
http://www.cambridge.org/9780521825696

This page intentionally left blank

An Introduction to Computational Physics

Numerical simulation is now an integrated part of science and technology. Now
in its second edition, this comprehensive textbook provides an introduction to
the basic methods of computational physics, as well as an overview of recent
progress in several areas of scientific computing. The author presents many
step-by-step examples, including program listings in JavaTM, of practical
numerical methods from modern physics and areas in which computational
physics has made significant progress in the last decade.

The first half of the book deals with basic computational tools and routines,
covering approximation and optimization of a function, differential equations,
spectral analysis, and matrix operations. Important concepts are illustrated by
relevant examples at each stage. The author also discusses more advanced
topics, such as molecular dynamics, modeling continuous systems, Monte
Carlo methods, the genetic algorithm and programming, and numerical
renormalization.

This new edition has been thoroughly revised and includes many more
examples and exercises. It can be used as a textbook for either undergraduate or
first-year graduate courses on computational physics or scientific computation.
It will also be a useful reference for anyone involved in computational research.

Tao Pang is Professor of Physics at the University of Nevada, Las Vegas.
Following his higher education at Fudan University, one of the most prestigious
institutions in China, he obtained his Ph.D. in condensed matter theory from the
University of Minnesota in 1989. He then spent two years as a Miller Research
Fellow at the University of California, Berkeley, before joining the physics
faculty at the University of Nevada, Las Vegas in the fall of 1991. He has been
Professor of Physics at UNLV since 2002. His main areas of research include
condensed matter theory and computational physics.

An Introduction to
Computational Physics
Second Edition

Tao Pang

University of Nevada, Las Vegas

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format

isbn-13 978-0-521-82569-6

isbn-13 978-0-521-53276-1

isbn-13 978-0-511-13794-5

© T. Pang 2006

2006

Information on this title: www.cambridge.org/9780521825696

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10 0-511-13794-x

isbn-10 0-521-82569-5

isbn-10 0-521-53276-0

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (Adobe Reader)

eBook (Adobe Reader)

hardback

http://www.cambridge.org/9780521825696
http://www.cambridge.org

To Yunhua, for enduring love

Contents

Preface to first edition xi

Preface xiii

Acknowledgments xv

1 Introduction 1
1.1 Computation and science 1
1.2 The emergence of modern computers 4
1.3 Computer algorithms and languages 7

Exercises 14

2 Approximation of a function 16
2.1 Interpolation 16
2.2 Least-squares approximation 24
2.3 The Millikan experiment 27
2.4 Spline approximation 30
2.5 Random-number generators 37

Exercises 44

3 Numerical calculus 49
3.1 Numerical differentiation 49
3.2 Numerical integration 56
3.3 Roots of an equation 62
3.4 Extremes of a function 66
3.5 Classical scattering 70

Exercises 76

4 Ordinary differential equations 80
4.1 Initial-value problems 81
4.2 The Euler and Picard methods 81
4.3 Predictor–corrector methods 83
4.4 The Runge–Kutta method 88
4.5 Chaotic dynamics of a driven pendulum 90
4.6 Boundary-value and eigenvalue problems 94

vii

viii Contents

4.7 The shooting method 96
4.8 Linear equations and the Sturm–Liouville problem 99
4.9 The one-dimensional Schrödinger equation 105

Exercises 115

5 Numerical methods for matrices 119
5.1 Matrices in physics 119
5.2 Basic matrix operations 123
5.3 Linear equation systems 125
5.4 Zeros and extremes of multivariable functions 133
5.5 Eigenvalue problems 138
5.6 The Faddeev–Leverrier method 147
5.7 Complex zeros of a polynomial 149
5.8 Electronic structures of atoms 153
5.9 The Lanczos algorithm and the many-body problem 156
5.10 Random matrices 158

Exercises 160

6 Spectral analysis 164
6.1 Fourier analysis and orthogonal functions 165
6.2 Discrete Fourier transform 166
6.3 Fast Fourier transform 169
6.4 Power spectrum of a driven pendulum 173
6.5 Fourier transform in higher dimensions 174
6.6 Wavelet analysis 175
6.7 Discrete wavelet transform 180
6.8 Special functions 187
6.9 Gaussian quadratures 191

Exercises 193

7 Partial differential equations 197
7.1 Partial differential equations in physics 197
7.2 Separation of variables 198
7.3 Discretization of the equation 204
7.4 The matrix method for difference equations 206
7.5 The relaxation method 209
7.6 Groundwater dynamics 213
7.7 Initial-value problems 216
7.8 Temperature field of a nuclear waste rod 219

Exercises 222

8 Molecular dynamics simulations 226
8.1 General behavior of a classical system 226

Contents ix

8.2 Basic methods for many-body systems 228
8.3 The Verlet algorithm 232
8.4 Structure of atomic clusters 236
8.5 The Gear predictor–corrector method 239
8.6 Constant pressure, temperature, and bond length 241
8.7 Structure and dynamics of real materials 246
8.8 Ab initio molecular dynamics 250

Exercises 254

9 Modeling continuous systems 256
9.1 Hydrodynamic equations 256
9.2 The basic finite element method 258
9.3 The Ritz variational method 262
9.4 Higher-dimensional systems 266
9.5 The finite element method for nonlinear equations 269
9.6 The particle-in-cell method 271
9.7 Hydrodynamics and magnetohydrodynamics 276
9.8 The lattice Boltzmann method 279

Exercises 282

10 Monte Carlo simulations 285
10.1 Sampling and integration 285
10.2 The Metropolis algorithm 287
10.3 Applications in statistical physics 292
10.4 Critical slowing down and block algorithms 297
10.5 Variational quantum Monte Carlo simulations 299
10.6 Green’s function Monte Carlo simulations 303
10.7 Two-dimensional electron gas 307
10.8 Path-integral Monte Carlo simulations 313
10.9 Quantum lattice models 315

Exercises 320

11 Genetic algorithm and programming 323
11.1 Basic elements of a genetic algorithm 324
11.2 The Thomson problem 332
11.3 Continuous genetic algorithm 335
11.4 Other applications 338
11.5 Genetic programming 342

Exercises 345

12 Numerical renormalization 347
12.1 The scaling concept 347
12.2 Renormalization transform 350

x Contents

12.3 Critical phenomena: the Ising model 352
12.4 Renormalization with Monte Carlo simulation 355
12.5 Crossover: the Kondo problem 357
12.6 Quantum lattice renormalization 360
12.7 Density matrix renormalization 364

Exercises 367

References 369

Index 381

Preface to first edition

The beauty of Nature is in its detail. If we are to understand different layers of sci-
entific phenomena, tedious computations are inevitable. In the last half-century,
computational approaches to many problems in science and engineering have
clearly evolved into a new branch of science, computational science. With the
increasing computing power of modern computers and the availability of new
numerical techniques, scientists in different disciplines have started to unfold
the mysteries of the so-called grand challenges, which are identified as scientific
problems that will remain significant for years to come and may require teraflop
computing power. These problems include, but are not limited to, global environ-
mental modeling, virus vaccine design, and new electronic materials simulation.

Computational physics, in my view, is the foundation of computational sci-
ence. It deals with basic computational problems in physics, which are closely
related to the equations and computational problems in other scientific and en-
gineering fields. For example, numerical schemes for Newton’s equation can be
implemented in the study of the dynamics of large molecules in chemistry and
biology; algorithms for solving the Schrödinger equation are necessary in the
study of electronic structures in materials science; the techniques used to solve
the diffusion equation can be applied to air pollution control problems; and nu-
merical simulations of hydrodynamic equations are needed in weather prediction
and oceanic dynamics.

Important as computational physics is, it has not yet become a standard course
in the curricula of many universities. But clearly its importance will increase
with the further development of computational science. Almost every college or
university now has some networked workstations available to students. Probably
many of them will have some closely linked parallel or distributed computing
systems in the near future. Students from many disciplines within science and
engineering now demand the basic knowledge of scientific computing, which
will certainly be important in their future careers. This book is written to fulfill
this need.

Some of the materials in this book come from my lecture notes for a com-
putational physics course I have been teaching at the University of Nevada, Las
Vegas. I usually have a combination of graduate and undergraduate students from
physics, engineering, and other majors. All of them have some access to the work-
stations or supercomputers on campus. The purpose of my lectures is to provide

xi

xii Preface to first edition

the students with some basic materials and necessary guidance so they can work
out the assigned problems and selected projects on the computers available to
them and in a programming language of their choice.

This book is made up of two parts. The first part (Chapter 1 through Chapter 6)
deals with the basics of computational physics. Enough detail is provided so that a
well-prepared upper division undergraduate student in science or engineering will
have no difficulty in following the material. The second part of the book (Chapter 7
through Chapter 12) introduces some currently used simulation techniques and
some of the newest developments in the field. The choice of subjects in the second
part is based on my judgment of the importance of the subjects in the future. This
part is specifically written for students or beginning researchers who want to know
the new directions in computational physics or plan to enter the research areas of
scientific computing. Many references are given there to help in further studies.

In order to make the course easy to digest and also to show some practical
aspects of the materials introduced in the text, I have selected quite a few exercises.
The exercises have different levels of difficulty and can be grouped into three
categories. Those in the first category are simple, short problems; a student with
little preparation can still work them out with some effort at filling in the gaps
they have in both physics and numerical analysis. The exercises in the second
category are more involved and aimed at well-prepared students. Those in the third
category are mostly selected from current research topics, which will certainly
benefit those students who are going to do research in computational science.

Programs for the examples discussed in the text are all written in standard
Fortran 77, with a few exceptions that are available on almost all Fortran compil-
ers. Some more advanced programming languages for data parallel or distributed
computing are also discussed in Chapter 12. I have tried to keep all programs in
the book structured and transparent, and I hope that anyone with knowledge of any
programming language will be able to understand the content without extra effort.
As a convention, all statements are written in upper case and all comments are
given in lower case. From my experience, this is the best way of presenting a clear
and concise Fortran program. Many sample programs in the text are explained
in sufficient detail with commentary statements. I find that the most efficient
approach to learning computational physics is to study well-prepared programs.
Related programs used in the book can be accessed via the World Wide Web at
the URL http://www.physics.unlv.edu/∼pang/cp.html. Corre-
sponding programs in C and Fortran 90 and other related materials will also be
available at this site in the future.

This book can be used as a textbook for a computational physics course.
If it is a one-semester course, my recommendation is to select materials from
Chapters 1 through 7 and Chapter 11. Some sections, such as 4.6 through 4.8,
5.6, and 7.8, are good for graduate students or beginning researchers but may
pose some challenges to most undergraduate students.

Tao Pang
Las Vegas, Nevada

Preface

Since the publication of the first edition of the book, I have received numerous
comments and suggestions on the book from all over the world and from a far
wider range of readers than anticipated. This is a firm testament of what I claimed
in the Preface to the first edition that computational physics is truly the foundation
of computational science.

The Internet, which connects all computerized parts of the world, has made it
possible to communicate with students who are striving to learn modern science in
distant places that I have never even heard of. The main drive for having a second
edition of the book is to provide a new generation of science and engineering
students with an up-to-date presentation to the subject.

In the last decade, we have witnessed steady progress in computational studies
of scientific problems. Many complex issues are now analyzed and solved on
computers. New paradigms of global-scale computing have emerged, such as the
Grid and web computing. Computers are faster and come with more functions
and capacity. There has never been a better time to study computational physics.

For this new edition, I have revised each chapter in the book thoroughly, incor-
porating many suggestions made by the readers of the first edition. There are more
examples given with more sample programs and figures to make the explanation
of the material easier to follow. More exercises are given to help students digest
the material. Each sample program has been completely rewritten to reflect what
I have learned in the last few years of teaching the subject. A lot of new material
has been added to this edition mainly in the areas in which computational physics
has made significant progress and a difference in the last decade, including one
chapter on genetic algorithm and programming. Some material in the first edition
has been removed mainly because there are more detailed books on those subjects
available or they appear to be out of date. The website for this new edition is at
http://www.physics.unlv.edu/˜pang/cp2.html.

References are cited for the sole purpose of providing more information for
further study on the relevant subjects. Therefore they may not be the most author-
itative or defining work. Most of them are given because of my familiarity with,
or my easy access to, the cited materials. I have also tried to limit the number of
references so the reader will not find them overwhelming. When I have had to
choose, I have always picked the ones that I think will benefit the readers most.

xiii

xiv Preface

Java is adopted as the instructional programming language in the book. The
source codes are made available at the website. Java, an object-oriented and
interpreted language, is the newest programming language that has made a major
impact in the last few years. The strength of Java is in its ability to work with web
browsers, its comprehensive API (application programming interface), and its
built-in security and network support. Both the source code and bytecode can run
on any computer that has Java with exactly the same result. There are many advan-
tages in Java, and its speed in scientific programming has steadily increased over
the last few years. At the moment, a carefully written Java program, combined
with static analysis, just-in-time compiling, and instruction-level optimization,
can deliver nearly the same raw speed as C or Fortran. More scientists, especially
those who are still in colleges or graduate schools, are expected to use Java as
their primary programming language. This is why Java is used as the instructional
language in this edition. Currently, many new applications in science and engi-
neering are being developed in Java worldwide to facilitate collaboration and to
reduce programming time. This book will do its part in teaching students how to
build their own programs appropriate for scientific computing. We do not know
what will be the dominant programming language for scientific computing in the
future, but we do know that scientific computing will continue playing a major
role in fundamental research, knowledge development, and emerging technology.

Acknowledgments

Most of the material presented in this book has been strongly influenced by my
research work in the last 20 years, and I am extremely grateful to the University of
Minnesota, the Miller Institute for Basic Research in Science at the University of
California, Berkeley, the National Science Foundation, the Department of Energy,
and the W. M. Keck Foundation for their generous support of my research work.

Numerous colleagues from all over the world have made contributions to this
edition while using the first edition of the book. My deepest gratitude goes to those
who have communicated with me over the years regarding the topics covered in
the book, especially those inspired young scholars who have constantly reminded
me that the effort of writing this book is worthwhile, and the students who have
taken the course from me.

xv

Chapter 1
Introduction

Computing has become a necessary means of scientific study. Even in ancient
times, the quantification of gained knowledge played an essential role in the
further development of mankind. In this chapter, we will discuss the role of
computation in advancing scientific knowledge and outline the current status of
computational science. We will only provide a quick tour of the subject here.
A more detailed discussion on the development of computational science and
computers can be found in Moreau (1984) and Nash (1990). Progress in parallel
computing and global computing is elucidated in Koniges (2000), Foster and
Kesselman (2003), and Abbas (2004).

1.1 Computation and science

Modern societies are not the only ones to rely on computation. Ancient societies
also had to deal with quantifying their knowledge and events. It is interesting to see
how the ancient societies developed their knowledge of numbers and calculations
with different means and tools. There is evidence that carved bones and marked
rocks were among the early tools used for recording numbers and values and for
performing simple estimates more than 20 000 years ago.

The most commonly used number system today is the decimal system, which
was in existence in India at least 1500 years ago. It has a radix (base) of 10.
A number is represented by a string of figures, with each from the ten available
figures (0–9) occupying a different decimal level. The way a number is represented
in the decimal system is not unique. All other number systems have similar
structures, even though their radices are quite different, for example, the binary
system used on all digital computers has a radix of 2. During almost the same era
in which the Indians were using the decimal system, another number system using
dots (each worth one) and bars (each worth five) on a base of 20 was invented
by the Mayans. A symbol that looks like a closed eye was used for zero. It is
still under debate whether the Mayans used a base of 18 instead of 20 after the
first level of the hierarchy in their number formation. They applied these dots
and bars to record multiplication tables. With the availability of those tables, the

1

2 Introduction

0 1 5 20

=

15 17 255=

(a)

(b)

Fig. 1.1 The Mayan
number system: (a)
examples of using dots
and bars to represent
numbers; (b) an example
of recording
multiplication.

1

π/ k

lk

d =

Fig. 1.2 A circle inscribed
and circumscribed by two
hexagons. The inside
polygon sets the lower
bound while the outside
polygon sets the upper
bound of the
circumference.

Mayans studied and calculated the period of lunar eclipses to a great accuracy.
An example of Mayan number system is shown in Fig. 1.1.

One of the most fascinating numbers ever calculated in human history is π ,
the ratio of the circumference to the diameter of the circle. One of the methods of
evaluating π was introduced by Chinese mathematician Liu Hui, who published
his result in a book in the third century. The circle was approached and bounded
by two sets of regular polygons, one from outside and another from inside of
the circle, as shown in Fig. 1.2. By evaluating the side lengths of two 192-sided
regular polygons, Liu found that 3.1410 < π < 3.1427, and later he improved
his result with a 3072-sided inscribed polygon to obtain π � 3.1416. Two hun-
dred years later, Chinese mathematician and astronomer Zu Chongzhi and his son
Zu Gengzhi carried this type of calculation much further by evaluating the side
lengths of two 24 576-sided regular polygons. They concluded that 3.141 592 6 <

π < 3.141 592 7, and pointed out that a good approximation was given by

1.1 Computation and science 3

π � 355/113 = 3.141 592 9 This is extremely impressive considering the
limited mathematics and computing tools that existed then. Furthermore, no one
in the next 1000 years did a better job of evaluating π than the Zus.

The Zus could have done an even better job if they had had any additional help
in either mathematical knowledge or computing tools. Let us quickly demonstrate
this statement by considering a set of evaluations on polygons with a much smaller
number of sides. In general, if the side length of a regular k-sided polygon is
denoted as lk and the corresponding diameter is taken to be the unit of length,
then the approximation of π is given by

πk = klk . (1.1)

The exact value of π is the limit of πk as k → ∞. The value of πk obtained from
the calculations of the k-sided polygon can be formally written as

πk = π∞ + c1

k
+ c2

k2
+ c3

k3
+ · · · , (1.2)

where π∞ = π and ci , for i = 1, 2, . . . ,∞, are the coefficients to be determined.
The expansion in Eq. (1.2) is truncated in practice in order to obtain an approxi-
mation of π . Then the task left is to solve the equation set

n∑
j=1

ai j xj = bi , (1.3)

for i = 1, 2, . . . , n, if the expansion in Eq. (1.2) is truncated at the (n − 1)th
order of 1/k with ai j = 1/k j−1

i , x1 = π∞, xj = c j−1 for j > 1, and bi = πki . The
approximation of π is then given by the approximate π∞ obtained by solving the
equation set. For example, ifπ8 = 3.061 467,π16 = 3.121 445,π32 = 3.136 548,
andπ64 = 3.140 331 are given from the regular polygons inscribing the circle, we
can truncate the expansion at the third order of 1/k and then solve the equation
set (see Exercise 1.1) to obtain π∞, c1, c2, and c3 from the given πk . The approxi-
mation of π � π∞ is 3.141 583, which has five digits of accuracy, in comparison
with the exact value π = 3.141 592 65 The values of πk for k = 8, 16, 32, 64
and the extrapolation π∞ are all plotted in Fig. 1.3. The evaluation can be further
improved if we use more πk or ones with higher values of k. For example, we
obtain π � 3.141 592 62 if k = 32, 64, 128, 256 are used. Note that we are get-
ting the same accuracy here as the evaluation of the Zus with polygons of 24 576
sides.

In a modern society, we need to deal with a lot more computations daily.
Almost every event in science or technology requires quantification of the data in-
volved. For example, before a jet aircraft can actually be manufactured, extensive
computer simulations in different flight conditions must be performed to check
whether there is a design flaw. This is not only necessary economically, but may
help avoid loss of lives. A related use of computers is in the reconstruction of an
unexpectred flight accident. This is extremely important in preventing the same
accident from happening again. A more common example is found in the cars

4 Introduction

3.05

3.07

3.09

3.11

3.13

3.15

0.00 0.03 0.06 0.09 0.12 0.15

πk

1/k

×

×

×××
Fig. 1.3 The values of πk,
with k = 8,16,32,and 64,
plotted together with the
extrapolated π∞.

that we drive, which each have a computer that takes care of the brakes, steering
control, and other critical components. Almost any electronic device that we use
today is probably powered by a computer, for example, a digital thermometer,
a DVD (digital video disc) player, a pacemaker, a digital clock, or a microwave
oven. The list can go on and on. It is fair to say that sophisticated computations
delivered by computers every moment have become part of our lives, permanently.

1.2 The emergence of modern computers

The advantage of having a reliable, robust calculating device was realized a long
time ago. The early abacus, which was used for counting, was in existence with
the Babylonians 4000 years ago. The Chinese abacus, which appeared at least
3000 years ago, was perhaps the first comprehensive calculating device that was
actually used in performing addition, subtraction, multiplication, and division
and was employed for several thousand years. A traditional Chinese abacus is
made of a rectangular wooden frame and a bar going through the upper middle
of the frame horizontally. See Fig. 1.4. There are thirteen evenly spaced vertical
rods, each representing one decimal level. More rods were added to later versions.
On each rod, there are seven beads that can be slid up and down with five of them
held below the middle bar and two above. Zero on each rod is represented by the
beads below the middle bar at the very bottom and the beads above at the very
top. The numbers one to four are repsented by sliding one–four beads below the
middle bar up and five is given be sliding one bead above down. The numbers six
to nine are represented by one bead above the middle bar slid down and one–four
beads below slid up. The first and last beads on each rod are never used or are
only used cosmetically during a calculation. The Japanese abacus, which was
modeled on the Chinese abacus, in fact has twenty-one rods, with only five beads

1.2 The emergence of modern computers 5

Fig. 1.4 A sketch of a
Chinese abacus with
the number 15 963.82
shown.

on each rod, one above and four below the middle bar. Dots are marked on the
middle bar for the decimal point and for every four orders (ten thousands) of
digits. The abacus had to be replaced by the slide rule or numerical tables when
a calcualtion went beyond the four basic operations even though later versions
of the Chinese abacus could also be used to evaluate square roots and cubic
roots.

The slide rule, which is considered to be the next major advance in calculat-
ing devices, was introduced by the Englishmen Edmund Gunter and Reverend
William Oughtred in the mid-seventeenth century based on the logarithmic table
published by Scottish mathematician John Napier in a book in the early seven-
teenth century. Over the next several hundred years, the slide rule was improved
and used worldwide to deliver the impressive computations needed, especially
during the Industrial Revolution. At about the same time as the introduction of the
slide rule, Frenchman Blaise Pascal invented the mechanical calculating machine
with gears of different sizes. The mechanical calculating machine was enhanced
and applied extensively in heavy-duty computing tasks before digital computers
came into existence.

The concept of an all-purpose, automatic, and programmable computing ma-
chine was introduced by British mathematician and astronomer Charles Babbage
in the early nineteenth century. After building part of a mechanical calculating
machine that he called a difference engine, Babbage proposed constructing a
computing machine, called an analytical engine, which could be programmed to
perform any type of computation. Unfortunately, the technology at the time was
not advanced enough to provide Babbage with the necessary machinery to realize
his dream. In the late nineteenth century, Spanish engineer Leonardo Torres y
Quevedo showed that it might be possible to construct the machine conceived
earlier by Babbage using the electromechanical technology that had just been
developed. However, he could not actually build the whole machine either, due
to lack of funds. American engineer and inventor Herman Hollerith built the
very first electromechanical counting machine, which was commisioned by the
US federal government for sorting the population in the 1890 American census.
Hollerith used the profit obtained from selling this machine to set up a com-
pany, the Tabulating Machine Company, the predecessor of IBM (International

6 Introduction

Business Machines Corporation). These developments continued in the early
twentieth century. In the 1930s, scientists and engineers at IBM built the first
difference tabulator, while researchers at Bell Laboratories built the first relay
calculator. These were among the very first electromechanical calculators built
during that time.

The real beginning of the computer era came with the advent of electronic
digital computers. John Vincent Atanasoff, a theoretical physicist at the Iowa
State University at Ames, invented the electronic digital computer between 1937
and 1939. The history regarding Atanasoff’s accomplishment is described in
Mackintosh (1987), Burks and Burks (1988), and Mollenhoff (1988). Atanasoff
introduced vacuum tubes (instead of the electromechanical devices used ear-
lier by other people) as basic elements, a separated memory unit, and a scheme
to keep the memory updated in his computer. With the assistance of Clifford
E. Berry, a graduate assistant, Atanasoff built the very first electronic computer
in 1939. Most computer history books have cited ENIAC (Electronic Numeri-
cal Integrator and Computer), built by John W. Mauchly and J. Presper Eckert
with their colleagues at the Moore School of the University of Pennsylvania in
1945, as the first electronic computer. ENIAC, with a total mass of more than
30 tons, consisited of 18 000 vacuum tubes, 15 000 relays, and several hundred
thousand resistors, capacitors, and inductors. It could complete about 5000 ad-
ditions or 400 multiplications in one second. Some very impressive scientific
computations were performed on ENIAC, including the study of nuclear fis-
sion with the liquid drop model by Metropolis and Frankel (1947). In the early
1950s, scientists at Los Alamos built another electronic digital computer, called
MANIAC I (Mathematical Analyzer, Numerator, Integrator, and Computer),
which was very similar to ENIAC. Many important numerical studies, includ-
ing Monte Carlo simulation of classical liquids (Metropolis et al., 1953), were
completed on MANIAC I.

All these research-intensive activities accomplished in the 1950s showed that
computation was no longer just a supporting tool for scientific research but rather
an actual means of probing scientific problems and predicting new scientific
phenomena. A new branch of science, computational science, was born. Since
then, the field of scientific computing has developed and grown rapidly.

The computational power of new computers has been increasing exponentially.
To be specific, the computing power of a single computer unit has doubled almost
every 2 years in the last 50 years. This growth followed the observation of Gordon
Moore, co-founder of Intel, that information stored on a given amount of silicon
surface had doubled and would continue to do so in about every 2 years since the
introduction of the silicon technology (nicknamed Moore’s law). Computers with
transistors replaced those with vacuum tubes in the late 1950s and early 1960s,
and computers with very-large-scale integrated circuits were built in the 1970s.
Microprocessors and vector processors were built in the mid-1970s to set the

1.3 Computer algorithms and languages 7

stage for personal computing and supercomputing. In the 1980s, microprocessor-
based personal computers and workstations appeared. Now they have penetrated
all aspects of our lives, as well as all scientific disciplines, because of their afford-
ability and low maintenance cost. With technological breakthroughs in the RISC
(Reduced Instruction Set Computer) architecture, cache memory, and multiple
instruction units, the capacity of each microprocessor is now larger than that of a
supercomputer 10 years ago. In the last few years, these fast microprocessors have
been combined to form parallel or distributed computers, which can easily deliver
a computing power of a few tens of gigaflops (109 floating-point operations per
second). New computing paradigms such as the Grid were introduced to utilize
computing resources on a global scale via the Internet (Foster and Kesselman,
2003; Abbas, 2004).

Teraflop (1012 floating-point operations per second) computers are now emerg-
ing. For example, Q, a newly installed computer at the Los Alamos National
Laboratory, has a capacity of 30 teraflops. With the availability of teraflop com-
puters, scientists can start unfolding the mysteries of the grand challenges, such as
the dynamics of the global environment; the mechanism of DNA (deoxyribonu-
cleic acid) sequencing; computer design of drugs to cope with deadly viruses;
and computer simulation of future electronic materials, structures, and devices.
Even though there are certain problems that computers cannot solve, as pointed
out by Harel (2000), and hardware and software failures can be fatal, the human
minds behind computers are nevertheless unlimited. Computers will never replace
human beings in this regard and the quest for a better understanding of Nature
will go on no matter how difficult the journey is. Computers will certainly help
to make that journey more colorful and pleasant.

1.3 Computer algorithms and languages

Before we can use a computer to solve a specific problem, we must instruct the
computer to follow certain procedures and to carry out the desired computational
task. The process involves two steps. First, we need to transform the problem,
typically in the form of an equation, into a set of logical steps that a computer
can follow; second, we need to inform the computer to complete these logical
steps.

Computer algorithms

The complete set of the logical steps for a specific computational problem is called
a computer or numerical algorithm. Some popular numerical algorithms can be
traced back over a 100 years. For example, Carl Friedrich Gauss (1866) pub-
lished an article on the FFT (fast Fourier transform) algorithm (Goldstine, 1977,

8 Introduction

pp. 249–53). Of course, Gauss could not have envisioned having his algorithm
realized on a computer.

Let us use a very simple and familiar example in physics to illustrate how a
typical numerical algorithm is constructed. Assume that a particle of mass m is
confined to move along the x axis under a force f (x). If we describe its motion
with Newton’s equation, we have

f = ma = m
dv

dt
, (1.4)

where a and v are the acceleration and velocity of the particle, respectively, and
t is the time. If we divide the time into small, equal intervals τ = ti+1 − ti , we
know from elementary physics that the velocity at time ti is approximately given
by the average velocity in the time interval [ti , ti+1],

vi � xi+1 − xi

ti+1 − ti
= xi+1 − xi

τ
; (1.5)

the corresponding acceleration is approximately given by the average acceleration
in the same time interval,

ai � vi+1 − vi

ti+1 − ti
= vi+1 − vi

τ
, (1.6)

as long as τ is small enough. The simplest algorithm for finding the position and
velocity of the particle at time ti+1 from the corresponding quantities at time ti
is obtained after combining Eqs. (1.4), (1.5), and (1.6), and we have

xi+1 = xi + τ vi , (1.7)

vi+1 = vi + τ

m
fi , (1.8)

where fi = f (xi). If the initial position and velocity of the particle are given and
the corresponding quantities at some later time are sought (the initial-value prob-
lem), we can obtain them recursively from the algorithm given in Eqs. (1.7) and
(1.8). This algorithm is commonly known as the Euler method for the initial-value
problem. This simple example illustrates how most algorithms are constructed.
First, physical equations are transformed into discrete forms, namely, difference
equations. Then the desired physical quantities or solutions of the equations at
different variable points are given in a recursive manner with the quantities at a
later point expressed in terms of the quantities from earlier points. In the above
example, the position and velocity of the particle at ti+1 are given by the position
and velocity at ti , provided that the force at any position is explicitly given by a
function of the position. Note that the above way of constructing an algorithm is
not limited to one-dimensional or single-particle problems. In fact, we can im-
mediately generalize this algorithm to two-dimensional and three-dimensional
problems, or to the problems involving more than one particle, such as the

1.3 Computer algorithms and languages 9

motion of a projectile or a system of three charged particles. The generalized
version of the above algorithm is

Ri+1 = Ri + τVi , (1.9)
Vi+1 = Vi + τAi , (1.10)

where R = (r1, r2, . . . , rn) is the position vector of all the n particles in the
system; V = (v1, v2, . . . , vn) and A = (a1, a2, . . . , an), with a j = f j/m j for j =
1, 2, . . . , n, are the corresponding velocity and acceleration vectors, respectively.

From a theoretical point of view, the Turing machine is an abstract represen-
tation of a universal computer and also a device to autopsy any algorithm. The
concept was introduced by Alan Turing (1936–7) with a description of the uni-
versal computer that consists of a read and write head and a tape with an infinite
number of units of binaries (0 or 1). The machine is in a specified state for a
given moment of operation and follows instructions prescribed by a finite table.
A computer algorithm is a set of logical steps that can be achieved by the Turing
machine. Logical steps that cannot be achieved by the Turing machine belong to
the class of problems that are not solvable by computers. Some such unsolvable
problems are discussed by Harel (2000).

The logical steps in an algorithm can be sequential, parallel, or iterative (im-
plicit). How to utilize the properties of a given problem in constructing a fast and
accurate algorithm is a very important issue in computational science. It is hoped
that the examples discussed in this book will help students learn how to establish
efficient and accurate algorithms as well as how to write clean and structured
computer programs for most problems encountered in physics and related fields.

Computer languages

Computer programs are the means through which we communicate with comput-
ers. The very first computer program was written by Ada Byron, the Countess of
Lovelace, and was intended for the analytical engine proposed by Babbage in the
mid-1840s. To honor her achievement, an object-oriented programming language
(Ada), initially developed by the US military, is named after her. A computer pro-
gram or code is a collection of statements, typically written in a well-defined com-
puter programming language. Programming languages can be divided into two
major categories: low-level languages designed to work with the given hardware,
and high-level languages that are not related to any specific hardware.

Simple machine languages and assembly languages were the only ones avail-
able before the development of high-level languages. A machine language is
typically in binary form and is designed to work with the unique hardware of a
computer. For example, a statement, such as adding or multiplying two integers,
is represented by one or several binary strings that the computer can recognize
and follow. This is very efficient from computer’s point of view, but extremely

10 Introduction

labor-intensive from that of a programmer. To remember all the binary strings
for all the statements is a nontrivial task and to debug a program in binaries is
a formidable task. Soon after the invention of the digital computer, assembly
languages were introduced to increase the efficiency of programming and debug-
ging. They are more advanced than machine languages because they have adopted
symbolic addresses. But they are still related to a certain architecture and wiring
of the system. A translating device called an assembler is needed to convert an
assembly code into a native machine code before a computer can recognize the
instructions. Machine languages and assembly languages do not have portability;
a program written for one kind of computers could never be used on others.

The solution to such a problem is clearly desirable. We need high-level lan-
guages that are not associated with the unique hardware of a computer and that can
work on all computers. Ideal programming languages would be those that are very
concise but also close to the logic of human languages. Many high-level program-
ming languages are now available, and the choice of using a specific programming
language on a given computer is more or less a matter of personal taste. Most
high-level languages function similarly. However, for a researcher who is working
at the cutting edge of scientific computing, the speed and capacity of a computing
system, including the efficiency of the language involved, become critical.

A modern computer program conveys the tasks of an algorithm for a compu-
tational problem to a computer. The program cannot be executed by the computer
before it is translated into the native machine code. A translator, a program called
a compiler, is used to translate (or compile) the program to produce an executable
file in binaries. Most compilers also have an option to produce an objective file
first and then link it with other objective files and library routines to produce a
combined executable file. The compiler is able to detect most errors introduced
during programming, that is, the process of writing a program in a high-level
language. After running the executable program, the computer will output the
result as instructed.

The newest programming language that has made a major impact in the last few
years is Java, an object-oriented, interpreted language. The strength of Java lies
in its ability to work with web browsers, its comprehensive GUI (graphical user
interface), and its built-in security and network support. Java is a truly universal
language because it is fully platform-independent: “write once, run everywhere”
is the motto that Sun Microsystems uses to qualify all the features in Java. Both
the source code and the compiled code can run on any computer that has Java
installed with exactly the same result. The Java compiler converts the source code
(file.java) into a bytecode (file.class), which contains instructions in
fixed-length byte strings and can be interpreted/executed on any computer under
the Java interpreter, called JVM (Java Virtual Machine).

There are many advantages in Java, and its speed in scientific programming
has been steadily increased over the last few years. At the moment, a carefully
written Java program, combined with static analysis, just-in-time compiling, and

1.3 Computer algorithms and languages 11

instruction-level optimization, can deliver nearly the same raw speed as the in-
cumbent C or Fortran (Boisvert et al., 2001).

Let us use the algorithm that we highlighted earlier for a particle moving
along the x axis to show how an algorithm is translated into a program in Java.
For simplicity, the force is taken to be an elastic force f (x) = −kx , where k is
the elastic constant. We will also use m = k = 1 for convenience. The following
Java program is an implementation of the algorithm given in Eqs. (1.7) and (1.8);
each statement in the program is almost self-explanatory.

// An example of studying the motion of a particle in
// one dimension under an elastic force.

import java.lang.*;
public class Motion {

static final int n = 100000, j = 500;
public static void main(String argv[]) {

double x[] = new double[n+1];
double v[] = new double[n+1];

// Assign time step and initial position and velocity
double dt = 2*Math.PI/n;
x[0] = 0;
v[0] = 1;

// Calculate other position and velocity recursively
for (int i=0; i<n; ++i) {

x[i+1] = x[i]+v[i]*dt;
v[i+1] = v[i]-x[i]*dt;

}

// Output the result in every j time steps
double t = 0;
double jdt = j*dt;
for (int i=0; i<=n; i+=j) {

System.out.println(t +" " + x[i] + " " + v[i]);
t += jdt;

}
}

}

The above program contains some key elements of a typical Java program. The
first line imports the Java language package that contains the major features and
mathematical functions in the language. The program starts with a public class
declaration with a main method under this class. Arrays are treated as objects.
For a good discussion on the Java programming language, see van der Linden
(2004), and for its relevance in scientific computing, see Davies (1999).

The file name of a program in Java must be the same as that of the only public
class in the code. In the above example, the file name is thereforeMotion.java.
After the program is compiled with the command javac Motion.java, a
bytecode is created under the file name Motion.class. The bytecode can then
be interpreted/executed with the command java Motion. Some of the newest
compilers create an executable file, native machine code in a binary form to speed

12 Introduction

−1.0

−0.5

0.0

0.5

1.0

0.0π 0.5π 1.0π 1.5π 2.0π

x(t), v(t)

t

+

+
+

+
+ +

+
+

+

+

+
+

+
+ +

+
+

+

+

� �
�

�

�

�

�

�

�
� �

�

�

�

�

�

�

�
�

Fig. 1.5 The
time-dependent position
(+) and velocity (�) of the
particle generated from
the program
Motion.java and the
corresponding analytical
results (solid and dotted
lines, respectively).

up the computation. The executable file is then machine-dependent. Figure 1.5
is a plot of the output from the above program together with the analytical result.
The numerical result generated from the program agrees well with the analytical
result. Because the algorithm we have used here is a very simple one, we have to
use a very small time step in order to obtain the result with a reasonable accuracy.
In Chapter 4, we will introduce and discuss more efficient algorithms for solving
differential equations. With these more efficient algorithms, we can usually reach
the same accuracy with a very small number of mesh points in one period of the
motion, for example, 100 points instead of 100 000.

There are other high-level programming languages that are used in scien-
tific computing. The longest-running candidate is Fortran (Formula translation),
which was introduced in 1957 as one of the earliest high-level languages and
is still one of the primary languages in computational science. Of course, the
Fortran language has evolved from its very early version, known as Fortran 66, to
Fortran 77, which has been the most popular language for scientific computing in
the last 30 years. For a modern discussion on the Fortran language and its applica-
tions, see Edgar (1992). The newest version of Fortran, known as Fortran 90, has
absorbed many important features for parallel computing. Fortran 90 has many
extensions over the standard Fortran 77. Most of these extensions are established
based on the extensions already adopted by computer manufacturers to enhance
their computer performance. Efficient compilers with a full implementation of
Fortran 90 are available for all major computer systems. A complete discussion
on Fortran 90 can be found in Brainerd, Goldberg, and Adams (1996). Two new
variants of Fortran 90 have now been introduced, Fortran 95 and Fortran 2000
(Metcalf, Reid, and Cohen, 2004), which are still to be ratified. In the last 15 years,
there have been some other new developments in parallel and distributed com-
puting with new protocols and environments under various software packages,
which we will leave to the readers to discover and explore.

1.3 Computer algorithms and languages 13

The other popular programming language for scientific computing is the
C programming language. Most system programmers and software developers
prefer to use C in developing system and application software because of its
high flexibility (Kernighan and Ritchie, 1988). For example, the Unix operating
system (Kernighan and Pike, 1984) now used on almost all workstations and
supercomputers was initially written in C.

In the last 50 years of computer history, many programming languages have
appeared and then disappeared for one reason or another. Several languages have
made significant impact on how computing tasks are achieved today. Examples
include Cobol, Algol, Pascal, and Ada. Another object-oriented language is C++,
which is based on C and contains valuable extensions in several important aspects
(Stroustrup, 2000). At the moment, C++ has perhaps been the most popular
language for game developers.

Today, Fortran is still by far the dominant programming language in scien-
tific computing for two very important reasons: Many application packages are
available in Fortran, and the structure of Fortran is extremely powerful in deal-
ing with equations. However, the potential of Java and especially its ability to
work with the Internet through applets and servlets has positioned it ahead of
any other language. For example, Java is clearly the front runner for the newest
senario in high-performance computing of constructing global networks of com-
puters through the concept of the Grid (Foster and Kesselman, 2003; Abbas,
2004). More scientisits, especially those emerging from colleges or graduate
schools, are expected to use Java as their first, primary programming language.
So the choice of using Java as the instructional languge here has been made with
much thought. Readers who are familiar with any other high-level programming
language should have no difficulty in understanding the logical structures and
contents of the example programs in the book. The reason is very simple. The
logic in all high-level languages is similar to the logic of our own languages. All
the simple programs written in high-level languages should be self-explanatory,
as long as enough commentary lines are provided.

There have been some very exciting new developments in Java. The new
version of Java, Java 2 or JDK (Java Development Kit) 1.2, has introduced
BigInteger and BigDecimal classes that allow us to perform computations
with integers and floating-point numbers to any accuracy. This is an important
feature and has opened the door to better scientific programming styles and more
durable codes. JDK 1.4 has also implemented strictfp in order to relax the
restricition in regular floating-point data. Many existing classes have also been
improved to provide better performance or to eliminate the instability of some
earlier classes. Many vendors are developing new compilers for Java to implement
just-in-time compiling, static analysis, and instruction-level optimization to im-
prove the running speed of Java. Some of these new compilers are very successful
in comparison with the traditional Fortran and C compilers on key problems in
scientific computing. Many new applications in science are being developed in

14 Introduction

Java worldwide. It is the purpose of this book to provide students with building
blocks for developing practical skills in scientific computing, which has become
a critical pillar in fundamental research, knowledge development, and emerging
technology.

Exercises

1.1 The value of π can be estimated from the calculations of the side lengths
of regular polygons inscribing a circle. In general,

πk = π∞ + c1

k
+ c2

k2
+ c3

k3
+ · · · ,

where πk is the ratio of the perimeter to the diameter of a regular
k-sided polygon. Determine the approximate value of π � π∞ from
π8 = 3.061 467, π16 = 3.121 445, π32 = 3.136 548, and π64 = 3.140 331
of the inscribing polygons. Which ci is most significant and why? What
happens if we use the values from the polygons circumscribing the cir-
cle, for example, π8 = 3.313 708, π16 = 3.182 598, π32 = 3.151 725, and
π64 = 3.144 118?

1.2 Show that the Euler method for Newton’s equation in Section 1.3 is accurate
up to a term on the order of (ti+1 − ti)2. Discuss how to improve its accuracy.

1.3 An efficient program should always avoid unnecessary operations, such as
the calculation of any constant or repeated access to arrays, subprograms,
library routines, or to other objects inside a loop. The problem becomes
worse if the loop is long or inside other loops. Examine the example pro-
grams in this chapter and Chapters 2 and 3 and improve the efficiency of
these programs if possible.

1.4 Several mathematical constants are used very frequently in science, such
as π , e, and the Euler constant γ = limn→∞

(∑n
k=1 k−1 − ln n

)
. Find three

ways of creating each of π , e, and γ in a code. After considering language
specifications, numerical accuracy, and efficiency, which way of creating
each of them is most appropriate? If we need to use such a constant many
times in a program, should the constant be created once and stored under
a variable to be used over and over again, or should it be created/accessed
every time it is needed?

1.5 Translate the Java program in Section 1.3 for a particle moving in one
dimension into another programming language.

1.6 Modify the program given in Section 1.3 to study a particle, under a uniform
gravitational field vertically and a resistive force fr = −κvv, where v (v) is
the speed (velocity) of the particle and κ is a positive parameter. Analyze
the height dependence of the speed of a raindrop with different m/κ , where
m is the mass of the raindrop, taken to be a constant for simplicity. Plot the

Exercises 15

terminal speed of the raindrop against m/κ , and compare it with the result
of free falling.

1.7 The dynamics of a comet is governed by the gravitational force between the
comet and the Sun, f = −G Mmr/r3, where G = 6.67 × 10−11 N m2/kg2

is the gravitational constant, M = 1.99 × 1030 kg is the mass of the Sun,
m is the mass of the comet, r is the position vector of the comet measured
from the Sun, and r is the magnitude of r. Write a program to study the
motion of Halley’s comet that has an aphelion (the farthest point from the
Sun) distance of 5.28 × 1012 m and an aphelion velocity of 9.12 × 102 m/s.
What are the proper choices of the time and length units for the problem?
Discuss the error generated by the program in each period of Halley’s comet.

1.8 People have made motorcycle jumps over long distances. We can build
a model to study these jumps. The air resistance on a moving object is
given by fr = −cAρvv/2, where v (v) is the speed (velocity) and A is
cross section of the moving object, ρ is the density of the air, and c is a
coefficient on the order of 1 for all other uncounted factors. Assuming that
the cross section is A = 0.93 m2, the maximum taking-off speed of the
motorcycle is 67 m/s, the air density is ρ = 1.2 kg/m3, the combined mass
of the motorcycle and the person is 250 kg, and the coefficient c is 1, find
the tilting angle of the taking-off ramp that can produce the longest range.

1.9 One way to calculate π is by randomly throwing a dart into the unit square
defined by x ∈ [0, 1] and y ∈ [0, 1] in the xy plane. The chance of the
dart landing inside the unit circle centered at the origin of the coordinates
is π/4, from the comparison of the areas of one quarter of the circle and
the unit square. Write a program to calculate π in such a manner. Use the
random-number generator provided in the programming language selected
or the one given in Chapter 2.

1.10 Object-oriented languages are convenient for creating applications that are
icon-driven. Write a Java application that simulates a Chinese abacus. Test
your application by performing the four basic math operations (addition,
subtraction, multiplication, and division) on your abacus.

Chapter 2
Approximation of a function

This chapter and the next examine the most commonly used methods in com-
putational science. Here we concentrate on some basic aspects associated with
numerical approximation of a function, interpolation, least-squares and spline
approximations of a curve, and numerical representations of uniform and other
distribution functions. We are only going to give an introductory description
of these topics here as a preparation for other chapters and many of the issues
will be revisited in a greater depth later. Note that some of the material covered
here would require much more space if discussed thoroughly. For example, com-
plete coverage of the issues involved in creating good random-number generators
could form a separate book. Therefore, we only focus on the basics of the topics
here.

2.1 Interpolation

In numerical analysis, the results obtained from computations are always approx-
imations of the desired quantities and in most cases are within some uncertainties.
This is similar to experimental observations in physics. Every single physical
quantity measured carries some experimental error. We constantly encounter sit-
uations in which we need to interpolate a set of discrete data points or to fit them
to an adjustable curve. It is extremely important for a physicist to be able to draw
conclusions based on the information available and to generalize the knowledge
gained in order to predict new phenomena.

Interpolation is needed when we want to infer some local information from a
set of incomplete or discrete data. Overall approximation or fitting is needed
when we want to know the general or global behavior of the data. For ex-
ample, if the speed of a baseball is measured and recorded every 1/100 of a
second, we can then estimate the speed of the baseball at any moment by in-
terpolating the recorded data around that time. If we want to know the overall
trajectory, then we need to fit the data to a curve. In this section, we will dis-
cuss some very basic interpolation schemes and illustrate how to use them in
physics.

16

2.1 Interpolation 17

Linear interpolation

Consider a discrete data set given from a discrete function fi = f (xi) with
i = 0, 1, . . . , n. The simplest way to obtain the approximation of f (x) for
x ∈ [xi , xi+1] is to construct a straight line between xi and xi+1. Then f (x)
is given by

f (x) = fi + x − xi

xi+1 − xi
(fi+1 − fi) +� f (x), (2.1)

which of course is not accurate enough in most cases but serves as a good start in
understanding other interpolation schemes. In fact, any value of f (x) in the region
[xi , xi+1] is equal to the sum of the linear interpolation in the above equation and
a quadratic contribution that has a unique curvature and is equal to zero at xi and
xi+1. This means that the error � f (x) in the linear interpolation is given by

� f (x) = γ

2
(x − xi)(x − xi+1), (2.2)

with γ being a parameter determined by the specific form of f (x). If we draw a
quadratic curve passing through f (xi), f (a), and f (xi+1), we can show that the
quadrature

γ = f ′′(a), (2.3)

with a ∈ [xi , xi+1], as long as f (x) is a smooth function in the region [xi , xi+1];
namely, the kth-order derivative f (k)(x) exists for any k. This is the result of
the Taylor expansion of f (x) around x = a with the derivatives f (k)(a) = 0 for
k > 2. The maximum error in the linear interpolation of Eq. (2.1) is then bounded
by

|� f (x)| ≤ γ1

8
(xi+1 − xi)

2, (2.4)

where γ1 = max[| f ′′(x)|] with x ∈ [xi , xi+1]. The upper bound of the error in
Eq. (2.4) is obtained from Eq. (2.2) with γ replaced by γ1 and x solved from
d� f (x)/dx = 0. The accuracy of the linear interpolation can be improved by
reducing the interval hi = xi+1 − xi . However, this is not always practical.

Let us take f (x) = sin x as an illustrative example here. Assuming that xi =
π/4 and xi+1 = π/2, we have fi = 0.707 and fi+1 = 1.000. If we use the linear
interpolation scheme to find the approximate value of f (x) at x = 3π/8, we have
the interpolated value f (3π/8) � 0.854 from Eq. (2.1). We know, of course, that
f (3π/8) = sin(3π/8) = 0.924. The actual difference is |� f (x)| = 0.070, which
is smaller than the maximum error estimated with Eq. (2.4), 0.077.

The above example is a very simple one, showing how most interpolation
schemes work. A continuous curve (a straight line in the above example) is
constructed from the given discrete set of data and then the interpolated value
is read off from the curve. The more points there are, the higher the order of
the curve can be. For example, we can construct a quadratic curve from three

18 Approximation of a function

data points and a cubic curve from four data points. One way to achieve higher-
order interpolation is through the Lagrange interpolation scheme, which is a
generalization of the linear interpolation that we have just discussed.

The Lagrange interpolation

Let us first make an observation about the linear interpolation discussed in the
preceding subsection. The interpolated function actually passes through the two
points used for the interpolation. Now if we use three points for the interpolation,
we can always construct a quadratic function that passes through all the three
points. The error is now given by a term on the order of h3, where h is the larger
interval between any two nearest points, because an x3 term could be added to
modify the curve to pass through the function point if it were actually known. In
order to obtain the generalized interpolation formula passing through n + 1 data
points, we rewrite the linear interpolation of Eq. (2.1) in a symmetric form with

f (x) = x − xi+1

xi − xi+1
fi + x − xi

xi+1 − xi
fi+1 +� f (x)

=
i+1∑
j=i

f j p1 j (x) +� f (x), (2.5)

where

p1 j (x) = x − xk

xj − xk
, (2.6)

with k 	= j . Now we can easily generalize the expression to an nth-order curve
that passes through all the n + 1 data points,

f (x) =
n∑

j=0

f j pnj (x) +� f (x), (2.7)

where pnj (x) is given by

pnj (x) =
n∏

k 	= j

x − xk

x j − xk
. (2.8)

In other words, � f (x j) = 0 at all the data points. Following a similar argument
to that for linear interpolation in terms of the Taylor expansion, we can show that
the error in the nth-order Lagrange interpolation is given by

� f (x) = γ

(n + 1)!
(x − x0)(x − x1) · · · (x − xn), (2.9)

where

γ = f (n+1)(a), (2.10)

with a ∈ [x0, xn]. Note that f (a) is a point passed through by the (n + 1)th-order
curve that also passes through all the f (xi) with i = 0, 1, . . . , n. Therefore, the
maximum error is bounded by

|� f (x)| ≤ γn

4(n + 1)
hn+1, (2.11)

2.1 Interpolation 19

Fig. 2.1 The hierarchy
in the Aitken scheme
for n + 1 data points.

where γn = max[| f (n+1)(x)|] with x ∈ [x0, xn] and h is the largest hi = xi+1 −
xi . The above upper bound can be obtained by replacing γ with γn in Eq. (2.9)
and then maximizing the pairs (x − x0)(x − xn), (x − x1)(x − xn−1), . . . , and
(x − x(n−1)/2)(x − x(n+1)/2) individually for an even n + 1. For an odd n + 1, we
can choose the maximum value nh for the x − xi that is not paired. Equation (2.7)
can be rewritten into a power series

f (x) =
n∑

k=0

ak xk +� f (x), (2.12)

with ak given by expanding pnj (x) in Eq. (2.7). Note that the generalized form
reduces to the linear case if n = 1.

The Aitken method

One way to achieve the Lagrange interpolation efficiently is by performing a
sequence of linear interpolations. This scheme was first developed by Aitken
(1932). We can first work out n linear interpolations with each constructed from
a neighboring pair of the n + 1 data points. Then we can use these n interpolated
data points to achieve another level of n − 1 linear interpolations with the next
neighboring points of xi . We repeat this process until we obtain the final result
after n levels of consecutive linear interpolations. We can summarize the scheme
in the following equation:

fi ... j = x − x j

xi − x j
fi ... j−1 + x − xi

x j − xi
fi+1... j , (2.13)

with fi = f (xi) to start. If we want to obtain f (x) from a given set fi for i =
0, 1, . . . , n, we can carry out n levels of consecutive linear interpolations as shown
in Fig. 2.1, in which every column is constructed from the previous column by

20 Approximation of a function

Table 2.1. Result of the example with the Aitken method

xi fi fi j fi jk fi jkl fi jklm

0.0 1.000 000
0.889 246

0.5 0.938 470 0.808 792
0.799 852 0.807 272

1.0 0.765 198 0.806 260 0.807 473
0.815 872 0.807 717

1.5 0.511 828 0.811 725
0.857 352

2.0 0.223 891

linear interpolations of the adjacent values. For example,

f012 = x − x2

x0 − x2
f01 + x − x0

x2 − x0
f12 (2.14)

and

f01234 = x − x4

x0 − x4
f0123 + x − x0

x4 − x0
f1234. (2.15)

It can be shown that the consecutive linear interpolations outlined in Fig. 2.1
recover the standard Lagrange interpolation. The Aitken method also provides a
way of estimating the error of the Lagrange interpolation. If we use the five-point
case, that is, n + 1 = 5, as an illustrative example, the error in the Lagrange
interpolation scheme is roughly given by

� f (x) ≈ | f01234 − f0123| + | f01234 − f1234|
2

, (2.16)

where the differences are taken from the last two columns of the hierarchy.
Let us consider the evaluation of f (0.9), from the given set f (0.0) =

1.000 000, f (0.5) = 0.938 470, f (1.0) = 0.765 198, f (1.5) = 0.511 828, and
f (2.0) = 0.223 891, as an actual numerical example. These are the values of
the zeroth-order Bessel function of the first kind, J0(x). All the consecutive lin-
ear interpolations of the data with the Aitken method are shown in Table 2.1.

The error estimated from the differences of the last two columns of the data
in the table is

� f (x) ≈ |0.807 473 − 0.807 273| + |0.807 473 − 0.807 717|
2

� 2 × 10−4.

The exact result of f (0.9) is 0.807 524. The error in the interpolated value is
|0.807 473 − 0.807 524| � 5 × 10−5, which is a little smaller than the estimated
error from the differences of the last two columns in Table 2.1. The following

2.1 Interpolation 21

program is an implementation of the Aitken method for the Lagrange interpola-
tion, using the given example of the Bessel function as a test.

// An example of extracting an approximate function
// value via the Lagrange interpolation scheme.

import java.lang.*;
public class Lagrange {

public static void main(String argv[]) {
double xi[] = {0, 0.5, 1, 1.5, 2};
double fi[] = {1, 0.938470, 0.765198, 0.511828,

0.223891};
double x = 0.9;
double f = aitken(x, xi, fi);
System.out.println("Interpolated value: " + f);

}

// Method to carry out the Aitken recursions.

public static double aitken(double x, double xi[],
double fi[]) {
int n = xi.length-1;
double ft[] = (double[]) fi.clone();
for (int i=0; i<n; ++i) {

for (int j=0; j<n-i; ++j) {
ft[j] = (x-xi[j])/(xi[i+j+1]-xi[j])*ft[j+1]

+(x-xi[i+j+1])/(xi[j]-xi[i+j+1])*ft[j];
}

}
return ft[0];

}
}

After running the above program, we obtain the expected result, f (0.9) �
0.807 473. Even though we have a quite accurate result here, the interpolation
can be influenced significantly by the rounding error in some cases if the Aitken
procedure is carried out directly. This is due to the change in the interpolated
value being quite small compared to the actual value of the function during each
step of the consecutive linear interpolations. When the number of data points
involved becomes large, the rounding error starts to accumulate. Is there a better
way to achieve the interpolation?

A better way is to construct an indirect scheme that improves the interpolated
value at every step by updating the differences of the interpolated values from
the adjacent columns, that is, by improving the corrections of the interpolated
values over the preceding column rather than the interpolated values themselves.
The effect of the rounding error is then minimized. This procedure is accom-
plished with the up-and-down method, which utilizes the upward and downward
corrections

�+
i j = f j ... j+i − f j+1... j+i , (2.17)

�−
i j = f j ... j+i − f j ... j+i−1, (2.18)

22 Approximation of a function

Fig. 2.2 The hierarchy for
both �+

i j and �−
i j in the

upward and downward
correction method for
n + 1 data points.

defined at each step from the differences between two adjacent columns. Here
�−

i j is the downward (going down along the triangle in Fig. 2.1) correction and
�+

i j is the upward (going up along the triangle in Fig. 2.1) correction. The index
i here is for the level of correction and j is for the element in each level. The
hierarchy for both �+

i j and �−
i j is show in Fig. 2.2. It can be shown from the

definitions of �+
i j and �−

i j that they satisfy the following recursion relations:

�+
i j = xi+ j − x

xi+ j − x j
(�+

i−1 j −�−
i−1 j+1), (2.19)

�−
i j = x j − x

xi+ j − x j
(�+

i−1 j −�−
i−1 j+1), (2.20)

with the starting column �±
0 j = f j . Here x j is chosen as the data point closest

to x . In general, we use the upward correction as the first correction if x < x j .
Otherwise, the downward correction is used. Then we alternate the downward
and upward corrections in the steps followed until the final result is reached. If the
upper (lower) boundary of the triangle in Fig. 2.2 is reached during the process,
only downward (upward) corrections can be used afterward.

We can use the numerical values of the Bessel function in Table 2.1 to illustrate
the method. Assume that we are still calculating f (x) with x = 0.9. It is easy to
see that the starting point should be x j = 1.0, because it is closest to x = 0.9. So
the zeroth-order approximation of the interpolated data is f (x) ≈ f (1.0). The
first correction to f (x) is then �+

11. In the next step, we alternate the direction of
the correction and use the downward correction, �−

21 in this example, to improve
f (x) further. We can continue the procedure with another upward correction
and another downward correction to reach the final result. We can write a simple
program to accomplish what we have just described. It is a good practice to write a
method, function, or subroutine, depending on the particular language used, with
x , xi , and fi , for i = 0, 1, . . . , n, being the input and f (x) being the output. The

2.1 Interpolation 23

method can then be used for any interpolation task. Here is an implementation
of the up-and-down method in Java.

// Method to complete the interpolation via upward and
// downward corrections.

public static double upwardDownward(double x,
double xi[], double fi[]) {
int n = xi.length-1;
double dp[][] = new double[n+1][];
double dm[][] = new double[n+1][];

// Assign the 1st columns of the corrections
dp[0] = (double[]) fi.clone();
dm[0] = (double[]) fi.clone();

// Find the closest point to x
int j0 = 0, k0 = 0;
double dx = x-xi[0];
for (int j=1; j<=n; ++j) {

double dx1 = x-xi[j];
if (Math.abs(dx1)<Math.abs(dx)) {

j0 = j;
dx = dx1;

}
}
k0 = j0;

// Evaluate the rest of the corrections recursively
for (int i=1; i<=n; ++i) {

dp[i] = new double[n-i+1];
dm[i] = new double[n-i+1];
for (int j=0; j<n-i+1; ++j) {

double d = dp[i-1][j]-dm[i-1][j+1];
d /= xi[i+j]-xi[j];
dp[i][j] = d*(xi[i+j]-x);
dm[i][j] = d*(xi[j]-x);

}
}

// Update the interpolation with the corrections
double f = fi[j0];
for (int i=1; i<=n; ++i) {

if (((dx<0)||(k0==n)) && (j0!=0)) {
j0--;
f += dp[i][j0];
dx = -dx;

}
else {

f += dm[i][j0];
dx = -dx;
k0++;

}
}
return f;

}

We can replace the Aitken method in the earlier example program with this
method. The numerical result, with the input data from Table 2.1, is exactly the
same as the earlier result, f (0.9) = 0.807 473, as expected.

