
http://www.cambridge.org/9780521852876

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

ii

This page intentionally left blank

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

Numerical Methods in Engineering with Python

Numerical Methods in Engineering with Python is a text for engineer-
ing students and a reference for practicing engineers, especially those
who wish to explore the power and efficiency of Python. The choice of
numerical methods was based on their relevance to engineering prob-
lems. Every method is discussed thoroughly and illustrated with prob-
lems involving both hand computation and programming. Computer
code accompanies each method and is available on the book web site.
This code is made simple and easy to understand by avoiding complex
book-keeping schemes, while maintaining the essential features of the
method Python was chosen as the example language because it is ele-
gant, easy to learn and debug, and its facilities for handling arrays are
unsurpassed. Moreover, it is an open-source software package that can
be downloaded freely on the web. Python is a great language for teaching
scientific computation.

Jaan Kiusalaas is a Professor Emeritus in the Department of Engineer-
ing Science and Mechanics at the Pennsylvania State University. He has
taught computer methods, including finite element and boundary ele-
ment methods, for over 30 years. He is also the co-author of four other
books—Engineering Mechanics: Statics, Engineering Mechanics: Dynam-
ics, Mechanics of Materials, and an alternate version of this work with
MATLAB® code.

i

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

ii

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

NUMERICAL METHODS IN
ENGINEERING WITH

Python
Jaan Kiusalaas
The Pennsylvania State University

iii

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge , UK

First published in print format

- ----

- ----

© Jaan Kiusalaas 2005

2005

Information on this title: www.cambridge.org/9780521852876

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

- ---

- ---

Cambridge University Press has no responsibility for the persistence or accuracy of s
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (Adobe Reader)
eBook (Adobe Reader)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521852876

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

Contents

Preface vii

1. Introduction to Python . 1

2. Systems of Linear Algebraic Equations 27

3. Interpolation and Curve Fitting . 103

4. Roots of Equations .142

5. Numerical Differentiation . 181

6. Numerical Integration . 198

7. Initial Value Problems . 248

8. Two-Point Boundary Value Problems 295

9. Symmetric Matrix Eigenvalue Problems 324

10. Introduction to Optimization . 381

Appendices 409

Index 419

v

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

vi

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

Preface

This book is targeted primarily toward engineers and engineering students of ad-
vanced standing (sophomores, seniors and graduate students). Familiarity with a
computer language is required; knowledge of basic engineering mechanics is useful,
but not essential.

The text attempts to place emphasis on numerical methods, not programming.
Most engineers are not programmers, but problem solvers. They want to know what
methods can be applied to a given problem, what are their strengths and pitfalls and
how to implement them. Engineers are not expected to write computer code for basic
tasks from scratch; they are more likely to utilize functions and subroutines that have
been already written and tested. Thus programming by engineers is largely confined
to assembling existing pieces of code into a coherent package that solves the problem
at hand.

The “piece” of code is usually a function that implements a specific task. For the
user the details of the code are unimportant. What matters is the interface (what goes
in and what comes out) and an understanding of the method on which the algorithm
is based. Since no numerical algorithm is infallible, the importance of understanding
the underlying method cannot be overemphasized; it is, in fact, the rationale behind
learning numerical methods.

This book attempts to conform to the views outlined above. Each numerical
method is explained in detail and its shortcomings are pointed out. The examples that
follow individual topics fall into two categories: hand computations that illustrate the
inner workings of the method and small programs that show how the computer code is
utilized in solving a problem. Problems that require programming are marked with �.

The material consists of the usual topics covered in an engineering course on
numerical methods: solution of equations, interpolation and data fitting, numerical
differentiation and integration, solution of ordinary differential equations and eigen-
value problems. The choice of methods within each topic is tilted toward relevance
to engineering problems. For example, there is an extensive discussion of symmetric,

vii

P1: KIC
CB904-FM CB904/Kiusalaas 0 521 85287 0 May 23, 2005 19:15

viii Preface

sparsely populated coefficient matrices in the solution of simultaneous equations.
In the same vein, the solution of eigenvalue problems concentrates on methods that
efficiently extract specific eigenvalues from banded matrices.

An important criterion used in the selection of methods was clarity. Algorithms
requiring overly complex bookkeeping were rejected regardless of their efficiency and
robustness. This decision, which was taken with great reluctance, is in keeping with
the intent to avoid emphasis on programming.

The selection of algorithms was also influenced by current practice. This disqual-
ified several well-known historical methods that have been overtaken by more recent
developments. For example, the secant method for finding roots of equations was
omitted as having no advantages over Brent’s method. For the same reason, the mul-
tistep methods used to solve differential equations (e.g., Milne and Adams methods)
were left out in favor of the adaptive Runge–Kutta and Bulirsch–Stoer methods.

Notably absent is a chapter on partial differential equations. It was felt that this
topic is best treated by finite element or boundary element methods, which are outside
the scope of this book. The finite difference model, which is commonly introduced
in numerical methods texts, is just too impractical in handling multidimensional
boundary value problems.

As usual, the book contains more material than can be covered in a three-credit
course. The topics that can be skipped without loss of continuity are tagged with an
asterisk (*).

The programs listed in this book were tested with Python 2.2.2 and 2.3.4 under
Windows XP and Red Hat Linux. The source code can be downloaded from the book’s
website at

www.cambridge.org/0521852870

The author wishes to express his gratitude to the anonymous reviewers and
Professor Andrew Pytel for their suggestions for improving the manuscript. Credit
is also due to the authors of Numerical Recipes (Cambridge University Press) whose
presentation of numerical methods was inspirational in writing this book.

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

1 Introduction to Python

1.1 General Information

Quick Overview

This chapter is not a comprehensive manual of Python. Its sole aim is to provide
sufficient information to give you a good start if you are unfamiliar with Python. If you
know another computer language, and presumably you do, it is not difficult to pick
up the rest as you go.

Python is an object-oriented language that was developed in late 1980s as a
scripting language (the name is derived from the British television show Monty
Python’s Flying Circus). Although Python is not as well known in engineering cir-
cles as some other languages, it has a considerable following in the programming
community—in fact, Python is considerably more widespread than Fortran. Python
may be viewed as an emerging language, since it is still being developed and re-
fined. In the current state, it is an excellent language for developing engineering
applications—it possesses a simple elegance that other programming languages can-
not match.

Python programs are not compiled into machine code, but are run by an inter-
preter1. The great advantage of an interpreted language is that programs can be tested
and debugged quickly, allowing the user to concentrate more on the principles be-
hind the program and less on programming itself. Since there is no need to compile,
link and execute after each correction, Python programs can be developed in a much
shorter time than equivalent Fortran or C programs. On the negative side, interpreted
programs do not produce stand-alone applications. Thus a Python program can be
run only on computers that have the Python interpreter installed.

1 The Python interpreter also compiles byte code, which helps to speed up execution somewhat.

1

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

2 Introduction to Python

Python has other advantages over mainstream languages that are important in a
learning environment:

� Python is open-source software, which means that it is free; it is included in most
Linux distributions.

� Python is available for all major operating systems (Linux, Unix, Windows, Mac OS
etc.). A program written on one system runs without modification on all systems.

� Python is easier to learn and produces more readable code than other languages.
� Python and its extensions are easy to install.

Development of Python was clearly influenced by Java and C++, but there is also
a remarkable similarity to MATLAB® (another interpreted language, very popular
in scientific computing). Python implements the usual concepts of object-oriented
languages such as classes, methods, inheritance etc. We will forego these concepts
and use Python strictly as a procedural language.

To get an idea of the similarities between MATLAB and Python, let us look at the
codes written in the two languages for solution of simultaneous equations Ax = b by
Gauss elimination. Here is the function written in MATLAB:

function [x,det] = gaussElimin(a,b)

n = length(b);

for k = 1:n-1

for i = k+1:n

if a(i,k) ˜= 0

lam = a(i,k)/a(k,k);

a(i,k+1:n) = a(i,k+1:n) - lam*a(k,k+1:n);

b(i)= b(i) - lam*b(k);

end

end

end

det = prod(diag(a));

for k = n:-1:1

b(k) = (b(k) - a(k,k+1:n)*b(k+1:n))/a(k,k);

end

x = b;

The equivalent Python function is:

from numarray import dot

def gaussElimin(a,b):

n = len(b)

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

3 1.1 General Information

for k in range(0,n-1):

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a [i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

b[i] = b[i] - lam*b[k]

for k in range(n-1,-1,-1):

b[k] = (b[k] - dot(a[k,k+1:n],b[k+1:n]))/a[k,k]

return b

The command from numarray import dot instructs the interpreter to load
the function dot (which computes the dot product of two vectors) from the module
numarray. The colon (:) operator, known as the slicing operator in Python, works the
same way it does in MATLAB and Fortran90—it defines a section of an array.

The statement for k = 1:n-1 in MATLAB creates a loop that is executed with
k = 1, 2, . . . , n − 1. The same loop appears in Python as for k in range(n-1).
Here the function range(n-1) creates the list [0, 1, . . . , n − 2]; k then loops over
the elements of the list. The differences in the ranges of k reflect the native off-
sets used for arrays. In Python all sequences have zero offset, meaning that the in-
dex of the first element of the sequence is always 0. In contrast, the native offset in
MATLAB is 1.

Also note that Python has no end statements to terminate blocks of code (loops,
conditionals, subroutines etc.). The body of a block is defined by its indentation; hence
indentation is an integral part of Python syntax.

Like MATLAB, Python is case sensitive. Thus the names n and N would represent
different objects.

Obtaining Python

Python interpreter can be downloaded from the Python Language Website
www.python.org. It normally comes with a nice code editor called Idle that allows
you to run programs directly from the editor. For scientific programming we also
need the Numarray module which contains various tools for array operations. It is
obtainable from the Numarray Home Page http://www.stsci.edu/resources/

software hardware/numarray. Both sites also provide documentation for down-
loading. If you use Linux or Mac OS, it is very likely that Python is already installed on
your machine (but you must still download Numarray).

You should acquire other printed material to supplement the on-line documen-
tation. A commendable teaching guide is Python by Chris Fehly, Peachpit Press, CA
(2002). As a reference, Python Essential Reference by David M. Beazley, New Riders

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

4 Introduction to Python

Publishing (2001) is recommended. By the time you read this, newer editions may be
available.

1.2 Core Python

Variables

In most computer languages the name of a variable represents a value of a given
type stored in a fixed memory location. The value may be changed, but not the
type. This it not so in Python, where variables are typed dynamically. The follow-
ing interactive session with the Python interpreter illustrates this (>>> is the Python
prompt):

>>> b = 2 # b is integer type

>>> print b

2

>>> b = b * 2.0 # Now b is float type

>>> print b

4.0

The assignmentb = 2 creates an association between the nameb and the integer
value 2. The next statement evaluates the expression b * 2.0 and associates the
result with b; the original association with the integer 2 is destroyed. Now b refers to
the floating point value 4.0.

The pound sign (#) denotes the beginning of a comment—all characters between
and the end of the line are ignored by the interpreter.

Strings

A string is a sequence of characters enclosed in single or double quotes. Strings are
concatenated with the plus (+) operator, whereas slicing (:) is used to extract a portion
of the string. Here is an example:

>>> string1 = ’Press return to exit’

>>> string2 = ’the program’

>>> print string1 + ’ ’ + string2 # Concatenation

Press return to exit the program

>>> print string1[0:12] # Slicing

Press return

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

5 1.2 Core Python

A string is an immutable object—its individual characters cannot be modified with
an assignment statement and it has a fixed length. An attempt to violate immutability
will result in TypeError, as shown below.

>>> s = ’Press return to exit’

>>> s[0] = ’p’

Traceback (most recent call last):

File ’’<pyshell#1>’’, line 1, in ?

s[0] = ’p’

TypeError: object doesn’t support item assignment

Tuples

A tuple is a sequence of arbitrary objects separated by commas and enclosed in paren-
theses. If the tuple contains a single object, the parentheses may be omitted. Tuples
support the same operations as strings; they are also immutable. Here is an example
where the tuple rec contains another tuple (6,23,68):

>>> rec = (’Smith’,’John’,(6,23,68)) # This is a tuple

>>> lastName,firstName,birthdate = rec # Unpacking the tuple

>>> print firstName

John

>>> birthYear = birthdate[2]

>>> print birthYear

68

>>> name = rec[1] + ’ ’ + rec[0]

>>> print name

John Smith

>>> print rec[0:2]

(’Smith’, ’John’)

Lists

A list is similar to a tuple, but it is mutable, so that its elements and length can be
changed. A list is identified by enclosing it in brackets. Here is a sampling of operations
that can be performed on lists:

>>> a = [1.0, 2.0, 3.0] # Create a list

>>> a.append(4.0) # Append 4.0 to list

>>> print a

[1.0, 2.0, 3.0, 4.0]

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

6 Introduction to Python

>>> a.insert(0,0.0) # Insert 0.0 in position 0

>>> print a

[0.0, 1.0, 2.0, 3.0, 4.0]

>>> print len(a) # Determine length of list

5

>>> a[2:4] = [1.0, 1.0] # Modify selected elements

>>> print a

[0.0, 1.0, 1.0, 1.0, 1.0, 4.0]

If a is a mutable object, such as a list, the assignment statement b = a does not
result in a new object b, but simply creates a new reference to a. Thus any changes
made to b will be reflected in a. To create an independent copy of a list a, use the
statement c = a[:], as illustrated below.

>>> a = [1.0, 2.0, 3.0]

>>> b = a # ’b’ is an alias of ’a’

>>> b[0] = 5.0 # Change ’b’

>>> print a

[5.0, 2.0, 3.0] # The change is reflected in ’a’

>>> c = a[:] # ’c’ is an independent copy of ’a’

>>> c[0] = 1.0 # Change ’c’

>>> print a

[5.0, 2.0, 3.0] # ’a’ is not affected by the change

Matrices can represented as nested lists with each row being an element of the
list. Here is a 3 × 3 matrix a in the form of a list:

>>> a = [[1, 2, 3], \

[4, 5, 6], \

[7, 8, 9]]

>>> print a[1] # Print second row (element 1)

[4, 5, 6]

>>> print a[1][2] # Print third element of second row

6

The backslash (\) is Python’s continuation character. Recall that Python sequences
have zero offset, so that a[0] represents the first row, a[1] the second row, etc. With
very few exceptions we do not use lists for numerical arrays. It is much more convenient

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

7 1.2 Core Python

to employ array objects provided by the numarray module, (an extension of Python
language). Array objects will be discussed later.

Arithmetic Operators

Python supports the usual arithmetic operators:

+ Addition

− Subtraction

∗ Multiplication

/ Division

∗∗ Exponentiation

% Modular division

Some of these operators are also defined for strings and sequences as illustrated
below.

>>> s = ’Hello ’

>>> t = ’to you’

>>> a = [1, 2, 3]

>>> print 3*s # Repetition

Hello Hello Hello

>>> print 3*a # Repetition

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> print a + [4, 5] # Append elements

[1, 2, 3, 4, 5]

>>> print s + t # Concatenation

Hello to you

>>> print 3 + s # This addition makes no sense

Traceback (most recent call last):

File ’’<pyshell#9>’’, line 1, in ?

print n + s

TypeError: unsupported operand types for +: ’int’ and ’str’

Python 2.0 and later versions also have augmented assignment operators, such as
a + = b, that are familiar to the users of C. The augmented operators and the equiv-
alent arithmetic expressions are shown in the following table.

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

8 Introduction to Python

a += b a = a + b

a -= b a = a - b

a *= b a = a*b

a /= b a = a/b

a **= b a = a**b

a %= b a = a%b

Comparison Operators

The comparison (relational) operators return 1 for true and 0 for false. These operators
are

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

Numbers of different type (integer, floating point etc.) are converted to a common type
before the comparison is made. Otherwise, objects of different type are considered to
be unequal. Here are a few examples:

>>> a = 2 # Integer

>>> b = 1.99 # Floating point

>>> c = ’2’ # String

>>> print a > b

1

>>> print a == c

0

>>> print (a > b) and (a != c)

1

>>> print (a > b) or (a == b)

1

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

9 1.2 Core Python

Conditionals

The if construct

if condition:
block

executes a block of statements (which must be indented) if the condition returns true.
If the condition returns false, the block skipped. The if conditional can be followed
by any number of elif (short for “else if”) constructs

elif condition:
block

which work in the same manner. The else clause

else:

block

can be used to define the block of statements which are to be executed if none of
the if-elif clauses are true. The function sign of a below illustrates the use of the
conditionals.

def sign_of_a(a):

if a < 0.0:

sign = ’negative’

elif a > 0.0:

sign = ’positive’

else:

sign = ’zero’

return sign

a = 1.5

print ’a is ’ + sign_of_a(a)

Running the program results in the output

a is positive

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

10 Introduction to Python

Loops

The while construct

while condition:
block

executes a block of (indented) statements if the condition is true. After execution of
the block, the condition is evaluated again. If it is still true, the block is executed again.
This process is continued until the condition becomes false. The else clause

else:

block

can be used to define the block of statements which are to be executed if condition is
false. Here is an example that creates the list [1, 1/2, 1/3, . . .]:

nMax = 5

n = 1

a = [] # Create empty list

while n < nMax:

a.append(1.0/n) # Append element to list

n = n + 1

print a

The output of the program is

[1.0, 0.5, 0.33333333333333331, 0.25]

We met the for statement before in Art. 1.1. This statement requires a target and
a sequence (usually a list) over which the target loops. The form of the construct is

for target in sequence:
block

You may add an else clause which is executed after the for loop has finished. The
previous program could be written with the for construct as

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

11 1.2 Core Python

nMax = 5

a = []

for n in range(1,nMax):

a.append(1.0/n)

print a

Here n is the target and the list [1,2, ...,nMax-1], created by calling the range
function, is the sequence.

Any loop can be terminated by the break statement. If there is an else cause
associated with the loop, it is not executed. The following program, which searches
for a name in a list, illustrates the use of break and else in conjunction with a for

loop:

list = [’Jack’, ’Jill’, ’Tim’, ’Dave’]

name = eval(raw_input(’Type a name: ’)) # Python input prompt

for i in range(len(list)):

if list[i] == name:

print name,’is number’,i + 1,’on the list’

break

else:

print name,’is not on the list’

Here are the results of two searches:

Type a name: ’Tim’

Tim is number 3 on the list

Type a name: ’June’

June is not on the list

Type Conversion

If an arithmetic operation involves numbers of mixed types, the numbers are au-
tomatically converted to a common type before the operation is carried out. Type
conversions can also achieved by the following functions:

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

12 Introduction to Python

int(a) Converts a to integer

long(a) Converts a to long integer

float(a) Converts a to floating point

complex(a) Converts to complex a + 0 j

complex(a,b) Converts to complex a + bj

The above functions also work for converting strings to numbers as long as the
literal in the string represents a valid number. Conversion from float to an integer is
carried out by truncation, not by rounding off. Here are a few examples:

>>> a = 5

>>> b = -3.6

>>> d = ’4.0’

>>> print a + b

1.4

>>> print int(b)

-3

>>> print complex(a,b)

(5-3.6j)

>>> print float(d)

4.0

>>> print int(d) # This fails: d is not Int type

Traceback (most recent call last):

File ’’<pyshell#7>’’, line 1, in ?

print int(d)

ValueError: invalid literal for int(): 4.0

Mathematical Functions

Core Python supports only a few mathematical functions. They are:

abs(a) Absolute value of a

max(sequence) Largest element of sequence

min(sequence) Smallest element of sequence

round(a,n) Round a to n decimal places

cmp(a,b) Returns

−1 if a < b

0 if a = b

1 if a > b

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

13 1.2 Core Python

The majority of mathematical functions are available in the math module.

Reading Input

The intrinsic function for accepting user input is

raw input(prompt)

It displays the prompt and then reads a line of input which is converted to a string. To
convert the string into a numerical value use the function

eval(string)

The following program illustrates the use of these functions:

a = raw_input(’Input a: ’)

print a, type(a) # Print a and its type

b = eval(a)

print b,type(b) # Print b and its type

The function type(a) returns the type of the object a; it is a very useful tool in
debugging. The program was run twice with the following results:

Input a: 10.0

10.0 <type ’str’>

10.0 <type ’float’>

Input a: 11**2

11**2 <type ’str’>

121 <type ’int’>

A convenient way to input a number and assign it to the variable a is

a = eval(raw input(prompt))

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

14 Introduction to Python

Printing Output

Output can be displayed with the print statement:

print object1, object2, . . .

which converts object1, object2 etc. to strings and prints them on the same line, sep-
arated by spaces. The newline character ’\n’ can be uses to force a new line. For
example,

>>> a = 1234.56789

>>> b = [2, 4, 6, 8]

>>> print a,b

1234.56789 [2, 4, 6, 8]

>>> print ’a =’,a, ’\nb =’,b

a = 1234.56789

b = [2, 4, 6, 8]

The modulo operator (%) can be used to format a tuple. The form of the conversion
statement is

’%format1 %format2 · · ·’ % tuple

where format1, format2 · · · are the format specifications for each object in the tuple.
Typically used format specifications are

wd Integer

w.df Floating point notation

w.de Exponential notation

where w is the width of the field and d is the number of digits after the decimal
point. The output is right-justified in the specified field and padded with blank spaces
(there are provisions for changing the justification and padding). Here are a couple of
examples:

>>> a = 1234.56789

>>> n = 9876

>>> print ’%7.2f’ % a

1234.57

>>> print ’n = %6d’ % n # Pad with 2 spaces

n = 9876

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

15 1.3 Functions and Modules

>>> print ’n = %06d’ %n # Pad with 2 zeroes

n = 009876

>>> print ’%12.4e %6d’ % (a,n)

1.2346e+003 9876

Error Control

When an error occurs during execution of a program an exception is raised and the
program stops. Exceptions can be caught with try and except statements:

try:

do something
except error:

do something else

where error is the name of a built-in Python exception. If the exception error is not
raised, thetryblock is executed; otherwise the execution passes to theexceptblock.
All exceptions can be caught by omitting error from the except statement.

Here is a statement that raises the exception ZeroDivisionError:

>>> c = 12.0/0.0

Traceback (most recent call last):

File ’’<pyshell#0>’’, line 1, in ?

c = 12.0/0.0

ZeroDivisionError: float division

This error can be caught by

try:

c = 12.0/0.0

except ZeroDivisionError:

print ’Division by zero’

1.3 Functions and Modules

Functions

The structure of a Python function is

def func name(param1, param2,. . .):
statements
return return values

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

16 Introduction to Python

where param1, param2,. . . are the parameters. A parameter can be any Python ob-
ject, including a function. Parameters may be given default values, in which case the
parameter in the function call is optional. If the return statement or return values
are omitted, the function returns the null object.

The following example computes the first two derivatives of arctan(x) by finite
differences:

from math import arctan

def finite_diff(f,x,h=0.0001): # h has a default value

df =(f(x+h) - f(x-h))/(2.0*h)

ddf =(f(x+h) - 2.0*f(x) + f(x-h))/h**2

return df,ddf

x = 0.5

df,ddf = finite_diff(arctan,x) # Uses default value of h

print ’First derivative =’,df

print ’Second derivative =’,ddf

Note that arctan is passed to finite diff as a parameter. The output from the
program is

First derivative = 0.799999999573

Second derivative = -0.639999991892

If a mutable object, such as a list, is passed to a function where it is modified, the
changes will also appear in the calling program. Here is an example:

def squares(a):

for i in range(len(a)):

a[i] = a[i]**2

a = [1, 2, 3, 4]

squares(a)

print a

The output is

[1, 4, 9, 16]

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

17 1.4 Mathematics Modules

Modules

It is sound practice to store useful functions in modules. A module is simply a file
where the functions reside; the name of the module is the name of the file. A module
can be loaded into a program by the statement

from module name import *

Python comes with a large number of modules containing functions and methods
for various tasks. Two of the modules are described briefly in the next section. Addi-
tional modules, including graphics packages, are available for downloading on the
Web.

1.4 Mathematics Modules

math Module

Most mathematical functions are not built into core Python, but are available by
loading themathmodule. There are three ways of accessing the functions in a module.
The statement

from math import *

loads all the function definitions in the math module into the current function or
module. The use of this method is discouraged because it is not only wasteful, but can
also lead to conflicts with definitions loaded from other modules.

You can load selected definitions by

from math import func1, func2,. . .

as illustrated below.

>>> from math import log,sin

>>> print log(sin(0.5))

-0.735166686385

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

18 Introduction to Python

The third method, which is used by the majority of programmers, is to make the
module available by

import math

The functions in the module can then be accessed by using the module name as a
prefix:

>>> import math

>>> print math.log(math.sin(0.5))

-0.735166686385

The contents of a module can be printed by calling dir(module). Here is how to
obtain a list of the functions in the math module:

>>> import math

>>> dir(math)

[’__doc__’, ’__name__’, ’acos’, ’asin’, ’atan’,

’atan2’, ’ceil’, ’cos’, ’cosh’, ’e’, ’exp’, ’fabs’,

’floor’, ’fmod’, ’frexp’, ’hypot’, ’ldexp’, ’log’,

’log10’, ’modf’, ’pi’, ’pow’, ’sin’, ’sinh’, ’sqrt’,

’tan’, ’tanh’]

Most of these functions are familiar to programmers. Note that the module in-
cludes two constants: π and e.

cmath Module

The cmath module provides many of the functions found in the math module, but
these accept complex numbers. The functions in the module are:

[’__doc__’, ’__name__’, ’acos’, ’acosh’, ’asin’, ’asinh’,

’atan’, ’atanh’, ’cos’, ’cosh’, ’e’, ’exp’, ’log’,

’log10’, ’pi’, ’sin’, ’sinh’, ’sqrt’, ’tan’, ’tanh’]

Here are examples of complex arithmetic:

>>> from cmath import sin

>>> x = 3.0 -4.5j

>>> y = 1.2 + 0.8j

>>> z = 0.8

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

19 1.5 numarray Module

>>> print x/y

(-2.56205313375e-016-3.75j)

>>> print sin(x)

(6.35239299817+44.5526433649j)

>>> print sin(z)

(0.7173560909+0j)

1.5 numarray Module

General Information

The numarray module2 is not a part of the standard Python release. As pointed out
before, it must be obtained separately and installed (the installation is very easy). The
module introduces array objects which are similar to lists, but can be manipulated by
numerous functions contained in the module. The size of the array is immutable and
no empty elements are allowed.

The complete set of functions in numarray is too long to be printed in its entirety.
The list below is limited to the most commonly used functions.

[’Complex’, ’Complex32’, ’Complex64’, ’Float’,

’Float32’, ’Float64’, ’abs’, ’arccos’,

’arccosh’, ’arcsin’, ’arcsinh’, ’arctan’,

’arctan2’, ’arctanh’, ’argmax’, ’argmin’,

’cos’, ’cosh’, ’diagonal’, ’dot’, ’e’, ’exp’,

’floor’, ’identity’, ’innerproduct’, ’log’,

’log10’, ’matrixmultiply’, ’maximum’, ’minimum’,

’numarray’, ’ones’, ’pi’, ’product’ ’sin’, ’sinh’,

’size’, ’sqrt’, ’sum’, ’tan’, ’tanh’, ’trace’,

’transpose’, ’zeros’]

Creating an Array

Arrays can be created in several ways. One of them is to use the array function to
turn a list into an array:

array(list,type = type specification)

2 Numarray is based on an older Python array module called Numeric. Their interfaces and capa-
bilities are very similar and they are largely compatible. Although Numeric is still available, it is no
longer supported.

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

20 Introduction to Python

Here are two examples of creating a 2 × 2 array with floating-point elements:

>>> from numarray import array,Float

>>> a = array([[2.0, -1.0],[-1.0, 3.0]])

>>> print a

[[2. -1.]

[-1. 3.]]

>>> b = array([[2, -1],[-1, 3]],type = Float)

>>> print b

[[2. -1.]

[-1. 3.]]

Other available functions are

zeros((dim1,dim2),type = type specification)

which creates a dim1 × dim2 array and fills it with zeroes, and

ones((dim1,dim2),type = type specification)

which fills the array with ones. The default type in both cases is Int.
Finally, there is the function

arange(from,to,increment)

which works just like the range function, but returns an array rather than a list. Here
are examples of creating arrays:

>>> from numarray import arange,zeros,ones,Float

>>> a = arange(2,10,2)

>>> print a

[2 4 6 8]

>>> b = arange(2.0,10.0,2.0)

>>> print b

[2. 4. 6. 8.]

>>> z = zeros((4))

>>> print z

[0 0 0 0]

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

21 1.5 numarray Module

>>> y = ones((3,3),type= Float)

>>> print y

[[1. 1. 1.]

[1. 1. 1.]

[1. 1. 1.]]

Accessing and Changing Array Elements

If a is a rank-2 array, then a[i,j] accesses the element in row i and column j, whereas
a[i] refers to row i. The elements of an array can be changed by assignment as shown
below.

>>> from numarray import *

>>> a = zeros((3,3),type=Float)

>>> a[0] = [2.0, 3.1, 1.8] # Change a row

>>> a[1,1] = 5.2 # Change an element

>>> a[2,0:2] = [8.0, -3.3] # Change part of a row

>>> print a

[[2. 3.1 1.8]

[0. 5.2 0.]

[8. -3.3 0.]]

Operations on Arrays

Arithmetic operators work differently on arrays than they do on tuples and lists—the
operation is broadcast to all the elements of the array; that is, the operation is applied
to each element in the array. Here are examples:

>>> from numarray import array

>>> a = array([0.0, 4.0, 9.0, 16.0])

>>> print a/16.0

[0. 0.25 0.5625 1.]

>>> print a - 4.0

[-4. 0. 5. 12.]

The mathematical functions available in numarray are also broadcast, as illus-
trated below

>>> from numarray import array,sqrt,sin

>>> a = array([1.0, 4.0, 9.0, 16.0])

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

22 Introduction to Python

>>> print sqrt(a)

[1. 2. 3. 4.]

>>> print sin(a)

[0.84147098 -0.7568025 0.41211849 -0.28790332]

Functions imported from the mathmodule will work on the individual elements,
of course, but not on the array itself. Here is an example:

>>> from numarray import array

>>> from math import sqrt

>>> a = array([1.0, 4.0, 9.0, 16.0])

>>> print sqrt(a[1])

2.0

>>> print sqrt(a)

Traceback (most recent call last):

...

TypeError: Only rank-0 arrays can be cast to floats.

Array Functions

There are numerous array functions in numarray that perform matrix operations and
other useful tasks. Here are a few examples:

>>> from numarray import *

>>> a = array([[4.0, -2.0, 1.0], \

[-2.0, 4.0, -2.0], \

[1.0, -2.0, 3.0]])

>>> b = array([1.0, 4.0, 2.0])

>>> print dot(b,b) # Dot product

21.0

>>> print matrixmultiply(a,b) # Matrix multiplication

[-2. 10. -1.]

>>> print diagonal(a) # Principal diagonal

[4. 4. 3.]

>>> print diagonal(a,1) # First subdiagonal

[-2. -2.]

>>> print trace(a) # Sum of diagonal elements

11.0

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

23 1.6 Scoping of Variables

>>> print argmax(b) # Index of largest element

1

>>> print identity(3) # Identity matrix

[[1 0 0]

[0 1 0]

[0 0 1]]

Copying Arrays

We explained before that if a is a mutable object, such as a list, the assignment state-
ment b = a does not result in a new object b, but simply creates a new reference to
a, called a deep copy. This also applies to arrays. To make an independent copy of an
array a, use the copy method in the numarray module:

b = a.copy()

1.6 Scoping of Variables

Namespace is a dictionary that contains the names of the variables and their values.
The namespaces are automatically created and updated as a program runs. There are
three levels of namespaces in Python:

� Local namespace, which is created when a function is called. It contains the
variables passed to the function as arguments and the variables created within
the function. The namespace is deleted when the function terminates. If a variable
is created inside a function, its scope is the function’s local namespace. It is not
visible outside the function.

� A global namespace is created when a module is loaded. Each module has its own
namespace. Variables assigned in a global namespace are visible to any function
within the module.

� Built-in namespace is created when the interpreter starts. It contains the functions
that come with the Python interpreter. These functions can be accessed by any
program unit.

When a name is encountered during execution of a function, the interpreter
tries to resolve it by searching the following in the order shown: (1) local namespace,
(2) global namespace, and (3) built-in namespace. If the name cannot be resolved,
Python raises a NameError exception.

Since the variables residing in a global namespace are visible to functions within
the module, it is not necessary to pass them to the functions as arguments (although
is good programming practice to do so), as the following program illustrates.

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

24 Introduction to Python

def divide():

c = a/b

print ’a/b =’,c

a = 100.0

b = 5.0

divide()

>>>

a/b = 20.0

Note that the variable c is created inside the function divide and is thus not
accessible to statements outside the function. Hence an attempt to move the print
statement out of the function fails:

def divide():

c = a/b

a = 100.0

b = 5.0

divide()

print ’a/b =’,c

>>>

Traceback (most recent call last):

File ’’C:\Python22\scope.py’’, line 8, in ?

print c

NameError: name ’c’ is not defined

1.7 Writing and Running Programs

When the Python editor Idle is opened, the user is faced with the prompt >>>, in-
dicating that the editor is in interactive mode. Any statement typed into the edi-
tor is immediately processed upon pressing the enter key. The interactive mode is a
good way to learn the language by experimentation and to try out new programming
ideas.

Opening a new window places Idle in the batch mode, which allows typing and
saving of programs. One can also use a text editor to enter program lines, but Idle has
Python-specific features, such as color coding of keywords and automatic indentation,
that make work easier. Before a program can be run, it must be saved as a Python file
with the.py extension, e.g.,myprog.py. The program can then be executed by typing

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

25 1.7 Writing and Running Programs

python myprog.py; in Windows, double-clicking on the program icon will also work.
But beware: the program window closes immediately after execution, before you get
a chance to read the output. To prevent this from happening, conclude the program
with the line

raw input(’press return’)

Double-clicking the program icon also works in Unix and Linux if the first line
of the program specifies the path to the Python interpreter (or a shell script that
provides a link to Python). The path name must be preceded by the symbols#!. On my
computer the path is /usr/bin/python, so that all my programs start with the line

#!/usr/bin/python

On multiuser systems the path is usually /usr/local/bin/python.
When a module is loaded into a program for the first time with the import state-

ment, it is compiled into bytecode and written in a file with the extension .pyc. The
next time the program is run, the interpreter loads the bytecode rather than the origi-
nal Python file. If in the meantime changes have been made to the module, the module
is automatically recompiled. A program can also be run from Idle using edit/run script
menu, but automatic recompilation of modules will not take place, unless the existing
bytecode file is deleted and the program window is closed and reopened.

Python’s error messages can sometimes be confusing, as seen in the following
example:

from numarray import array

a = array([1.0, 2.0, 3.0]

print a

raw_input(’press return’)

The output is

File ’’C:\Python22\test_module.py’’, line 3

print a

ˆ

SyntaxError: invalid syntax

What could possibly be wrong with the line print a? The answer is nothing. The
problem is actually in the preceding line, where the closing parenthesis is missing,

P1: JzG
CB904-01 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:41

26 Introduction to Python

making the statement incomplete. Consequently, the interpreter views the third line
as continuation of the second line, so that it tries to interpret the statement

a = array([1.0, 2.0, 3.0]print a

The lesson is this: when faced with a SyntaxError, look at the line preceding the
alleged offender. It can save a lot of frustration.

It is a good idea to document your modules by adding a docstring the beginning of
each module. The docstring, which is enclosed in triple quotes, should explain what
the module does. Here is an example that documents the module error (we use this
module in several of our programs):

module error

’’’ err(string).

Prints ’string’ and terminates program.

’’’

import sys

def err(string):

print string

raw_input(’Press return to exit’)

sys.exit()

The docstring of a module can be printed with the statement

print module name. doc

For example, the docstring of error is displayed by

>>> import error

>>> print error.__doc__

err(string).

Prints ’string’ and terminates program.

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

2 Systems of Linear Algebraic Equations

Solve the simultaneous equations Ax = b

2.1 Introduction

In this chapter we look at the solution of n linear, algebraic equations in n unknowns.
It is by far the longest and arguably the most important topic in the book. There is a
good reason for this—it is almost impossible to carry out numerical analysis of any sort
without encountering simultaneous equations. Moreover, equation sets arising from
physical problems are often very large, consuming a lot of computational resources.
It usually possible to reduce the storage requirements and the run time by exploiting
special properties of the coefficient matrix, such as sparseness (most elements of a
sparse matrix are zero). Hence there are many algorithms dedicated to the solution of
large sets of equations, each one being tailored to a particular form of the coefficient
matrix (symmetric, banded, sparse etc.). A well-known collection of these routines is
LAPACK—Linear Algebra PACKage, originally written in Fortran773.

We cannot possibly discuss all the special algorithms in the limited space avail-
able. The best we can do is to present the basic methods of solution, supplemented
by a few useful algorithms for banded and sparse coefficient matrices.

Notation

A system of algebraic equations has the form

A11x1 + A12x2 + · · · + A1nxn = b1

3 LAPACK is the successor of LINPACK, a 1970s and 80s collection of Fortran subroutines.

27

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

28 Systems of Linear Algebraic Equations

A21x1 + A22x2 + · · · + A2nxn = b2 (2.1)

...

An1x1 + An2x2 + · · · + Annxn = bn

where the coefficients Ai j and the constants bj are known, and xi represent the un-
knowns. In matrix notation the equations are written as

A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

x1

x2

...
xn

 =

b1

b2

...
bn

 (2.2)

or, simply

Ax = b (2.3)

A particularly useful representation of the equations for computational purposes
is the augmented coefficient matrix obtained by adjoining the constant vector b to the
coefficient matrix A in the following fashion:

[
A b

]
=

A11 A12 · · · A1n b1

A21 A22 · · · A2n b2

...
...

. . .
...

...
An1 An2 · · · Ann bn

 (2.4)

Uniqueness of Solution

A system of n linear equations in n unknowns has a unique solution, provided that
the determinant of the coefficient matrix is nonsingular; that is, |A| �= 0. The rows and
columns of a nonsingular matrix are linearly independent in the sense that no row (or
column) is a linear combination of other rows (or columns).

If the coefficient matrix is singular, the equations may have an infinite number of
solutions, or no solutions at all, depending on the constant vector. As an illustration,
take the equations

2x + y = 3 4x + 2y = 6

Since the second equation can be obtained by multiplying the first equation by two,
any combination of x and y that satisfies the first equation is also a solution of the

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

29 2.1 Introduction

second equation. The number of such combinations is infinite. On the other hand,
the equations

2x + y = 3 4x + 2y = 0

have no solution because the second equation, being equivalent to 2x + y = 0, con-
tradicts the first one. Therefore, any solution that satisfies one equation cannot satisfy
the other one.

Ill-Conditioning

An obvious question is: what happens when the coefficient matrix is almost singular;
i.e., if |A| is very small? In order to determine whether the determinant of the coefficient
matrix is “small,” we need a reference against which the determinant can be measured.
This reference is called the norm of the matrix and is denoted by ‖A‖. We can then say
that the determinant is small if

|A| << ‖A‖

Several norms of a matrix have been defined in existing literature, such as

‖A‖ =
√√√√ n∑

i=1

n∑
j=1

A2
i j ‖A‖ = max

1≤i≤n

n∑
j=1

∣∣Ai j

∣∣ (2.5a)

A formal measure of conditioning is the matrix condition number, defined as

cond(A) = ‖A‖ ∥∥A−1
∥∥ (2.5b)

If this number is close to unity, the matrix is well-conditioned. The condition number
increases with the degree of ill-conditioning, reaching infinity for a singular matrix.
Note that the condition number is not unique, but depends on the choice of the matrix
norm. Unfortunately, the condition number is expensive to compute for large matri-
ces. In most cases it is sufficient to gauge conditioning by comparing the determinant
with the magnitudes of the elements in the matrix.

If the equations are ill-conditioned, small changes in the coefficient matrix result
in large changes in the solution. As an illustration, consider the equations

2x + y = 3 2x + 1.001y = 0

that have the solution x = 1501.5, y = −3000. Since |A| = 2(1.001) − 2(1) = 0.002 is
much smaller than the coefficients, the equations are ill-conditioned. The effect of
ill-conditioning can be verified by changing the second equation to 2x + 1.002y = 0
and re-solving the equations. The result is x = 751.5, y = −1500. Note that a 0.1%
change in the coefficient of y produced a 100% change in the solution!

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

30 Systems of Linear Algebraic Equations

Numerical solutions of ill-conditioned equations are not to be trusted. The reason
is that the inevitable roundoff errors during the solution process are equivalent to in-
troducing small changes into the coefficient matrix. This in turn introduces large errors
into the solution, the magnitude of which depends on the severity of ill-conditioning.
In suspect cases the determinant of the coefficient matrix should be computed so that
the degree of ill-conditioning can be estimated. This can be done during or after the
solution with only a small computational effort.

Linear Systems

Linear, algebraic equations occur in almost all branches of numerical analysis. But
their most visible application in engineering is in the analysis of linear systems (any
system whose response is proportional to the input is deemed to be linear). Linear
systems include structures, elastic solids, heat flow, seepage of fluids, electromagnetic
fields and electric circuits, i.e., most topics taught in an engineering curriculum.

If the system is discrete, such as a truss or an electric circuit, then its analysis
leads directly to linear algebraic equations. In the case of a statically determinate
truss, for example, the equations arise when the equilibrium conditions of the joints
are written down. The unknowns x1, x2, . . . , xn represent the forces in the members
and the support reactions, and the constants b1, b2, . . . , bn are the prescribed external
loads.

The behavior of continuous systems is described by differential equations, rather
than algebraic equations. However, because numerical analysis can deal only with
discrete variables, it is first necessary to approximate a differential equation with a
system of algebraic equations. The well-known finite difference, finite element and
boundary element methods of analysis work in this manner. They use different ap-
proximations to achieve the “discretization,” but in each case the final task is the same:
solve a system (often a very large system) of linear, algebraic equations.

In summary, the modeling of linear systems invariably gives rise to equations of
the form Ax = b, where b is the input and x represents the response of the system. The
coefficient matrix A, which reflects the characteristics of the system, is independent
of the input. In other words, if the input is changed, the equations have to be solved
again with a different b, but the same A. Therefore, it is desirable to have an equa-
tion solving algorithm that can handle any number of constant vectors with minimal
computational effort.

Methods of Solution

There are two classes of methods for solving systems of linear, algebraic equations:
direct and iterative methods. The common characteristic of direct methods is that they

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

31 2.1 Introduction

transform the original equations into equivalent equations (equations that have the
same solution) that can be solved more easily. The transformation is carried out by
applying the three operations listed below. These so-called elementary operations do
not change the solution, but they may affect the determinant of the coefficient matrix
as indicated in parenthesis.

� Exchanging two equations (changes sign of |A|).
� Multiplying an equation by a nonzero constant (multiplies |A| by the same

constant).
� Multiplying an equation by a nonzero constant and then subtracting it from an-

other equation (leaves |A| unchanged).

Iterative, or indirect methods, start with a guess of the solution x, and then re-
peatedly refine the solution until a certain convergence criterion is reached. Iterative
methods are generally less efficient than their direct counterparts due to the large
number of iterations required. But they do have significant computational advan-
tages if the coefficient matrix is very large and sparsely populated (most coefficients
are zero).

Overview of Direct Methods

Table 2.1 lists three popular direct methods, each of which uses elementary operations
to produce its own final form of easy-to-solve equations.

Method Initial form Final form

Gauss elimination Ax = b Ux = c

LU decomposition Ax = b LUx = b

Gauss–Jordan elimination Ax = b Ix = c

Table 2.1

In the above table U represents an upper triangular matrix, L is a lower triangular
matrix and I denotes the identity matrix. A square matrix is called triangular if it
contains only zero elements on one side of the leading diagonal. Thus a 3 × 3 upper
triangular matrix has the form

U =

U11 U12 U13

0 U22 U23

0 0 U33

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

32 Systems of Linear Algebraic Equations

and a 3 × 3 lower triangular matrix appears as

L =

L11 0 0

L21 L22 0
L31 L32 L33

Triangular matrices play an important role in linear algebra, since they simplify
many computations. For example, consider the equations Lx = c, or

L11x1 = c1

L21x1 + L22x2 = c2

L31x1 + L32x2 + L33x3 = c3

...

If we solve the equations forward, starting with the first equation, the computations
are very easy, since each equation contains only one unknown at a time. The solution
would thus proceed as follows:

x1 = c1/L11

x2 = (c2 − L21x1)/L22

x3 = (c3 − L31x1 − L32x2)/L33

...

This procedure is known as forward substitution. In a similar way, Ux = c,encountered
in Gauss elimination, can easily be solved by back substitution, which starts with the
last equation and proceeds backward through the equations.

The equations LUx = b, which are associated with LU decomposition, can also
be solved quickly if we replace them with two sets of equivalent equations: Ly = b
and Ux = y. Now Ly = b can be solved for y by forward substitution, followed by the
solution of Ux = y by means of back substitution.

The equations Ix = c, which are produced by Gauss–Jordan elimination, are
equivalent to x = c (recall the identity Ix = x), so that c is already the solution.

EXAMPLE 2.1
Determine whether the following matrix is singular:

A =

2.1 −0.6 1.1

3.2 4.7 −0.8
3.1 −6.5 4.1

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

33 2.2 Gauss Elimination Method

Solution Laplace’s development of the determinant (see Appendix A2) about the first
row of A yields

|A| = 2.1

∣∣∣∣∣ 4.7 −0.8
−6.5 4.1

∣∣∣∣∣ − (−0.6)

∣∣∣∣∣3.2 −0.8
3.1 4.1

∣∣∣∣∣ + 1.1

∣∣∣∣∣3.2 4.7
3.1 −6.5

∣∣∣∣∣
= 2.1(14.07) + 0.6(15.60) + 1.1(−35.37) = 0

Since the determinant is zero, the matrix is singular. It can be verified that the singu-
larity is due to the following row dependency: (row 3) = (3 × row 1) − (row 2).

EXAMPLE 2.2
Solve the equations Ax = b, where

A =

 8 −6 2

−4 11 −7
4 −7 6

 b =

 28

−40
33

knowing that the LU decomposition of the coefficient matrix is (you should verify this)

A = LU =

 2 0 0

−1 2 0
1 −1 1

4 −3 1

0 4 −3
0 0 2

Solution We first solve the equations Ly = b by forward substitution:

2y1 = 28 y1 = 28/2 = 14
−y1 + 2y2 = −40 y2 = (−40 + y1)/2 = (−40 + 14)/2 = −13
y1 − y2 + y3 = 33 y3 = 33 − y1 + y2 = 33 − 14 − 13 = 6

The solution x is then obtained from Ux = y by back substitution:

2x3 = y3 x3 = y3/2 = 6/2 = 3
4x2 − 3x3 = y2 x2 = (y2 + 3x3)/4 = [−13 + 3(3)] /4 = −1

4x1 − 3x2 + x3 = y1 x1 = (y1 + 3x2 − x3)/4 = [14 + 3(−1) − 3] /4 = 2

Hence the solution is x =
[

2 −1 3
]T

2.2 Gauss Elimination Method

Introduction

Gauss elimination is the most familiar method for solving simultaneous equations. It
consists of two parts: the elimination phase and the solution phase. As indicated in
Table 2.1, the function of the elimination phase is to transform the equations into the

P1: JPJ/... P2: GDZ/... QC: GDZ/... T1: GDZ
CB904-02 CB904/Kiusalaas 0 521 85287 0 April 29, 2005 4:48

34 Systems of Linear Algebraic Equations

form Ux = c. The equations are then solved by back substitution. In order to illustrate
the procedure, let us solve the equations

4x1 − 2x2 + x3 = 11 (a)

−2x1 + 4x2 − 2x3 = −16 (b)

x1 − 2x2 + 4x3 = 17 (c)

Elimination phase The elimination phase utilizes only one of the elementary op-
erations listed in Table 2.1—multiplying one equation (say, equation j) by a constant
λ and subtracting it from another equation (equation i). The symbolic representation
of this operation is

Eq. (i) ← Eq. (i) − λ × Eq. (j) (2.6)

The equation being subtracted, namely Eq. (j), is called the pivot equation.
We start the elimination by taking Eq. (a) to be the pivot equation and choosing

the multipliers λ so as to eliminate x1 from Eqs. (b) and (c):

Eq. (b) ← Eq. (b) − (− 0.5) × Eq. (a)

Eq. (c) ← Eq. (c) − 0.25 × Eq. (a)

After this transformation, the equations become

4x1 − 2x2 + x3 = 11 (a)

3x2 − 1.5x3 = −10.5 (b)

−1.5x2 + 3.75x3 = 14.25 (c)

This completes the first pass. Now we pick (b) as the pivot equation and eliminate x2

from (c):

Eq. (c) ← Eq. (c) − (− 0.5) × Eq.(b)

which yields the equations

4x1 − 2x2 + x3 = 11 (a)

3x2 − 1.5x3 = −10.5 (b)

3x3 = 9 (c)

The elimination phase is now complete. The original equations have been replaced
by equivalent equations that can be easily solved by back substitution.

As pointed out before, the augmented coefficient matrix is a more conve-
nient instrument for performing the computations. Thus the original equations

