
http://www.cambridge.org/9780521525831

This page intentionally left blank

INTEGRATION-READY

ARCHITECTURE AND DESIGN

What would you do if your IT job was no longer performed in your country? Your survival
does not lie in limiting global collaborative engineering. IT workers will survive and prosper
because of their ability to innovate, to quickly learn and change directions, and to evolve
from Information Technology into Distributed Knowledge Technology. You have no choice
but to be pro-active, learn to stay current, and even run ahead of the game.

Integration-Ready Architecture and Design shows how to build presentation factories and
seamless integration of VoiceXML, WAP, and Web technologies, providing access to corporate
data and services not only through PCs and corporate workstations, but also through multiple
types of wired and wireless devices and PDAs. The author integrates theory and practice,
going from foundations and concepts to specific applications and architectures. Through
deep insights into almost all areas of modern CIS and IT, he provides an entry into the new
world of integrated knowledge and software engineering. Readers will learn the “what’s,
why’s, and how’s” on: J2EE, J2ME, .NET, JSAPI, JMS, JMF, SALT, VoiceXML, WAP, 802.11,
CDNA, GPRS, CycL, XML, and multiple XML-based technologies including RDF, DAML,
SOAP, UDDI, and WDSL.

For Internet and wireless service developers, this book contains unique recipes for creating
“integration-ready” components. Architects, designers, coders, and even management will
benefit from innovative ideas and detailed examples for building multi-dimensional worlds
of enterprise applications. Throughout, the book provides a “unified service” approach while
creating a core of business frameworks and building applications for the distributed knowl-
edge marketplace.

Jeff Zhuk is the President of Internet Technology School. A software architect and devel-
oper with more than twenty years of experience and numerous patents and publications,
he teaches at the University of Phoenix and DeVry University, and he conducts corporate
consulting and training. He has pioneered IPServe.com and JavaSchool.com, which promote
collaborative engineering and a distributed knowledge marketplace. An expert in distributed
enterprise applications and wireless, XML, and Java technologies, his current focus is on the
integration of software and knowledge engineering in a new development paradigm.

Look out for code examples and updates on the book’s Web site www.cup.org/Titles/
0521525837.htm

This book is dedicated to my parents, Lubov and

Veniamin, and to my wife, Bronia.

INTEGRATION-READY

ARCHITECTURE AND DESIGN

SOFTWARE ENGINEERING WITH XML,
JAVA, .NET, WIRELESS, SPEECH, AND

KNOWLEDGE TECHNOLOGIES

JEFF ZHUK
Internet Technology School, Inc.

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format

isbn-13 978-0-521-52583-1

isbn-13 978-0-511-13378-7

© Jeff Zhuk 2004

2004

Information on this title: www.cambridge.org/9780521525831

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10 0-511-13378-2

isbn-10 0-521-52583-7

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

paperback

eBook (Adobe Reader)

eBook (Adobe Reader)

paperback

http://www.cambridge.org/9780521525831
http://www.cambridge.org

Contents

Preface page xi

Contributors xv

Acknowledgments xvi

Introduction xviii

Notes for Educators: AMA Teaching Methods xxix

Chapter 1
Collaborative Engineering 1

Management Style as an Important Part of the Development Process: True
Leaders Versus “Pure” Managers 2

Development Methodologies: Capability Maturity Model and More 4
Extreme Programming: Rules of the Game 5
Six Sigma 5
Distributed Collaborative Development 5
24×7 Distributed Development Practices 8
Steps in the Process 9
Basic Steps of the Development Process with an Object-Oriented Approach 10
Learn by Example: Compare OOP and Procedural Programming 21
UML Notations 24
Example of Object-Oriented Analysis: Create an OMD for Document

Services 26
Create the DocumentService Model 26
Architecture Steps: Find Playground-Tiers for Your Objects 27
From Single-User to Client-Server and Multi-Tier Architecture Models 28
Basic Design Steps and Rules 33
Instead of a Summary: How Direct Access to Products and Services

Improves the Balance of Supply and Demand 40

v

vi Contents

Chapter 2
Software Architecture and Integration Technologies 42

Software Architecture—The Center Place of Software Development 42
Architectural Elements, Styles, Views, and Languages 43
Programming Styles 48
Integration Technologies 49
Object Linking and Embedding (OLE) and ActiveX 49
CORBA and IDL 51
Microsoft’s Distributed COM Architecture 52
Java Technology Architecture 53
Java Applet 53
The Java Bean Architecture 53
J2EE Architecture 55
Java Server Pages 55
The Enterprise Java Beans Architecture 56
EJB Components and Containers 56
The Java RMI Architecture 57
The Bridge from Java to CORBA Technology 57
XML Web Services 59
An Example of an XML-Based Service API 60
Additional Benefits: Ability to Add or Change Services at Run-Time 63
How Can We Register a New Web Service? 64
Is There a Mechanism to Pack Both Data and Services into a Message? 64
How Do Software Vendors Support Web Services? 64

Chapter 3
From a Specific Task to “Integration-Ready” Components 69

User Requirements, Version 1: The “News Watch” Applet 70
User Requirements, Version 2: The Reusable NewsLine Component 79
User Requirements, Version 3: View Multiple Web Information Channels in

the NewsLine Component 88
Integration-Ready Service Components and Extensible Service Containers 100
An XML-Based Configuration File 103
Start from the Parameters for a Single Component 105
How Would We Use XML-Based Parameters while Building Components? 106
Event-Handling Procedure 114
What Is the Dispatch() Method for and How Do We Define Its Function? 115
Provide the Possibility of Interactive Components (Event Handling) 125
The ControlComponent Class Description 127
Reuse, Not Abuse 130

Contents vii

Chapter 4
Integration with Voice 133

What Is the Base for Creating a Voice Component? 133
How Are Voice Components Coded? 140

Chapter 5
An Introduction to Knowledge Technologies 151

Ontology 152
DAML+OIL: A Semantic Markup Language for Web Resources 153
Topic Maps 156
Data-Mining Process and Methods 160
Frames and Slots 161
The CycL Language 163
How to Begin with OpenCyc 173

Chapter 6
Write Once 194

Multiple Types of Data Storage 195
Control Systems and Controllers 199
Document-Handling Services 203

Chapter 7
The New Generation of Client–Server Software 222

What Are the Best Ways to Provide Client Functionality? 225
Thin Clients 226
Multiple Scenarios 235
Synchronous or Asynchronous Client-Server Communication 243
Example of XML Multiple-Screen Scenario 244
Good Performance Follows Good Design 251
Keep a Stable API while Changing Communication Mechanisms 252
Add Open Office Features to Rich Clients 254
How Much Abstraction Is Too Much? 255

Chapter 8
Wireless Technologies 257

Wireless TDMA, CDMA, GSM, and Other Standards 258
802.11 and WLANs 261
Bluetooth Technology 262

viii Contents

SMS: The Most Popular Wireless Service 262
What Is WAP? 263

Chapter 9
Programming Wireless Application Protocol Applications 267

Rethink the Existing Web Page Paradigm in WAP Terms 268
What Is a Presentation Factory and How Do You Create One? 269
Programming WAP/WML Pages 270
Secure Transactions with WML Factory 271
Is the Data Size Too Big for a Device? Not a Problem! 279
WAP Push 281
WAP Devices and Web Services 284

Chapter 10
A Single JavaCard Identity Key for All Doors and Services 286

What Is a Smart Card? 286
What Is a JavaCard? 287
Why Do We Use Multiple Keys? 287
Can We Have a Single “Identity Key”? 288
How to Program JavaCards 288
What Are JavaCard Programming’s Limitations? 290
The javacard.framework Package for JavaCard Programming 290
Writing a Sample JavaCard Applet: VirtualCurrency 291

Chapter 11
The J2ME Family 306

The MIDP 308
How Do We Display Screens and Handle Events? 308
Multimedia on Wireless 309
What Are MIDlets? 310
Can We Store Data on Mobile Devices? 310
MIDlet Security 311
Can We Push from a Server to the MIDP Device? 311
Wireless Messaging with Short Message Service and Other Protocols: An

Important Component in Our Application 312
Wireless Messaging Client Application 314

Chapter 12
Speech Technologies on the Way to a Natural User Interface 338

What Is a Natural User Interface? 338
Speaking with Style 339
Java Speech API Markup Language 341

Contents ix

Speech Recognition with Java 348
Microsoft Speech SDK 351
Speech Technology to Decrease Network Bandwidth 354
Standards for Scenarios for Speech Applications 359
Speech Application Language Tags 360
Grammar Definition 361
VoiceXML 364
ECMAScript 378
Grammar Rules 380
The VoiceXML Interpreter Evaluates Its Own Performance 382

Chapter 13
Integration with Knowledge 387

Why Are Computers Stupid? What Is Missing? 387
Knowledge Integration Participants, Processes, and Products 388
Connect Software and Knowledge Technologies 390
What Are the Main Goals of the Knowledge Connector Package? 392
Object Model Diagram 393
Formatting and Presentation Layers 393
The Magic of Service Invocation 394
What Does It Mean to Play a Scenario? 415
Do You Want to Be a Scenario Writer? 416
Application Scenario Language 416
Installing and Running the Package 438

Chapter 14
Distributed Life in the JXTA and Jini Communities 446

Distributed Processing and the Flat World of XML 446
What Is JXTA? 449
Jini 463
JXTA and Jini: Just Neighbors or Collaborators? 466

Appendix 1
Java and C#: A Saga of Siblings 468

Java Virtual Machine and Common Language Run-Time 468
From Basics to the Next Level on the Java/C# Programming Trail 484

Appendix 2
XML and Web Services 539

XML Extends the Web and Builds a Playground for Its Children 539
XML Describes Business Rules and Data Structures; XSLT and X Path

Describe Their Transformations 539

x Contents

XML Provides Direct Hooks to Services on the Web with SOAP, WSDL, and
UDDI 540

Interactive Web with XForms 540
XML in Voice Applications 540
XML Drives Semantic Web and Knowledge Technologies 541
XML Web Services 541
Web Services at Work 541
Encode Service Requests with SOAP 542
Describe Web Services with WSDL 542
Publish and Discover Web Services with UDDI 544
Business Process Execution Language for Web Services 544

Appendix 3
Source Examples 551

Getting into Collaborative Services 551
The MIME Multipart/Related Content-Type; RFC 1867 554
Working with Geographical Information Systems 570
Reading AutoCAD Vector Graphics 577
JNDI: What, Why, and How? 578
Instant Screen Share 581
Instant Voice Share with JMF 581
Java Messaging Services (JMS): A New Way to Think about Applications 587
Create Speech Recognition and TTS Applications in C# 589
Fight Email Spam and Increase Email Server Efficiency 590

Index 599

Preface

WHO SHOULD READ THIS BOOK?

Integration-Ready Architecture and Design strives for a union of theory and practice. Teaching
the latest wired and wireless software technologies, the book is probably the first entry into
“the next big thing,” a new world of integrated knowledge and software engineering. Written
by a software architect and experienced trainer, this book is for:

� Software architects, designers, and developers
� Internet and wireless service providers
� IT managers and other IT professionals, as well as amateurs
� Subject matter experts who will directly participate in a new development process of

integrated software and knowledge engineering
� Students and educators, who will find up-to-date materials for the following courses:

1. Software Architecture,
2. Software Engineering,
3. Programming Concepts,
4. Information Technologies,
5. Smart Card and JavaCard Technologies,
6. Wireless Technologies,
7. J2ME and Wireless Messaging,
8. XML Technologies,
9. Speech Technologies,

10. Java Language and Technology,
11. C# and .Net Technology,
12. Integration Technologies,
13. Business Communications and Collaborative Engineering,
14. Web Technologies,
15. Introduction of Ontology, and
16. Integrated Software and Knowledge Engineering (introduced in the book)

xi

xii Preface

� Peers: students, instructors, consultants, and corporate team players who might start
using a peer-to-peer educational tool offered in the book as their entrance to the distributed
knowledge marketplace

� All of the above who want to know how things work, should work, and will work in the
IT world

WHY DID I WRITE THIS BOOK?

Of course, I wanted to solve several global-scale problems. Divided by corporate barriers
and working under “time-to-market” pressure, we often replicate data and services and
produce software that is neither soft nor friendly. Working as fast as possible in this mode, we
deliver products that lack flexibility and teamwork skill and are hardly ready for integration
into new environments. These products strictly target user requirements—which become
obsolete by the time the project ends. Producing “more of the same” and raising the number
of product choices (instead of moving to new horizons), we actually increase entropy and
slow down the progress of technology, which depends heavily on inventions, new usage, or
new combinations of existing tools and methods.

The famous formula “write once” is not working anywhere today. One of the reasons is
the absence of a mechanism capable of accepting, classifying, and providing meaningful
information about new data or services created by knowledge producers.

We have not changed our way of writing software during the past twenty years.
We have not moved far from the UNIX operational environment (which was a big hit

thirty years ago).
Our computers are much faster, but for the regular user, they are as stupid as they

were forty years ago. We add power but we fail to add common sense to computers, we
cannot help them learn, and we routinely lose professional knowledge gained by millions
of knowledge workers.

Meanwhile, best practices in software and knowledge engineering are reaching the point of
critical mass. By learning, understanding, and integrating them, we can turn things around.
We might be able to improve the reliability of quickly changing environments by using
distributed self-healing networks and knowledge base–powered application solutions.

We can finally stop rewriting traditional address book, scheduling, inventory, and order
applications. We will shift our focus from ironing out all possible business cases in our design
and code to creating flexible application mechanisms that allow us to change and introduce
new business rules on the fly. Coming changes are similar to the transition from structural
to object-oriented programming. We are going back to school.

HOW TO USE THIS BOOK

I hope you find this book on your list of recommended reading or as “the best gift for yourself,
your spouse, and your friends.” Just buy two copies and let them figure out what to do with
the book. In the worst case, it can be used for self-defense. It is almost as heavy as other
good books.

If your gift list includes yourself, you might want to read this book in the bookstore
first—at least some selected chapters, starting from the back.

What Is This Book About? xiii

For example, Chapter 10, about a JavaCard key that opens all doors, can be very handy
the next time you lock your keys in your car. If this happens too often to you or your close
relatives, you might find Chapter 11, on J2ME and wireless messaging, very practical.

Armed with the knowledge of wireless technologies from Chapters 8, 9, and 11, you can
create your own communication service and finally stop switching from AT&T to Sprint and
back to Verizon. Serve your friends and neighbors, compete with T-Mobile, and someday I’ll
be happy to buy your integrated “wireless portal communicator” product.

If you are a serious developer or plan to become one, you might prefer to start from
the beginning and read all the way through. Search for long-term, secure, and exciting
IT directions. Find out why all the pieces of the puzzle, as well as the glue, are almost
equally important. Teach yourself to see every technology (component) as an object with
three dimensions: what, why, and how. After reading the book, you might even become less
serious and more efficient.

If you want to increase your business clientele from the 20% of the population who are
fluent in current computer interfaces to the rest of us, including those who hate computers
or cannot bear their stupidity—just go for it! Read Chapters 4, 5, 12, and 13, on speech and
knowledge technologies, and create a natural user interface, a bridge from your business to
humankind.

A professional hacker (whose average age is 15 but ranges from 6 to 66) might start with
Appendix 3 (“Source Examples”). Find examples that can help to build collaborative and
location-based services, screen/voice instant sharing and security monitoring, and speech
and distributed knowledge alliance applications. Look there for spam killer hints to be ahead
of the game.

If you just want to speak more languages, go to Appendix 1 (“Java and C#: The Saga of
Siblings”). You can get two for the price of one, including the latest JDK1.5 language inno-
vations.

If you would like to include XML in your repertoire, add Appendix 2 (“XML and Web
Services”), which covers several dialects of the XML family.

Chapters 5 and 13 are not only for computer folks. The elusive category of “knowledge
workers”—anyone who has gained knowledge and never had a chance to share—might be
looking at the Promised Land. Subject matter experts (SME)—who used to talk to developers
about what and why—can find in those chapters new ways to say how.

There is also a downloadable software product with this book. Students and educators
can use the tool for collaborative work in team projects. The tool helps to connect students
and instructors with educational knowledge resources. This can elevate the visibility and
quality of student projects and transmit the best of them into industry contributions. The
software can be handy in academic/corporate alliances.

WHAT IS THIS BOOK ABOUT?

� The what’s, why’s, and how’s on: J2EE, J2ME, .NET, JSAPI, JMS, JXTA, JMF, SALT,
VoiceXML, WAP, 802.11, CDMA, GPRS, CycL, XML, and multiple XML-based technolo-
gies, including RDF, DAML, SOAP, WSDL, and UDDI. The book turns these abbreviations
into understandable concepts and examples

� The distributed knowledge marketplace
� Collaborative engineering methods and technology

xiv Preface

� XML and Web technology architecture, design, and code patterns
� Ontological (knowledge) engineering and natural user interface
� XML-based application scenarios that integrate dynamic user interface and traditional

services with speech and knowledge technologies
� Unique recipes for creating integration-ready components across a wide range of client-

server, multi-tier, and peer-to-peer distributed architectures for Internet and wireless ser-
vice developers

� Innovative ideas, methods, and examples for building multidimensional worlds of enter-
prise applications

� Privilege-based access to corporate data and services, not only through PCs and worksta-
tions but also through multiple types of wired and wireless devices and personal digital
assistants with seamless integration of wireless, Web, speech, and knowledge technologies

� A unified approach to architecture and design that allows for J2EE and .NET implemen-
tations with code examples in Java (most of the source code) and C# languages

� Integration of software and knowledge engineering in knowledge-driven architecture
� Union of theory and practice. As many of us do, I divide my professional time between

the education (30%) and development (70%) worlds. Time sharing is not always the
best option in real estate, but I hope it works for this book by providing more cross-
connections between these parallel worlds. Like most parallel worlds, they have (almost)
no intersections according to Euclidian geometry, but we can find many by moving into
Riemann’s space

� Questions and exercises, case study assignments, design and code samples, and even a
learn-by-example self-training system that allows you to enter the distributed knowledge
marketplace

Bridging the gap for a new generation of software applications, the book teaches a set of
skills that are becoming extremely valuable today and that will certainly be in high demand
tomorrow.

This book is designed to walk a reader through the peaks of current software, with a focus
on foundations, concepts, specifications, and architecture. The hike then goes down to the
valley of implementation, with detailed design examples and explanations, and finally flies to
new horizons of software and knowledge technologies. There lies the happy ending, where
software and knowledge engineering ride off into the sunset together.

Contributors

Many special thanks to the people who made direct contributions to this text:

Ben Zhuk—Cowrote a number of sections, edited the entire book for both content and
style, and created all diagrams and illustrations (except those mentioned below). He was a
sounding board for ideas throughout the writing process and was an invaluable resource. I
am indebted to him, more than I can express, for his tireless efforts and the countless hours
he put into this project.

Dmitry Semenov—Senior Software Architect who read the manuscript carefully and thor-
oughly. Dmitry’s remarks and criticism helped me to clarify content and add significant parts
to Chapters 3 and 13.

Olga Kaydanov, artist—Provided great design ideas and artistic inspiration for illustrations
(http://artistandart.com).

Irina Zadov, artist—Illustrated Fig. I.1, Fig. I.2, Fig. I.5, and Fig. 1.4
(http://ucsu.colorado.edu/∼zadovi).

Inna Vaisberg, designer—Illustrated Fig. 3.1 and Fig. A3.18
(http://javaschool.com/skills/Inna.Vaisberg.Portfolio.pdf).

My former students, talented software developers:
Masha Tishkov, who wrote and tested several XML parser methods in the Stringer.java source
and helped to prepare the uploader package;

Slava Minukhin, who teamed up with me to write C# sources for Appendix 3: Text-
ToSpeech.cs, SocketTTS.cs, Recognizer.cs;

Alex Krevenya, who helped write email- and spam-related sources for Appendix 3;
and Dina Malkina, who wrote C++ sources for Chapter 12: ListeningClient.cpp and
TalkingClient.cpp.

Thank you so much!

xv

Acknowledgments

This is a great opportunity to say thank you to so many people without whom this book
would be impossible. Thanks to my parents; if not for them, you might be holding a different
book right now.

To my friends (many of them former students), who assisted and supported me with many
essential steps in the book’s production.

To Candi Hoxworth, IT Manager, who read most of the book and provided great suggestions
on improving my American accent in it.

To Stuart Ambler, Mathematician and Software Architect, who reviewed and provided im-
portant feedback for Chapters 8, 10, and 12.

To Michael Merkulovich, Software Team Lead, who read and provided valuable suggestions
for Chapter 6 and Appendix 1.

To Nina Zadov, Senior Software Engineer, who read and approved Chapter 7.
To Roman Zadov, Mathematician, who reviewed Chapter 5 (Ontology).
To Bryan Basham, Java Instructor, who reviewed a section (multipart/form upload) from

Appendix 3.
To Linda Koepsell, Course Development Project Manager, who reviewed a section from

Chapter 11 (J2ME).
To Jason Fish, Enterprise Learning, President, who invited me to teach for Java University at

an international conference, where I met Lothlorien Homet from Cambridge University
Press. Thank you Jason and Lothlorien, you got me started with this book.

To Cambridge University Press editors Lauren Cowles and Katherine Hew and TechBooks
project manager Amanda Albert and copy editor Georgetta Kozlovski for their work and
dedication.

To Cyc Corporation knowledge experts John De Oliveira, Steven Reed, and Dr. Doug Lenat,
who taught me ontology and the Cyc Language and reviewed several sections from Chap-
ters 5 and 13.

To my colleagues from the University of Phoenix, Mary A. Martin, Ph.D., Blair Smith, Stephen
Trask, Adam Honea, Ph.D., and Carla Kuhlman, Ph.D., who reviewed sections from Chap-
ter 2 (Software Architecture) and Notes for Educators.

xvi

Acknowledgments xvii

To my colleagues from DeVry University, Ash Mahajan, Karl Zhang, Ph.D., and Mike Wasson,
who reviewed the Preface and Introduction.

To Victor Kaptelinin, Ph.D., Umea University (Sweden), professor with whom I discussed
multiple ideas for collaborative environments.

To Jay DiGiovanni, Director of Software Development, who reviewed and provided encour-
aging remarks on a section from Chapter 13.

To Vladimir Safonov, Ph.D., St. Petersburg University, Professor, who offered excellent sug-
gestions for Chapter 2 (Software Architecture).

To Vlad Genin, Ph.D., Stanford University and University of Phoenix, Professor of Engineer-
ing, who gave me important notes on introductory sections.

To Robert Gathers, GN President, with whom I discussed the future of distributed networks
and who reviewed several sections from Chapters 13 and 14.

To Rachel Levy, whose reviews of and ideas for the Introduction and Preface were inspired
and right on-target.

To my children, Julie and Ben, for their moral support and phenomenal help during the
entire process.

And finally, and most importantly, to my wife, Bronia, who makes everything in my life
possible.

Introduction

One might think that the software industry is performing very well because it is armed
with object-oriented approaches, Web services, Java and .NET technologies, and so forth.
Unfortunately, this is not true.

There may be something wrong with the way we write programs. The process has not
changed much during the past twenty years, except that applications and tools are getting
bigger. Yet are they better and more scalable? Do they require any common sense? Can they
be reused in different circumstances?

If these things were true, I do not think we would be rewriting the address book, schedule,
order, and inventory applications over and over again instead of moving to new, untouched
tasks. We would be able to accumulate the professional knowledge gained by millions of
knowledge workers (everyone who manages information flow on a daily basis) instead of
routinely losing it, as we do today. We would also not be facing the current IT crisis.

We could even have had more precise and direct access to the market’s supply and demand,
which would have reduced the glaring inefficiencies of the software marketplace of the 1990s.
A big change is required to return investors’ confidence to IT, and, hopefully, the change is
coming.

Yes, technology can help economic stability if applied with precision. Sometimes I wonder
why big companies are constantly growing bigger while small ones tend to disappear. Why
do corporations prefer doing business with a few vendors, or often a single vendor, even
when it is an expensive one? One of the reasons is that the integration of multiple vendors’
products would be even more expensive.

WHY IS PRODUCT INTEGRATION SUCH A PAIN?

Products and services are currently designed to cover predefined tasks and work with known
data.

Are they ready for unknown tasks and new data sources?
Are they ready for integration with other products and services?
Are they ready to be extended into the wireless world?

xviii

Why Is Product Integration Such a Pain? xix

FIGURE I.1. Cooking Applications on Demand.

We think we know what is going on in our industry, but how close are we, really, to even
asking the right questions?

Where can you look for information? Google.com is one answer. Where can you find any
tangible product to buy? Ebay.com is a good solution. Can you find a service you need? This
question is a bit harder, and the short answer is no, except for the technologies to register
Web services, which we explore in following chapters. The ocean of industries and markets
is filled with a myriad of services, but we notice only the brightest and loudest fish on the
surface and have no equipment to help us swim the depths and explore this underwater
universe.

If we somehow find a service, then we have a chance to take a closer look. We may
subsequently find that it is not exactly what we really want.

Can we modify a product or service? Can we easily plug it into another service? Can I
cook my application as easily as my lunch, from products and services selected right now
for a single usage, as in Fig. I.1?

What does it mean to build integration-ready products?
Why and how do we use XML, Java, .NET, wireless, and speech technology components?
What is the next big thing? Is it about collaborative engineering, distributed knowledge

marketplace, knowledge-driven architecture, or all of the above?
This book answers these questions, walks readers through the edge of current technolo-

gies, explains their fundamentals and interdependencies, helps to integrate the best practices
of existing technologies into a new development paradigm, and provides an entrance into
the world of knowledge alliances.

Examples, case studies, and the self-training application offered by this textbook arm
students and instructors with ammunition for successful teamwork.

xx Introduction

FIGURE I.2. A Mysterious Planet.

AN ILLUSTRATIVE PASSAGE FROM “BEN’S REAL AND DREAM MEMOIRS”

A hint: even if Ben were a real person (I doubt it) his stories are not necessarily real.

“If you are not a lucky person, you’d better get some skills.” I suddenly appreciated this
aphorism praising the advancement of knowledge as I rushed down the runway. I had just
realized that, having failed to check the schedule, I was about to miss the last kicker-ship and
now risked spending the night on the tiny planet known only as H.235.

This was strictly forbidden by travel rules. H.235 was one of the infamous “black holes” rarely
visited by tourists. There were rumors about strange forms of nightlife on the planet. No, this was
not related to sex, but to unions of magicians, the legendary “global mind,” and disappearing
travelers. I tried to flag down a couple of H’sters, but they did not understand English.

Back to Reality: Mosaics of Technologies xxi

They immediately threw many extremely strange and incomprehensible words at me and
then moved on when my face showed no understanding. I had always suspected that the people
here spoke a different language, but I never expected it to go this far.

The street was now empty except for an old man coming my way. My memory struggled to
find the right words, and a single phrase came out: “Sprechen sie Deutch?” This was the sole
gem in my collection of foreign language knowledge.

The old man stopped and smiled while taking out his cell phone. My first thought was, “He
is calling the police!” Then the second, “He is calling a gang!” The man spoke the strange
language into the phone, repeating a word that sounded almost, but not quite, completely unlike
the word Instructions. Suddenly, he handed the phone to me.

A voice from the phone spoke clear English. “This is the Common Brain help line. You are
granted a guest level of permission to ask any question, except those related to H.235 security.
Your question will be translated into our language. Please end your question with the words
exit and translate.”

I started asking rapid-fire questions. The phone worked like magic.
After the first question, the voice from the phone took a leading role. It navigated me through a

question-and-answer session, helping me express my needs in system-specific terms. At the end of
the session, the phone commanded: “Mister Ben, please pass the phone to the answering party.”

The old man, whose name turned out to be Paul, played the role of the answering party. He
listened to the phone’s version of my queries and made strange sounds that came to me via the
phone in perfect English. At the end of the call, Paul used his phone as a camera to photograph
my smiling face.

The voice from the phone explained that I had missed the regular night shuttle, but could
still make the special shuttle reserved for just such occasions. My picture was in the system
now to allow me past the auto flight attendant. I was provided with precise directions over the
phone, and at one point, a map was even displayed on the phone’s screen.

I felt so happy I even tried to ask a couple of extra questions, but the only answer I received
was “Questions about religion or sex cannot be answered, as they are related to H.235 security.”

While on the way home in the shuttle, I thought about the Common Brain. Was it a high-tech
company or a psychic organization? Or maybe both would be needed to help people understand
each other?

Where was the catch? What technology was used? Could the old man have been a magician?
I had heard the rumor that some magicians had access to a legendary “global mind.” Why was
there a special flight just for me? And why was this flight taking so long?

My eyes closed as a white fog slowly surrounded me.

BACK TO REALITY: MOSAICS OF TECHNOLOGIES

That story sounds like science fiction, except for the final questions. These questions bring
us back to reality, introducing mosaics of technologies.

Let us answer one question at a time. Was it technology or magic? Figure I.3 illustrates
three related technologies that could be used today to make that science fiction story a reality.

Web technology is a respected parent: young, but mature. It has already raised a couple of
very promising kids, and more are expected. A Web client or Hypertext Markup Language
(HTML) browser talks directly to a Web server using HTML over the Hypertext Transfer
Protocol (HTTP). HTML pages deliver text, graphics, and sound files over wired networks.

One of the Web’s children is based on the wireless application protocol (WAP) and wireless
markup language (WML). The small screen of a cellular phone serves as a destination for

xxii Introduction

Wireless and Speech Technologies

Web
Browser

WML
Browser

No
Browser

Web Container
Presents:

HTML Pages

WML Pages

VXML Pages

WAP Gateway
Encoders &
Decoders

Speech
Recognition
System

H
T
T
P

WAP

FIGURE I.3. Children of Web Technology.

WML pages. Not all wireless phones are capable of displaying WML pages; the phone must
include a WML browser that provides this capability.

The other child of Web technology is based on a speech recognition system (SRS) and
Voice Extensible Markup Language (VoiceXML or VXML) to deliver content to human beings
in the most natural way possible. In all cases, the content is kept on the Web server or is
generated dynamically by a Web container that includes a Web server and the software
responsible for dynamic content generation.

In every case the content is presented by some kind of XML page, as XML is a common
denominator for HTML, WML, and VXML. (See http://w3.org for a further description of
this family.) SRS/VXML can be used for language translation. WAP/WML can be used for
electronic document exchange: the photo ID that was created on the spot was sent to the
server, and a map with directions was sent from the server back to the phone.

FROM CENTRALIZED COLLECTIONS TO INTEGRATION-READY SERVICES

Here is an interesting puzzle stated in a simple question. It looks like we are moving more
and more resources to the server side. Is this the way technology is going? Will we face a
huge service repository that continues to grow and collect more and more services?

Not necessarily. Another answer to our question is to improve the capacity for integration.
This means that a service (in the simplest case, an application) might be made flexible enough
to allow it easily to adapt to novel contexts. A library of services can be integrated on the fly
and used on demand in real time and in a fashion transparent to the end user. For example,
a wireless communication channel service, a map service, a shuttle-scheduling service, and
a personal security authentication service might configure themselves to provide a new,
integrated service to the end user, such as booking a flight.

This solution is more than a theoretical possibility. Businesses are already beginning to turn
the focus of development from “more products in a package” to “friendly (easy to integrate
and customize) products.” Figure I.4 represents a multidimensional view of integration-ready
services.

From Centralized Collections to Integration-Ready Services xxiii

Facility management with Geo Info System

Instant Share Voice and Video Service

Wired and Wireless IT Management

Distributed Knowledge Framework

Scheduled Remote Processing

Partner Integration Framework

Business Data Integrator

Security Monitoring

Java Applet or Java Web Start Application

J2ME/HTML/WML/VXML Wireless or PDA Clients

TM TM

XML

Rules

Descriptor

Editor

XMLXML

Service
Registry
Centers

Integration
with other
products and
businesses

FIGURE I.4. Multidimensional Views of Enterprise Applications.

Perhaps you have heard about the “80/20” rule, which states that every service is focused
on just the 20 percent of the possible scope that will produce 80 percent of the desired results.

This approach becomes even more beneficial when architecture, design, and development
are done in such a manner that customization is an inexpensive process, when it is even
possible to add or customize services without changing the core code.

What is important for corporate businesses that are selecting the right technologies?
System flexibility, the capacity to recapture business rules and structures, and readiness

for integration with other products and systems are all rapidly becoming priorities. How can
these goals be accomplished?

There are several methods that can be used for system integration. Java-specific integration
techniques, such as JAIN (Java application program interfaces [APIs] for integrated network),
introduce system integration. There is also a new world of Java-based Jini devices capable
of promoting or announcing their skills/capabilities over the network. We consider these
technologies and talk about a unified service and data integration approach.

This XML-based approach to integration interfaces defines system behavior as well as the
data integration process. It paves the road for creating integration-ready services, defines uni-
fied integration protocols and policies, and helps to connect them into distributed business
alliances.

Business clients access corporate repositories with multiple types of wired and wireless
devices and personal digital assistants (PDAs). Corporate workstations still outnumber other
devices, but this is changing rapidly.

We do not want to redevelop business services for every type of access. It is impor-
tant to understand that we need only to build more ways to present/access the same
content of enterprise data and services. This leads to one of the most important archi-
tecture rules: Separate business from presentation logics. This separation is very visible in
Fig. I.4.

xxiv Introduction

Presentation factories (software responsible for visual/audio depictions or presentations
for different types of clients) allow us to reuse a set of framework services (e.g., facility
management) and deliver service results properly formatted for multiple types of devices
from corporate workstations to wireless phones or PDAs.

In the preceding example, common business problems are solved with several “core”
frameworks. Each service was focused on just 20 percent of the possible scope that produced
80 percent of the results. Architecture, design, and development are accomplished in a
manner that makes it possible to add or customize services without changing the core code.

This allows a business to transform into an e-business with the ability to connect to a
global business alliance or distributed knowledge and service marketplace.

This marketplace instantly provides information on products, data, and services, along
with their values (some services might be more valuable than others), allows multiple par-
ties/systems to negotiate multiple forms of collaboration, and contains sufficiently flexible
levels of access security.

Businesses will be able to leverage their existing application assets by making them avail-
able to others via Web service and distributed technologies. Business frameworks, presen-
tation factories, Web service, and distributed technologies (and much more) are discussed
further in separate chapters.

SOFTWARE ARCHITECTURE AND INTEGRATION-READY SYSTEMS

The past decade has moved software architecture into the center of system development.
It has also provided many (perhaps too many) examples of inefficient “quick and dirty”
solutions prompted by a lack of integration among the three worlds of what, why, and how.

The latest buzzwords, industry trends, and components have often been used without
necessity and without understanding that they are beneficial in specific circumstances under
specific requirements. At the same time, some projects have not benefited from new standards
and technologies, simply because developers have not been aware of their existence or have
not had enough skills to apply them.

The importance of developing integration-ready systems and components is another les-
son we continue to learn from the past.

The book teaches the reader to understand design patterns and architectural styles, to be
able to see multiple sides of a system through the prism of industry standards and specifica-
tions, to communicate this vision via multiple architectural views, and finally to transform
this vision into design and code that can make the “write once” dream a reality.

ENTERPRISE SERVICE COMPONENTS AND CHALLENGES

Wired and Wireless Telecommunications
Enterprise communications include telecommunication services as well as a variety of IT
and data services.

Telecommunication services are competing for a limited market. (Though we called this
market “unlimited” in the past, this clearly did not help matters much.) Telecommunication
vendors offer new products and services that balance reliability, superiority of features, and
price. Here is the client’s usual question: “Will your new program work with my old one?”
In this case, “I am not sure” is not the right answer.

Enterprise Service Components and Challenges xxv

FIGURE I.5. Phone Generations Hand in Hand.

There are “9-to-5” employees who work only in the office and use fixed telephony. There
is also a growing community of telecommuters: mobile employees who, for example, work
one day in the office and four on the road, and who use wireless telephony. Corporations
have multibillion dollar investments in Legacy PBXs that run regular telephony. This is the
best guarantee of their longevity. Voice over IP and wireless communications will have to
find ways to coexist in the mixed-enterprise telecom environment. Interoperability and a
smooth transition can be achieved with a unified approach to wired and wireless application
architecture.

The increasing quantity and variety of wireless devices sets new challenges for companies
competing for multiple markets that run multiple wireless technologies. The winners will be
those wireless Internet providers (WISPs) and wireless application service providers (WASPs)
who can offer reliable connections and content services and optimize development solutions
with a unified approach across multiple client devices.

Wireless clients are truly mobile. Client environments, locations, connections, and other
parameters can be changed more frequently and drastically than those of fixed-wired network
clients. We have to develop smart location-based services for our PDAs, cars, and robots
equipped with GPS (global positioning system). We will have to switch from centralized,
fixed computing to distributed self-healing networks with flexible service redistribution. We’ll
deploy knowledge base–powered application solutions: quick and smart adjustments to client
locations, connections, and overall environment changes (Fig. I.5).

Consolidation of Multiple Data Sources
Multiple data sources were historically created in multiple departments for different and
often unrelated purposes. Company mergers and the process of building Web umbrellas for
company services bring a new focus to an old task. Data consolidation is becoming one of the
highest enterprise business priorities. Enterprise Web applications require data integration
and consistency. Data integration is especially relevant to telecom applications, which by
their nature must be connected to multiple enterprise data storages.

Data consolidation is an expensive, nontrivial process in which XML and Java technologies
can play an essential role. In Chapter 6 we consider a unified approach to multiple data
sources (Fig. I.6).

xxvi Introduction

RDBMS

LDAP

Directory
Services

Oracle
SQL Server
DB2
more...

MS Exchange
Lotus Notes
PeopleSoft
more...

Novell
Directory
Services
File Systems
Meta-directory

FIGURE I.6. Multiple Faces of Data Storage.

Natural User Interface and Knowledge Technologies
There are dependencies between the natural user interface and knowledge technologies. For
example, current speech technologies are not quite ready to understand natural language
speech initiated by a person. There are similar difficulties with machine translation from
foreign languages. Can tasks like machine vision, speech recognition, and foreign language
translation, which seem very different, have a common solution?

The first common denominator is easy to find: all these tasks belong to the field of data
processing. The next move is to find common steps for all three activities. What do people
do when they are engaged in image or speech recognition, when they translate text from
Hebrew to English?

Can we build a computer program to perform similar steps? We know that data we usually
keep in relational databases can hardly help us. What types of data are needed for the process?

Distributed yet connected, specific yet based on generic roots, different in themes yet non-
conflicting: these are the qualities required for information to be inherently useful. Creating
this quality data is extremely difficult; however, it has been proven possible.

We discuss architecture, design, and code samples that integrate knowledge technologies
into enterprise applications and give the keys to a new breed of software—“softology,” a mix
of software and ontological engineering.

Because the knowledge engine is a new element that plays an important role in such
architecture, I label it knowledge-driven architecture. It is very likely that this type of appli-
cation will become the next big thing (after service-oriented architecture and event-driven
architecture) in the near future.

This promising direction can raise the IQ level of our products; add more flexibility,
intelligence, and common sense to applications; and even change the development paradigm
by providing business experts with better tools that can eliminate several layers of the current
development process.

Location-Based Services (Topology/Maps)
Topology data or geographical information systems (GIS) are necessary for mobile environ-
ments, facility management, military operations, and more.

Enterprise Service Components and Challenges xxvii

FIGURE I.7. Integrated Wired and Wireless Portals.

In a very peaceful example, GIS can be used to locate things such as office equipment
and to optimize sharing of resources such as books, computers, facsimile machines, copying
machines, or microwaves, and services based on their locations.

Topology data also can be used by robot-based moving services to determine hallway
widths and produce the best or perhaps only way to move an item.

IT Provisioning, Corporate Portals, and the Distributed Knowledge
Marketplace
IT provisioning and collaboration technologies, which are often implemented with corporate
portals, increase productivity and encourage the creation of a distributed knowledge and
service marketplace. There, data as well as services can be measured and can represent a new
currency.

People produce knowledge and services every day. Unfortunately, most of the knowledge
gained by individuals is rarely shared. We have no direct access to this greatest treasure
of humankind. Distributed knowledge technologies can improve the situation, drastically
decreasing the time between a service’s supply and the market’s awareness of it, providing a
more precise estimate of data and service usability values, and introducing a new marketplace
where information and service contributions are rewarded according to their values.

Collaboration or openness must be supported by security mechanisms. Multiple security
domains with multiple member roles and multilevel privilege-based access are a necessity
to encourage data sharing and active teamwork. Collaboration is not just about corporate
employees working at corporate workstations. Wireless devices using WAP or speech tech-
nology (phone) clients, as well as regular workstations, will also be looking to access the
rich content of enterprise data and services. The full content can be made available via cor-
porate workstations while team members with thin client devices use a subset of the data
and services (Fig. I.7).

xxviii Introduction

INTEGRATION OF SOFTWARE AND KNOWLEDGE ENGINEERING

There is a gap in the current development process between initial business input provided
by business people and the final implementation. The current process requires multiple
transformations to simplify the complex world of reality into low-level program functions
and tables expressed with current programming languages. This gap is filled with multiple
filters/layers and sometimes multiple teams.

The shift to service-oriented architecture together with recent advances in knowledge
technologies has paved the way for a new development paradigm.

In the new development paradigm, knowledge technologies play an essential role in the
development process. Business domain experts will be able to directly participate in the
development agenda by writing business rules and application scenarios in a more “natural”
language. This will also help to focus developers (currently distracted by technological
details) on the business aspects of applications.

Some time ago, we thought of the C language as a language for application development,
whereas Assembly was the language for system development. It is about time to move the cur-
rent programming languages, such as C# and Java, to the system level and make applications
that are driven by knowledge-based rules and scenarios.

Knowledge-driven architecture is not a dream but a reality.

START WITH GOOD DESIGN AND REPEATABLE PROCESS

There is always a temptation to jump ahead several steps. Sometimes this is possible, but it is
never safe. (This is my experience, at least, as a former mountain climber and an inventor.)
The plan for this book is to learn the best current development practices in the software
industry, climb close to the top, and then see the horizon. We focus on Object-Oriented
Programming (OOP) and we also look beyond. There are Aspect-Oriented Programming
and Generative Programming directions. OOP is not the end of the story.

Current technologies have brought significant power to developers. These technologies
can be successfully used to implement good design ideas. They can also be used to unsuc-
cessfully implement bad ones. How do you start walking in the right direction before you
can see the end of the road?

Enterprise applications are often complex enough to offer us this challenge. Building
a robust development process and building a team capable of following this process are
probably the most important tasks of development. Good teams produce good products.
It is appropriate, then, to start Chapter 1 with a discussion of teamwork and development
processes and then to move on to technology.

Notes for Educators:
AMA Teaching Methods

The AMA teaching methods are Activate, Motivate, and Assess.

ACTIVATE

Interact with the group and solicit each student’s contribution. Engage your students in
collaborative learning (let them work in teams) and collaborative teaching—give the stage to
your students so they can review the material and share their best practices. One learns twice
while teaching! Reward the best contributors.

MOTIVATE

Use all possible means to connect the course materials to the students’ areas of expertise,
thus increasing their motivation level. Motivation is the key to opening students’ eyes and
ears and unlocking their memories.

ASSESS

Facilitate a question-and-answer session, let students work in groups, and help them keep
precise focus and timing.

Use the online assessment and evaluation forms periodically from the very beginning of
the course.

This book provides a special section at the end of each chapter to reinforce the AMA
methods.

The Integrating Questions are designed to help students build a thorough understanding
of the relevance, relationships, and application of the content in the real world. To ensure

xxix

xxx Notes for Educators: AMA Teaching Methods

that students can relate course theories to the workplace, illustrate points with examples
drawn from your professional experience and the experiences of the students.

The Case Study serves as a guide for student assignments. The instructor can modify and
personalize assignments based on instructor–student interactions and early assessments of
a student’s current and desired skills.

RECAP PRESENTATIONS AND MIDTERM ASSESSMENTS

Conduct two- or three-student recap presentations (ten to fifteen minutes each) starting
with the second class. The content of each presentation is the student’s work on the Case
Study–based assignments. The presentations may serve as midterm assessments. They also
increase students’ motivation level and their understanding of the material (you learn twice
while teaching).

DELIVERY FORMAT FOR ASSIGNMENTS AND PRESENTATIONS

It is recommended to format assignments and presentations as illustrated white papers using,
for example, Web pages, MS Word, PDF, or PowerPoint with notes. The content can be
presented in three levels: definition (high level), functionality and applicability (middle
level), and examples of implementations (low level). These three levels roughly map the
“why,” “what,” and “how” of the selected subject. Students will enhance their ability to
clearly express their ideas and will learn the art of publishing and presentation with text,
images, diagrams, and code extracts.

FINAL TEAM PROJECTS

Students may integrate selected parts of their weekly work assignments into team projects.
This approach helps the student increase the quality of his or her work and consistently
focus on the course materials.

Integration is not a copy-and-paste process. The team project allows students to exercise
the downloadable software tool that comes with this book and helps them share their work
with a distributed knowledge repository. The high visibility of a student’s achievement adds
to the perfection of her or his work and makes it possible to directly tie students’ efforts to
industry needs.

CHAPTER 1

Collaborative Engineering

Collaborative engineering is an important subject that is currently missing in schools,
although some courses include a few of its aspects. I doubt I can cover it all at once, but I
will try my best to integrate development technology and the development process under
one roof, where integration-ready systems can be created.

Technology tends to fragment: to focus on pieces and omit the glue. The development
philosophy that I associate with the terms of collaborative engineering helps keep a better
balance between a narrow focus on particular components and their multiple connections
to the rest of the world. The practice of collaborative engineering also assists in establish-
ing a repeatable—yet flexible and constantly improving—development process. This is the
foundation for integration-ready systems development.

What is collaborative engineering all about? It is about the development process in its
organization, management, and methodology, integrated with innovative development tech-
nologies. I have had the privilege of teaching corporate developers and architects in the
United States and overseas. Many times, I have had the amazing feeling that some of my
brightest students, experienced developers, knew all the pieces of the puzzle and still could
not start putting them together.

For example, almost every programmer knows one of the main design rules: Separate
business from presentation logic. However, there are still more cases that break this rule
than cases that follow it. One of the hardest questions is how to apply the rule properly.

Some developers believe that although theory is good, it is too costly for real life. This
myth prevents many of them from developing the skills (in everyday practice) to quickly
apply an existing design pattern or recognize a new one that will solve the problem “once
and forever” and allow them to move on to other problems.

Guided by this myth, we win time and money on separate projects but miss the bigger
picture, in which the industry pays a high price for overall inefficiency as well as data and
service replication.

1

2 COLLABORATIVE ENGINEERING

I think that by teaching separate pieces of the art and science of development, we omit
the glue, the philosophy of programming that helps us find the right balance between “do
it simply” and “do it once,” which sometimes leads to beautiful solutions in which the two
rules are not in conflict but are happily married.

Software is built from big and small blocks selected by architects and developers. In the
top-to-bottom development pattern, the big blocks are selected first; the developers then try
to fill the holes with the smaller blocks. During this process, they often find that the original
direction of the design was wrong and there is a need for remodeling.

How can you start walking in the right direction before you can see the end of the road?
Even some good developers cannot begin a project until they can see all the details involved.
Unfortunately, the scope of enterprise applications and time limits rarely offer this luxury to
developers.

The right answer is a development process that has a framework yet is flexible – a process
that is understood, followed, and enhanced by developers.

At this point, some readers may be thinking that all this talk about a process is man-
agement’s piece of the pie and not something developers need to worry about. Let’s read
further and reserve our judgment. We will see later how much the management style and
the development process contribute to overall results.

MANAGEMENT STYLE AS AN IMPORTANT PART OF THE DEVELOPMENT PROCESS:
TRUE LEADERS VERSUS “PURE” MANAGERS

I do not even have time to read my own email reminders; of course I missed yours.
—From a management conversation (the terrible truth)

While working for multiple corporations as a developer or one of the key managers, I
observed different management styles. In very generic terms, I would distinguish two major
tendencies: “pure” management and true leadership. What is the difference between pure
managers and real leaders? Some companies hire managers with little or no background in
the field they are supposed to supervise. Their role is to provide and track plans and serve
as a layer to smooth the edges among groups related to the plan.

However, project management is not just a Microsoft tool. It takes a leader to build a
team, create a teamwork process, and promote best practices and collaborative technologies.
It takes a leader to make decisions with creativity, not just through multiple-choice answers.
Removing unnecessary layers and dealing with leaders instead of managers can greatly benefit
projects, teams, and companies. I have learned this the hard way, working on multimillion
dollar projects, consulting start-up companies, and teaching (and learning from) enterprise
architects.

Shifting the weight of management toward developers enables those developers to grow
and become leaders themselves. This approach focuses more on people than on cur-
rent projects or tasks. It assumes (and this is the right assumption!) that the main as-
sets of a company are people—and teams. The best teams produce the best products and
services.

Workers (e.g., testers, developers, and system administrators) need to communicate and
to translate to managers the essence of the work they are doing.

Management Style as an Important Part of the Development Process 3

This takes minutes if a manager is a leader who knows the work. It takes hours for a
pure manager who tries to learn a subject on the fly. The next time a worker wants to play a
similar song with the manager, he or she has to start from the first music class—this note is
called A, this is a C sharp—again and again. Even then, only a fraction of the information is
retained.

Why? The orchestra conductor (the manager) is not a musician at all. (I know that many
are, in a more literal sense.) There is no background where information can be stored. A pure
manager often feels forced to choose between several opposing voices or lines in a document,
and each voice or line sounds and looks the same as the others.

The management process often turns into a game for such a person, a game with the
following rules:

� Use buzzwords, preferably generic (e.g., “stay focused!”) or at least technological (e.g.,
“scalable solution!”).

� Do not translate words into actions. Actions can be punished, because any action can be
less than 100 percent safe, or incomplete, or not quick enough. Words are always right
(“stay focused!”).

A leader owns the solution that he or she created. This ownership feeling is at the heart of
the development of any creative process. (I just read that again, and it looks like a line from
Ayn Rand.) In this context, ownership means responsibility to make and foresee changes, fix
problems, and answer all questions related to the solution.

Pure management removes ownership feelings, destroys creativity, and makes people
“come and go.” Every developer in the team is a leader who owns and has full responsibility
for a specific area. Experienced developers with teamwork skills become the best managers
or leaders.

On the opposite extreme of this spectrum is a leader who owns all the solutions, thus has
a hard time delegating responsibilities. Such leadership can improve product quality in the
short term (if this leader is the most experienced developer).

At the same time, this “babysitting” removes the ownership feelings of the others and
prevents developers from growing on the job while making all the development tasks a
sequential process funneling through a single leader-bottleneck. A leader should trust and
delegate.

Product design and project management are interrelated. I recommend a practice in which
team leaders are not only responsible for the part of the project delivered by their team, but
also personally involved in that part’s integration into the overall project. Leaders keep teams
and projects together as orchestra conductors do with musicians and music.

Where is the border between a leader and a pure manager? We all have elements of both,
in different proportions. We act as pure managers as soon as we start talking about things
beyond our expertise without investing time and effort in learning the field.

Being in a position to issue orders makes the pure manager rather dangerous. Investing
time in active learning is hard—but rewarding—and develops a leader.

“I have no time to even read my email” is a phrase from a Dilbert book. It is still
a very popular line in the management drama. Another extreme is “I have done much
more complicated projects before.” Phrases like these are used to excuse a person from
learning the specifics of a current task or project. Pure managers avoid specifics. This limits

4 COLLABORATIVE ENGINEERING

their participation in a development process in which generic frames are filled with specific
details.

DEVELOPMENT METHODOLOGIES: CAPABILITY MATURITY MODEL AND MORE

Some development organizations follow the Capability Maturity Model (CMM), some prefer
ISO 9000 recommendations, and still others use Extreme Programming (XP) or Six Sigma
methodology. None of these models suggests that it is an exhaustive recipe that covers all
cases. The development process that fits your team and project is going to be built and
enhanced by you. The process rules, or steps, should allow flexibility; they cannot be “final,”
in Java terminology.

An Extremely Brief Overview of CMM
The CMM [1] can be used as the basis for diagnosing an organization’s software processes,
establishing priorities, and acting on them. One of the most important goals of CMM (and of
ISO 9000) is the capacity to measure success and reliability of software processes. Measure-
ment results allow for process improvements. Process improvements lead to a maturity level
increase. CMM recognizes five levels of maturity in a software development process. Each
level comprises a set of process goals that, when satisfied, stabilize an important component
of the software process.

1. Initial. The process is characterized as ad hoc and occasionally even chaotic. Few processes
are defined, and success depends on individual effort and heroics. Delivery dates for
projects of similar size are unpredictable and vary widely.

2. Repeatable. Basic project management processes are established to track cost, schedule,
and functionality. The necessary process discipline is in place to repeat earlier successes
on projects with similar applications.

3. Defined. The software process for both management and engineering activities is docu-
mented, standardized, and integrated into a standard software process for the organiza-
tion. All projects use an approved, tailored version of the organization’s standard software
process for developing and maintaining software.

4. Managed. Detailed measures of the software process and product quality are collected.
Both the software process and the products are quantitatively understood and controlled.

5. Optimizing. Continuous process improvement is enabled by quantitative feedback from
the process and from piloting innovative ideas and technologies.

The International Organization for Standardization provides an ISO 9000 document
that serves as a standard to certify processes and procedures. Whereas CMM focuses
strictly on software development, ISO 9000 has a much broader scope: hardware, soft-
ware, processed materials, and services. CMM provides many more details and measurement
criteria.

The bottom line of both methods includes “document before acting,” “plan and follow,”
or “say what you do, and do what you say.”

Distributed Collaborative Development 5

EXTREME PROGRAMMING: RULES OF THE GAME

Extreme Programming methodology gains more popularity every year. This section provides
an overview of key XP concepts. (I can almost hear an impatient programmer’s voice saying,
“Another extremely brief overview? When are we going to see source code?”)

Software development is not just about coding, as the art of painting is not just about the
right paint selection. The heart of XP is a team of developers able and willing to communicate,
plan, and design before coding. The team owns projects and processes and has fun planning
and playing the project game by its own rules (“establish and follow”). A subset of XP rules
is presented in Figs. 1.1 and 1.2. Does this look like XP?

SIX SIGMA

Six Sigma is another method that focuses on measurements of process capabilities and
offers an integrated approach to shareholder value creation. Six Sigma suggests establishing
seven to twelve measures in two areas: “critical to your business” (efficiency measures) and
“critical to your client” (effectiveness measures). We select important measurement points
that significantly contribute to overall business success.

Now we can consider an equation where business success depends on the measured
functions. Some of them can serve as leading indicators that invite discussions such as “Why
are these measures not moving in the right direction?” This enhances both discussions and
critical thinking. Six Sigma helps to effectively break down complex processes into a matrix
with multiple components and consistently works on component improvements.

Rational Unified Process
Rational Unified Process (RUP) is a method and a tool developed by Rational Company
(currently a part of IBM, Inc.) that describes development as a four-phase process. In the
inception phase, developers define the business outcome of the project. The elaboration
phase considers basic technology and architecture. Developers deal with detailed design and
source code in the construction phase and finally deploy the system in the transition phase.
RUP offers software products that support developers as they walk through the phases.

Who implements the rules of the development process? People. This is the bottom line:
You can select any methodology that fits your organization. Teams with their managers,
leaders, and developers who understand and share the ideas of the methodology will make
it work.

DISTRIBUTED COLLABORATIVE DEVELOPMENT

It is not an easy task to establish and follow a system, even for a single company. Can it work
for a collaboration among several teams? Will this change the rules and the process?

Software communities working on common projects have recently suggested several an-
swers to these questions. Two of the best examples are open source communities and the
Java Community Process. However, there are still several factors that limit the success of
collaborative engineering today.

6 COLLABORATIVE ENGINEERING

FIGURE 1.1. The Rules of the Game (XP).

The motivation for sharing is very low, and there is no flexibility in establishing the rules
of the game: security, roles, access, and so on. The value of the data to be shared or exchanged
is unknown, and a contributor rarely gets her or his reward because the contribution itself
is not accountable.

Distributed Collaborative Development 7

For more than a decade, I have worked with remote students and development groups
in trying to overcome these limitations. I came up with several innovations, described in
a corresponding patent application [2] as distributed active knowledge and process tech-
nologies (DKT). DKT supports the process of distributed development and helps to improve
processes while enhancing technologies.

Distributed Knowledge Technologies
Existing on-line collaborative services allow users to share only a limited set of data types,
usually restricted to messages and files, with the rare addition of a shared organizer or other
similar service. This narrows collaborative actions to a small number of fields and introduces
limitations on the scope of possible collaboration and data sharing. Though some users
are satisfied with restricting their collaborative efforts to sharing files and sending group
messages, such systems are often insufficient in scope to allow for efficient workflow in a
real collaborative setting.

Existing services on the Internet also limit their collaborative structure to data objects
and exclude processes. As a result, the large amounts of data that can accumulate in a group
knowledge base cannot be mapped to better processing methods. As the number of data
objects increases, it becomes more and more difficult to use the information contained in
them to efficiently accomplish goals.

Current system structures do not permit users to collaboratively add objects of unknown
data types and a service to process a particular type of data to best suit the goals of a group.
They also prevent the creation and implementation of preprogrammed processes, services,
or scenarios for distributed processing. This further limits collaborative efficiency.

Existing systems own and fully control their collaborative environments. This limits col-
laboration to a single system and does not permit systems to share data or other system
elements. Data, process, and service sharing between systems belonging to different orga-
nizations is an even more complicated issue because there currently is no way for a system
to determine and specify elements appropriate for free public sharing, elements that are to
be shared on a pay-per-use basis, and elements that are to be exchanged for others of equal
value.

Last, current online collaboration is limited by the unwillingness of users to share their
data. Even in a collaborative setting, users rarely desire to make their data available to all
members of their group, and they make adequate security a condition for sharing information.

The backbone of any online collaborative effort is security, and the current methods of
assigning access privileges as a way to make specified data objects available to the appropriate
viewers are inadequate.

Existing systems allow limited role-based privileges for all collaborative data. A common
system has a limited number of privilege levels (in most cases, two). In such a system, if a
user’s profile defines her as an “administrator,” she has read, write, and delete access to all
group data.

If a user is defined as a “member,” he can read and add messages but cannot edit or delete
existing messages. This kind of system is limiting and does not encourage data sharing
because it does not give users control over their data. Users cannot create new custom roles
on the fly, cannot select who has certain kinds of access to the information they choose to
share, and must provide the same level of access to all members within a privilege class.

The willingness of users to share is also limited by their knowledge of other elements inside
and outside the user’s system and of their values. It is important to know how valuable a

8 COLLABORATIVE ENGINEERING

particular service or data object is from a user’s point of view. Current systems provide only
the number of times a file has been downloaded and selected positive comments by current
users. A new mechanism is needed to provide and update more meaningful usage and viewer
response information inside the system and between systems.

DKT covers a need that exists for collaborative systems and permits increased flexibility
in the types of data and services that can be shared. It allows data, processes, and services to
be created and modified within the same collaborative framework and permits the mapping
of appropriate data to these processes. DKT systems can notify interested parties on available
objects, processes, and services and provide dynamic evaluation of data and services based
on their usage.

DKT systems can negotiate several forms of collaboration and establish rules of access
for internal members and outsiders (e.g., pay-per-use, and value-based exchange), using
sufficiently flexible levels of data security to foster online collaboration. Sharing can be an
enjoyable habit and an eye- and mind-opening experience (not a medical term).

This new mechanism to value data and services creates an environment of active participa-
tion in which each contribution is accountable. This accountability motivates contributors to
enter this new marketplace, where knowledge and services play the role of virtual currency.
There are many ways of transforming virtual currency to hard currency. What is the exact
mechanism of this transition? Participants will find or invent a good one.

There are plenty of “how to” details and usage descriptions of DTK systems that might
be too boring in the context of this book. They are very well explained in the DKT patent
application published by the U.S. Patent and Trademark Office [2].

24×7 DISTRIBUTED DEVELOPMENT PRACTICES

Especially important for an international development team with members distributed over
the globe and working twenty-four hours a day, seven days a week, are “24×7” distributed
development practices.

Is it possible to achieve coordination, understanding, and cooperation among multiple
teams working in different time zones, speaking different languages, and living in different
cultures? Can distributed development be cost effective and highly efficient at the same time?

Our virtual team was created as a side effect of several years of on-line training. It was a
very attractive concept: to extend time and resources on a global scale. Learning the ABCs
of important team member qualities/abilities and developing a core of “black belts” (in Six
Sigma terms) for each team was, though very beneficial, quite a challenging task.

Collaborative technologies make the development process highly visible for every team
member as well as for the management team. This visibility helps establish and reinforce
teamwork rules. The system forces developers to provide daily and weekly plans and status
reports that improve analysis and design quality. I say “forces” because the plan and status
jobs are the least loved by developers. DKT makes them unavoidable habits. A notification
engine working with the task management systems provides an action-reminder if a needed
action has not yet been taken.

Global collaboration encourages open expertise exchange under a partnership umbrella. A
very valuable benefit is that we can achieve much more working together than we can achieve
separately. Network specialists from Hong Kong; a “Fifth Dimension” scientific group from
Scandinavia; SZMA (oil and gas factory automation international integrators) engineers;

Steps in the Process 9

computer science researchers from St. Petersburg University and Institute of Information
Technology in Russia; JavaSchool students and consultants.: these are some examples of
teams collaborated in the distributed knowledge environment.

This book includes design and code samples and offers a tool that allows you to build
your own system powered by a knowledge engine, support your own development process,
establish your own rules of sharing, and, if you wish, connect to other systems and join in
collaborative engineering.

STEPS IN THE PROCESS

What Is Your Development Mode: Proactive or Reactive?
We are coming back from the heights of management to the specific steps of the development
process. Here is a quick quiz related to your organization’s habits toward time distribution
on a software project.

Which line (1, 2, or 3) represents the percentage of project time your organization allocates
to analysis, design, code, and testing?

Analysis Design Code Testing

1. 40 30 20 10
2. 10 20 30 40
3. 25 25 25 25

There is no right or wrong answer to this quiz. Your selection sheds some light on your
organization’s development habits. My experience shows that for bigger projects, shifting
gears to line 1 helps to improve quality. However, for really small projects, number 3 works
quite well. I have noticed that the second answer is often, though not always, associated with
start-ups or organizations that are on the learning curve using “let-me-try-it” paths. (I hope
I do not sound critical.)

Amazingly enough, all three ways can work very well for a team that uses one of them as
part of a repeatable development process. Such a team usually understands where steps can
start and stop and is able to recognize cases in which it makes sense to move along in the
cycle. There is no single good answer. This is about your organization development style.

The object-oriented approach to application development is currently the leading ap-
proach in the software industry.

I will describe some basic steps of software application development with this approach;
I have to add that the steps and their sequence can vary. I am sharing my experience, and I
know that there is more than one good methodology, as there is more than one good solution
to almost any problem. The most important thing is to have a system and consistently follow
it: “Plan and follow” or “say what you do and do what you say.”

Basic Development Roles
Developers (or a single developer for a small organization or a small project) play different
development roles at major phases of the development process. System definition is usu-
ally performed by system analysts, subject matter experts, and architects. Architects and

10 COLLABORATIVE ENGINEERING

designers are responsible for system analysis and design. Developers participate in the im-
plementation and deployment phases. System developers or service providers are different
from application developers, who use provider services to create a higher-level system for
end users. This separation is not always obvious. Service providers also have end users, but
in most cases, their end users are application developers who can use their services.

It is possible that the deployment process requires system integrators. This role might
disappear as more integration-ready products come out after this book is published. (I know
you are smiling.)

Architects do not participate in the deployment process but are responsible for the de-
ployment plan, which is usually expressed in the deployment diagram.

This is a very generic definition that can be customized to fit your development process
specifics. For example, according to Sun Microsystems recommendations, Java 2 Enterprise
Edition (J2EE)-based development involves the following roles:

� Tool provider (for example, Borland): provides development tools
� Application component provider: a generic name for Web component providers that

develop Java server pages (JSPs), tag libraries, servlets, and related business classes
located in the Web container; Enterprise Java Bean (EJB) developers; and Web page
designers

� Application assembler: uses components developed by application component providers
to assemble them into a J2EE application component

� Deployer: responsible for application deployment in a specific environment
� J2EE product provider: implements a J2EE product
� System administrator: provides the configuration and management of the system
� Quality assurance (QA) engineer: provides integrated testing.

Most of the development methods obligate developers to provide “unit testing” of the
part delivered by the developer to a current system release. But system-level testing often
requires a special environment that emulates production and special efforts.

The Role of the Software Architect
Software architecture is the highest level of a software system definition. A software architect
is the one who actually provides this definition. The architect starts with user requirements
and separates them into two categories: functional requirements that refer to system tasks
and nonfunctional requirements that refer to system efficiency, scalability, flexibility, and
other “-ilities.” The architect participates (to some degree) in the analysis and design pro-
cesses but does not go into implementation details; he or she focuses on the larger picture
of the system instead.

It is important for the architect to negotiate with the client about the metrics (not just
words) and priorities of requirements criteria. For example, the “must be scalable” require-
ment should come with some rough range numbers (e.g., expected number of users).

BASIC STEPS OF THE DEVELOPMENT PROCESS WITH AN
OBJECT-ORIENTED APPROACH

The basic steps of the development process are shown in Fig. 1.3. The rest of the chapter
carefully moves over these steps.

Basic Steps of the Development Process with an Object-Oriented Approach 11

1. Capture User Requirements into a set of
Use Cases

Employ technology to establish a proper level
of documentation and communications in the
team. Move from archives to an active
repository of the shared parts of the project.

2. Play cards (CRC) to Recognize
Classes

3. Form Object Model Diagram; define
the relationships of the Classes

4. Architecture design: find
playgrounds (tiers) for your
objects

5. Recognize reusable services
and shared data

6. Define the screens and user interface with Human–Computer
Interface experts. Strive for consistency and simplicity.

7. Define the date and scope of the first deliverable, targeting
to prove the basic concepts and to get feedback from the
client on the very early stages of the development

8. Use Style Guidance while coding and
review the code regularly (this also keeps
the proper level of communication for a
team).

9. Share the first results with domain
experts. Make corrections and outline the
plan to finish and fine-tune the project.

Web Container Service
Container

Client
Container

Connectors

Class Name

Responsibilities Collaborators

FIGURE 1.3. Basic Steps of the Development Process.

12 COLLABORATIVE ENGINEERING

Start from User Requirements and Transit to Use Cases
Start with interviews of your clients, who are (hopefully) the domain experts. Your goal is to
understand business rules and business user requirements. This is a proven way to smoothly
come to an agreement with the customer and the users on what the system should do. The
next step is the transition from user requirements to use cases.

Split an application into a set of use cases, or scenarios describing subtasks of the applica-
tion. Yvar Jacobson’s methodology is used to capture user requirements in a set of use cases
[3]. Each use case describes a scenario, a flow of events initiated by an “actor.”

An actor represents anything that interacts with the system. Written descriptions of
use cases are complemented by process diagrams. This step is the first attempt to tran-
sition to objects from plain human language that describes “what to do” in terms of
events and conditions. The user requirements record is a “no-objects” document that
may be ten or ten hundred pages long. It provides a high-level definition of desired sys-
tem functionality and can provide a list of conditional actions the system produces. The
use cases diagram breaks this flow of words and events into subtasks or scenarios. Main
objects or actors appear from the background and start playing their roles (at least on
paper).

The following example of user requirements reflects one of the difficult situations that
must be resolved by developers (almost a true story).

Black Holes, Inc., was a start-up company that targeted travelers by providing maps and
directions to the least known and visited places, or “black holes.” Unfortunately, the company
did not meet annual revenue expectations. (The initial orders that looked so promising for
investors were submitted by the company VP of marketing during his research work in the
competing territory of the Bahamas.)

The board of directors took some measures to change the situation. It was decided to
cut 75 percent of the development team staff (there used to be four of them) and introduce
incentives to correlate each employee’s paycheck to his or her actual work. The hourly
workers’ paychecks would depend on the number of hours worked. All the managers would
continue to receive their salaries, but would get no bonuses while the company operated in
the red. It was confirmed once again that the holes were extremely hard to sell. Therefore,
the salespeople would be paid an hourly wage plus commission to stimulate hard work.
Three new positions were opened to support the project: an IT director to improve the
communication of management decisions over the network; a VP of travel arrangements to
focus the development team on two new tasks (searching for “black holes” and optimizing
travel routes); and an order administrator to support Web client registration and privileged
access.

Of course, the changes had a serious impact on the “chess match” between the man-
agement and development groups (Fig. 1.4). It was over. Ben, who represented what was
left of the development team, did not play chess. He took the silver (a trip to one of the
“black holes”) while the management team was awarded the gold. The management team’s
spirits were extremely high, and the project started with the motto: “Each employee should be
accountable. Failure is not an option.”

We can find the main actors and associated tasks/scenarios on the use cases diagram in
Fig. 1.5. The Unified Modeling Language (UML) is a formal set of graphical notations that
helps visually express object-oriented realities (models) of software applications. Note that
actors are associated with objects and from a semantic point of view, are nouns, whereas
scenarios introduce the desired functions with names that start with verbs.

Basic Steps of the Development Process 13

FIGURE 1.4. “Team Players.”

Object-Oriented (and/or Aspect-Oriented) Analysis—Make a
Transition to Objects and Classes
From this point, we may concentrate on Use Case scenarios and then proceed to objects.
After describing what needs to be done in terms of events, we start the transition to the
object world; we now try to concentrate on data and pay less attention to the flow of events.

14 COLLABORATIVE ENGINEERING

Order Service

Pay Payroll

Change Properties

Assign Privileges

Handle Maps

Manage Network

Search

User Group

Admin

Single User

IT Admin

Facility and Travel
Manager

Accountant

FIGURE 1.5. Use Cases.

It is definitely a different view of the user requirements; if you want, it is a different view of
the world.

User requirements and scenarios usually describe a set of functions and a flow of ac-
tions produced. This approach represents a dynamic view of the application. It used to be
the dominant approach supported by flow charts that showed structures of functions and
conditions. This development practice was established in the 1970s as structural program-
ming.

The programs started with the main routine that checked conditions and called the proper
functions, which were easily visible on flow charts. Sources, such as the original flow charts,
looked like this: “if THIS—call THAT; else, if THAT—call THIS” (Fig. 1.6). This style of
programming was named “structural” because the main idea was to keep programs readable
or “structured,” keep functions or subroutines in separate files, and avoid the temptation to
put all the code in the main routine.

Where are those beautiful days of program simplicity? I am afraid that time will never
return. Software became increasingly sophisticated in the 1980s while trying to model more
and more complicated tasks of the real world. The number of details associated with a single
task exceeded the capacity of a single brain, and a new abstraction was born: the world of
object-oriented concepts. These concepts shift our attention to static parts of the application.
We learn to concentrate on data objects and model system behavior as the collaboration of
these objects.

Basic Steps of the Development Process 15

If
Condition is

True
Call A; Call B;

Start

FIGURE 1.6. The Good Old Ways of Structural Programming.

Discussion about the static and dynamic view of the world started at more than 2,000
years ago:

The world is a process that never stops. —Heracleitus, 540–480 BC, (the dynamic view
of the world)

The world is a composition of objects called atoms. —Democritus, 460–370 BC, the first
object-oriented philosopher.

Here is your self-test: Who was right in this ancient debate?

1. Heracleitus
2. Democritus
3. Both of the above

(Hint: Both views, static and dynamic, are important and complementary.)
While transitioning to an object-oriented approach, we use the new abstraction “CLASS”

to classify objects. An object is an instance of a class. How can we identify good objects—
candidates for classes?

Look at the application through the client’s eyes, forget about programmers’ tricks, and
concentrate on client objects. Look for repeatable objects, meaning those that are reusable
in your application and complicated enough to deserve to be new data types. Look also for
repeatable behaviors of these objects. If such objects can be grouped, a group or set of these
objects can be considered a possible class.

The classes/responsibilities/collaborators, or CRC, approach can be used to identify
classes. Any noun from a user interview or written business requirements can be considered
a potential candidate for a class. Forget about implementation details for now.

A brief summary:

� Look at the application through the client’s eyes.
� Classify objects.
� Ask basic questions:

� What objects are involved?
� What are the responsibilities of the objects involved?
� What are helpers/collaborators of the objects involved?

16 COLLABORATIVE ENGINEERING

Related Class

Operations (Methods)

Attributes (Data)

Class Name

Operations (Methods)

Attributes (Data)

Sub-Class

Operations (Methods)

Attributes (Data)

FIGURE 1.7. UML Notations to Describe Classes.

Classes allow us to encapsulate common object properties and behaviors. We can then
hide implementation details beneath the surface of public methods or interfaces.

The main object-oriented concepts are encapsulation, inheritance, and polymorphism.
The most important one is encapsulation. An object, according to this concept, is a self-
contained set of data and functions or methods that operate on that data.

Each object represents a function, feature, or component of a larger system, much like a
brick in a wall. The object contains all of the data concerning its function, along with a set of
functions to access that data. The data is generally private to the object, but may be declared
public if necessary. The “outside world” will access the data using the object’s functions or
methods.

Classes define the data (attributes) and the operations (methods) of the object. An object
is said to be of a particular class. A class is like a blueprint, or a plan, for the object. It defines
the data and functions to be included in the object. A class is similar to a structure but
contains functions (methods) along with data. In Fig. 1.7, we see an example of the UML
notations that define a class.

Use UML to Capture and Communicate Analysis Results
We use UML to show classes with their relationships in an object model diagram (OMD).
If we want to declare a class that represents a person, we might use examples from C++
(Fig. 1.8) and Java (Fig. 1.9) class definitions.

Another important concept of object-oriented programming (OOP) is inheritance. In-
heritance is actually an extension of the encapsulation concept. We can find an example of
inheritance in the payroll scenario for the Unbelievable Holes start-up company: “The hourly
worker paycheck depends on the number of hours worked. All managers receive their salary
regardless of sales. Salespeople are paid an hourly rate, plus commission to stimulate hard
work.” We can clearly see three types of employees: hourly, salary (management), and sales.

When we look carefully into the set of scenarios in the use cases, we can see more actors,
potential classes, related to the employee class. Both a single user and user groups can order
services and change account properties. Single users and user groups have one thing in
common: we call it an “Account” class.

We can also think about an employee as a potential user. Taking all this into account,
we draw these classes, showing their inheritance relationships. The object model diagram

Basic Steps of the Development Process 17

// Class CPPUser Example
class CPPUser {

private: // data
char name[30];

public: // methods
void setName(char* aName) {

strncpy(name, aName;
}
char* getName() {

return name;
}

}; // ! semicolon at the end of class

// Example of usage within another class:

// Define a CPPUser object
CPPUser user = new CPPUser();
//set name = "Peter" to the object
user->setName("Peter");

FIGURE 1.8

extraction presented in Fig. 1.10 is just one example of modeling. The same scenario can be
modeled differently.

User requirements, not just imagination, should lead to the proper model selection. For
example, in our example, the payroll task requires specific properties, such as the number of
hours worked and the hourly rate for hourly employees. If the user requirements included
item shipment to users, we would need to add a shipping address to the user properties, and
so forth. There is often more than one good model for the task. If you have a choice, select
the simplest one. It is very possible that later on, more details will be available and the model
will be changed.

If your object model’s bad—fix it, don’t blame my dad
—Ben Zhuk, Web Genius, Inc., president, yet another object-oriented philosopher

Talk in Java and C++ about Employee in the Payroll Scenario
Figure 1.11 illustrates inheritance in the payroll scenario. Figure 1.12 actually delivers the
same message in formal UML language.

Once a class is defined, it may be used as a model for other classes. This idea can be
expressed using the C++ syntax class Child : public Parent or the Java syntax class Child
extends Parent. The new Child class inherits all of the attributes and methods of the Parent
class. Additional attributes and methods may then be added to the Child class without
affecting the Parent class. The Child class is derived from the Parent.

18 COLLABORATIVE ENGINEERING

//JavaUser Class Example
/**
* The JavaUser class is an example of a Java class with data and
* two methods
*/

public class JavaUser {
// data
private String name;
// methods

/**
* The setName() method assigns name
* @param aName
*/

public void setName(String aName) {
name = aName;

}
/**
* getName() method returns the name
* @return name
*/

public String getName() {
return name;

}
} // There is no ";" at the end of class

// Example of usage within another class:

// Define a JavaUser object
JavaUser user = new JavaUser();
// set name = "Peter" to the object
user.setName("Peter");

FIGURE 1.9

Here is another example of inheritance that introduces the classes Grandpa, Mom, Dad,
and Me, presented in Fig. 1.13 with code and pictures. Notice that the class Dad is derived
from Grandpa. We will declare one more class now in Fig. 1.14.

The class Me will end up with Mom’s mouth, Dad’s eyes, and Grandpa’s big ears, be-
cause the Dad class was derived from the Grandpa class. In this example, freckles are the
attribute that exists only in the class Me. This example only deals with data inheritance; the
same situation would occur with any methods (functions) that were contained in the base
classes.

Note that the freckles (as well as the eyes in Java implementation) in the class Me are
defined as private. These attributes will not be inherited by possible subclasses (or children)
of the class Me. Protected or public access allows inheritance. At the same time, such access
types open up objects and, in a way, break encapsulation. This is especially true for public
access that exposes data to the outside world.

Basic Steps of the Development Process 19

Account

Group User

AccountName
CreationDate
Subscription []
Service []

CheckAccess()

Category
Role

Password
Name
Membership []
Alias []

Get..()
Set..()

Get..()
Set..()

FIGURE 1.10. User and Group Accounts—Objects Model Diagram.

E

E

E

H

E

H

M S
Employee

Manager

Hourly
Employee

Sales Person

FIGURE 1.11. Inheritance: Employee and Potential Subclasses.

20 COLLABORATIVE ENGINEERING

UserUser

Employee

User

Employee

EmployeeID

User

Employee

EmployeeID

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

UserUser

Employee

User

Employee

EmployeeID

User

Employee

EmployeeID

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

UserUser

Employee

User

Employee

EmployeeID

User

Employee

EmployeeID

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

UserUser

Employee

User

Employee

EmployeeID

User

Employee

EmployeeID

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

UserUser

Employee

User

Employee

EmployeeID

User

Employee

EmployeeID

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

User

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck()

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

Employee

EmployeeID

CalculatePaycheck()

HourlyEmployee

WorkedHours
HourlyRate

CalculatePaycheck()

CalculatePaycheck() CalculatePaycheck()

Manager SalesPerson

Salary
SalesInDollars
CommissionPercent

User

FIGURE 1.12. User, Employee, and Subclasses—Object Model Diagram.

The basic rule of OOP is to keep data private while providing public methods to access
the data. Inherited methods can be redefined (or reimplemented) in subclasses that create a
platform for another OOP concept: polymorphism.

Polymorphism means the ability to take multiple forms. In OOP, this also refers to the
ability of an object to refer at run-time to a type (or a class) of the object to select proper
methods. You can design for polymorphism and benefit from its power.

If we wrote a procedural code for the payroll scenario, we would check on the type of
employee and use different methods. Procedural code shows up with its clumsy “if-else”
statements everywhere. For example, we would write here:

//C++ Implementation
 public class Grandpa
 {
 protected:
 BigEars ears;

 };

//Java Implementation
 public class Grandpa
 {
 protected BigEars ears;

 };

 public class Mom
 {
 protected:
 Mouth mouth;

 };

 public class Mom
 {
protected Mouth mouth;

 };

 class Dad: public Grandpa
 {
 protected:
 Eyes eyes;

 };

 public class Dad
 extends Grandpa
 {
 protected Eyes eyes;

 };

FIGURE 1.13. Inheritance.

Learn by example: Compare OOP and Procedural Programming 21

//C++ allows
//multiple inheritance

 class Me:
 public Mom, public Dad
 {
 private:
 Freckles freckles;
 };

//Java doesn’t support
//multiple inheritance
//notice that class Me
//inherits from Dad ONLY

 public class Me
 extends Dad
 {
 private Freckles freckles;
 private Eyes eyes;
 //not from Mom
 };

FIGURE 1.14. It Runs in the Family.

If(employeeType == 1) {// this is pure procedural code

calculateManagerSalary();

} else if(employeeType == 2) {
calculateHourlyCheck();

} else // etc., etc., etc.

In OOP we can write the same thing cleanly and easily:

// Get any Employee: Manager, Hourly, or Sales

Employee employee = getEmployee();

// The system will use a proper method of Manager, or Hourly, or Sales

employee.calculatePaycheck();

The proper calculatePaycheck() method will be picked by the system at run-time, depend-
ing on the object class type. This powerful feature does not come cheap. You need to do
analysis upfront and design your classes with polymorphism in mind.

What does it mean to design for polymorphism? Create a base (parent) class, or an
interface, and a set of derived classes, and teach them to behave. This means implementing
polymorphic methods: methods with the same names and arguments that have different
implementations for different classes. Then, just call one of the objects or instances of
derived classes and say “object.doTheJob().”

You waste no time figuring out which object type is being called; no if-else is needed.
The object knows about its own type and behaves accordingly. For example, given a base
class Employee, we defined different calculatePaycheck() methods for derived classes, such
as Hourly, Manager, and Sales. Now we can take any employee object from the list and
provide the line: employee.calculatePaycheck(). No matter what type of employee is se-
lected, a proper calculatePaycheck() method will apply to return the correct results. Any true
OOP language offers polymorphism. (Even Visual Basic in its latest version offers polymor-
phism.)

LEARN BY EXAMPLE: COMPARE OOP AND PROCEDURAL PROGRAMMING

OOP is not easier than procedural code, especially at the beginning of your learning curve.
It pays off later on.

22 COLLABORATIVE ENGINEERING

Here is another example illustrated with C++ code. Imagine that you write an application
related to factory workers and inventory items. When you write a procedural program, you
make a flat set of procedures:

--setWorkerName(*name);

displayInventoryItemPrice();

It is relatively easy to oversee code for two objects. But when the number of objects grows,
the increasing number of procedures makes the code almost unmanageable. In OOP, you
create objects and encapsulate (hide inside the objects) their properties, and the methods
that can manage these properties. Your procedures are now distributed in several classes that
provide their behavior. Your main method that drives the application will immediately shrink
from your big, flat procedural surface down to a set of objects that can be introduced and
then start to behave. In the following example, you create the Worker class and the method
setName and then the InventoryItem class and the method displayPrice().

Now you are dealing with a much smaller number of objects than procedures. You can
cut your main method from a fat if-else scenario into a couple of lines that introduce your
objects. Your objects have methods and properties. They behave.

Worker *s=new Worker(); // create a worker object

s->setName("Jeff"); // set the name

InventoryItem *i=new InventoryItem();

// create an InventoryItem object

i->setPrice("10");

i->displayPrice();

Yes, we produce more code overall, but this code is more understandable and manageable
than procedural code, especially when the number of objects increases. Notice that we
hide, or encapsulate, data (like price) and methods (like setPrice and displayPrice) into the
InventoryItem class.

Below is another example. This time, we consider an inventory program where you can
perform one of a set of operations, such as add, delete, or change, on inventory items. For
simplicity, we offer these choices from a command line menu. Your main (testing) procedure
can be outside of your other classes. The main class (or procedure) has a menu.

// main function shows the main program menu

int main()

{
InventoryMenu *menu = new InventoryMenu();

}

In the InventoryMenu::InventoryMenu() constructor, you display the menu and call meth-
ods from your menu that create (or take from a file, or take from a linked list in memory)
your InventoryItem object. For example:

Learn by example: Compare OOP and Procedural Programming 23

/**

* constructor-menu offers several choices and calls the proper method

* to operate on items

*/

InventoryMenu::InventoryMenu() { // constructor-menu

cout << "Please select one of the operations below" << endl;

cout << "Press 1 to add a new item to the inventory" << endl;

// more choices

cin >> choice;

if(choice == 1) {
addItem();

} else {
// more lines

}
}// end of constructor

/**

* addItem() method creates a new item and calls its add() method

*/

InventoryMenu::addItem() {
InventoryItem *item=new InventoryItem();

item->add();

}
The InventoryItem object has the necessary properties (itemName, price) and does the

necessary operations on these properties. The properties and methods are defined in the
InventoryItem class. For example:

InventoryItem::add() {
// present main menu

cout << "Please enter item name:" << endl;

cin >> itemName;

cout << "Please enter item price:" << endl;

cin >> price;

cout << "Thank you" << endl;

}

OOP Has Its Limits
Does this mean that OOP solves all programming tasks and can treat all programming
diseases? There is a temptation to say yes. But this would not be a true statement.

OOP brings an abstraction that can be overkill for some simple tasks. It works well
on sizable projects with multiple objects spread over a huge surface of requirements. We
group objects, finding common properties and behavior or concerns, and provide common
implementations called classes. These implementations are based on a one-dimensional view
of the common concerns most often related to a business domain.

We can broadly classify task requirements into core module-level requirements and system-
level requirements. What if system-level requirements crosscut many core modules? For
example, a typical enterprise application comprises crosscutting concerns such as authenti-
cation, logging, resource pooling, administration, performance, and storage management.

24 COLLABORATIVE ENGINEERING

This multidimensional view of the application presents a real challenge to architects
and designers. Current OOP-based implementation techniques tend to implement these re-
quirements using one-dimensional methodologies, forcing implementation mapping for the
requirements along a single dimension. That single dimension is often the core module-level
implementation. The remaining requirements are tagged along this dominant dimension. In
other words, the requirement space is an n-dimensional space, whereas the implementation
space is one-dimensional.

Can you see the problem?
Several solutions for this problem already exist: mix-in classes, design patterns, domain-

specific solutions, and aspect-oriented programming (AOP) [4]. AOP strives to cleanly
implement individual concerns in a loosely coupled fashion and combines these imple-
mentations to form the final system. The module unit in AOP is called an aspect, similar to
a class concept in OOP. We do not go to the horizons of AOP (at least not now), but it is
good to know that they exist.

OOP is a proven way to create multiple abstractions—layers that filter complexity of
application requirements down to simple functions and data tables. Unfortunately, almost
every layer requires its own art of creation, and creating an application becomes a multistep
project with a growing distance between initial ideas and actual implementations.

As you can see, OOP is not the end of the story. At the same time, it is a very essential
part of almost any enterprise development today. (See Chapter 5 for a new development
paradigm.)

UML NOTATIONS

Many programming languages support OOP concepts. There is also a graphical support
provided by the UML. The UML helps communicate design ideas to developers. There are
also some tools, such as Rational Rose, that are capable of generating code out of UML
diagrams and notations. Figure 1.15 shows some examples of UML notations describing
classes and their relationships.

To describe Classes in UML, we use three
sections: Class Name, Attributes (data
structure) and Operations (Methods)

This notation is used to reflect the Class
inheritance hierarchy, or the relationships
between the base and derived classes

We use this notation when we want to
outline associations between classes:
One-to-one, or Many-to-one.

This notation is used to display class
aggregation

Class Name:
Attributes:
Operations:

One-to-One

Many-to-One

AssemblyClass

FIGURE 1.15. UML Notations to Express Relationships.

UML Notations 25

Actor Name
Object 1
: Class name

Object 4
: Class name

Object 3
: Class name

Object 2
: Class name

Sequence Diagram Template

Events/Operations

Example of
Conditional
Operation

FIGURE 1.16. UML Notations to Express the Sequence of Events.

We already looked into an example of the OMD presented earlier. The OMD covers the
static side of the design while the sequence diagram shows its dynamic side. Figure 1.16
presents the basic blocks we can find in almost any sequence diagram. The sequence diagram
communicates the sequence of events and operations and participating objects. Figure 1.17

Client

Order CurrencyResource

Events/Operations

Start
Order Search for

Resource

Notify

Notify
Notify

Request payment (currency)

FIGURE 1.17. Service Order Sequence Diagram.

26 COLLABORATIVE ENGINEERING

presents an example of a sequence diagram for the service order use case when the subject
of the order is a physical item that can be located in stock.

The OrderWindow object sends an initialize message to the Order object, which in turn
sends an initialize message to each OrderLine object.

The OrderLine object sends a message to the Item object to check the available stock. If
the item is in stock, it is added to the OrderLine.

The Item object sends a message to itself to check the reorder point on the item and, if
it needs be reordered, sends a message to the ReorderItem to reorder the item then returns
to OrderLine. If the item is not in stock, the OrderLine object sends a message to the order,
placing it on hold.

EXAMPLE OF OBJECT-ORIENTED ANALYSIS: CREATE AN OMD
FOR DOCUMENT SERVICES

Let us consider another type of service, one performed on business documents. When we
work with files, for example, we perform file services. When we work with email messages,
we request email services. We actually work with different applications built specifically
for different types of documents. These applications have different visual interfaces and
different sets of functions. The developers who created these applications began each time
from user requirements limited by specific document types. Is this the right approach? Are
there common features and properties for different documents, such as email messages and
files? What is your answer?

CREATE THE DOCUMENTSERVICE MODEL

If you read the questions carefully, you can find the answer right there. The common word
documents provides a base for common features and properties. Now we can look at this
problem from a higher elevation and find more document types that can be modeled in the
same way. We can think about forms, calendar and address book records, and linked articles
in distributed knowledge bases.

By starting the design right from the beginning, we can save time on implementations
for known documents, as well as bridges to new data types that may be unknown at this
point. By consistently using the model design pattern, we can extract a conceptual part of the
model into a base class or an interface. Let us discuss common features of different services.
This discussion leads us to the DocumentService base class and the OMD for multiple types
of data services presented in Fig. 1.18.

Data services work with documents or data elements. There are several operations that
services perform on documents. We understand that operations can be very different, but
again, we can look for common denominators. Generally speaking, every service processes
documents. For some types of processing, data interpretation is needed. Let us add the
parseXML() method to the base class. As I mentioned before, XML paves the way to unified
services, and we will talk about this in more detail later. Specific services, such as a file
manager or an email service, are subclasses derived from the DocumentService class.

The DocumentService class encapsulates common properties and behaviors of multiple
document services. The subclasses that implement these specific services are much lighter
now than they would be without this model. No repetition is necessary for common features
implemented by the base DocumentService class.

Architecture Steps: Find Playground-Tiers for Your Objects 27

DataElement

get() set()

Access []
Usage []

Service

process ()
interpretData ()
parseXML ()

DataElement []

FileManager

...

...

EmailService

...

...

File

...

...

11+

OtherElements OtherServices

Email-Massage

From:
To:
CC:

Notify ()

FIGURE 1.18. Document-Handling Services—Object Model Diagram.

Create the Document Model
A very similar model is created for multiple document types. The DataElement class represents
the basic concept of a document. Every document type has its own data attributes. Common
properties and operations can be found, based on an analysis of user requirements. Let us
assume that data services are performed in a collaborative environment. In this case, docu-
ments can be grouped by security type to provide role-based access to them. For example,
managers can access management-type documents, whereas administrators can access
administration-type documents. Once we come to this conclusion, the security type be-
comes a common document property across all data types. We include this property and its
associated methods in the DataElement class. This means that role-based access to different
security type documents will be provided for files, email messages, and other known and
unknown data types. Subclasses of the DataElement, such as FileDocument, Email-Message,
and other data elements, inherit this ability without any extra code. Security values built
into every data element provide for privilege-based secure data sharing.

A unified approach to handling multiple document types will lead to efficient reuse of
functionality and (surprise!) to a consistent user interface throughout multiple document
services. In Chapter 6, “Write Once,” you can find a more extensive discussion of document
handling applications with more design patterns and code samples.

ARCHITECTURE STEPS: FIND PLAYGROUND-TIERS FOR YOUR OBJECTS

Divide each difficulty into as many parts as is feasible and necessary to resolve it.
—Rene Descartes (1596–1650)

What are the basic steps in architecture analysis?

� Define architecture goals and priorities.
� Decompose the system into presentation, services, data, and more layers.

28 COLLABORATIVE ENGINEERING

� Define playground-tiers for application objects.
� Provide multiple architectural views

It is not necessary to finish your object-oriented analysis before starting to construct the
architecture. On the contrary, these two processes work in parallel dimensions and have
cross sections.

Enterprise applications in general are not single-user programs. The distributed comput-
ing nature of enterprise applications requires placing application objects on multiple tiers.
It is possible that at this point, some objects can be redefined to avoid tight coupling and
decrease network traffic.

Monolithic systems are easy to deploy but hard to change. Separating the presentation
layer from the business logic is one of the most important design achievements.

We are going to undertake several steps of architectural analysis. We draw the lines
between the presentation (client), business logic (server), and production layers (data and
services) and find the right playgrounds (tiers) for application objects. At this point, you can
expect some object redesign. This redesign can be related, for example, to the necessity to
decrease the client object’s dependency on server objects.

Before diving deep into the lake of architecture, let us take a high-level look. What is
architecture? System architecture is a specialized view that focuses on a system’s components
and behaviors with no or minimum implementation details. Architects communicate this
view in the form of design patterns, models, frameworks, and diagrams.

It is crucial to provide multiple architectural views. Look at any object from multiple sides
and you can see more of it. Architectural views can be layered and can vary according to
system specifics and viewer’s goals:

� A set of Use Cases shows a User’s view of the application.
� Object Model Diagram represents a static structural view of the system in the process of

Object-Oriented Analysis.
� Behavioral View includes Sequence and Collaboration Diagrams
� Deployment Diagrams obviously communicate the way the application is going to be

deployed or Deployment View.

For example, the deployment diagram will represent a solution for a problem we discussed
before: what are the logical and physical tiers of the application? The art and science of
architecture is to balance system capabilities, including performance, scalability, security,
and other nonfunctional qualities in terms of the context of user requirements.

Unfortunately, it is not feasible to optimize all capabilities. For example, maximum perfor-
mance can be achieved with minimum scalability and security. Architects need to define their
architectural goals with clients and capture these nonfunctional capabilities with numbers
and priorities as measurable items on the list of system requirements.

FROM SINGLE-USER TO CLIENT-SERVER AND MULTI-TIER
ARCHITECTURE MODELS

In the early stage of the design process, we try to identify containers for the functions we
want to provide. We can describe these containers in terms of layers and tiers. A single-user

From Single-User to Client-Server and Multi-Tier Architecture Models 29

Single User
Program

FIGURE 1.19. A Single-User Program—The Simplest Software Architecture.

program is an example of the simplest architecture (Fig. 1.19). It consists of a single tier—the
process running the program.

Microsoft Paint can be considered an example of such a program. An IBM mainframe with
old 3270 dumb terminals represents the next step to a multi-user system (Fig. 1.20). It is
still a single-tier architecture. The programs run on a single tier—the IBM mainframe—while
the terminals connected to the machine by long wires share no processing and justify their
“dumb” alias.

A UNIX network can best represent the client–server architecture that was predominant in
the 1980s. Client and server machines shared computer processing; in most cases, this sharing
was provided by an X-windows operating system that separated presentation (keyboard,
mouse, and display functionality) from computation, data storage, and networking, all of
which were provided by a server/host computer (Fig. 1.21).

The client–server model failed to provide the necessary resources (e.g., database connec-
tions) to a growing number of clients. The work of servers was redistributed to business and
data tiers. The business tier included connection pooling and other functions and mecha-
nisms that provided scalability (Fig. 1.22).

Web technology brought another tier (or container) into the game. The Web container
took responsibility for connectivity between multiple Web clients and services. The Web
container includes a very efficient and inexpensive Web server (one of the best Web servers,
Apache, is free) and/or an application server. The Web container and business processes can
run on one server or be distributed on multiple machines.

The simplest glue that connects business processing with a Web server is the common
gateway interface (CGI). The Web server intercepts client requests for program processing
and sends them to executable programs. The program provides a necessary service—for
example, retrieved or saved data—and in return generates a dynamic response in Hypertext
Markup Language (HTML) format.

The Web server delivers this response back to the Web client, which is waiting for this
response. The Web client, a Web browser running on a client machine, understands the
HTML page and renders it into a context of text, graphics, and sound. The page regularly
includes new links and/or forms that help the user navigate to more services.

The drawback of CGI technology, because of its simplicity, is that it has to create a new
process for every client. When two clients request services—two programs—full-blown
processes have to be created on the server. Ten clients hit the server, ten processes are

IBM3270
Dumb
terminal

IBM
Mainframe

FIGURE 1.20. Multiple Users, Multiple Terminals, a Single Processor, and Time Sharing.

30 COLLABORATIVE ENGINEERING

Client

Client

Server

Server

FIGURE 1.21. Client—Server.

created. A hundred clients hit the server—the server goes down. Simplicity and scalability
are not always the best of friends.

Enterprise applications must serve thousands, sometimes millions, of clients. New tech-
nologies allow the Web server and business logic to be glued in such a way that every
client request creates a new service thread on the server side. The thread is a very tiny pro-
cess and much lighter than a regular one. This benefit multiplied a thousand times scales
Web application capacity way up. One example of such an architecture is presented in
Fig. 1.23. This example is based on J2EE components.

Tier 1. Client Container. Multiple types of clients request services via an XML-based service
application program interface (API) using synchronous Hypertext Markup Transport Protocol
(HTTP) or asynchronously using Java Message Service (JMS) or email with Simple Messaging
Transport Protocol (SMTP) mechanisms.

Client types:
� Java Web Start or partner service application running on a corporate workstation

(connects to Web container over HTTP or directly to JMS, JMail (SMTP), or appli-
cation server in the service container using proper ports and protocols).

� Web (HTML) browser with or without a Java Applet (connects to the Web container
over HTTP)

� Wireless devices, such as Smart Mobile Phone, personal digital assistant (PDA) with
wireless application protocol (WAP), or iMODE-iApplix (a defacto standard estab-
lished by NTT DoCoMo, a Japanese company).

� Wireless devices connected to the network with other radio frequency (RF) proto-
cols, such as GSM, GPRS, 802.11 (WiFi), and Bluetooth.

� Operating environments for wireless devices range from WindowsCE and TabletPC
(full Windows XP geared towards pen/voice interface) to PalmOS. These devices can
run scaled down Java Virtual Machine versions, which are often presented under the
single umbrella of the Java 2 Micro Edition (J2ME).

� Smart Cards, for example those based on JavaCard technology, secure personal iden-
tity features. Smart Cards require special devices—readers that used to be quite
expensive in the past.

Business
Tier

Data
Tier

Client

Client

FIGURE 1.22. Multi-tier Architecture.

From Single-User to Client-Server and Multi-Tier Architecture Models 31

Web Container

Web Server
Java Servlet

and

Java Server
Page (JSP)
engines

Service
Container

(App Server)

JMail JMS
EJB

Service
Beans

Client
Container

Browser or
mail client

Client
device

Java Web
Start or
Partner
Application

Connectors

Device and
data drivers

XML rules
and
descriptions

Data and
Remote
Systems

LDAP
RDBMS
DS, NS

Control
Devices

Legacy
Apps

FIGURE 1.23. Example of the Architecture of a J2EE-Based Enterprise Web Application.

� Regular phones (connected to the Web container via a speech recognition system,
for example one provided by Nuance.com)

� Email client programs (connect to JMail or SMTP server in the service container
using SMTP)

Tier 2. Web Container. Web server, Java servlet, and JSP engines are glued into a single
process in the Web container. The Java servlet engine is responsible for session tracking and
request distribution, and JSPs provide a presentation layer back to the client.

Tier 3. Service Container. The service container can include generic services, such as Java
Mail and JMS, and specific business services implemented with Java worker beans and classes.
The services can be implemented as EJBs to gain the advantages of generic features like
security and transaction monitoring provided by EJB vendors.

Tier 4. Connectors. This container includes the necessary software and hardware solutions
that provide access from services to data and remote systems, legacy applications, and control
devices. This book promotes a unified approach to data drivers and device controllers.
Data drivers implement basic operations on data using Java Naming and Directory Interface
(JNDI).

Data drivers are able to understand XML-based business rules and descriptors governing
data access. The application business logic captured in the service container will never
change, no matter what data source is used, whether Oracle RDBMS (relational database
management system) or LDAP (Lightweight Directory Access Protocol). Device and system
controllers implement a unified service model, which focuses on the interpretation function
of controllers. The model considers the controller an interpreter with a set of possible input
and output instructions. An important part of both models is an XML API and descriptors
that capture system rules and behavior.

Tier 5. Data and Remote Systems. This container includes different types of data sources,
legacy applications, production system terminals, remote systems, and devices controlled by
the application or interacting with it. Data sources may include different types of RDBMS,
LDAP, directory services, meta-directories, and so forth.

This example of multi-tiered architecture is one of many possible solutions. The architec-
ture analysis will produce, among other design documents, a deployment diagram similar,
or not very similar, to the one above. The deployment diagram will include more details.
For example, we need to decide on communication protocols between tiers and provide

32 COLLABORATIVE ENGINEERING

Web Container

Web Server
Java Servlet

and

Java Server
Page (JSP)
engines

Service
Container

(App Server)

JMail JMS
EJB

Service
Beans

Proxy
Web
Server

Proxy
Servlet

HTTP
Intranet
Clients

HTTPS
Internet
Clients

DMZ

Firewall 1 Firewall 2

FIGURE 1.24. Demilitarized Zone (DMZ) in Web Applications.

security considerations. We need to consider client types expected by the application. The
architectural solution will include presentation layers, or factories, for these types of clients.
Choosing between thin and thick clients for a Web-based enterprise application is one of the
more important architectural decisions.

The choices are related to your potential audience: for internal corporate clients, it is
possible to control the Web browser type and version usage. This would allow, for example,
reenforcing usage of the Java Plug-In for a Web browser to support the heavyweight Java
Foundation Classes (JFC). Keep in mind that using JFC can easily add an extra megabyte or
more to the applet size.

Java Web Start, a new client container, can deliver a full-blown Java application to your
client over the Web and replace the Web browser as the most commonly used container.
Unfortunately, Java Web Start-based applications will require significant resources on client
machines. This can still work well for a selected group of Internet users. If your audience
is the Internet population, it is a safe bet to use a Java applet supported by the major Web
browsers, or to rely on HTML pages generated on the server side.

The user requirements might also include wireless access. Even if these requirements are
not in place from the beginning, we can expect them to be in the future. We do not want to
do extra work “just in case,” and we do not need to. We can solve this problem by separating
business logic from the presentation layer. Placing the right objects on the right tiers is the
key to this solution.

Communication between client and server containers can be provided with any pro-
tocol supported by Java: RMI, TCP/IP Sockets, or HTTP. This is valid for Intranet appli-
cations. Enterprise applications that are open to Internet users provide a security zone
called the “demilitarized zone” (DMZ), between Internet clients and business services
(Fig. 1.24).

The DMZ is based on two firewalls. Internet users can access generic Internet services,
including a Web proxy, located inside the DMZ. The proxy servlet will redirect client requests
to the Web container behind the second firewall. It is useful to remember that only the HTTP
protocol is free to fly over the corporate firewall by default. For other protocols, special
agreements with the security folks must be in place.

There is no firm line between architecture and the design process. Architecture is a general
view, whereas design considers more details. It is possible that developers will need to
reconsider their architectural plan during detailed design considerations.

Basic Design Steps and Rules 33

BASIC DESIGN STEPS AND RULES

A repeatable design process requires discipline as well organizational and technological
reinforcement to follow basic design rules:

� Focus on reusability: recognize reusable services and shared data.
� Use design patterns.
� Distinguish the conceptual part from implementation details.
� Balance overhead.
� Document design before coding.

It takes time and effort to acquire healthy habits for a proper level of documentation
and communication in a team. The right approach to documentation sharing is important.
Documentation should not die in files that are released once; it should have a living and
easily updateable nature.

This book describes collaborative engineering technology that encourages privilege-based
data sharing and increases members’ feeling of ownership and willingness to be proactive.
This technology keeps the team “on the same page” and minimizes the need for long and
often unproductive meetings.

Recognize Reusable Services and Shared Data
Look for reusability from two points of view: within an application and throughout a mul-
tiapplication environment. For example, security services or data-caching mechanisms are
good candidates for reuse. I have heard a lot of complaints about security services that re-
quire users to enter different names and passwords for different applications within a single
company.

Of course, users at these companies may be under a lot of stress to remember several
passwords, and their performance may suffer. Obviously, developers at their organizations
did not think much about reusability when creating different applications. (Of course, they
might be under stress, too.)

Reusability can be achieved only by extra work done on a specific part of the project.
Then this part can be reused multiple times, providing a tremendous payoff. Focus on the
idea that functionality can be reused and data can be shared. Two types of shared data should
be recognized: data shared by different functions performed by a single user and data shared
between multiple users.

For example, a single user’s data are shared between different layers or screens within the
application. This kind of data can serve as a common interface and should be stored, cached,
on a tier that is the most active in processing this data. Each user/client works with its own
set of the client’s shared data. One of the mechanisms for caching client data is presented by
the session object in Java servlet.

Data shared by many users, such as statistics or short database tables, can be stored on a
proper tier as a unique copy that can be accessed by all the users running this application.
One of the mechanisms to provide such access can be offered by static data.

Components of the user interface, or widgets (e.g., data fields and buttons), can also be
considered a source of reusability. It is preferable to dynamically change widget state from
visible to invisible, from active to inactive, or to change the color or label name instead of
removing and recreating the widget.

