour), Swiss mathematician Leonhard Euler advanced the notion that light con-
sists of wavelike vibrations in the ether. Euler argued that light propagates in the
ether, just as sound propagates in the air. Unfortunately, Euler’s theory was ulti-
mately no better than Newton’s in explaining diffraction. A very bright eye doc-
tor named Thomas Young refined Euler’s wave theory to make it consistent with
Huygens’ Principle. Young and Augustin Fresnel finally proved through their un-
derstanding and demonstrations of interference and diffraction that light definitely
had wavelike properties that could not be explained by tiny corpuscles flying
through space.

2.2 Maxwell’s transverse undulations

A real understanding of the nature of light required an understanding of electro-
magnetism, and that took 100 years to happen, if we start counting from Newton.


