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Preface

Design theory is a well-established branch of combinatorial mathematics. The

origins of the subject can be traced back to statistics in the pioneering works

of R. A. Fisher, F. Yates, and R. C. Bose. From the very beginning, one of the

central objects of design theory has been symmetric designs. The prototype of

a symmetric design is a finite projective plane, and the theory of symmetric

designs borrows its methods and ideas from finite geometries, group theory,

number theory, and linear algebra.

It is notoriously difficult to construct an infinite family of symmetric designs

or even a single symmetric design. However, in recent years new ideas in con-

structing symmetric designs have been discovered and new infinite families

have been found. The central role in these constructions is played by balanced

generalized weighing matrices. These matrices generalize the notion of a sym-

metric design but until recently they were often regarded as a rather obscure

combinatorial object. Now they seem to be a useful tool in unifying different

construction methods that have been developed since the 1950s.

This book is primarily a research monograph which aims to give a uni-

fying exposition of the theory of symmetric designs with emphasis on these

new developments. The book covers the combinatorial aspects of the theory

with particular attention to constructing symmetric designs and related objects.

Recent results that have never previously appeared in book format are developed

mainly in the last five chapters. These chapters are devoted to balanced gen-

eralized weighing matrices, decomposable symmetric designs, subdesigns of

symmetric designs, non-embeddable quasi-residual designs, and Ryser designs.

The preceding chapters on finite geometries, Hadamard matrices, resolvable

designs, t-designs, strongly regular graphs, and difference sets emphasize rela-

tions between these objects and symmetric designs.

We believe that this book can also be used as a text for a course in combina-

torial designs. We begin with a brief introduction to combinatorial set theory,

xi



xii Preface

including such beautiful results as Fisher’s Inequality, the Ray-Chaudhuri–

Wilson Inequality, and the Ryser–Woodall Theorem. The proofs of these theo-

rems are elementary, but we hope they may be of interest even to the expert. Both

Fisher’s Inequality and the Ryser–Woodall Theorem allow us to introduce the

notion of a symmetric design even before the formal definition is given in Chap-

ter 2. Chapters 2–4 and 6–9 contain basic material on combinatorial designs,

finite geometries, Hadamard matrices, strongly regular graphs, difference sets,

and codes. We have included many examples and exercises and presented the

proofs of many theorems in a manner suitable for graduate and advanced under-

graduate students. Every chapter of the book is concluded by notes containing

comments, references, and historical material. We suggest that the following

chapters and sections could form a course in combinatorial designs: Chapter 1,

Chapter 2 (without Sections 2.7 and 2.8), Chapter 3 (without Section 3.7), and

also Sections 4.1, 4.2, 4.3, 6.1, 6.2, 6.3, 6.5, 7.1, 7.2, 9.1, and 9.2. A standard

course of linear algebra and the basic notions of combinatorics and abstract

algebra should form a sufficient background for this book.

The numbering of theorems, definitions, remarks, and examples is consec-

utive within each section and includes the chapter and section numbers, so, for

instance, Theorem 3.7.10 can be found in Section 3.7. However, equations are

numbered consecutively within each chapter. The last two sections of every

chapter are Exercises and Notes. The Appendix contains the list of parameters

of all known symmetric designs, which are combined into 23 series and 12

sporadic designs. We conclude the book with an extensive References section

of over 400 entries, all of which are cited in the book.

We would like to acknowledge people and institutions who through their

help, financial support, and hospitality made this work possible. Our particular

thanks are due to Alphonse Baartmans, Dieter Jungnickel, Hadi Kharaghani,

Vassili Mavron, Gary McGuire, Damaraju Raghavarao, Dijen Ray-Chaudhuri,

S. S. Shrikhande, and Vladimir Tonchev for their comments and encouragement

during various stages of preparation of this book.

We thank O. Abu Ghnaim, T. Al-Raqqad, J. R. Angelos, T. Ionin, D. Levi,

A. Sarker, and K. W. Smith for help and comments and also the students of

three classes at Central Michigan University who had to use imperfect drafts of

the book as their textbooks.

Our own research that is included in this book, and the writing of the

book were done at Central Michigan University, with extensive use of its

facilities. The university has also supported us with sabbaticals and numer-

ous travel grants. We are especially thankful to Central Michigan University

for two Research Professorship grants awarded to each of us. We would also

like to acknowledge the hospitality and financial support of the following
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institutions: Mathematisches Forschungsinstitut, Oberwolfach, Germany;

Michigan Technological University, Houghton, Michigan, USA; Ohio State

University, Columbus, Ohio, USA; University of Lethbridge, Lethbridge,
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versity of Wales, Aberystwyth, Wales, UK.

We thank Roger Astley and the staff of Cambridge University Press for their

superb assistance during preparation and production of this book.

Finally, we would like to thank our wives for their unwavering support,
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1

Combinatorics of finite sets

A number of advances in combinatorics originated in the following problem:

given a finite set and a property of families of subsets of this set, estimate the

size of a family with this property and then explore families of maximum or

minimum size.

In this chapter we will discuss three problems of this kind:

(i) given a nonempty finite set V , estimate the size of a family F of subsets

of V such that |A ∩ B| is the same for all distinct A, B ∈ F ;

(ii) given a nonempty finite set V and positive integers k and s, estimate the

size of a family F of k-subsets of V such that |A ∩ B| takes at most s
values for distinct A, B ∈ F ;

(iii) given a nonempty finite set V , estimate the size of a family F of subsets

of V such that the cardinality of the symmetric difference of A and B is

the same for all distinct A, B ∈ F .

This discussion will lead us to symmetric designs, the central object of study in

this book.

1.1. Fisher’s Inequality

When we consider families of subsets of a finite set V of cardinality v, it is

convenient to think of V as the set {1, 2, . . . , v} and associate with every subset

X of V a (0, 1)-string (x1, x2, . . . , xv) of length v where xi = 1 if i ∈ X and

xi = 0 if i �∈ X .

We now introduce a simple but useful idea. In order to estimate the size of

a family F of subsets of V , we will select a suitable finite-dimensional vector

space P over the rationals and associate an element of P with each element of

1



2 Combinatorics of finite sets

F . If the set of vectors associated with the elements ofF is linearly independent,

then the cardinality of F does not exceed the dimension of P .

As the first application of this idea, we take P to be the vector space of linear

polynomials a0 + a1x1 + a2x2 + · · · + avxv in v variables with rational coeffi-

cients. Clearly, dim P = v + 1. We will now give a proof of the following result:

Theorem 1.1.1 (Nonuniform Fisher’s Inequality). Let V be a nonempty finite
set and F a family of subsets of V such that the cardinality of the intersection
of any two distinct members of F is the same positive integer. Then |F | ≤ |V |.
Proof. Let F be a family of subsets of the set V = {1, 2, . . . , v}. Assume

there exists a positive integer λ such that |A ∩ B| = λ for any distinct A and B
in F .

Suppose first that there exists A ∈ F such that |A| ≤ λ. Then |A| = λ and

the intersection of any two distinct members of F is the set A. By subtracting A
from each member of F , we obtain a family of pairwise disjoint subsets of the

set V \ A. Since the cardinality of such a family does not exceed |V \ A| + 1,

we obtain that |F | ≤ v − λ + 1 ≤ v = |V |.
From now on, we assume that |A| > λ for any A ∈ F . With each A ∈ F , we

associate the linear polynomial f A = ∑
i∈A xi − λ. Then f A(X ) = |A ∩ X | − λ

for any X ⊆ V (regarded as a (0, 1)-string). In particular, for any A, B ∈ F ,

f A(B) =
{

0 if B �= A,

|B| − λ if B = A.
(1.1)

We claim that the subset { f A : A ∈ F} of the vector space P is linearly

independent. Indeed, if
∑

A∈F αA f A = 0 for some (rational) coefficients αA,

then, applying both sides of this equation to an arbitrary B ∈ F and using (1.1),

we obtain that αB(|B| − λ) = 0, so αB = 0.

Suppose that the constant polynomial 1 is spanned by the polynomials f A,

A ∈ F , i.e.,

1 =
∑
A∈F

αA f A. (1.2)

for some coefficients αA. Then, applying both sides of (1.2) to B ∈ F and using

(1.1), we obtain that αB(|B| − λ) = 1, so

1 =
∑
A∈F

1

|A| − λ
f A.

Applying both sides of this equation to the empty set, we obtain

1 =
∑
A∈F

−λ

|A| − λ
,

a contradiction, since the right-hand side of the last equation is negative.
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Thus, the set { f A : A ∈ F} ∪ {1} of linear polynomials is linearly indepen-

dent. Since dim P = v + 1, we obtain that |F | + 1 ≤ v + 1, i.e., |F | ≤ v =
|V |. �

The bound given by Fisher’s Inequality is sharp. If F is the family of all

(v − 1)-subsets of the v-set V , then |A ∩ B| = v − 2 for all distinct A, B ∈ F
and |F | = v.

1.2. The First Ray-Chaudhuri–Wilson Inequality

If A and B are distinct elements of a family F of subsets of a set V , the number

|A ∩ B| is called an intersection number of F . In the previous section, we

considered families of subsets with one intersection number. In this section, we

will consider families with s intersection numbers. To estimate the size of such

a family, we will use the vector space Ps of multilinear polynomials of total

degree s or less in v variables.

Definition 1.2.1. Let Qs be the vector space of all polynomials in vari-

ables x1, x2, . . . , xv of total degree ≤ s with rational coefficients. For each

I ⊆ {1, 2, . . . , v}, let xI = ∏
i∈I xi (with the convention that x∅ = 1). A poly-

nomial f ∈ Qs is called multilinear if it can be represented as a linear combi-

nation of the polynomials xI with |I | ≤ s. For every polynomial f in variables

x1, x2, . . . , xv , let f ∗ be the multilinear polynomial obtained by replacing each

occurrence of xk
i by xi ( for k ≥ 2 and i = 1, 2, . . . , v).

Multilinear polynomials form a subspace Ps of Qs , and the polynomials xI

with |I | ≤ s form a basis of Ps . Therefore, dim Ps = ∑s
i=0

(
v

i

)
.

With every subset X of {1, 2, . . . , v}, we again associate a (0, 1)-string

(x1, x2, . . . , xv) of length v where xi = 1 if i ∈ X and xi = 0 if i �∈ X . Then,

for any polynomial f in v variables, we have f (X ) = f ∗(X ).

Theorem 1.2.2 (The First Ray-Chaudhuri–Wilson Inequality). Let F be a
family of subsets of a set V of cardinality v. Let M be a set of non-negative
integers, |M | = s. Suppose that |A| = k is the same for all A ∈ F , |A ∩ B| ∈ M
for any distinct A, B ∈ F , and k > m for all m ∈ M. Then |F | ≤ (

v

s

)
.

Proof. Let V = {1, 2, . . . , v} and let F be a family of k-subsets of V sat-

isfying the conditions of the theorem. With each A ∈ F , we associate the

polynomial

gA =
∏

m∈M

(
∑
i∈A

xi − m),
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and the multilinear polynomial g∗
A. Then

g∗
A(X ) =

∏
m∈M

(|A ∩ X | − m)

for any X ⊆ V , and g∗
A(B) = 0 for any distinct A, B ∈ F . Note that g∗

A(A) > 0

for any A ∈ F . We also put h(x1, x2, . . . , xv) = ∑v
i=1 xi − k. Then h(X ) =

|X | − k for any subset X of V , so h(A) = 0 for any A ∈ F .

We claim that the set

{g∗
A : A ∈ F} ∪ {(xI h)∗ : I ⊆ V, |I | ≤ s − 1}

of multilinear polynomials is linearly independent. Since all these polynomials

are in Ps , this would imply that

|F | +
s−1∑
i=0

(
v

i

)
≤ dim Ps,

so |F | ≤ (
v

s

)
.

Assume that ∑
A∈F

αAg∗
A +

∑
I⊆V

|I |≤s−1

βI (xI h)∗ = 0,

for some rational coefficients αA, βI . Applying both sides of this equation to

B ∈ F , we obtain that αB g∗
B(B) = 0, so αB = 0. Therefore,∑

I⊆V
|I |≤s−1

βI (xI h)∗ = 0. (1.3)

We will show by induction on |I | that βI = 0.

Note that for J ⊆ V , we have

xI (J ) =
{

1 if I ⊆ J,

0 otherwise.
(1.4)

Applying both sides of (1.3) to the empty set and using (1.4), we obtain

β∅ = 0. Let 1 ≤ u ≤ s − 1 and let βI = 0 whenever |I | ≤ u − 1. Then we

have ∑
I⊆V

u≤|I |≤s−1

βI (xI h)∗ = 0.

Applying both sides of this equality to a subset J of V of cardinality u and

using (1.4), we obtain that βJ = 0. This completes the induction and the proof

of the theorem. �
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421
Figure 1.1 Fano Plane.

Figure 1.2 Pencil.

If F is the family of all s-subsets of the v-set V , then |A ∩ B| ∈ {0, 1, . . . ,

s − 1} for any distinct A, B ∈ F and |F | = (
v

s

)
, so the Ray-Chaudhuri–Wilson

bound is sharp.

1.3. Symmetric designs and Ryser designs

By Fisher’s Inequality (Theorem 1.1.1), the cardinality of a family of subsets

of a v-set with one (nonzero) intersection number does not exceed v. In this

section, we will consider families attaining this bound. The set of all (v − 1)-

subsets of a v-set is an example of such a family. We will give several less trivial

examples.

Example 1.3.1. Let V = {1, 2, 3, 4, 5, 6, 7} and let F = {{1, 2, 4}, {2, 3, 5},
{3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}}. Then |F | = |V | and |A ∩ B| =
1 for any distinct A, B ∈ F . This configuration is known as the Fano Plane.

In Fig. 1.1, triples of points on lines or on the circle represent elements of the

family F . All these triples are regarded as lines in the Fano Plane.

Example 1.3.2. Let V be a finite set. Fix x ∈ V and define F to be the

family consisting of the set V \ {x} and all 2-subsets of V containing x . Then

|F | = |V | and |A ∩ B| = 1 for any distinct A, B ∈ F . Such a configuration is

called a pencil (Fig. 1.2).
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Example 1.3.3. Arrange the elements of a set V of cardinality 16 in a 4 × 4

array. For each x ∈ V , define a subset Bx of size 6 by taking the elements of

V , other than x , which occur in the same row or column as x . It is easy to see

that |Bx ∩ By | = 2 for any distinct x, y ∈ V.

Let V = {1, 2, . . . , v} be a set of cardinality v. Let λ be a positive integer

and let F be a family of subsets of V such that |A ∩ B| = λ for any distinct

A, B ∈ F . For each A ∈ F , denote by f A the linear polynomial

f A =
∑
i∈A

xi − λ. (1.5)

In the proof of Theorem 1.1.1, we have shown that the set { f A : A ∈ F} ∪ {1}
is linearly independent in the vector space P of linear polynomials in variables

x1, x2, . . . , xv (over the rationals).

Suppose now that the family F is of maximum size, i.e., |F | = v. Then

this set of polynomials is a basis of P . By expanding monomials xi in this

basis we will attempt to extract information which can be used to obtain a crude

classification of the extremal case. For the next theorem we introduce the notion

of the replication number that will be used throughout the book.

Definition 1.3.4. LetF be a family of subsets of a finite set V . For any x ∈ V ,

the number of elements of F which contain x is called the replication number
of x in F .

Theorem 1.3.5 (The Ryser–Woodall Theorem). Let v and λ be positive inte-
gers and let F be a family of v subsets of a v-set V such that |A ∩ B| = λ for
any distinct A, B ∈ F . Then either all elements of V have the same replication
number or they have exactly two distinct replication numbers r and r∗ and
r + r∗ = v + 1. In the latter case, 2 ≤ r ≤ v − 1 and 2 ≤ r∗ ≤ v − 1.

Proof. Let V = {1, 2, . . . , v}. If there is A ∈ F such that |A| ≤ λ, then |A| =
λ and B ∩ C = A for any distinct B, C ∈ F . Therefore, each element of A has

replication number r = v and each element of V \ A has replication number

r∗ = 1. Thus we have r + r∗ = v + 1. From now on, we assume that |A| > λ

for each A ∈ F . Then the set { f A : A ∈ F} ∪ {1} where the polynomials f A

are defined by (1.5), is a basis of the vector space P of linear polynomials in

variables x1, x2, . . . , xv over the rationals. We will expand the monomials xi in

this basis:

xi =
∑
A∈F

α
(i)
A f A + βi .

Applying both sides of this equation to B ∈ F and using (1.1), we obtain

that α
(i)
B = (1 − βi )/(|B| − λ) if i ∈ B and α

(i)
B = −βi/(|B| − λ) if i �∈ B.
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Therefore,

xi = (1 − βi )
∑
A
i

f A

|A| − λ
− βi

∑
A �
i

f A

|A| − λ
+ βi . (1.6)

Applying both side of (1.6) to the empty set and to the singleton {i}, we

obtain:

0 = (1 − βi )(−λ)
∑
A
i

1

|A| − λ
− βi (−λ)

∑
A �
i

1

|A| − λ
+ βi , (1.7)

1 = (1 − βi )(1 − λ)
∑
A
i

1

|A| − λ
− βi (−λ)

∑
A �
i

1

|A| − λ
+ βi . (1.8)

Subtract (1.7) from (1.8) to obtain that βi �= 1 and∑
A
i

1

|A| − λ
= 1

1 − βi
. (1.9)

Equations (1.7) and (1.9) imply that βi �= 0 and∑
A �
i

1

|A| − λ
= 1

βi
− 1

λ
. (1.10)

Adding (1.9) to (1.10) yields

1

λ
+

∑
A∈F

1

|A| − λ
= 1

βi (1 − βi )
. (1.11)

We can reduce (1.11) to a quadratic equation in βi , whose coefficients do

not depend on i . Therefore, βi can have at most two distinct values, β and

β∗ = 1 − β. If βi = β, then applying both sides of (1.6) to the set V yields

1 = (1 − β)ri − β(v − ri ) + β,

where ri is the replication number of i . This equation implies that ri = β(v −
1) + 1. Similarly, if βi = β∗, we obtain that ri = β∗(v − 1) + 1. Thus, if all βi

are the same, then all points i ∈ V have the same replication number. If β and

β∗ are the two distinct values of βi , then the elements of V have two distinct

replication numbers r and r∗. Since β + β∗ = 1, we have r + r∗ = v + 1.

Since r + r∗ = v + 1, we have r ≥ 1. If r = 1, then r = β(v − 1) + 1

implies β = 0 which is not the case. Therefore, if the family F has two repli-

cation numbers and |A| > λ for all A ∈ F , then the replication number of each

element of V is greater than 1 and less than v. �

Let us now discuss the two possibilities that arise from the Ryser–Woodall

Theorem.
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Suppose first thatF is a family of v subsets of a v-set V such that |A ∩ B| = λ

for any distinct A, B ∈ F and all elements of V have the same replication

number r . Fix A ∈ F and count in two ways pairs (x, B) with B ∈ F , B �= A,

and x ∈ A ∩ B. We obtain that |A|(r − 1) = λ(v − 1). Therefore, if λ > 0,

then all A ∈ F have the same cardinality. In this case, we will say that (V,F)

is a symmetric (v, k, λ)-design, where k = |A| for all A ∈ F . Counting in two

ways pairs (x, A) with A ∈ F and x ∈ A yields k = r . Examples 1.3.1 and

1.3.3 describe a symmetric (7, 3, 1)-design and a symmetric (16, 6, 2)-design,

respectively. The precise definition and many other examples of symmetric

designs will be given in the next chapter.

The second possibility arising from the Ryser–Woodall Theorem leads to

the notion of a Ryser design.

Definition 1.3.6. Let v and λ be positive integers. A Ryser design of index λ

on v points is a pair (V,F) where V is a set of cardinality v and F is a family

of v subsets of V (blocks) such that

(i) |A ∩ B| = λ for any distinct A, B ∈ F ;

(ii) |A| > λ for all A ∈ F ;

(iii) there are blocks A and B such that |A| �= |B|.
Example 1.3.2 describes a Ryser design of index 1 on v points. As will be

shown in Section 14.1, pencils are the only possible Ryser designs of index 1

on v points.

1.4. Equidistant families of sets

We will now consider a distance function on the set of subsets of a finite set. It

will measure how different two subsets are. The following definition introduces

the famous Hamming distance.

Definition 1.4.1. Let V be a finite set. For any X, Y ⊆ V , define the Hamming

distance d(X, Y ) to be the cardinality of the symmetric difference X�Y of X
and Y .

The Hamming distance has the following properties that can be easily veri-

fied:

(i) d(X, Y ) ≥ 0; d(X, Y ) = 0 if and only if X = Y ;

(ii) d(X, Y ) = d(Y, X );

(iii) d(X, Y ) + d(Y, Z ) ≥ d(X, Z ).



1.4. Equidistant families of sets 9

Definition 1.4.2. A family F of subsets of the set V is called equidistant if

there exists a positive integer d such that |A�B| = d for any distinct A and B
in F .

In this section we will first find the maximum cardinality of an equidistant

family of subsets of a v-set.

Theorem 1.4.3. If F is an equidistant family of subsets of a finite set V of
cardinality v, then |F | ≤ v + 1.

Proof. Let F be an equidistant family of subsets of the set V = {1, 2, . . . , v},
|F | ≥ 2, and let d = |A�B| for any distinct A and B in F . With each A ∈ F
we associate the following linear polynomial f A in variables x1, x2, . . . , xv:

f A =
∑
i �∈A

xi −
∑
i∈A

xi + |A| − d. (1.12)

Then, for any subset X of V (regarded as a (0, 1)-string),

f A(X ) = |A�X | − d. (1.13)

This implies that for any A, B ∈ F ,

f A(B) =
{

0 if B �= A,

−d if B = A.
(1.14)

We claim that the set { f A : A ∈ F} of linear polynomials is linearly indepen-

dent (over the rationals). Indeed, if
∑

A∈F αA f A = 0 for some rational coeffi-

cients αA, then, applying both sides of this equality to B ∈ F and using (1.14),

we obtain that αB(−d) = 0, so αB = 0. Since the dimension of the vector space

of linear polynomials in the variables x1, x2, . . . , xv equals v + 1, it follows that

|F | ≤ v + 1. �

Hadamard matrices provide examples of maximum cardinality equidistant

families.

Definition 1.4.4. A Hadamard matrix is a square matrix with all entries equal

to ±1 and with any two distinct rows orthogonal.

For example, ⎡
⎢⎢⎣

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎤
⎥⎥⎦

is a Hadamard matrix of order 4.
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Hadamard matrices arise in different areas of combinatorics. The order of

a Hadamard matrix is 1 or 2 or a multiple of 4. One of the most famous open

conjectures in combinatorics is that there exists a Hadamard matrix of every

order that is divisible by 4. We will discuss Hadamard matrices at length in

Chapter 4.

Example 1.4.5. Let V = {1, 2, . . . , v}, and let H = [hi j ] be a Hadamard

matrix of order v + 1 with all entries in the last column equal to 1. For i =
1, 2, . . . , v + 1, let Ai = { j ∈ V : hi j = 1}. Then the family F = {Ai : 1 ≤
i ≤ v + 1} is equidistant. It is called a Hadamard family.

We will now show that this is the only possible example of a maximum size

equidistant family.

Theorem 1.4.6. Let F be an equidistant family of subsets of a v-set V. If
|F | = v + 1, then F is a Hadamard family.

Proof. Let |F | = v + 1, |A�B| = d for any distinct A, B ∈ F , and let poly-

nomials f A be defined by (1.12). It was shown in the proof of Theorem 1.4.3

that the set { f A : A ∈ F} of linear polynomials is linearly independent. Since

|F | = v + 1, this set is a basis of the vector space P of linear polynomials in

x1, x2, . . . , xv . Expand the constant polynomial 1 in this basis:

1 =
∑
A∈F

αA f A

for some rational coefficients αA. Applying both sides of this equality to B ∈ F ,

we derive that αB(−d) = 1, so αB = −1/d for any B ∈ F . Therefore, we have∑
A∈F

f A = −d. (1.15)

Applying both sides of (1.15) to the empty set and the set V , we obtain:∑
A∈F

(|A| − d) = −d

and ∑
A∈F

(v − |A| − d) = −d.

Adding these equalities yields (v + 1)(v − 2d) = −2d, which implies d = v+1
2

.

Let F = {A1, A2, . . . , Av+1}. Define the following square matrix H = [hi j ] of
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order v + 1:

hi j =

⎧⎪⎨
⎪⎩

1 if j = v + 1,

1 if 1 ≤ j ≤ v and j ∈ Ai ,

−1 if 1 ≤ j ≤ v and j �∈ Ai .

(1.16)

Since |A�B| = d = v+1
2

for any distinct A and B in F , the inner product

of any two distinct rows of H is equal to 0, i.e., H is a Hadamard matrix and

therefore F is a Hadamard family. �

We will return to equidistant families of sets (regarded as binary equidistant

codes) in Section 5.5.

Exercises

(1) Let F be a set of pairwise disjoint subsets of a v-set V .

(a) Prove that |F | ≤ v + 1.

(b) Prove that if |F | = v + 1, then F consists of the empty set and all singletons.

(2) For any positive integer n, π (n) denotes the number of primes that do not exceed

n. Let X be a subset of the set {1, 2, . . . , n} such that the product of all elements

of any nonempty subset Y of X is not a square (in particular, no element of X is

a square). Prove that |X | ≤ π (n).

(3) Let F be a set of subsets of a v-set V such that for any distinct A, B ∈ F ,

A ∪ B �= V . Prove that |F | ≤ 2v−1. Give an example of a set F of cardinality

2v−1 having this property.

(4) LetF be a set of subsets of a v-set V such that A ∩ B �= ∅ for all A, B ∈ F . Prove

that if |F | < 2v−1, then there exists X ⊆ V such that X �∈ F and X ∩ A �= ∅ for

all A ∈ F .

(5) Let V be a v-set with v ≥ 3. Prove that there is a set F of subsets of V such that

A ∩ B �= ∅ for all A, B ∈ F , |F | = 2v−1, and
⋂

A∈F A = ∅.

(6) Let V = {1, 2, 3, 4, 5, 6, 7} and

B = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}}.
Let F be the set of all subsets of V which contain at least one member of B.

(a) Find |F |.
(b) Prove that A ∩ B �= ∅ for all A, B ∈ F .

(7) Let F be a set of subsets of a finite set V such that |A ∩ B| is the same for all

distinct A, B ∈ F . Fix C ∈ F and define G = {C} ∪ {A�C : A ∈ F, A �= C}.
Prove that |A ∩ B| is the same for all distinct A, B ∈ F .

(8) Let (V,F) be a symmetric (v, k, λ)-design. Let X be a subset of V such that

|X ∩ A| is the same for all A ∈ F . Prove that X = ∅ or X = V .

Hint: Expand the polynomial
∑

i∈X xi in the basis introduced in the proof of the

Ryser–Woodall Theorem.
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(9) Let (V,F) be a Ryser design and let X be a subset of V such that |X ∩ A| is the

same for all A ∈ F . Prove that X = ∅.

(10) Let (V,F) be a symmetric (v, k, λ)-design and let A ∈ F be a fixed block. Let

X be a subset of V such that |X ∩ B| is the same for all B ∈ F \ {A}. Prove that

X = ∅ or X = V or X = A or X = V \ A.

(11) Let (V,F) be a Ryser design and let A ∈ F be a fixed block. Let X be a subset

of V such that |X ∩ B| is the same for all B ∈ F \ {A}. Prove that X = ∅ or

X = A or X ⊇ V \ A. Give an example of a Ryser design, a block A, and a

subset X ⊃ V \ A, X �= V \ A which satisfy the given conditions.

(12) Let F be an equidistant family of subsets of a v-set V . Let X be a subset of V .

Prove that the family F�X = {A�X : A ∈ F} is also equidistant.

(13) Show that the family of subsets introduced in Example 1.4.5 is equidistant.

(14) A regular n-simplex is a set S of n + 1 points of the n-dimensional real vector

space R
n such that the (Euclidean) distance between any two points of S is the

same. Prove that the following two statements are equivalent:

(a) the set of vertices of an n-dimensional cube contains a regular n-simplex;

(b) there exists a Hadamard matrix of order n + 1.

(15) Let F be an equidistant family of subsets of a v-set V . Suppose that |F | = v.

Define linear polynomials f A, A ∈ F , as in the proof of Theorem 1.4.3. Prove

that if v ≥ 3, then the set { f A : A ∈ F} ∪ {1} is linearly independent. Is this true

for v = 2?

(16) For a positive integer n, let k = 1 + � 2n+1

n+1
� if there exists a Hadamard matrix of

order n + 1 and k = 1 + � 2n+1

n � otherwise. Prove that among any k vertices of an

n-dimensional cube there are three distinct vertices of an equilateral triangle.

(17) Let V be a set of cardinality v and F a family of subsets of V such that |A ∩ B|
takes at most s values for distinct A, B ∈ F . Prove that |F | ≤ ∑s

i=0

(
v

i

)
.

(18) Let p be a prime and let V = {1, 2, , , , .4p}. Let F be a family of subsets of V
such that |A| = 2p for all A ∈ F and |A ∩ B| �= p for all A, B ∈ F . Prove that

|F | ≤ 2
(

4p−1

p−1

)
.

Hint: with each A ∈ F , associate a multilinear polynomial f ∗
A where f A =

(
∑

i∈A xi )
p−1 −1 over the field of residue classes modulo p.

(19) Let X be a set of strings (x1, x2, . . . , xv) of length v of elements of the set {0, 1, 2}.
Suppose that for any distinct (x1, x2, . . . , xv), (y1, y2, . . . , yv) ∈ X , there is an

index j such that x j − y j ≡ 1 (mod 3). Prove that |X | ≤ 2v .

Notes
The topic of combinatorics of finite sets is also referred to as extremal set theory. See

Bollobás (1986) and Anderson (1987) for an exposition of many famous results and

methods in this area.

The technique of estimating the size of a given family of subsets of a finite set using

suitable polynomials in a vector space is well known. This approach has been used,

for example, by Koornwinder (1976), Delsarte, Goethals, and Seidel (1977), and more

recently by Alon, Babai, and Suzuki (1991), Blokhuis (1993), Godsil (1993), Snevily

(1994), and Ionin and M. S. Shrikhande (1996a) among others.
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Nonuniform Fisher’s Inequality was first proved in Majumdar (1953). It is a gener-

alization of Fisher’s Inequality for 2-designs considered in Section 2.3. Another proof

is in Babai (1987). The proof given in Section 1.1. is adapted from Ionin and M. S.

Shrikhande (1996a). The First Ray-Chaudhuri–Wilson Inequality is contained in the

seminal paper by Ray-Chaudhuri and Wilson (1975). The proof given in Section 1.2. is

due to Alon, Babai, and Suzuki (1991). The last paper also contains nonuniform versions

of this inequality.

The Ryser–Woodall Theorem was independently proven by Ryser (1968) and

Woodall (1970). The proof of this result given in Section 3 is due to Ionin and M. S.

Shrikhande (1996a). The term Ryser design is taken from Stanton (1997). Ryser (1968)

calls these structures λ-designs and Woodall (1970) uses the term λ-linked designs for a

more general structure. We prefer to call these objects Ryser designs to avoid confusion

with common usage of such terms as 2-design, t-design, etc. in design theory.

Theorem 1.4.6 was proven in Delsarte (1973b). Our proof follows that of Ionin and

M. S. Shrikhande (1995b). Equidistant families of sets were also studied by Bose and

S. S. Shrikhande (1959a) and Semakov and Zinoviev (1968).

For Exercise 17, see Alon, Babai and Suzuki (1991). The result of Exercise 18 is due

to Frankl and Wilson (1981). For the polynomial proof of this result and for Exercise

(19), see Blokhuis (1993).
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Introduction to designs

Points and lines in Euclidean plane represent the oldest example of an incidence
structure. Generally, an incidence structure can be described by two abstract sets

(called the point set and the block set) and a binary relation between points and

blocks. Imposing certain regularity conditions on a finite incidence structure

leads to the concept of combinatorial designs that includes 2-designs, symmetric
designs, and graphs.

2.1. Incidence structures

One of the most general notions in the theory of combinatorial designs is that of

an incidence structure. It involves two finite sets and a binary relation between

their elements.

Definition 2.1.1. A (finite) incidence structure is a triple D = (X,B, I ) where

X and B are nonempty finite sets and I ⊆ X × B. The sets X and B are called

the point set and the block set of D, respectively, and their elements are called

points and blocks. The set I is called the incidence relation. If (x, B) ∈ I , we

will say that point x and block B are incident and that (x, B) is a flag.

The number of points incident with a block B is called the size or the cardi-
nality of B and denoted by |B|. If |B| = |X |, the block B is said to be complete.

The number of blocks incident with a point x is called the replication number
of x (Fig. 2.1) and denoted by r (x). For distinct points x and y, λ(x, y) denotes

the number of blocks incident with both x and y. An incidence matrix of D is a

(0, 1)-matrix whose rows are indexed by the points of D, columns are indexed

by the blocks of D, and the (x, B)-entry is equal to 1 if and only if (x, B) ∈ I .

Remark 2.1.2. When we have to actually form an incidence matrix of

an incidence structure D = (X,B, I ) with v points and b blocks, we need

14
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x

Figure 2.1 Block Bx .

to order the sets X and B. To indicate the chosen ordering, we will write

X = {x1, x2, . . . , xv} and B = {B1, B2, . . . , Bb} and refer to the (0, 1)-matrix

N = [ni j ] with ni j = 1 if and only if (xi , B j ) ∈ I as the corresponding inci-
dence matrix of D.

If N is an incidence matrix of D, then |B| is the sum of the entries of the

column of N indexed by B, r (x) is the sum of the entries of the row of N
indexed by x , and λ(x, y) is the inner product of the rows of N indexed by x
and y.

Definition 2.1.3. If an incidence structure (X,B, I ) is such that B is a set of

subsets of X , and (x, B) ∈ I if and only if x ∈ B, then it will be denoted as

(X,B).

For any incidence structure D = (X,B, I ), we will associate with each block

B the set of points incident with B. We will denote this set by the same letter B.

With this notation, one should be aware that distinct blocks may have the same

set of incident points. Nevertheless, it is convenient to use the set theory notation.

For instance, if A and B are blocks of an incidence structure, then A ∩ B
denotes the set of points incident with both A and B. In the same manner, we

will interpret the union A ∪ B, the difference A \ B, the symmetric difference

A�B = (A ∪ B) \ (A ∩ B), etc. We will often use x ∈ B or B � x instead of

(x, B) ∈ I . If Y is a set of points and B is a block, then Y ⊆ B means that every

point of Y is incident with B and B ⊆ Y means that every point that is incident

with B is in Y .

For an incidence structure D = (X,B, I ), counting flags in two ways yields

the equation ∑
x∈X

r (x) =
∑
B∈B

|B|. (2.1)

Fixing a point x and counting in two ways flags (y, B) with y �= x and x, y ∈ B,
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we obtain another basic equation∑
y∈X
y �=x

λ(x, y) =
∑
B∈B
B�x

|B| − r (x). (2.2)

The notion of a substructure of an incidence structure can be defined in a

natural way.

Definition 2.1.4. Let D = (X,B, I ) be an incidence structure. Let X0 be a

nonempty subset of X and B0 a nonempty subset of B. The incidence structure

D(X0,B0) = (X0,B0, I ∩ (X0 × B0)) is said to be a substructure of D. If B0 =
B, we will write D(X0) instead of D(X0,B).

If N is an incidence matrix of D, then the submatrix of N formed by the

rows with indices from X0 and columns with indices from B0 is an incidence

matrix of D(X0,B0).

The following two kinds of substructures are of special interest.

Definition 2.1.5. Let D = (X,B, I ) be an incidence structure and let Y be a

proper subset of X . Let BY = {B ∈ B : Y �⊆ B} and BY = {B ∈ B : B �⊆ Y }.
If BY �= ∅, then the substructure DY = D(X \ Y,BY ) is called a residual sub-
structure of D. If BY �= ∅, then the substructure DY = D(Y,BY ) is called a

derived substructure of D. If Y is the set of all points incident with a block

B, then we write DB and DB instead of DY and DY and call these substruc-

tures block-residual and block-derived, respectively. If x is a point, then we

put Dx = D{x} and Dx = DX\{x} and call these substructures point-residual and

point-derived, respectively.

The next proposition characterizing incidence matrices of residual and

derived substructures is immediate. In this proposition we denote by J the

all-one matrix of an appropriate size. The following is a list of notations that

will be used throughout this book without further explanation.

I the identity matrix

J the all-one matrix

In the identity matrix of order n
Jn the all-one matrix of order n

Jm,n the m × n all-one matrix

O the zero matrix

A	 the transpose of matrix A
a, b, x column vectors

0 the zero column vector

j the all-one column vector
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Proposition 2.1.6. Let D = (X,B, I ) be an incidence structure and let Y be
a proper subset of X. A matrix MY is an incidence matrix of DY if and only
if there is an incidence matrix M of D that can be represented as a block
matrix

M =
[

MY

P

]
or M =

[
MY Q
P J

]
.

A matrix NY is an incidence matrix of DY if and only if there is an incidence
matrix N of D that can be represented as a block matrix

N =
[

R
NY

]
or N =

[
R O

NY S

]
.

From a given incidence structure D, we can define the s-fold multiple of D by

repeating every block s times, the complementary structure by replacing every

block by its complement, and the dual incidence structure by interchanging

points and blocks.

Definition 2.1.7. Let D = (X,B, I ) be an incidence structure and s a positive

integer. Let B = {B1, B2, . . . , Bb}. The s-fold multiple of D is the incidence

structure s × D = (X, s × B, Is), where s × B = {Bi j : 1 ≤ i ≤ b, 1 ≤ j ≤ s}
and (x, Bi j ) ∈ Is if and only if (x, Bi ) ∈ I .

Definition 2.1.8. Let D = (X,B, I ) be an incidence structure. The comple-
mentary incidence structure is D′ = (X,B, I ′) where (x, B) ∈ I ′ if and only if

(x, B) �∈ I .

Definition 2.1.9. Let D = (X,B, I ) be an incidence structure. The dual inci-
dence structure is D	 = (B, X, I ∗) where (B, x) ∈ I ∗ if and only if (x, B) ∈ I .

If N is an incidence matrix of D, then N	 is an incidence matrix of D	 and

J − N is an incidence matrix of D′.
The same incidence structure may be described in several ways. In order to

make this concept precise, we define isomorphism between incidence structures.

Definition 2.1.10. Incidence structures D1 = (X1,B1, I1) and D2 = (X2,B2,

I2) are called isomorphic if there exists a pair of bijections f : X1 → X2 and

g : B1 → B2 such that (x, B) ∈ I1 if and only if ( f (x), g(B)) ∈ I2.

If an incidence structure admits a symmetric incidence matrix, it is isomor-

phic to its dual. Such an incidence structure is called self-dual.
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Definition 2.1.11. An incidence structure D is called self-dual if D and D	

are isomorphic incident structures.

The following example of isomorphic incidence structures is an immediate

corollary of Proposition 2.1.6.

Proposition 2.1.12. Let D = (X,B, I ) be an incidence structure and let D′

be the complementary incidence structure. Let Y be a proper subset of X. If
the residual substructure DY of D is defined, then the complementary structure
(DY )′ is isomorphic to the derived substructure (D′)X\Y of D′. If the derived
substructure DY of D is defined, then the complementary structure (DY )′ is
isomorphic to the residual substructure (D′)X\Y of D′.

Two (0, 1)-matrices N1 and N2 are incidence matrices of isomorphic inci-

dence structures if and only if there exist permutation matrices P and Q such

that P N1 = N2 Q.

Proposition 2.1.13. Let N1 and N2 be v × b incidence matrices of isomorphic
incidence structures D1 = (X1,B1, I1) and D2 = (X2,B2, I2) and let bijec-
tions f : X1 → X2 and g : B1 → B2 be such that (x, B) ∈ I1 if and only if
( f (x), g(B)) ∈ I2. For k = 1 and 2, for i = 1, 2, . . . , v, and for j = 1, 2, . . . , b,
let xk

i and Bk
j be the point and the block of Xk corresponding to the i th row and

to the j th column of Nk, respectively. Let (0, 1)-matrices P = [pi j ] of order v

and Q = [qi j ] of order b be defined by:

pi j = 1 if and only if x2
i = f (x1

j ),

qi j = 1 if and only if B2
i = g(B1

j ).

Then P N1 = N2 Q.

Proof. For k = 1, 2, let Nk = [n(k)
i j ]. For i = 1, 2, . . . , v and j = 1, 2, . . . , b,

the (i, j)-entry of P N1 is equal to n(1)
s j with x2

i = f (x1
s ), so it is equal to 1 if

and only if (x2
i , g(B1

j )) ∈ I2. Similarly, the (i, j)-entry of N2 Q is equal to n(2)
i t

with B2
t = g(B1

j ), so it is equal to 1 if and only if (x2
i , g(B1

j )) ∈ I2. Therefore,

P N1 = N2 Q. �

Remark 2.1.14. Note that the matrices P and Q defined in Proposition 2.1.13

are permutation matrices, that is, (0, 1)-matrices with exactly one entry equal

to 1 in each row and each column.

Remark 2.1.15. The converse of Proposition 2.1.13 is also true. See Exer-

cise 3
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2.2. Graphs

The basic concepts of graph theory are used in many areas of combinatorics.

A graph is determined by a set of points called vertices and a set of 2-subsets

of the set of vertices called edges. All graphs under consideration are without

multiple edges. Therefore, as incidence structures, they do not have repeated

blocks.

Definition 2.2.1. A graph is a pair � = (V, E) where V is a nonempty finite

set (of vertices) and E is a set of 2-subsets of V (edges). If {x, y} is an edge,

then vertices x and y are said to be adjacent. The cardinality of V is called the

order of �. For each vertex x ∈ V , �(x) denotes the set of all vertices y such

that {x, y} is an edge. The cardinality of �(x) is called the degree or valency of

x . If all vertices of a graph are of the same degree k, then the graph is said to

be regular of degree k.

Example 2.2.2. For n ≥ 3, the graph Cn with vertices x1, x2, . . . , xn and edges

{xi , xi+1}, for i = 1, . . . , n − 1, and {xn, x1} is called a cycle of length n. It is

regular of degree 2.

Definition 2.2.3. A graph � = (V, E) is called a null graph if E = ∅. A graph

� = (V, E) is called a complete graph if E is the set of all 2-subsets of V . The

complete graph of order n is denoted by Kn . A graph � = (V, E) is called

bipartite if there is a partition of the vertex set V into two nonempty subsets

such that no two vertices from the same partition set form an edge. A regular

bipartite graph of degree 1 is called a ladder graph. A graph �′ = (V ′, E ′) is

called a subgraph of a graph � = (V, E) if V ′ ⊆ V and E ′ ⊆ E . The subgraph

�′ is called an induced subgraph if E ′ is the set of all elements of E that are

contained in V ′. An induced subgraph �′ of a graph � is called a clique if �′ is

a complete graph. An induced subgraph �′ of a graph � is called a coclique if

�′ is a null graph. The set of vertices of a clique or a coclique is usually referred

to by the same name.

With any incidence structure we associate a bipartite graph called the Levi
graph of the structure.

Definition 2.2.4. Let D = (X, I,B) be an incidence structure with disjoint

sets X and B. The Levi graph of D is the graph with the vertex set X ∪ B and

all edges {x, B} such that (x, B) ∈ I .

A graph � = (V, E) can be regarded as a partition of the set of all 2-subsets

of V into two sets: the set E of edges and the set of non-edges. Replacing the

former set by the latter yields the complement of the graph.
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Definition 2.2.5. The complement of a graph � = (V, E) is the graph �′ =
(V, E ′) where E ′ is the set of all 2-subsets of V that are not edges of �.

The next definition introduces some basic notions of graph theory.

Definition 2.2.6. A walk from a vertex x to a vertex y of a graph � = (V, E) is

a sequence (x0, x1, . . . , xn) of vertices such that x0 = x , xn = y, and {xi−1, xi }
is an edge for i = 1, 2, . . . , n. The number n is the length of the walk. The

binary relation on V , given by x ∼ y if and only if x = y or there is a walk

from x to y, is an equivalence relation. If V1, V2, . . . , Vm are the equivalence

classes, then the graphs �i = (Vi , Ei ) where Ei = {e ∈ E : e ⊆ Vi } are called

connected components of �. A graph with only one connected component is

called a connected graph.

We leave proof of the following proposition as an exercise.

Proposition 2.2.7. If �′ is the complement of a graph �, then at least one of
these graphs is connected.

Graphs with disjoint vertex sets can be combined into a larger graph.

Definition 2.2.8. Let �1 = (V1, E1) and �2 = (V2, E2) be graphs with V1 ∩
V2 = ∅. The graph � = (V1 ∪ V2, E1 ∪ E2) is called the disjoint union of the

graphs �1 and �2. For positive integers m and n, the disjoint union of m copies

of Kn is denoted by m · Kn; its complement is called a complete multipartite
graph and denoted Km,n .

A graph can be represented via its adjacency matrix.

Definition 2.2.9. If V = {x1, x2, . . . , xv} is the vertex set of a graph �, then

the corresponding adjacency matrix of � is the v × v matrix whose (i, j) entry

is equal to 1 if {xi , x j } is an edge of �, and is equal to 0 otherwise.

A (0, 1)-matrix is an adjacency matrix of a graph if and only if it is sym-

metric and has zero diagonal. The following proposition can be proved by

straightforward induction.

Proposition 2.2.10. Let � be a graph with the vertex set V = {x1, x2, . . . , xv}
and let A be the corresponding adjacency matrix. For any positive integer k,
Ak is the matrix whose (i, j) entry is equal to the number of walks of length k
from vertex xi to vertex x j .

If A is an adjacency matrix of a graph � on v vertices and J is the all-

one matrix of order v, then the (i, j)-entry of AJ is the valency of xi and the
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(i, j)-entry of J A is the valency of x j . Therefore, � is regular if and only if

AJ = J A. It is regular of degree k if and only if AJ = k J .

If A and B are adjacency matrices of a graph �, then one can be obtained

from the other by a suitable permutation of vertices of �, that is, there exists

a permutation matrix P such that B = P	 AP . Since permutation matrices are

orthogonal, the matrices A and B have the same characteristic polynomial χ (�),

which therefore can be called the characteristic polynomial of the graph �. If

A is an adjacency matrix of �, then χ (�)(t) = det(t I − A). The roots of χ (�)

are the eigenvalues of �. The spectrum of � is the multiset of its eigenvalues

taken with their respective multiplicities. Note that since adjacency matrices

of graphs are symmetric matrices with zeros on the diagonal, the spectrum

of any graph consists of real numbers whose sum is equal to 0. If a graph

� has m connected components �1, �2, . . . , �m , then χ (�) = χ (�1)χ (�2) · · ·
χ (�m).

Example 2.2.11. By Lemma 2.3.6, χ (Kn)(t) = (t − n + 1)(t + 1)n−1 and

χ (m · Kn)(t) = ((t − n + 1)(t + 1)n−1)m .

If A is an adjacency of a graph �, then s is an eigenvalue of � if and only

if there exists a nonzero (column) vector x such that Ax = sx. The vector x is

called an eigenvector of A corresponding to s. All eigenvectors of A correspond-

ing to s together with the zero vector 0 form the eigenspace of A corresponding
to s.

The spectrum of a graph may provide useful information about the graph.

For instance, the largest eigenvalue of a regular graph is the degree of the graph.

In the proof of this and other results involving eigenvalues of graphs, we will

use the following three results on symmetric matrices the first two of which can

be found in standard linear algebra texts.

Proposition 2.2.12. If A is a real symmetric matrix, then the dimension of the
eigenspace of A corresponding to a given eigenvalue is equal to the multiplicity
of this eigenvalue. If x and y are eigenvectors of A corresponding to two different
eigenvalues, then x	y = [0].

Proposition 2.2.13. If A1, A2, . . . , Am are real symmetric matrices, any two
of which commute, then there exists an orthogonal matrix C such that all matri-
ces C	 Ai C (i = 1, 2, . . . , m) are diagonal matrices.

Proposition 2.2.14. For any matrix N, every nonzero eigenvalue of N N	 is
also an eigenvalue of N	N with the same multiplicity.
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Proof. Let s be a nonzero eigenvalue of N N T , i.e., N N T x = sx for some

nonzero vector x. Then

N	x �= 0 and (N	N )(N	x) = s(N	x)

so s is an eigenvalue of N T N with the nonzero eigenvector N	x. The multi-

plicity of an eigenvalue of a symmetric matrix is equal to the dimension of the

corresponding eigenspace. Let x1, x2, . . . , xm be linearly independent eigen-

vectors corresponding to an eigenvalue s �= 0 of N N T . Then the corresponding

eigenvectors N	x1, N	x2, . . . , N	xm of N	N are also linearly independent.

Indeed, if
∑m

i=1 αi N	xi = 0, then
∑m

i=1 αi N N T xi = 0, so
∑m

i=1 αi sxi = 0,∑m
i=1 αi xi = 0, and all αi are equal to 0. Thus, each nonzero eigenvalue of

N N T is an eigenvalue of N T N with at least the same multiplicity. By inter-

changing N and N T , we complete the proof. �

Corollary 2.2.15. If N is a v × b matrix with v ≤ b, then the spectrum of
N	N can be obtained by adjoining b − v zeros to the spectrum of N N	.

If � is a regular graph of degree k and A is an adjacency matrix of �, then

AJ = k J , so k is an eigenvalue of � with an eigenvector j. Proposition 2.2.12

implies that if x is an eigenvector of � corresponding to an eigenvalue other

than k, then Jx = 0.

The following proposition gives a relation between eigenvalues of a regular

graph and of its complement.

Proposition 2.2.16. Let � be a regular graph of order v and degree k and
let s be an eigenvalue of � other than k. Then −s − 1 is an eigenvalue of
the complementary graph � and the multiplicity of s in � does not exceed the
multiplicity of −s − 1 in �. Furthermore, these multiplicities are the same if
and only if s �= k − v.

Proof. Let A be an adjacency matrix of � and let Ax = sx. Then J − A − I
is an adjacency matrix of � and (J − A − I )x = (−s − 1)x. Thus, −s − 1 is

an eigenvalue of �. Furthermore, the eigenspace U of A corresponding to s
is contained in the eigenspace U of J − A − I corresponding to the eigen-

value −s − 1 of �. Therefore, the multiplicity of s in � does not exceed the

multiplicity of −s − 1 in �.

If s = k − v, then−s − 1 is the degree of�, so j ∈ U and dim(U ) > dim(U ).

If s �= k − v, then −s − 1 is an eigenvalue of � other than the degree of � and

therefore, by the first part of the proof, dim(U ) ≤ dim(U ), so the multiplicities

of s and −s − 1 are the same. �

The degree of a regular graph is its largest eigenvalue.
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Proposition 2.2.17. If � is a regular graph of degree k with m connected
components, then k is an eigenvalue of � of multiplicity m. If s is any eigenvalue
of �, then |s| ≤ k.

Proof. First assume that m = 1, i.e., that � is a connected regular graph

of degree k with the vertex set {x1, x2, . . . , xv}. Let A be the corresponding

adjacency matrix of �. Then AJ = k J and therefore k is an eigenvalue of A
with the all-one eigenvector j.

Let x = [α1, α2, . . . , αv]	 be any nonzero vector such that Ax = kx. Then

(for j = 1, 2, . . . , v) kα j is the sum of all αi such that xi is adjacent to x j .

Let αm be an entry of x with the largest absolute value. Then αi = αm for all

i such that xi is adjacent to xm . Since � is connected, this implies that all

components of x are equal. Therefore, the eigenspace of A corresponding to k
is one-dimensional and k is a simple eigenvalue of �.

Let s be any eigenvalue of �. Let y be an eigenvector corresponding to s and

let βm be a component of y with the largest absolute value. Since Ay = sy, we

obtain that sβm is the sum of k components of y and therefore |s||βm | ≤ k|βm |,
which implies |s| ≤ k.

Suppose now that � has m > 1 connected components �1, �2, . . . , �m . Then

each �i is a connected graph of degree k. Therefore, k is a simple root of each

polynomial χ (�i ), i = 1, 2, . . . , m, and so it is a root of multiplicity m of χ (�).

If s is another eigenvalue of �, then s is an eigenvalue of at least one �i and

therefore |s| ≤ k. �

The following theorem gives some information on other eigenvalues of a

regular graph.

Theorem 2.2.18. Let A be an adjacency matrix of a connected regular graph
of order v and degree k and let p be a polynomial with real coefficients. Then
p(A) = J if and only if p(k) = v and p(s) = 0 for all eigenvalues s of �, other
than k.

Proof. Since AJ = J A = k J , matrices A and J commute. Therefore, there

exists an orthogonal matrix C such that C	 AC = D and C	 JC = E are diag-

onal matrices. Since the matrix J of order v has a simple eigenvalue v and an

eigenvalue 0 of multiplicity v − 1, we assume without loss of generality that

the (1, 1)-entry of E is v and all other entries are zeros.

Let x = C	j, so Cx = j. Then Ex = vx, which implies that x =
[x1, 0, . . . , 0]	. Since Dx = kx, we obtain that the (1, 1)-entry of D is k.

Let p be a polynomial over the reals. Then p(D) = C	 p(A)C . If p(A) = J ,

then p(D) = E , so p(k) = v and p(s) = 0 for all eigenvalues s of � other

than k.
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Conversely, if p(s) = 0 for all these eigenvalues and p(k) = v, then p(D) =
E , which implies p(A) = J . �

The next two propositions characterize graphs with one eigenvalue and reg-

ular graphs with two eigenvalues.

Proposition 2.2.19. The only graphs with one eigenvalue are null graphs.

Proof. If a graph � on v vertices with an adjacency matrix A has only one

eigenvalue s, then Ax = sx for all vectors x ∈ Qv . In particular Aj = sj, which

implies that � is a regular graph of degree s. Now Proposition 2.2.17 implies

that � has v connected components and therefore it is a null graph. �

Proposition 2.2.20. A regular graph has two eigenvalues if and only if it is a
Kn or a m · Kn.

Proof. As Example 2.2.11 shows, all graphs Kn and m · Kn have two eigen-

values.

Let � be a connected regular graph of order v and degree k with two eigen-

values, k and s. Let A be an adjacency matrix of �. By Proposition 2.2.17, k is a

simple eigenvalue and then s is an eigenvalue of multiplicity v − 1. Therefore,

we have k + (v − 1)s = 0. Let p(t) = (s − t)/s. Then p(k) = v and p(s) = 0,

and Theorem 2.2.18 implies that p(A) = J . Therefore, A = s(I − J ). Since A
is a (0, 1)-matrix, we have s = −1 and A = J − I . Thus, � = Kv .

If � is a regular graph of order v with two eigenvalues, having m > 1

connected components, then each component is a complete graph. Therefore,

� = m · Kv/m . �

2.3. Basic properties of (v, b, r, k, λ)-designs

We will now impose certain regularity conditions on incidence structures.

Definition 2.3.1. A (v, b, r, k, λ)-design is an incidence structure D =
(X,B, I ) satisfying the following conditions: (i) |X | = v; (ii) |B| = b; (iii)

r (x) = r for all x ∈ X ; (iv) |B| = k for all B ∈ B; (v) λ(x, y) = λ for all dis-

tinct x, y ∈ X ; (vi) if I = ∅ or I = X × B, then v = b.

Remark 2.3.2. Parameters v and b of a (v, b, r, k, λ)-design are positive

integers; parameters r and k are nonnegative integers; if v > 1, then λ is a

nonnegative integer; if v = 1, then λ is irrelevant. An incidence matrix of a

(v, b, r, k, λ)-design is a v × b matrix with constant row sum r , constant col-

umn sum k, and constant inner product λ of distinct rows. If it is the all-zero
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or all-one matrix, then (vi) implies that it is a square matrix. The designs with

incidence matrices O and J have parameters (v, v, 0, 0, 0) and (v, v, v, v, v),

respectively. We will call these designs trivial. If v = 1, then condition (vi) of

Definition 2.3.1 implies that b = 1.

We now give several examples of (v, b, r, k, λ)-designs.

Example 2.3.3. Let v ≥ k ≥ 2 and let D = (X,B), where X is a set of cardi-

nality v andB is the set of all k-subsets of X . Then D is a (v,
(
v

k

)
,
(
v−1
k−1

)
, k,

(
v−2
k−2

)
)-

design. Such a design is called complete.

Example 2.3.4. Let X = {1, 2, 3, 4, 5, 6} and B = {{1, 2, 3}, {1, 2, 4},
{1, 3, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 6}, {2, 4, 5}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}}.
Then D = (X,B) is a (6, 10, 5, 3, 2)-design.

Incidence structures introduced in Examples 1.3.1 and 1.3.3 are in fact a

(7, 7, 3, 3, 1)-design and a (16, 16, 6, 6, 2)-design, respectively.

If N is an incidence matrix of a (v, b, r, k, λ)-design, then it is a v × b matrix

and properties (iii) – (v) can be expressed in the form of matrix equations:

N J = r J , J N = k J , N N	 = (r − λ)I + λJ. (2.3)

The complement and s-fold multiple of a (v, b, r, k, λ)-design are a (v, b, b −
r, v − k, b − 2r + λ) and a (v, sb, sr, k, sλ)-design, respectively.

Definition 2.3.5. The order of a (v, b, r, k, λ)-design with v > 1 is the non-

negative integer r − λ.

Observe that a design and its complement have the same order.

If N is an incidence matrix of a (v, b, r, k, λ)-design, then the matrix N N	

is of the form x I + y J . It is useful to know the determinant of such matrices.

Lemma 2.3.6. For any real numbers x and y, det(x I + y J ) = (x + ny)xn−1.

Proof. Let A = x I + y J . We add to the first row of A all other rows to

make all entries in the first row equal to x + ny. Factoring x + ny out and then

subtracting y times the first row from every other row yields a matrix with zeros

below the diagonal and with the first diagonal entry equal to 1 and the other

n − 1 diagonal entries equal to x . Therefore, det(x I + y J ) = (x + ny)xn−1. �

For a (v, b, r, k, λ)-design, equations (2.1) and (2.2) imply immediately the

following result.

Proposition 2.3.7. If D = (X,B, I ) is a (v, b, r, k, λ)-design, then

vr = bk (2.4)
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and

λ(v − 1) = r (k − 1). (2.5)

The following proposition introduces a simple but very useful counting tech-

nique known as variance counting.

Proposition 2.3.8. Let D = (X,B) be a (v, b, r, k, λ)-design and let A ∈ B.
For i = 0, 1, . . . , k, let ni denote the number of blocks B ∈ B \ {A} such that
|A ∩ B| = i . Then

k∑
i=0

ni = b − 1, (2.6)

k∑
i=0

ini = k(r − 1), (2.7)

and

k∑
i=0

i(i − 1)ni = k(k − 1)(λ − 1). (2.8)

Proof. Eq. (2.6) is obvious. Counting in two ways pairs (x, B) with B ∈
B \ {A} and x ∈ A ∩ B yields (2.7). Counting in two ways triples (x, y, B)

with B ∈ B \ {A}, x �= y, and x, y ∈ A ∩ B yields (2.8). �

Property (vi) of Definition 2.3.1 allows us to avoid exceptions in the follow-

ing classical result.

Theorem 2.3.9 (Fisher’s Inequality). For any (v, b, r, k, λ)-design, the number
of points does not exceed the number of blocks, i.e., v ≤ b.

Proof. Let D = (X,B, I ) be a (v, b, r, k, λ)-design. For each x ∈ X , let Bx

denote the set of all blocks B ∈ B incident with x . If Bx = By for distinct

points x, y ∈ X , then λ = r and (2.5) implies that either r = 0 or v = k. Then

I = ∅ or I = X × B, and therefore v = b. Thus, we may assume that Bx �= By

for any distinct points x, y ∈ X . Condition (v) of Definition 2.3.1 implies that

|Bx ∩ By | = λ for any distinct x, y ∈ X . If λ = 0 and r �= 0, then (2.5) implies

that k = 1, so sets Bx are distinct singletons, and then v ≤ b. If λ > 0, then

Non-Uniform Fisher’s Inequality applied to the family {Bx : x ∈ X} of subsets

of B yields v ≤ b. �

Remark 2.3.10. Another proof of Fisher’s Inequality is proposed in

Exercise 26.
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Remark 2.3.11. Equations (2.4) and (2.5) and Fisher’s Inequality are not

sufficient for the existence of a (v, b, r, k, λ)-design. For instance, there is no

(22, 22, 7, 7, 2)-design (see Remark 2.4.11) or a (15, 21, 7, 5, 2)-design (Corol-

lary 8.2.21). However, for k ≤ 5, these conditions are sufficient with the only

exception of the parameter set (15, 21, 7, 5, 2). The smallest unresolved param-

eter set for (v, b, r, k, λ)-designs is (46, 69, 9, 6, 1).

Equations (2.4) and (2.5) indicate that some of the conditions of Defini-

tion 2.3.1 may imply the other conditions. The following three propositions

confirm it.

Proposition 2.3.12. Let D = (X,B, I ) be an incidence structure satisfying
conditions (i), (iv), (v), and (vi) of Definition 2.3.1. If k ≥ 2, then D is a
(v, b, r, k, λ)-design with r = λ(v − 1)/(k − 1) and b = vr/k.

Proof. For the incidence structure D, equation (2.2) reads λ(v − 1) =
r (x)(k − 1). Therefore, r (x) = r = λ(v − 1)/(k − 1) is the same for all x ∈ X ,

so D is a (v, b, r, k, λ)-design, and then (2.1) implies that b = vr/k. �

Proposition 2.3.13. Let D = (X,B, I ) be an incidence structure satisfying
conditions (i), (ii), (iii), (v), and (vi) of Definition 2.3.1. Suppose further that
there exists a real number k satisfying equations (2.4) and (2.5). Then D is a
(v, b, r, k, λ)-design.

Proof. For the incidence structure D, equations (2.2) and (2.5) imply that∑
B�x

|B| = λ(v − 1) + r = rk.

Since
∑

B∈B |B|2 = ∑
x∈X

∑
B�x |B|, equation (2.4) implies that∑

B∈B
|B|2 = vrk = bk2.

Since
∑

B∈B |B| = vr = bk, we obtain that∑
B∈B

(|B| − k)2 = bk2 − 2bk2 + bk2 = 0,

and |B| = k for all B ∈ B. Therefore, D is a (v, b, r, k, λ)-design. �

Proposition 2.3.14. Let D = (X,B, I ) be an incidence structure satisfying
conditions (i) – (iv) and (vi) of Definition 2.3.1. Suppose further that there
exists a nonnegative integer λ such that (v − 1)λ = r (k − 1) and (i) any two
points of D are incident with at most λ blocks or (ii) any two points of D are
incident with at least λ blocks. Then D is a (v, b, r, k, λ)-design.
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Proof. Fixing a point x ∈ X and counting flags (y, B) where x is incident

with B yields either (v − 1)λ ≥ r (k − 1) or (v − 1)λ ≤ r (k − 1), respectively.

Since, in fact, (v − 1)λ = r (k − 1), we obtain that in either case there are exactly

λ blocks containing {x, y}. Therefore, D is a (v, b, r, k, λ)-design. �

Proposition 2.3.12 allows us to give the following definition.

Definition 2.3.15. An incidence structure D satisfying conditions (i) – (v) of

Definition 2.3.1 is called a 2-(v, k, λ) design if k ≥ 2.

Remark 2.3.16. A more general notion of a t-(v, k, λ) design is considered

in Section 6.1

Remark 2.3.17. Since two points of a block are contained in at least one

block, we have λ ≥ 1 for any 2-(v, k, λ) design.

2.4. Symmetric designs

Symmetric designs, the main subject of this book, were described informally

in Chapter 1. We will now give a formal definition.

Definition 2.4.1. A symmetric (v, k, λ)-design is a (v, v, k, k, λ)-design.

Clearly, the complement of a symmetric (v, k, λ)-design is a symmetric

(v, v − k, v − 2k + λ)-design.

Proposition 2.3.7 yields the following basic relation for symmetric designs.

Proposition 2.4.2. For any symmetric (v, k, λ)-design,

λ(v − 1) = k(k − 1). (2.9)

The Fano Plane (Example 1.3.1) is a symmetric (7, 3, 1)-design. Trivial

designs (with incidence matrices O and J ) are symmetric designs with param-

eters (v, 0, 0) and (v, v, v), respectively. The block set of a symmetric (v, 1, 0)-

design consists of all singletons of a v-set, and the block set of a symmetric

(v, v − 1, v − 2)-design consists of all (v − 1)-subsets of a v-set. Example 1.3.3

describes a symmetric (16, 6, 2)-design.

Example 2.4.3. Let a 6 × 6 array L contain each of the digits 1, 2, 3, 4, 5,

and 6 in each row and in each column. (Such an array is called a Latin square
of order 6.) Let L(i, j) be the (i, j)-entry of L . Define the point set X to consist

of the ordered pairs (i, j) with i, j = 1, 2, 3, 4, 5, 6. For each x = (i, j) ∈ X ,

define Bx to be the set of points (l, m), other than x , such that l = i or m = j
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or L(l, m) = L(i, j). Let B = {Bx : x ∈ X}. Then D = (X,B) is a symmetric

(36, 15, 6)-design.

Example 2.4.4. Let n ≥ 2 be an integer and let P be the set of all nonempty

subsets of the set {1, 2, . . . , n}. Consider the incidence structure D = (P,P, I )

with (X, Y ) ∈ I if and only if the cardinality of the intersection X ∩ Y is even.

Then D is a symmetric (2n − 1, 2n−1 − 1, 2n−2 − 1)-design.

Incidence matrices of a (v, b, r, k, λ)-design satisfy the three equations (2.3).

For symmetric designs, one equation suffices, as is shown by the following

theorem.

Theorem 2.4.5. A (0, 1)-matrix N of order v is an incidence matrix of a
symmetric (v, k, λ)-design if and only if

N N	 = (k − λ)I + λJ, (2.10)

where I is the identity matrix and J is the all-one matrix of order v.

Proof. If N is an incidence matrix of a symmetric (v, k, λ)-design, then (2.10)

follows from (2.3).

Suppose N is a (0, 1)-matrix of order v satisfying (2.10). If N = O or

N = J , then (v, k, λ) are the parameters of a trivial symmetric design. Assume

that N �= O and N �= J . Then v > 1. Observe that the diagonal entries k and

off-diagonal entries λ of N N	 represent the row sum and the inner product of

two distinct rows of N , respectively. Therefore, k > λ ≥ 0. By Lemma 2.3.6,

det(N N	) = (det N )2 = (k + λ(v − 1))(k − λ)v−1.

Therefore, N is nonsingular. Since the row sum of N is k, we have N J = k J ,

which implies N−1 J = 1
k J . Therefore, multiplying (2.10) on the left by N−1

and on the right by N yields

N	N = (k − λ)I + λ

k
J N .

Comparing ( j, j)-entries on both sides of this equation yields

c j = k − λ + λ

k
c j ,

where c j is the sum of the entries in the j th column of N . Therefore, c j = k for

j = 1, 2, . . . , v, and N is an incidence matrix of a symmetric (v, k, λ)-design.

�
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Remark 2.4.6. The proof of the above theorem shows in fact that if a (0, 1)-

matrix N of order v satisfies (2.10), then

N	N = (k − λ)I + λJ,

i.e., the dual of a symmetric (v, k, λ)-design is a symmetric (v, k, λ)-design.

This implies that any two distinct blocks of a symmetric (v, k, λ)-design meet

in λ points. This also implies the following proposition.

Remark 2.4.7. If a symmetric (v, k, λ)-design D admits a symmetric inci-

dence matrix, then, of course, the dual design D	 is isomorphic to D, i.e., D is

self-dual. However, the converse is not true: there exists a self-dual symmetric

(25, 9, 3)-design that does not admit a symmetric incidence matrix.

Proposition 2.4.8. An incidence structure having v points and v blocks, con-
stant block size k, and constant intersection size λ between any two distinct
blocks is a symmetric (v, k, λ)-design.

The next proposition gives another sufficient condition for an incidence

structure to be a symmetric design.

Proposition 2.4.9. Let λ and μ be positive integers and let D = (X,B, I ) be
an incidence structure satisfying the following conditions:

(i) r (x) < |B| for all x ∈ X ;

(ii) |B| < |X | for all B ∈ B;

(iii) λ(x, y) = λ for any distinct x, y ∈ X ;

(iv) |A ∩ B| = μ for any distinct A, B ∈ B.

Then D is either a symmetric design or a pencil.

Proof. If D has distinct blocks A and B such that the set of points incident

with A is the same as the set of points incident with B, then |A| = |B| = μ

and, for any block C , every point incident with A is incident with C . However,

this is not the case due to (i). Similarly, distinct points of D are incident with

distinct sets of blocks. Therefore, we can consider the block set of D as a set

of subsets of X and the block set of D	 as a set of subsets of B. Non-uniform

Fisher’s Inequality then implies that |X | = |B|.
Suppose first that λ > 1. Let A ∈ B and x ∈ A. Counting in two ways flags

(y, B) of D with y �= x , B �= A, y ∈ A, and x ∈ B yields (|A| − 1)(λ − 1) =
(r (x) − 1)(μ − 1). Therefore, |A| is the same for all blocks A containing a

given point x . Since any two blocks of D have a common point, all blocks have

the same cardinality and D is a symmetric design. If μ > 1, then, for similar

reasons, D	 is a symmetric design and so is D.
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Suppose now that λ = μ = 1. If all blocks of D have the same cardinality

or all points of D have the same replication number, then D is a symmetric

design. Otherwise, by the Ryser–Woodall Theorem, applied to both D and D	,

the set X can be partitioned into nonempty subsets X1 and X2, and B can be

partitioned into nonempty subsets B1 and B2 so that, for i = 1 and 2, all points

of Xi have the same replication number ri and all blocks of Bi have the same

cardinality ki . Let A ∈ B and x ∈ X \ A. Counting in two ways flags (y, B)

of D with y ∈ A and x ∈ B yields |A| = r (x). This means that every block A
contains either X1 or X2 and, for each i , all blocks of Bi contain the same set

X j . Without loss of generality, we assume that the blocks of B1 contain X1 and

the blocks of B2 contain X2. If |Bi | ≥ 2, then |Xi | = 1; similarly, if |Xi | ≥ 2,

then |Bi | = 1. Therefore, we may assume that |B1| = |X2| = 1. Let B1 = {A}
and X2 = {x}. Then A = X1 and therefore, every block of B2 contains x and

one point of X1. Thus, D is a pencil. �

If N is an incidence matrix of a symmetric (v, k, λ)-design, then det(N N	) =
(k + λ(v − 1))(k − λ)v−1 = k2(k − λ)v−1. On the other hand, det(N N	) =
(det N )2 must be a perfect square. This gives the following necessary condition

for the parameters of a symmetric design.

Proposition 2.4.10. If (v, k, λ) are the parameters of a symmetric design and
v is even, then k − λ is a perfect square.

Remark 2.4.11. This proposition shows that the necessary condition (2.9) for

the parameters of a symmetric design is not sufficient. For instance, a symmetric

(22, 7, 2)-design cannot exist even though its parameters satisfy (2.9). We now

have two restrictions on the parameters of a symmetric (v, k, λ)-design with v

even:

λ(v − 1) = k(k − 1), k − λ is a perfect square.

It is not known whether these conditions are sufficient for existence of a sym-

metric (v, k, λ)-design. The smallest unresolved parameter set is (154, 18, 2).

In the next section, we will prove the Bruck–Ryser–Chowla Theorem that

gives a necessary condition for the parameters of a symmetric (v, k, λ)-design

with v odd.

Equation (2.9) implies bounds on the number of points of a symmetric design

of a given order.

Proposition 2.4.12. Let D be a symmetric (v, k, λ)-design of order n = k −
λ ≥ 2. Then

4n − 1 ≤ v ≤ n2 + n + 1.
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Proof. Since D and its complement D′ have the same order, we can assume

without loss of generality that v ≥ 2k. Equation (2.9) implies that λ and v −
2n − λ = v − 2k + λ are the roots of the quadratic equation

x2 − (v − 2n)x + n(n − 1) = 0. (2.11)

Since the discriminant of this equation is nonnegative, we have

(v − 2n)2 ≥ 4n(n − 1) = (2n − 1)2 − 1.

Since (2n − 1)2 − 1 is not a perfect square for n ≥ 2, we have v − 2n ≥ 2n − 1,

so v ≥ 4n − 1.

Since the left-hand side of (2.11) is positive at x = 0 and since the roots

of this equation are integers, it is nonnegative at x = 1. This implies that v ≤
n2 + n + 1. �

Symmetric designs meeting the bounds of Proposition 2.4.12 are projective

planes and Hadamard 2-designs which will be considered in Chapters 3 and 4,

respectively.

Given a symmetric design D with a fixed block, one can obtain the following

two 2-designs as substructures of D.

Definition 2.4.13. Let D = (X,B, I ) be a nontrivial symmetric design and

let B be a block of D. The substructures DB and DB are called a residual design
of D and a derived design of D, respectively.

The blocks of DB and DB can be regarded as sets A \ B and A ∩ B, respec-

tively, where A is a block of D other than B. If N is an incidence matrix of D
such that the last column of N corresponds to the block B, then

N =
[

S 0
T j

]

where S is an incidence matrix of the residual design DB and T is an incidence

matrix of the derived design DB .

Remark 2.4.14. The residual and derived designs of a symmetric design with

respect to the same block do not determine this symmetric design uniquely: there

exist symmetric (25, 9, 3)-designs D and E and blocks A of D and B of E such

that the residual designs DA and EB are isomorphic and the derived designs DA

and EB are isomorphic, yet the designs D and E are not isomorphic.

The following proposition is straightforward.
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Proposition 2.4.15. Let D be a nontrivial symmetric (v, k, λ)-design with
v > k ≥ 2 and let B be a block of D. Then DB is a (v − k, v − 1, k, k − λ, λ)-
design and DB is a (k, v − 1, k − 1, λ, λ − 1)-design.

Proposition 2.1.12 immediately implies the following result.

Proposition 2.4.16. Let D = (X,B) be a symmetric (v, k, λ)-design with v >

k ≥ 2 and let D′ be the complementary design. Then, for any block B of D, the
designs DB and D′

X\B are isomorphic as well as the designs DB and (D′)X\B.

Observe that if a (v, b, r, k, λ)-design is a residual of a symmetric design D,

then r = k + λ and D is a symmetric (v + r, r, λ)-design.

Definition 2.4.17. Any (v, b, r, k, λ)-design D with r = k + λ is called a

quasi-residual design. If D is a residual of a symmetric (v + r, r, λ)-design,

then it is said to be embeddable. Otherwise, D is said to be non-embeddable.

Example 2.4.18 (Bhattacharya’s Example). The following incidence struc-

ture D = (X,B) is a (16, 24, 9, 6, 3)-design, so it is quasi-residual. Let X =
{a, b, c, . . . , o, p} and let B be the following family of 6-subsets of X :

abcde f abcdgh abi jlm acjklo adimnp aeg jno aegkmp a f hikn
a f hlop bci jkp bdlmno be f iop behkmo bf gkln bgh jnp cdknop
ce f jmn cehiln c f glmp cghimo degikl deh jlp d f gi jo d f h jkm

This design has blocks that meet in four points, for instance, the first two blocks.

Therefore, D cannot be a residual of a symmetric (25, 9, 3)-design, i.e., D is a

non-embeddable quasi-residual design.

Two symmetric designs with the same parameters do not have to be iso-

morphic (see Theorem 2.4.21). Sometimes, one can prove that two symmetric

designs are not isomorphic by comparing the ranks of their incidence matrices

over a finite field.

Definition 2.4.19. Let D be a symmetric (v, k, λ)-design and let N be an

incidence matrix of D. For any prime p, the p-rank of D is the rank of N
regarded as a matrix over the field G F(p) of residue classes modulo p. The

p-rank of D is denoted as rankp(D).

Remark 2.4.20. Proposition 2.1.13 immediately implies that the p-rank of a

symmetric design D is independent of the choice of an incidence matrix of the

design.

The following theorem can be obtained using the 2-ranks. We leave its proof

as an exercise.
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Theorem 2.4.21. There are exactly three nonisomorphic symmetric (16, 6, 2)-
designs. Their 2-ranks are 6, 7, and 8.

Another application of 2-ranks is given in Section 3.7 (Theorems 3.7.14 and

3.7.16.).

2.5. The Bruck–Ryser–Chowla Theorem

In this section we obtain a necessary condition on the parameters of a symmetric

(v, k, λ)-design with v odd. We first develop some classical number-theoretical

results related to the Legendre symbol. We then define the Hilbert symbols
whose calculation uses the Legendre symbol. The Hilbert symbols are used to

define the Hasse invariants for symmetric matrices over the integers.

Definition 2.5.1. For any odd prime p and for any integer a �≡ 0 (mod p),

the Legendre symbol
(

a
p

)
is defined to be equal to 1 if there exists an integer x

such that a ≡ x2 (mod p);
(

a
p

)
= −1 otherwise.

The following properties of the Legendre symbol can be found in standard

Number Theory texts.

Theorem 2.5.2. Let p and q be distinct odd primes and let a and b be integers
not divisible by p. Then

(i) if a ≡ b (mod p), then
(

a
p

)
=

(
b
p

)
;

(ii)
(

ab
p

)
=

(
a
p

) (
b
p

)
;

(iii)
(

−1
p

)
= (−1)(p−1)/2;

(iv)
(

2
p

)
= (−1)(p2−1)/8;

(v)
(

q
p

) (
p
q

)
= (−1)(p−1)(q−1)/4.

Remark 2.5.3. Property (v) of Theorem 2.5.2 is the celebrated Quadratic
Reciprocity Law.

Properties (i) and (ii) of Theorem 2.5.2 almost uniquely define the Legendre

symbol, as the next proposition shows.

Proposition 2.5.4. Let p be an odd prime and let a function L from the
set of all integers not divisible by p to the set {−1, 1} have the following
properties:
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(i) if a ≡ b (mod p), then L(a) = L(b);

(ii) L(ab) = L(a)L(b) for all a and b.

Then either L(a) = 1 for all a or L(a) =
(

a
p

)
for all a.

Proof. Property (i) allows us to regard L as a function from the multiplicative

group G of residue classes mod p to the group {−1, 1} of order 2. Property (ii)

implies that this function is a homomorphism. The kernel of this homomorphism

is either the entire group G or a subgroup of index 2. In the former case, L(a) = 1

for all a ∈ G. In the latter case, since L(a2) = 1 for all a ∈ G, the kernel is the

subgroup of all squares. Therefore, in this case, L(a) =
(

a
p

)
for all a ∈ G. �

The next theorem will allow us to define the Hilbert symbols.

Theorem 2.5.5. For any odd prime p, there exists a unique function (a, b) −→
(a, b)p from Z∗ × Z∗ to {−1, 1} that satisfies the following conditions:

(H1) (a, b)p = (b, a)p, for any a, b ∈ Z∗;

(H2) (ab, c)p = (a, c)p(b, c)p, for any a, b, c ∈ Z∗;

(H3) (a, b)p = 1, for any integers a, b �≡ 0 (mod p);

(H4) if a �≡ 0 (mod p), then (a, p)p =
(

a
p

)
;

(H5) (−p, p)p = 1.

Proof. Let a function (a, b) −→ (a, b)p from Z∗ × Z∗ to {−1, 1} satisfy

conditions (H1) – (H5). Then (p, p)p =
(

−1
p

)
and therefore, for any nonneg-

ative integers s and t , (ps, pt )p =
(

−1
p

)st
. Let a, b ∈ Z∗ and let a = psa0 and

b = pt b0 where s and t are nonnegative integers and a0 and b0 are integers not

divisible by p. Then

(a, b)p =
(−1

p

)st (
a0

p

)t (
b0

p

)s

. (2.12)

Conversely, if we define a function (a, b) −→ (a, b)p from Z∗ × Z∗ to

{−1, 1} by (2.12), then it is straightforward to verify that it satisfies (H1) –

(H5). �

Definition 2.5.6. The functions (a, b) −→ (a, b)p from Z∗ × Z∗ to {−1, 1}
defined, for odd primes p, by (2.12) are called the Hilbert symbols.

The next proposition gives further properties of Hilbert symbols.

Proposition 2.5.7. The Hilbert symbol (a, b)p satisfies the following proper-
ties for any nonzero integers a and b and odd prime p:
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(H6) (a2, b)p = 1;

(H7) if a + b is a square, then (a, b)p = 1;

(H8) (a, −a)p = 1;

(H9) if a + b �= 0, then (a, b)p = (a + b, −ab)p.

Proof. (H6) follows immediately from (H2).

(H7) If a �≡ 0 (mod p) and b �≡ 0 (mod p), then (a, b)p = 1 by (H3).

Suppose that a �≡ 0 (mod p) and b ≡ 0 (mod p). Let a + b = x2 and b =
pt b0 where b0 �≡ 0 (mod p). Then a ≡ x2 (mod p), so, by (H2), (H3), and

(H6), we obtain:

(a, b)p = (a, b0)p(a, p)t
p = (x2, p)t

p = 1.

Suppose that a ≡ b ≡ 0 (mod p). Let a = psa0, b = pt b0 where a0, b0 �≡ 0

(mod p). Then

(a, b)p = (a0, b0)p(a0, p)t
p(b0, p)s

p(p, p)st
p . (2.13)

If s and t are even, then (a, b)p = 1. Suppose that s is even and t is odd. Since

a + b = psa0 + pt b0 is a square and s �= t , the smaller of the exponents s, t
must be even, i.e., s < t . Then a + b = ps(a0 + pt−sb0), so a0 + pt−sb0 is a

square. Therefore, (a0, p)p = 1 and (2.13) implies that (a, b)p = 1. Suppose

finally that both s and t are odd. If s �= t , then the highest power of p dividing

a + b is odd, and a + b cannot be a square. Therefore, s = t , and we have a +
b = ps(a0 + b0). Since a + b is a square and s is odd, a0 + b0 ≡ 0 (mod p).

Therefore, (2.13) implies that

(a, b)p = (a0, p)p(b0, p)p(p, p)p = (a0, p)p(−a0, p)p(−1, p)p(−p, p)p

= (a0, p)2
p(−p, p)p = 1.

(H8) follows from (H7).

(H9) Since a(a + b) + b(a + b) = (a + b)2, we apply (H7) to obtain that

(a(a + b), b(a + b))p = 1. Therefore,

(a, b)p(a, a + b)p(b, a + b)p(a + b, a + b)p = 1,

(a, b)p(ab, a + b)p(−1, a + b)p(−(a + b), a + b)p = 1,

(a, b)p(−ab, a + b)p = 1, (a, b)p = (−ab, a + b)p.

�

We next use the Hilbert symbols to define the Hasse invariants of symmetric

matrices over the integers.

Definition 2.5.8. Let A be a symmetric matrix of order n with integral entries.

For i = 1, 2, · · · , n, let Di (A) be the determinant of the submatrix formed by
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the first i rows and the first i columns of A. Suppose that the determinants

D1(A), D2(A), · · · , Dn(A) are not equal to zero. Let p be an odd prime. Then

the product

cp(A) = (−1, Dn(A))p

n−1∏
i=1

(Di (A), −Di+1(A))p

is called the Hasse p-invariant of A.

The following theorem is central to applications of Hasse invariants to

designs. Its proof is beyond the scope of this book.

Theorem 2.5.9. If N is a nonsingular matrix over the integers, then
cp(N N	) = 1, for every odd prime p.

We are now ready to prove the Bruck–Ryser–Chowla Theorem, which gives

a necessary condition on the parameters of a symmetric (v, k, λ)-design in case

v is odd.

Theorem 2.5.10 (The Bruck–Ryser–Chowla Theorem). If there exists a non-
trivial symmetric (v, k, λ)-design with odd v, then ((−1)

v−1
2 λ, k − λ)p = 1, for

any odd prime p.

Proof. Let N be the incidence matrix of a nontrivial symmetric (v, k, λ)-

design and let A = N N	. Then A = (k − λ)I + λJ . For i = 1, 2, · · · , v, let

Di be the determinant of the matrix formed by the first i rows and the first i
columns of A. By Lemma 2.3.6, Di = ai (k − λ)i−1 where ai = k + (i − 1)λ.

Note that av = k2, so (−1, Dv)p = 1, for any odd prime p. By Theorem 2.5.9,

cp(A) = 1. Therefore, we have

1 = cp(A) =
v−1∏
i=1

(Di , −Di+1)p =
v−1

2∏
i=1

(D2i−1, −D2i )p(D2i , −D2i+1)p

=
v−1

2∏
i=1

(a2i−1(k − λ)2i−2, −a2i (k − λ)2i−1)p(a2i (k − λ)2i−1,

− a2i+1(k − λ)2i )p

=
v−1

2∏
i=1

(a2i−1, −a2i (k − λ))p(a2i (k − λ), −a2i+1)p

=
v−1

2∏
i=1

(a2i−1, −a2i )p(a2i−1, k − λ)p(a2i , −a2i+1)p(k − λ, −a2i+1)p.
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Note that a2i−1 − a2i = −λ, and we apply (H9) to obtain that (a2i−1, −a2i )p =
(−λ, a2i−1a2i )p and (a2i , −a2i+1)p = (−λ, a2i a2i+1)p. Therefore,

1= cp(A)=
v−1

2∏
i=1

(−λ, a2i−1a2i )p(−λ, a2i a2i+1)p(k−λ, a2i−1a2i+1)p(k−λ,−1)p

= (
(−1)

v−1
2 , k − λ

)
p

v−1
2∏

i=1

( − λ, a2i−1a2
2i a2i+1

)
p
(k − λ, a2i−1a2i+1)p

= (
(−1)

v−1
2 , k − λ

)
p

⎛
⎝−λ(k − λ),

v−1
2∏

i=1

a2i−1a2i+1

⎞
⎠

p

= (
(−1)

v−1
2 , k − λ

)
p
(−λ(k − λ), a1av)p =(

(−1)
v−1

2 , k−λ
)

p
(−λ(k − λ), k)p.

By (H9), (−λ(k − λ), k)p = (λ, k − λ)p, and the proof is now complete. �

Example 2.5.11. If there exists a symmetric (43, 7, 1)-design, then

(−1, 6)p = 1 for any odd prime p. However, (−1, 6)3 = (−1, 3)3 = (−1
3

) =
−1. Therefore, there is no symmetric (43, 7, 1)-design.

Example 2.5.12. If there exists a symmetric (29, 8, 2)-design, then (2, 6)3 =
1. On the other hand, (2, 6)3 = (2, 3)3 = (

2
3

) = −1. Therefore, there is no sym-

metric (29, 8, 2)-design.

Remark 2.5.13. The condition of the Bruck–Ryser–Chowla Theorem is not

sufficient for the existence of symmetric designs. The only known counter-

example is the parameter set (111, 11, 1). It satisfies the condition of the Bruck–

Ryser–Chowla Theorem (and the equation (2.9)). However, there is no sym-

metric (111, 11, 1)-design (Theorem 6.4.5). An unresolved parameter set for a

symmetric design with the smallest number of points is (81, 16, 3).

2.6. Automorphisms of symmetric designs

In Definition 2.1.10, we introduced the notion of isomorphic incidence struc-

tures. If D1 = (X1,B1) and D2 = (X2,B2) are nontrivial symmetric designs,

we can regard B1 and B2 as sets of subsets of X1 and X2, respectively. An iso-

morphism of D1 and D2 in this case can be regarded as a bijection f : X1 → X2

such that f (B) is a block of D2 if and only if B is a block of D1. It is often

convenient to assume that X1 = X2; then an isomorphism of D1 and D2 can

be regarded as a permutation of the point set X1 that maps blocks of D1 onto

blocks of D2.


