
http://www.cambridge.org/9780521852883

This page intentionally left blank

Numerical Methods in Engineering with MATLAB®

Numerical Methods in Engineering with MATLAB ® is a text for engineer-
ing students and a reference for practicing engineers, especially those
who wish to explore the power and efficiency of MATLAB. The choice of
numerical methods was based on their relevance to engineering prob-
lems. Every method is discussed thoroughly and illustrated with prob-
lems involving both hand computation and programming. MATLAB
M-files accompany each method and are available on the book web
site. This code is made simple and easy to understand by avoiding com-
plex book-keeping schemes, while maintaining the essential features of
the method. MATLAB, was chosen as the example language because of
its ubiquitous use in engineering studies and practice. Moreover, it is
widely available to students on school networks and through inexpen-
sive educational versions. MATLAB a popular tool for teaching scientific
computation.

Jaan Kiusalaas is a Professor Emeritus in the Department of Engineering
Science and Mechanics at the Pennsylvania State University. He has
taught numerical methods, including finite element and boundary el-
ement methods for over 30 years. He is also the co-author of four
other Books—Engineering Mechanics: Statics, Engineering Mechanics:
Dynamics, Mechanics of Materials, and an alternate version of this work
with Python code.

NUMERICAL METHODS IN
ENGINEERING WITH

MATLAB®

Jaan Kiusalaas
The Pennsylvania State University

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format

isbn-13 978-0-521-85288-3

isbn-13 978-0-511-12676-5

© Jaan Kiusalaas 2005

2005

Information on this title: www.cambridge.org/9780521852883

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10 0-511-12676-x

isbn-10 0-521-85288-9

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (Adobe Reader)
eBook (Adobe Reader)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521852883

Contents

Preface vii

1. Introduction to MATLAB . 1

2. Systems of Linear Algebraic Equations 28

3. Interpolation and Curve Fitting . 103

4. Roots of Equations .143

5. Numerical Differentiation . 182

6. Numerical Integration . 200

7. Initial Value Problems . 251

8. Two-Point Boundary Value Problems 297

9. Symmetric Matrix Eigenvalue Problems 326

10. Introduction to Optimization . 382

Appendices 411

Index 421

v

Preface

This book is targeted primarily toward engineers and engineering students of ad-
vanced standing (sophomores, seniors and graduate students). Familiarity with a
computer language is required; knowledge of basic engineering subjects is useful, but
not essential.

The text attempts to place emphasis on numerical methods, not programming.
Most engineers are not programmers, but problem solvers. They want to know what
methods can be applied to a given problem, what are their strengths and pitfalls and
how to implement them. Engineers are not expected to write computer code for basic
tasks from scratch; they are more likely to utilize functions and subroutines that have
been already written and tested. Thus programming by engineers is largely confined
to assembling existing pieces of code into a coherent package that solves the problem
at hand.

The “piece” of code is usually a function that implements a specific task. For the
user the details of the code are unimportant. What matters is the interface (what goes
in and what comes out) and an understanding of the method on which the algorithm
is based. Since no numerical algorithm is infallible, the importance of understanding
the underlying method cannot be overemphasized; it is, in fact, the rationale behind
learning numerical methods.

This book attempts to conform to the views outlined above. Each numerical
method is explained in detail and its shortcomings are pointed out. The examples
that follow individual topics fall into two categories: hand computations that illustrate
the inner workings of the method, and small programs that show how the computer
code is utilized in solving a problem. Problems that require programming are marked
with �.

The material consists of the usual topics covered in an engineering course on
numerical methods: solution of equations, interpolation and data fitting, numerical
differentiation and integration, solution of ordinary differential equations and eigen-
value problems. The choice of methods within each topic is tilted toward relevance

vii

viii Preface

to engineering problems. For example, there is an extensive discussion of symmetric,
sparsely populated coefficient matrices in the solution of simultaneous equations.
In the same vein, the solution of eigenvalue problems concentrates on methods that
efficiently extract specific eigenvalues from banded matrices.

An important criterion used in the selection of methods was clarity. Algorithms
requiring overly complex bookkeeping were rejected regardless of their efficiency and
robustness. This decision, which was taken with great reluctance, is in keeping with
the intent to avoid emphasis on programming.

The selection of algorithms was also influenced by current practice. This dis-
qualified several well-known historical methods that have been overtaken by more
recent developments. For example, the secant method for finding roots of equations
was omitted as having no advantages over Brent’s method. For the same reason, the
multistep methods used to solve differential equations (e.g., Milne and Adams meth-
ods) were left out in favor of the adaptive Runge–Kutta and Bulirsch–Stoer methods.

Notably absent is a chapter on partial differential equations. It was felt that this
topic is best treated by finite element or boundary element methods, which are outside
the scope of this book. The finite difference model, which is commonly introduced
in numerical methods texts, is just too impractical in handling multidimensional
boundary value problems.

As usual, the book contains more material than can be covered in a three-credit
course. The topics that can be skipped without loss of continuity are tagged with an
asterisk (*).

The programs listed in this book were tested with MATLAB® 6.5.0 and under
Windows® XP. The source code can be downloaded from the book’s website at

www.cambridge.org/0521852889

The author wishes to express his gratitude to the anonymous reviewers and
Professor Andrew Pytel for their suggestions for improving the manuscript. Credit
is also due to the authors of Numerical Recipes (Cambridge University Press) whose
presentation of numerical methods was inspirational in writing this book.

1 Introduction to MATLAB

1.1 General Information

Quick Overview

This chapter is not intended to be a comprehensive manual of MATLAB
R©

. Our sole
aim is to provide sufficient information to give you a good start. If you are familiar
with another computer language, and we assume that you are, it is not difficult to pick
up the rest as you go.

MATLAB is a high-level computer language for scientific computing and data vi-
sualization built around an interactive programming environment. It is becoming the
premiere platform for scientific computing at educational institutions and research
establishments. The great advantage of an interactive system is that programs can be
tested and debugged quickly, allowing the user to concentrate more on the principles
behind the program and less on programming itself. Since there is no need to com-
pile, link and execute after each correction, MATLAB programs can be developed in
much shorter time than equivalent FORTRAN or C programs. On the negative side,
MATLAB does not produce stand-alone applications—the programs can be run only
on computers that have MATLAB installed.

MATLAB has other advantages over mainstream languages that contribute to
rapid program development:

� MATLAB contains a large number of functions that access proven numerical li-
braries, such as LINPACK and EISPACK. This means that many common tasks (e.g.,
solution of simultaneous equations) can be accomplished with a single function
call.

� There is extensive graphics support that allows the results of computations to be
plotted with a few statements.

� All numerical objects are treated as double-precision arrays. Thus there is no need
to declare data types and carry out type conversions.

1

2 Introduction to MATLAB

The syntax of MATLAB resembles that of FORTRAN. To get an idea of the similari-
ties, let us compare the codes written in the two languages for solution of simultaneous
equations Ax = b by Gauss elimination. Here is the subroutine in FORTRAN 90:

subroutine gauss(A,b,n)

use prec_mod

implicit none

real(DP), dimension(:,:), intent(in out) :: A

real(DP), dimension(:), intent(in out) :: b

integer, intent(in) :: n

real(DP) :: lambda

integer :: i,k

! --------------Elimination phase--------------

do k = 1,n-1

do i = k+1,n

if(A(i,k) /= 0) then

lambda = A(i,k)/A(k,k)

A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n)

b(i) = b(i) - lambda*b(k)

end if

end do

end do

! ------------Back substitution phase----------

do k = n,1,-1

b(k) = (b(k) - sum(A(k,k+1:n)*b(k+1:n)))/A(k,k)

end do

return

end subroutine gauss

The statement use prec mod tells the compiler to load the module prec mod

(not shown here), which defines the word length DP for floating-point numbers. Also
note the use of array sections, such as a(k,k+1:n), a feature that was not available
in previous versions of FORTRAN.

The equivalent MATLAB function is (MATLAB does not have subroutines):

function b = gauss(A,b)

n = length(b);

%-----------------Elimination phase-------------

for k = 1:n-1

for i = k+1:n

3 1.1 General Information

if A(i,k) ˜= 0

lambda = A(i,k)/A(k,k);

A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n);

b(i)= b(i) - lambda*b(k);

end

end

end

%--------------Back substitution phase-----------

for k = n:-1:1

b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,k);

end

Simultaneous equations can also be solved in MATLAB with the simple command
A\b (see below).

MATLAB can be operated in the interactive mode through its command window,
where each command is executed immediately upon its entry. In this mode MATLAB
acts like an electronic calculator. Here is an example of an interactive session for the
solution of simultaneous equations:

>> A = [2 1 0; -1 2 2; 0 1 4]; % Input 3 x 3 matrix

>> b = [1; 2; 3]; % Input column vector

>> soln = A\b % Solve A*x = b by left division

soln =

0.2500

0.5000

0.6250

The symbol >> is MATLAB’s prompt for input. The percent sign (%) marks the
beginning of a comment. A semicolon (;) has two functions: it suppresses printout
of intermediate results and separates the rows of a matrix. Without a terminating
semicolon, the result of a command would be displayed. For example, omission of
the last semicolon in the line defining the matrix A would result in

>> A = [2 1 0; -1 2 2; 0 1 4]

A =

2 1 0

-1 2 2

0 1 4

4 Introduction to MATLAB

Functions and programs can be created with the MATLAB editor/debugger and
saved with the .m extension (MATLAB calls them M-files). The file name of a saved
function should be identical to the name of the function. For example, if the function
for Gauss elimination listed above is saved as gauss.m, it can be called just like any
MATLAB function:

>> A = [2 1 0; -1 2 2; 0 1 4];

>> b = [1; 2; 3];

>> soln = gauss(A,b)

soln =

0.2500

0.5000

0.6250

1.2 Data Types and Variables

Data Types

The most commonly used MATLAB data types, or classes, are double, char and
logical, all of which are considered by MATLAB as arrays. Numerical objects
belong to the class double, which represents double-precision arrays; a scalar is
treated as a 1 × 1 array. The elements of a char type array are strings (sequences
of characters), whereas a logical type array element may contain only 1 (true) or 0
(false).

Another important class is function handle, which is unique to MATLAB. It
contains information required to find and execute a function. The name of a function
handle consists of the character @, followed by the name of the function; e.g., @sin.
Function handles are used as input arguments in function calls. For example, suppose
that we have a MATLAB function plot(func,x1,x2) that plots any user-specified
function func from x1 to x2. The function call to plot sin x from 0 to π would be
plot(@sin,0,pi).

There are other data types, but we seldom come across them in this text. Additional
classes can be defined by the user. The class of an object can be displayed with the
class command. For example,

>> x = 1 + 3i % Complex number

>> class(x)

ans =

double

5 1.2 Data Types and Variables

Variables

Variable names, which must start with a letter, are case sensitive. Hence xstart and
xStart represent two different variables. The length of the name is unlimited, but
only the first N characters are significant. To find N for your installation of MATLAB,
use the command namelengthmax:

>> namelengthmax

ans =

63

Variables that are defined within a MATLAB function are local in their scope.
They are not available to other parts of the program and do not remain in memory
after exiting the function (this applies to most programming languages). However,
variables can be shared between a function and the calling program if they are declared
global. For example, by placing the statement global X Y in a function as well as
the calling program, the variables X and Y are shared between the two program units.
The recommended practice is to use capital letters for global variables.

MATLAB contains several built-in constants and special variables, most important
of which are

ans Default name for results

eps Smallest number for which 1 + eps > 1

inf Infinity

NaN Not a number

i or j
√−1

pi π

realmin Smallest usable positive number

realmax Largest usable positive number

Here are a few of examples:

>> warning off % Suppresses print of warning messages

>> 5/0

ans =

Inf

>> 0/0

6 Introduction to MATLAB

ans =

NaN

>> 5*NaN % Most operations with NaN result in NaN

ans =

NaN

>> NaN == NaN % Different NaN’s are not equal!

ans =

0

>> eps

ans =

2.2204e-016

Arrays

Arrays can be created in several ways. One of them is to type the elements of the array
between brackets. The elements in each row must be separated by blanks or commas.
Here is an example of generating a 3 × 3 matrix:

>> A = [2 -1 0

-1 2 -1

0 -1 1]

A =

2 -1 0

-1 2 -1

0 -1 1

The elements can also be typed on a single line, separating the rows with semi-
colons:

>> A = [2 -1 0; -1 2 -1; 0 -1 1]

A =

2 -1 0

-1 2 -1

0 -1 1

Unlike most computer languages, MATLAB differentiates between row and col-
umn vectors (this peculiarity is a frequent source of programming and input errors).
For example,

7 1.2 Data Types and Variables

>> b = [1 2 3] % Row vector

b =

1 2 3

>> b = [1; 2; 3] % Column vector

b =

1

2

3

>> b = [1 2 3]’ % Transpose of row vector

b =

1

2

3

The single quote (’) is the transpose operator in MATLAB; thus b’ is the transpose
of b.

The elements of a matrix, such as

A =

⎡
⎢⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎦

can be accessed with the statement A(i,j), where i and j are the row and column

numbers, respectively. A section of an array can be extracted by the use of colon
notation. Here is an illustration:

>> A = [8 1 6; 3 5 7; 4 9 2]

A =

8 1 6

3 5 7

4 9 2

>> A(2,3) % Element in row 2, column 3

ans =

7

>> A(:,2) % Second column

8 Introduction to MATLAB

ans =

1

5

9

>> A(2:3,2:3) % The 2 x 2 submatrix in lower right corner

ans =

5 7

9 2

Array elements can also be accessed with a single index. Thus A(i) extracts the
ith element of A, counting the elements down the columns. For example, A(7) and
A(1,3) would extract the same element from a 3 × 3 matrix.

Cells

A cell array is a sequence of arbitrary objects. Cell arrays can be created by enclosing
their contents between braces {}. For example, a cell array c consisting of three cells
can be created by

>> c = {[1 2 3], ’one two three’, 6 + 7i}

c =

[1x3 double] ’one two three’ [6.0000+ 7.0000i]

As seen above, the contents of some cells are not printed in order to save space.
If all contents are to be displayed, use the celldisp command:

>> celldisp(c)

c{1} =

1 2 3

c{2} =

one two three

c{3} =

6.0000 + 7.0000i

Braces are also used to extract the contents of the cells:

>> c{1} % First cell

ans =

1 2 3

9 1.3 Operators

>> c{1}(2) % Second element of first cell

ans =

2

>> c{2} % Second cell

ans =

one two three

Strings

A string is a sequence of characters; it is treated by MATLAB as a character array. Strings
are created by enclosing the characters between single quotes. They are concatenated
with the function strcat, whereas a colon operator (:) is used to extract a portion of
the string. For example,

>> s1 = ’Press return to exit’; % Create a string

>> s2 = ’ the program’; % Create another string

>> s3 = strcat(s1,s2) % Concatenate s1 and s2

s3 =

Press return to exit the program

>> s4 = s1(1:12) % Extract chars. 1-12 of s1

s4 =

Press return

1.3 Operators

Arithmetic Operators

MATLAB supports the usual arithmetic operators:

+ Addition

− Subtraction

∗ Multiplication

ˆ Exponentiation

When applied to matrices, they perform the familiar matrix operations, as illus-
trated below.

>> A = [1 2 3; 4 5 6]; B = [7 8 9; 0 1 2];

>> A + B % Matrix addition

10 Introduction to MATLAB

ans =

8 10 12

4 6 8

>> A*B’ % Matrix multiplication

ans =

50 8

122 17

>> A*B % Matrix multiplication fails

??? Error using ==> * % due to incompatible dimensions

Inner matrix dimensions must agree.

There are two division operators in MATLAB:

/ Right division

\ Left division

If a and b are scalars, the right division a/b results in a divided by b, whereas the left
division is equivalent to b/a. In the case where A and B are matrices, A/B returns the
solution of X*A = B and A\B yields the solution of A*X = B.

Often we need to apply the *, / and ˆ operations to matrices in an element-by-
element fashion. This can be done by preceding the operator with a period (.) as
follows:

.* Element-wise multiplication

./ Element-wise division

.ˆ Element-wise exponentiation

For example, the computation Ci j = Ai j Bi j can be accomplished with

>> A = [1 2 3; 4 5 6]; B = [7 8 9; 0 1 2];

>> C = A.*B

C =

7 16 27

0 5 12

11 1.3 Operators

Comparison Operators

The comparison (relational) operators return 1 for true and 0 for false. These operators
are

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

˜= Not equal to

The comparison operators always act element-wise on matrices; hence they result in
a matrix of logical type. For example,

>> A = [1 2 3; 4 5 6]; B = [7 8 9; 0 1 2];

>> A > B

ans =

0 0 0

1 1 1

Logical Operators

The logical operators in MATLAB are

& AND

| OR

˜ NOT

They are used to build compound relational expressions, an example of which is
shown below.

>> A = [1 2 3; 4 5 6]; B = [7 8 9; 0 1 2];

>> (A > B) | (B > 5)

ans =

1 1 1

1 1 1

12 Introduction to MATLAB

1.4 Flow Control

Conditionals

if, else, elseif
The if construct

if condition
block

end

executes the block of statements if the condition is true. If the condition is false,
the block skipped. The if conditional can be followed by any number of elseif
constructs:

if condition
block

elseif condition
block

...
end

which work in the same manner. The else clause

...
else

block
end

can be used to define the block of statements which are to be executed if none of
the if-elseif clauses are true. The function signum below illustrates the use of the
conditionals.

function sgn = signum(a)

if a > 0

sgn = 1;

elseif a < 0

sgn = -1;

else

13 1.4 Flow Control

sgn = 0;

end

>> signum (-1.5)

ans =

-1

switch
The switch construct is

switch expression
case value1

block
case value2

block
...

otherwise

block
end

Here the expression is evaluated and the control is passed to thecase that matches the
value. For instance, if the value of expression is equal to value2, the block of statements
following case value2 is executed. If the value of expression does not match any
of the case values, the control passes to the optional otherwise block. Here is an
example:

function y = trig(func,x)

switch func

case ’sin’

y = sin(x);

case ’cos’

y = cos(x);

case ’tan’

y = tan(x);

otherwise

error(’No such function defined’)

end

>> trig(’tan’,pi/3)

ans =

1.7321

14 Introduction to MATLAB

Loops

while
The while construct

while condition:
block

end

executes a block of statements if the condition is true. After execution of the block,
condition is evaluated again. If it is still true, the block is executed again. This process
is continued until the condition becomes false.

The following example computes the number of years it takes for a $1000 principal
to grow to $10,000 at 6% annual interest.

>> p = 1000; years = 0;

>> while p < 10000

years = years + 1;

p = p*(1 + 0.06);

end

>> years

years =

40

for
The for loop requires a target and a sequence over which the target loops. The form
of the construct is

for target = sequence
block

end

For example, to compute cos x from x = 0 to π/2 at increments of π/10 we could
use

>> for n = 0:5 % n loops over the sequence 0 1 2 3 4 5

y(n+1) = cos(n*pi/10);

end

>> y

y =

1.0000 0.9511 0.8090 0.5878 0.3090 0.0000

15 1.4 Flow Control

Loops should be avoided whenever possible in favor of vectorized expressions,
which execute much faster. A vectorized solution to the last computation would be

>> n = 0:5;

>> y = cos(n*pi/10)

y =

1.0000 0.9511 0.8090 0.5878 0.3090 0.0000

break
Any loop can be terminated by the break statement. Upon encountering a break

statement, the control is passed to the first statement outside the loop. In the fol-
lowing example the function buildvec constructs a row vector of arbitrary length
by prompting for its elements. The process is terminated when an empty element is
encountered.

function x = buildvec

for i = 1:1000

elem = input(’==> ’); % Prompts for input of element

if isempty(elem) % Check for empty element

break

end

x(i) = elem;

end

>> x = buildvec

==> 3

==> 5

==> 7

==> 2

==>

x =

3 5 7 2

continue
When the continue statement is encountered in a loop, the control is passed to
the next iteration without executing the statements in the current iteration. As an
illustration, consider the following function that strips all the blanks from the strings1:

function s2 = strip(s1)

s2 = ’’; % Create an empty string

for i = 1:length(s1)

16 Introduction to MATLAB

if s1(i) == ’ ’

continue

else

s2 = strcat(s2,s1(i)); % Concatenation

end

end

>> s2 = strip(’This is too bad’)

s2 =

Thisistoobad

return
A function normally returns to the calling program when it runs out of statements.
However, the function can be forced to exit with the return command. In the ex-
ample below, the function solve uses the Newton–Raphson method to find the zero
of f (x) = sin x − 0.5x. The input x (guess of the solution) is refined in successive
iterations using the formula x ← x + �x, where �x = − f (x)/ f ′(x), until the change
�x becomes sufficiently small. The procedure is then terminated with the return

statement. The for loop assures that the number of iterations does not exceed 30,
which should be more than enough for convergence.

function x = solve(x)

for numIter = 1:30

dx = -(sin(x) - 0.5*x)/(cos(x) - 0.5); % -f(x)/f’(x)

x = x + dx;

if abs(dx) < 1.0e-6 % Check for convergence

return

end

end

error(’Too many iterations’)

>> x = solve(2)

x =

1.8955

error
Execution of a program can be terminated and a message displayed with the error
function

error(’message’)

For example, the following program lines determine the dimensions of a matrix and
aborts the program if the dimensions are not equal.

17 1.5 Functions

[m,n] = size(A); % m = no. of rows; n = no. of cols.

if m ˜= n

error(’Matrix must be square’)

end

1.5 Functions

Function Definition

The body of a function must be preceded by the function definition line

function [output args] = function name(input arguments)

The input and output arguments must be separated by commas. The number of
arguments may be zero. If there is only one output argument, the enclosing brackets
may be omitted.

To make the function accessible to other programs units, it must be saved under
the file name function name.m. This file may contain other functions, called subfunc-
tions. The subfunctions can be called only by the primary function function name or
other subfunctions in the file; they are not accessible to other program units.

Calling Functions

A function may be called with fewer arguments than appear in the function defini-
tion. The number of input and output arguments used in the function call can be
determined by the functions nargin and nargout, respectively. The following exam-
ple shows a modified version of the function solve that involves two input and two
output arguments. The error toleranceepsilon is an optional input that may be used
to override the default value 1.0e-6. The output argument numIter, which contains
the number of iterations, may also be omitted from the function call.

function [x,numIter] = solve(x,epsilon)

if nargin == 1 % Specify default value if

epsilon = 1.0e-6; % second input argument is

end % omitted in function call

for numIter = 1:100

dx = -(sin(x) - 0.5*x)/(cos(x) - 0.5);

x = x + dx;

if abs(dx) < epsilon % Converged; return to

return % calling program

end

18 Introduction to MATLAB

end

error(’Too many iterations’)

>> x = solve(2) % numIter not printed

x =

1.8955

>> [x,numIter] = solve(2) % numIter is printed

x =

1.8955

numIter =

4

>> format long

>> x = solve(2,1.0e-12) % Solving with extra precision

x =

1.89549426703398

>>

Evaluating Functions

Let us consider a slightly different version of the function solve shown below. The
expression for dx, namely �x = − f (x)/ f ′(x), is now coded in the function myfunc,
so that solve contains a call to myfunc. This will work fine, provided that myfunc is
stored under the file name myfunc.m so that MATLAB can find it.

function [x,numIter] = solve(x,epsilon)

if nargin == 1; epsilon = 1.0e-6; end

for numIter = 1:30

dx = myfunc(x);

x = x + dx;

if abs(dx) < epsilon; return; end

end

error(’Too many iterations’)

function y = myfunc(x)

y = -(sin(x) - 0.5*x)/(cos(x) - 0.5);

>> x = solve(2)

x =

1.8955

19 1.5 Functions

In the above version of solve the function returning dx is stuck with the name
myfunc. Ifmyfunc is replaced with another function name,solvewill not work unless
the corresponding change is made in its code. In general, it is not a good idea to alter
computer code that has been tested and debugged; all data should be communicated
to a function through its arguments. MATLAB makes this possible by passing the
function handle of myfunc to solve as an argument, as illustrated below.

function [x,numIter] = solve(func,x,epsilon)

if nargin == 2; epsilon = 1.0e-6; end

for numIter = 1:30

dx = feval(func,x); % feval is a MATLAB function for

x = x + dx; % evaluating a passed function

if abs(dx) < epsilon; return; end

end

error(’Too many iterations’)

>> x = solve(@myfunc,2) % @myfunc is the function handle

x =

1.8955

The call solve(@myfunc,2)creates a function handle to myfunc and passes it
to solve as an argument. Hence the variable func in solve contains the handle
to myfunc. A function passed to another function by its handle is evaluated by the
MATLAB function

feval(function handle, arguments)

It is now possible to use solve to find a zero of any f (x) by coding the function
�x = − f (x)/ f ′(x) and passing its handle to solve.

In-Line Functions

If the function is not overly complicated, it can also be represented as an inline
object:

f unction name = inline(’expression ’,’var1 ’,’var2 ’,. . .)

where expression specifies the function and var1, var2, . . . are the names of the inde-
pendent variables. Here is an example:

>> myfunc = inline (’xˆ2 + yˆ2’,’x’,’y’);

>> myfunc (3,5)

ans =

34

20 Introduction to MATLAB

The advantage of an in-line function is that it can be embedded in the body of
the code; it does not have to reside in an M-file.

1.6 Input/Output

Reading Input

The MATLAB function for receiving user input is

value = input(’prompt’)

It displays a prompt and then waits for input. If the input is an expression, it is evalu-
ated and returned in value. The following two samples illustrate the use of input:

>> a = input(’Enter expression: ’)

Enter expression: tan(0.15)

a =

0.1511

>> s = input(’Enter string: ’)

Enter string: ’Black sheep’

s =

Black sheep

Printing Output

As mentioned before, the result of a statement is printed if the statement does not end
with a semicolon. This is the easiest way of displaying results in MATLAB. Normally
MATLAB displays numerical results with about five digits, but this can be changed
with the format command:

format long switches to 16-digit display

format short switches to 5-digit display

To print formatted output, use the fprintf function:

fprintf(’format’, list)

where format contains formatting specifications and list is the list of items to be
printed, separated by commas. Typically used formatting specifications are

21 1.7 Array Manipulation

%w.df Floating point notation

%w.de Exponential notation

\n Newline character

where w is the width of the field and d is the number of digits after the decimal point.
Line break is forced by the newline character. The following example prints a formatted
table of sin x vs. x at intervals of 0.2:

>> x = 0:0.2:1;

>> for i = 1:length(x)

fprintf(’%4.1f %11.6f\n’,x(i),sin(x(i)))

end

0.0 0.000000

0.2 0.198669

0.4 0.389418

0.6 0.564642

0.8 0.717356

1.0 0.841471

1.7 Array Manipulation

Creating Arrays

We learned before that an array can be created by typing its elements between brackets:

>> x = [0 0.25 0.5 0.75 1]

x =

0 0.2500 0.5000 0.7500 1.0000

Colon Operator
Arrays with equally spaced elements can also be constructed with the colon operator.

x = first elem:increment:last elem

For example,

>> x = 0:0.25:1

x =

0 0.2500 0.5000 0.7500 1.0000

22 Introduction to MATLAB

linspace
Another means of creating an array with equally spaced elements is the linspace

function. The statement

x = linspace(xfirst,xlast,n)

creates an array of n elements starting with xfirst and ending with xlast. Here is an
illustration:

>> x = linspace(0,1,5)

x =

0 0.2500 0.5000 0.7500 1.0000

logspace
The function logspace is the logarithmic counterpart of linspace. The call

x = logspace(zfirst,zlast,n)

creates n logarithmically spaced elements starting with x = 10z f irst and ending with
x = 10z last. Here is an example:

>> x = logspace(0,1,5)

x =

1.0000 1.7783 3.1623 5.6234 10.0000

zeros
The function call

X = zeros(m,n)

returns a matrix of m rows and n columns that is filled with zeroes. When the fun-
ction is called with a single argument, e.g., zeros(n), a n × n matrix is created.

ones

X = ones(m,n)

The function ones works in the manner as zeros, but fills the matrix with ones.

rand

X = rand(m,n)

This function returns a matrix filled with random numbers between 0 and 1.

23 1.7 Array Manipulation

eye
The function eye

X = eye(n)

creates an n × n identity matrix.

Array Functions

There are numerous array functions in MATLAB that perform matrix operations and
other useful tasks. Here are a few basic functions:

length
The length n (number of elements) of a vector x can be determined with the function
length:

n = length(x)

size
If the function size is called with a single input argument:

[m,n] = size(X)

it determines the number of rows m and number of columns n in the matrix X . If
called with two input arguments:

m = size(X,dim)

it returns the length of X in the specified dimension (dim = 1 yields the number of
rows, and dim = 2 gives the number of columns).

reshape
The reshape function is used to rearrange the elements of a matrix. The call

Y = reshape(X,m,n)

returns a m×n matrix the elements of which are taken from matrix X in the column-
wise order. The total number of elements in X must be equal to m× n. Here is an
example:

24 Introduction to MATLAB

>> a = 1:2:11

a =

1 3 5 7 9 11

>> A = reshape(a,2,3)

A =

1 5 9

3 7 11

dot

a = dot(x,y)

This function returns the dot product of two vectors x and y which must be of the
same length.

prod

a = prod(x)

For a vector x, prod(x) returns the product of its elements. If x is a matrix, then a is a
row vector containing the products over each column. For example,

>> a = [1 2 3 4 5 6];

>> A = reshape(a,2,3)

A =

1 3 5

2 4 6

>> prod(a)

ans =

720

>> prod(A)

ans =

2 12 30

sum

a = sum(x)

This function is similar to prod, except that it returns the sum of the elements.

25 1.8 Writing and Running Programs

cross

c = cross(a,b)

The function cross computes the cross product: c = a × b, where vectors a and b
must be of length 3.

1.8 Writing and Running Programs

MATLAB has two windows available for typing program lines: the command window
and the editor/debugger. The command window is always in the interactive mode, so
that any statement entered into the window is immediately processed. The interactive
mode is a good way to experiment with the language and try out programming ideas.

MATLAB opens the editor window when a new M-file is created, or an existing file
is opened. The editor window is used to type and save programs (called script files in
MATLAB) and functions. One could also use a text editor to enter program lines, but
the MATLAB editor has MATLAB-specific features, such as color coding and automatic
indentation, that make work easier. Before a program or function can be executed, it
must be saved as a MATLAB M-file (recall that these files have the .m extension). A
program can be run by invoking the run command from the editor’s debug menu.

When a function is called for the first time during a program run, it is compiled
into P-code (pseudo-code) to speed up execution in subsequent calls to the function.
One can also create the P-code of a function and save it on disk by issuing the command

pcode function name

MATLAB will then load the P-code (which has the .p extension) into the memory
rather than the text file.

The variables created during a MATLAB session are saved in the MATLAB
workspace until they are cleared. Listing of the saved variables can be displayed by the
command who. If greater detail about the variables is required, type whos. Variables
can be cleared from the workspace with the command

clear a b . . .

which clears the variables a, b, If the list of variables is omitted, all variables are
cleared.

26 Introduction to MATLAB

Assistance on any MATLAB function is available by typing

help function name

in the command window.

1.9 Plotting

MATLAB has extensive plotting capabilities. Here we illustrate some basic commands
for two-dimensional plots. The example below plots sin x and cos x on the same plot.

>> x = 0:0.2:pi; % Create x-array

>> y = sin(x); % Create y-array

>> plot(x,y,’k:o’) % Plot x-y points with specified color

% and symbol (’k’ = black, ’o’ = circles)

>> hold on % Allow overwriting of current plot

>> z = cos(x); % Create z-array

>> plot(x,z,’k:x’) % Plot x-z points (’x’ = crosses)

>> grid on % Display coordinate grid

>> xlabel(’x’) % Display label for x-axis

>> ylabel(’y’) % Display label for y-axis

>> gtext(’sin x’) % Create mouse-movable text

>> gtext(’cos x’)

27 1.9 Plotting

A function stored in a M-file can be plotted with a single command, as shown
below.

function y = testfunc(x) % Stored function

y = (x.ˆ3).*sin(x) - 1./x;

>> fplot(@testfunc,[1 20]) % Plot from x = 1 to 20

>> grid on

The plots appearing in this book from here on were not produced by MATLAB.
We used the copy/paste operation to transfer the numerical data to a spreadsheet
and then let the spreadsheet create the plot. This resulted in plots more suited for
publication.

2 Systems of Linear Algebraic Equations

Solve the simultaneous equations Ax = b

2.1 Introduction

In this chapter we look at the solution of n linear, algebraic equations in n unknowns.
It is by far the longest and arguably the most important topic in the book. There
is a good reason for this—it is almost impossible to carry out numerical analysis
of any sort without encountering simultaneous equations. Moreover, equation sets
arising from physical problems are often very large, consuming a lot of computa-
tional resources. It usually possible to reduce the storage requirements and the run
time by exploiting special properties of the coefficient matrix, such as sparseness
(most elements of a sparse matrix are zero). Hence there are many algorithms ded-
icated to the solution of large sets of equations, each one being tailored to a partic-
ular form of the coefficient matrix (symmetric, banded, sparse, etc.). A well-known
collection of these routines is LAPACK – Linear Algebra PACKage, originally written in
Fortran771.

We cannot possibly discuss all the special algorithms in the limited space avail-
able. The best we can do is to present the basic methods of solution, supplemented
by a few useful algorithms for banded and sparse coefficient matrices.

Notation

A system of algebraic equations has the form

1 LAPACK is the successor of LINPACK, a 1970s and 80s collection of Fortran subroutines.

28

29 2.1 Introduction

A11x1 + A12x2 + · · · + A1nxn = b1

A21x1 + A22x2 + · · · + A2nxn = b2

A31x1 + A32x2 + · · · + A3nxn = b3 (2.1)

...

An1x1 + An2x2 + · · · + Annxn = bn

where the coefficients Ai j and the constants bj are known, and xi represent the un-
knowns. In matrix notation the equations are written as⎡

⎢⎢⎢⎢⎣
A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

b1

b2

...
bn

⎤
⎥⎥⎥⎥⎦ (2.2)

or, simply

Ax = b (2.3)

A particularly useful representation of the equations for computational purposes
is the augmented coefficient matrix, obtained by adjoining the constant vector b to
the coefficient matrix A in the following fashion:

[
A b

]
=

⎡
⎢⎢⎢⎢⎣

A11 A12 · · · A1n b1

A21 A22 · · · A2n b2

...
...

. . .
...

...
An1 An2 · · · Ann bn

⎤
⎥⎥⎥⎥⎦ (2.4)

Uniqueness of Solution

A system of n linear equations in n unknowns has a unique solution, provided that
the determinant of the coefficient matrix is nonsingular, i.e., if |A| �= 0. The rows and
columns of a nonsingular matrix are linearly independent in the sense that no row (or
column) is a linear combination of other rows (or columns).

If the coefficient matrix is singular, the equations may have an infinite number of
solutions, or no solutions at all, depending on the constant vector. As an illustration,
take the equations

2x + y = 3 4x + 2y = 6

Since the second equation can be obtained by multiplying the first equation by two,
any combination of x and y that satisfies the first equation is also a solution of the

30 Systems of Linear Algebraic Equations

second equation. The number of such combinations is infinite. On the other hand,
the equations

2x + y = 3 4x + 2y = 0

have no solution because the second equation, being equivalent to 2x + y = 0, con-
tradicts the first one. Therefore, any solution that satisfies one equation cannot satisfy
the other one.

Ill-Conditioning

An obvious question is: what happens when the coefficient matrix is almost singular;
i.e., if |A| is very small? In order to determine whether the determinant of the coefficient
matrix is “small,” we need a reference against which the determinant can be measured.
This reference is called the norm of the matrix, denoted by ‖A‖. We can then say that
the determinant is small if

|A| << ‖A‖

Several norms of a matrix have been defined in existing literature, such as

‖A‖ =
√√√√ n∑

i=1

n∑
j=1

A2
i j ‖A‖ = max

1≤i≤n

n∑
j=1

∣∣Ai j

∣∣ (2.5a)

A formal measure of conditioning is the matrix condition number, defined as

cond(A) = ‖A‖ ∥∥A−1
∥∥ (2.5b)

If this number is close to unity, the matrix is well-conditioned. The condition number
increases with the degree of ill-conditioning, reaching infinity for a singular matrix.
Note that the condition number is not unique, but depends on the choice of the matrix
norm. Unfortunately, the condition number is expensive to compute for large matri-
ces. In most cases it is sufficient to gauge conditioning by comparing the determinant
with the magnitudes of the elements in the matrix.

If the equations are ill-conditioned, small changes in the coefficient matrix result
in large changes in the solution. As an illustration, consider the equations

2x + y = 3 2x + 1.001y = 0

that have the solution x = 1501.5, y = −3000. Since |A| = 2(1.001) − 2(1) = 0.002 is
much smaller than the coefficients, the equations are ill-conditioned. The effect of
ill-conditioning can be verified by changing the second equation to 2x + 1.002y = 0
and re-solving the equations. The result is x = 751.5, y = −1500. Note that a 0.1%
change in the coefficient of y produced a 100% change in the solution.

31 2.1 Introduction

Numerical solutions of ill-conditioned equations are not to be trusted. The reason
is that the inevitable roundoff errors during the solution process are equivalent to in-
troducing small changes into the coefficient matrix. This in turn introduces large errors
into the solution, the magnitude of which depends on the severity of ill-conditioning.
In suspect cases the determinant of the coefficient matrix should be computed so that
the degree of ill-conditioning can be estimated. This can be done during or after the
solution with only a small computational effort.

Linear Systems

Linear, algebraic equations occur in almost all branches of numerical analysis. But
their most visible application in engineering is in the analysis of linear systems (any
system whose response is proportional to the input is deemed to be linear). Linear
systems include structures, elastic solids, heat flow, seepage of fluids, electromagnetic
fields and electric circuits; i.e., most topics taught in an engineering curriculum.

If the system is discrete, such as a truss or an electric circuit, then its analysis
leads directly to linear algebraic equations. In the case of a statically determinate
truss, for example, the equations arise when the equilibrium conditions of the joints
are written down. The unknowns x1, x2, . . . , xn represent the forces in the members
and the support reactions, and the constants b1, b2, . . . , bn are the prescribed external
loads.

The behavior of continuous systems is described by differential equations, rather
than algebraic equations. However, because numerical analysis can deal only with
discrete variables, it is first necessary to approximate a differential equation with a
system of algebraic equations. The well-known finite difference, finite element and
boundary element methods of analysis work in this manner. They use different ap-
proximations to achieve the “discretization,” but in each case the final task is the same:
solve a system (often a very large system) of linear, algebraic equations.

In summary, the modeling of linear systems invariably gives rise to equations of
the form Ax = b, where b is the input and x represents the response of the system.
The coefficient matrix A, which reflects the characteristics of the system, is inde-
pendent of the input. In other words, if the input is changed, the equations have to
be solved again with a different b, but the same A. Therefore, it is desirable to have
an equation-solving algorithm that can handle any number of constant vectors with
minimal computational effort.

Methods of Solution

There are two classes of methods for solving systems of linear, algebraic equations:
direct and iterative methods. The common characteristic of direct methods is that they

32 Systems of Linear Algebraic Equations

transform the original equations into equivalent equations (equations that have the
same solution) that can be solved more easily. The transformation is carried out by
applying the three operations listed below. These so-called elementary operations do
not change the solution, but they may affect the determinant of the coefficient matrix
as indicated in parentheses.

� Exchanging two equations (changes sign of |A|).
� Multiplying an equation by a nonzero constant (multiplies |A| by the same

constant).
� Multiplying an equation by a nonzero constant and then subtracting it from an-

other equation (leaves |A| unchanged).

Iterative, or indirect methods, start with a guess of the solution x, and then re-
peatedly refine the solution until a certain convergence criterion is reached. Iterative
methods are generally less efficient than their direct counterparts due to the large
number of iterations required. But they do have significant computational advan-
tages if the coefficient matrix is very large and sparsely populated (most coefficients
are zero).

Overview of Direct Methods

Table 2.1 lists three popular direct methods, each of which uses elementary operations
to produce its own final form of easy-to-solve equations.

Method Initial form Final form

Gauss elimination Ax = b Ux = c

LU decomposition Ax = b LUx = b

Gauss–Jordan elimination Ax = b Ix = c

Table 2.1

In the above table U represents an upper triangular matrix, L is a lower triangular
matrix and I denotes the identity matrix. A square matrix is called triangular if it
contains only zero elements on one side of the leading diagonal. Thus a 3 × 3 upper
triangular matrix has the form

U =

⎡
⎢⎣U11 U12 U13

0 U22 U23

0 0 U33

⎤
⎥⎦

33 2.1 Introduction

and a 3 × 3 lower triangular matrix appears as

L =

⎡
⎢⎣L11 0 0

L21 L22 0
L31 L32 L33

⎤
⎥⎦

Triangular matrices play an important role in linear algebra, since they simplify
many computations. For example, consider the equations Lx = c, or

L11x1 = c1

L21x1 + L22x2 = c2

L31x1 + L32x2 + L33x3 = c3

...

If we solve the equations forward, starting with the first equation, the computations
are very easy, since each equation would contain only one unknown at a time. The
solution would thus proceed as follows:

x1 = c1/L11

x2 = (c2 − L21x1)/L22

x3 = (c3 − L31x1 − L32x2)/L33

...

This procedure is known as forward substitution. In a similar way, Ux = c,encountered
in Gauss elimination, can easily be solved by back substitution, which starts with the
last equation and proceeds backward through the equations.

The equations LUx = b, which are associated with LU decomposition, can also
be solved quickly if we replace them with two sets of equivalent equations: Ly = b
and Ux = y. Now Ly = b can be solved for y by forward substitution, followed by the
solution of Ux = y by means of back substitution.

The equations Ix = c, which are produced by Gauss–Jordan elimination, are
equivalent to x = c (recall the identity Ix = x), so that c is already the solution.

EXAMPLE 2.1
Determine whether the following matrix is singular:

A =

⎡
⎢⎣2.1 −0.6 1.1

3.2 4.7 −0.8
3.1 −6.5 4.1

⎤
⎥⎦

34 Systems of Linear Algebraic Equations

Solution Laplace’s development (see Appendix A2) of the determinant about the first
row of A yields

|A| = 2.1

∣∣∣∣∣ 4.7 −0.8
−6.5 4.1

∣∣∣∣∣+ 0.6

∣∣∣∣∣3.2 −0.8
3.1 4.1

∣∣∣∣∣+ 1.1

∣∣∣∣∣3.2 4.7
3.1 −6.5

∣∣∣∣∣
= 2.1(14.07) + 0.6(15.60) + 1.1(−35.37) = 0

Since the determinant is zero, the matrix is singular. It can be verified that the singu-
larity is due to the following row dependency: (row 3) = (3 × row 1) − (row 2).

EXAMPLE 2.2
Solve the equations Ax = b, where

A =

⎡
⎢⎣ 8 −6 2

−4 11 −7
4 −7 6

⎤
⎥⎦ b =

⎡
⎢⎣ 28

−40
33

⎤
⎥⎦

knowing that the LU decomposition of the coefficient matrix is (you should verify this)

A = LU =

⎡
⎢⎣ 2 0 0

−1 2 0
1 −1 1

⎤
⎥⎦
⎡
⎢⎣4 −3 1

0 4 −3
0 0 2

⎤
⎥⎦

Solution We first solve the equations Ly = b by forward substitution:

2y1 = 28 y1 = 28/2 = 14
−y1 + 2y2 = −40 y2 = (−40 + y1)/2 = (−40 + 14)/2 = −13

y1 − y2 + y3 = 33 y3 = 33 − y1 + y2 = 33 − 14 − 13 = 6

The solution x is then obtained from Ux = y by back substitution:

2x3 = y3 x3 = y3/2 = 6/2 = 3
4x2 − 3x3 = y2 x2 = (y2 + 3x3)/4 = [−13 + 3(3)] /4 = −1

4x1 − 3x2 + x3 = y1 x1 = (y1 + 3x2 − x3)/4 = [14 + 3(−1) − 3] /4 = 2

Hence the solution is x = [2 −1 3]T

2.2 Gauss Elimination Method

Introduction

Gauss elimination is the most familiar method for solving simultaneous equations. It
consists of two parts: the elimination phase and the solution phase. As indicated in
Table 2.1, the function of the elimination phase is to transform the equations into the
form Ux = c. The equations are then solved by back substitution. In order to illustrate

