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Computational Models for Turbulent Reacting Flows

This book presents the current state of the art in computational models for turbulent reacting

flows, and analyzes carefully the strengths and weaknesses of the various techniques

described. The focus is on formulation of practical models as opposed to numerical issues

arising from their solution.

A theoretical framework based on the one-point, one-time joint probability density

function (PDF) is developed. It is shown that all commonly employed models for turbu-

lent reacting flows can be formulated in terms of the joint PDF of the chemical species and

enthalpy. Models based on direct closures for the chemical source term as well as trans-

ported PDF methods, are covered in detail. An introduction to the theory of turbulence

and turbulent scalar transport is provided for completeness.

The book is aimed at chemical, mechanical, and aerospace engineers in academia and

industry, as well as developers of computational fluid dynamics codes for reacting flows.
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Preface

In setting out to write this book, my main objective was to provide a reasonably complete

introduction to computational models for turbulent reacting flows for students, researchers,

and industrial end-users new to the field. The focus of the book is thus on the formulation of

models as opposed to the numerical issues arising from their solution. Models for turbulent

reacting flows are now widely used in the context of computational fluid dynamics (CFD)

for simulating chemical transport processes in many industries. However, although CFD

codes for non-reacting flows and for flows where the chemistry is relatively insensitive

to the fluid dynamics are now widely available, their extension to reacting flows is less

well developed (at least in commercial CFD codes), and certainly less well understood

by potential end-users. There is thus a need for an introductory text that covers all of

the most widely used reacting flow models, and which attempts to compare their relative

advantages and disadvantages for particular applications.

The primary intended audience of this book comprises graduate-level engineering stu-

dents and CFD practitioners in industry. It is assumed that the reader is familiar with basic

concepts from chemical-reaction-engineering (CRE) and transport phenomena. Some pre-

vious exposure to theory of turbulent flows would also be very helpful, but is not absolutely

required to understand the concepts presented. Nevertheless, readers who are unfamiliar

with turbulent flows are encouraged to review Part I of the recent text Turbulent Flows

by Pope (2000) before attempting to tackle the material in this book. In order to facilitate

this effort, I have used the same notation as Pope (2000) whenever possible. The princi-

pal differences in notation occur in the treatment of multiple reacting scalars. In general,

vector/matrix notation is used to denote the collection of thermodynamic variables (e.g.,

concentrations, temperature) needed to describe a reacting flow. Some familiarity with

basic linear algebra and elementary matrix operations is assumed.

The choice of models to include in this book was dictated mainly by their ability to

treat the wide range of turbulent reacting flows that occur in technological applications of

interest to chemical engineers. In particular, models that cannot treat ‘general’ chemical

xiii



xiv Preface

kinetics have been excluded. For example, I do not discuss models developed for pre-

mixed turbulent combustion based on the ‘turbulent burning velocity’ or on the ‘level-set’

approach. This choice stems from my desire to extend the CRE approach for modeling

reacting flows to be compatible with CFD codes. In this approach, the exact treatment of

the chemical kinetics is the sine qua non of a good model. Thus, although most of the

models discussed in this work can be used to treat non-premixed turbulent combustion,

this will not be our primary focus. Indeed, in order to keep the formulation as simple as

possible, all models are presented in the context of constant-density flows. In most cases,

the extension to variable-density flows is straightforward, and can be easily undertaken

after the reader has mastered the application of a particular model to constant-density

cases.

In order to compare various reacting-flow models, it is necessary to present them all

in the same conceptual framework. In this book, a statistical approach based on the one-

point, one-time joint probability density function (PDF) has been chosen as the common

theoretical framework. A similar approach can be taken to describe turbulent flows (Pope

2000). This choice was made due to the fact that nearly all CFD models currently in

use for turbulent reacting flows can be expressed in terms of quantities derived from a

joint PDF (e.g., low-order moments, conditional moments, conditional PDF, etc.). Ample

introductory material on PDF methods is provided for readers unfamiliar with the sub-

ject area. Additional discussion on the application of PDF methods in turbulence can be

found in Pope (2000). Some previous exposure to engineering statistics or elementary

probability theory should suffice for understanding most of the material presented in this

book.

The material presented in this book is divided into seven chapters and two appen-

dices. Chapter 1 provides background information on turbulent reacting flows and on the

two classical modeling approaches (chemical-reaction-engineering and fluid-mechanical)

used to describe them. The chapter ends by pointing out the similarity between the two

approaches when dealing with the effect of molecular mixing on chemical reactions,

especially when formulated in a Lagrangian framework.

Chapter 2 reviews the statistical theory of turbulent flows. The emphasis, however, is on

collecting in one place all of the necessary concepts and formulae needed in subsequent

chapters. The discussion of these concepts is necessarily brief, and the reader is referred to

Pope (2000) for further details. It is, nonetheless, essential that the reader become familiar

with the basic scaling arguments and length/time scales needed to describe high-Reynolds-

number turbulent flows. Likewise, the transport equations for important one-point statistics

in inhomogeneous turbulent flows are derived in Chapter 2 for future reference.

Chapter 3 reviews the statistical description of scalar mixing in turbulent flows. The

emphasis is again on collecting together the relevant length and time scales needed to

describe turbulent transport at high Reynolds/Schmidt numbers. Following Pope (2000),

a model scalar energy spectrum is constructed for stationary, isotropic scalar fields. Finally,

the transport equations for important one-point scalar statistics in inhomogeneous turbulent

mixing are derived in Chapter 3.
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In order to model turbulent reacting flows accurately, an accurate model for turbulent

transport is required. In Chapter 4 I provide a short introduction to selected computational

models for non-reacting turbulent flows. Here again, the goal is to familiarize the reader

with the various options, and to collect the most important models in one place for future

reference. For an in-depth discussion of the physical basis of the models, the reader is

referred to Pope (2000). Likewise, practical advice on choosing a particular turbulence

model can be found in Wilcox (1993).

With regards to reacting flows, the essential material is presented in Chapters 5 and 6.

Chapter 5 focuses on reacting flow models that can be expressed in terms of Eulerian (as

opposed to Lagrangian) transport equations. Such equations can be solved numerically

using standard finite-volume techniques, and thus can be easily added to existing CFD

codes for turbulent flows. Chapter 6, on the other hand, focuses on transported PDF or

full PDF methods. These methods typically employ a Lagrangian modeling perspective

and ‘non-traditional’ CFD methods (i.e., Monte-Carlo simulations). Because most readers

will not be familiar with the numerical methods needed to solve transported PDF models,

an introduction to the subject is provided in Chapter 7.

Chapter 5 begins with an overview of chemical kinetics and the chemical-source-term

closure problem in turbulent reacting flows. Based on my experience, closure methods

based on the moments of the scalars are of very limited applicability. Thus, the emphasis

in Chapter 5 is on presumed PDF methods and related closures based on conditioning on

the mixture fraction. The latter is a non-reacting scalar that describes mixing between non-

premixed inlet streams. A general definition of the mixture-fraction vector is derived in

Chapter 5. Likewise, it is shown that by using a so-called ‘mixture-fraction’ transformation

it is possible to describe a turbulent reacting flow by a reduced set of scalars involving

the mixture-fraction vector and a ‘reaction-progress’ vector. Assuming that the mixture-

fraction PDF is known, we introduce closures for the reaction-progress vector based on

chemical equilibrium, ‘simple’ chemistry, laminar diffusion flamelets, and conditional

moment closures. Closures based on presuming a form for the PDF of the reacting scalars

are also considered in Chapter 5.

Chapter 6 presents a relatively complete introduction to transported PDF methods

for turbulent reacting flow. For these flows, the principal attraction of transported PDF

methods is the fact that the highly non-linear chemical source term is treated without

closure. Instead, the modeling challenges are shifted to the molecular mixing model,

which describes the combined effects of turbulent mixing (i.e., the scalar length-scale

distribution) and molecular diffusion on the joint scalar PDF. Because the transported PDF

treatment of turbulence is extensively discussed in Pope (2000), I focus in Chapter 6 on

modeling issues associated with molecular mixing. The remaining sections in Chapter 6

deal with Lagrangian PDF methods, issues related to estimation of statistics based on

‘particle’ samples, and with tabulation methods for efficiently evaluating the chemical

source term.

Chapter 7 deviates from the rest of the book in that it describes computational methods

for ‘solving’ the transported PDF transport equation. Although Lagrangian PDF codes are
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generally preferable to Eulerian PDF codes, I introduce both methods and describe their

relative advantages and disadvantages. Because transported PDF codes are less developed

than standard CFD methods, readers wishing to utilize these methods should consult the

literature for recent advances.

The material covered in the appendices is provided as a supplement for readers interested

in more detail than could be provided in the main text. Appendix A discusses the derivation

of the spectral relaxation (SR) model starting from the scalar spectral transport equation.

The SR model is introduced in Chapter 4 as a non-equilibrium model for the scalar

dissipation rate. The material in Appendix A is an attempt to connect the model to a

more fundamental description based on two-point spectral transport. This connection

can be exploited to extract model parameters from direct-numerical simulation data of

homogeneous turbulent scalar mixing (Fox and Yeung 1999).

Appendix B discusses a new method (DQMOM) for solving the Eulerian transported

PDF transport equation without resorting to Monte-Carlo simulations. This offers the

advantage of solving for the joint composition PDF introduced in Chapter 6 using stan-

dard finite-volume CFD codes, without resorting to the chemical-source-term closures

presented in Chapter 5. Preliminary results found using DQMOM are quite encouraging,

but further research will be needed to understand fully the range of applicability of the

method.

I am extremely grateful to the many teachers, colleagues and graduate students who

have helped me understand and develop the material presented in this work. In particular,

I would like to thank Prof. John C. Matthews of Kansas State University who, through

his rigorous teaching style, attention to detail, and passion for the subject of transport

phenomena, first planted the seed in the author that has subsequently grown into the book

that you have before you. I would also like to thank my own students in the graduate

courses that I have offered on this subject who have provided valuable feedback about

the text. I want especially to thank Kuochen Tsai and P. K. Yeung, with whom I have

enjoyed close collaborations over the past several years, and Jim Hill at Iowa State for his

encouragement to undertake the writing of this book. I would also like to acknowledge the

important contributions of Daniele Marchisio in the development of the DQMOM method

described in Appendix B.

For his early support and encouragement to develop CFD models for chemical-reaction-

engineering applications, I am deeply indebted to my post-doctoral advisor, Jacques Viller-

maux. His untimely death in 1997 was a great loss to his friends and family, as well as to

the profession.

I am also deeply indebted to Stephen Pope in many different ways, starting from his

early encouragement in 1991 to consider PDF methods as a natural modeling framework

for describing micromixing in chemical reactors. However, I am particularly grateful that

his text on turbulent flows appeared before this work (relieving me of the arduous task

of covering this subject in detail!), and for his generosity in sharing early versions of his

text, as well as his LATEX macro files and precious advice on preparing the manuscript.
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Beginning with a Graduate Fellowship, my research in turbulent reacting flows has been

almost continuously funded by research grants from the US National Science Foundation.

This long-term support has made it possible for me to pursue novel research ideas outside

the traditional modeling approach used by chemical reaction engineers. In hindsight, the

application of CFD to chemical reactor design and analysis appears to be a rather natural

idea. Indeed, all major chemical producers now use CFD tools routinely to solve day-to-

day engineering problems. However, as recently as the 1990s the gap between chemical

reaction engineering and fluid mechanics was large, and only through a sustained effort

to understand both fields in great detail was it possible to bridge this gap. While much

research remains to be done to develop a complete set of CFD tools for chemical reac-

tion engineering (most notably in the area of multiphase turbulent reacting flows), one is

certainly justified in pointing to computational models for turbulent reacting flows as a

highly successful example of fundamental academic research that has led to technological

advances in real-world applications. Financial assistance provided by my industrial col-

laborators: Air Products, BASF, BASELL, Dow Chemical, DuPont, and Fluent, is deeply

appreciated.

I also want to apologize to my colleagues in advance for not mentioning many of

their excellent contributions to the field of turbulent reacting flows that have appeared

over the last 50 years. It was my original intention to include a section in Chapter 1 on

the history of turbulent-reacting-flow research. However, after collecting the enormous

number of articles that have appeared in the literature to date, I soon realized that the task

would require more time and space than I had at my disposal in order to do it justice.

Nonetheless, thanks to the efforts of Jim Herriott at Iowa State, I have managed to include

an extensive Reference section that will hopefully serve as a useful starting point for

readers wishing to delve into the history of particular subjects in greater detail.

Finally, I dedicate this book to my wife, Roberte. Her encouragement and constant

support during the long period of this project and over the years have been invaluable.





1

Turbulent reacting flows

1.1 Introduction

At first glance, to the uninitiated the subject of turbulent reacting flows would appear to

be relatively simple. Indeed, the basic governing principles can be reduced to a state-

ment of conservation of chemical species and energy ((1.28), p. 16) and a statement of

conservation of fluid momentum ((1.27), p. 16). However, anyone who has attempted to

master this subject will tell you that it is in fact quite complicated. On the one hand, in

order to understand how the fluid flow affects the chemistry, one must have an excel-

lent understanding of turbulent flows and of turbulent mixing. On the other hand, given

its paramount importance in the determination of the types and quantities of chemical

species formed, an equally good understanding of chemistry is required. Even a cursory

review of the literature in any of these areas will quickly reveal the complexity of the

task. Indeed, given the enormous research production in these areas during the twentieth

century, it would be safe to conclude that no one could simultaneously master all aspects

of turbulence, mixing, and chemistry.

Notwithstanding the intellectual challenges posed by the subject, the main impetus be-

hind the development of computational models for turbulent reacting flows has been the

increasing awareness of the impact of such flows on the environment. For example, in-

complete combustion of hydrocarbons in internal combustion engines is a major source of

air pollution. Likewise, in the chemical process and pharmaceutical industries, inadequate

control of product yields and selectivities can produce a host of undesirable byproducts.

Even if such byproducts could all be successfully separated out and treated so that they

are not released into the environment, the economic cost of doing so is often prohibitive.

Hence, there is an ever-increasing incentive to improve industrial processes and devices

in order for them to remain competitive in the marketplace.
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2 Turbulent reacting flows

Given their complexity and practical importance, it should be no surprise that different

approaches for dealing with turbulent reacting flows have developed over the last 50 years.

On the one hand, the chemical-reaction-engineering (CRE) approach came from the ap-

plication of chemical kinetics to the study of chemical reactor design. In this approach,

the details of the fluid flow are of interest only in as much as they affect the product yield

and selectivity of the reactor. In many cases, this effect is of secondary importance, and

thus in the CRE approach greater attention has been paid to other factors that directly

affect the chemistry. On the other hand, the fluid-mechanical (FM) approach developed

as a natural extension of the statistical description of turbulent flows. In this approach, the

emphasis has been primarily on how the fluid flow affects the rate of chemical reactions.

In particular, this approach has been widely employed in the study of combustion (Rosner

1986; Peters 2000; Poinsot and Veynante 2001; Veynante and Vervisch 2002).

In hindsight, the primary factor in determining which approach is most applicable to a

particular reacting flow is the characteristic time scales of the chemical reactions relative

to the turbulence time scales. In the early applications of the CRE approach, the chemical

time scales were larger than the turbulence time scales. In this case, one can safely ignore

the details of the flow. Likewise, in early applications of the FM approach to combustion,

all chemical time scales were assumed to be much smaller than the turbulence time scales.

In this case, the details of the chemical kinetics are of no importance, and one is free to

concentrate on how the heat released by the reactions interacts with the turbulent flow.

More recently, the shortcomings of each of these approaches have become apparent when

applied to systems wherein some of the chemical time scales overlap with the turbulence

time scales. In this case, an accurate description of both the turbulent flow and the chemistry

is required to predict product yields and selectivities accurately.

With these observations in mind, the reader may rightly ask ‘What is the approach used

in this book?’ The accurate answer to this question may be ‘both’ or ‘neither,’ depending

on your perspective. From a CRE perspective, the methods discussed in this book may

appear to favor the FM approach. Nevertheless, many of the models find their roots in

CRE, and one can argue that they have simply been rewritten in terms of detailed transport

models that can be solved using computational fluid dynamics (CFD) techniques (Fox

1996a; Harris et al. 1996; Ranada 2002). Likewise, from an FM perspective, very little

is said about the details of turbulent flows or the computational methods needed to study

them. Instead, we focus on the models needed to describe the source term for chemical

reactions involving non-premixed reactants. Moreover, for the most part, density variations

in the fluid due to mixing and/or heat release are not discussed in any detail. Otherwise,

the only criterion for including a particular model in this book is the requirement that

it must be able to handle detailed chemistry. This criterion is motivated by the need to

predict product yield and selectivity accurately for finite-rate reactions.

At first glance, the exclusion of premixed reactants and density variations might seem

to be too drastic. (Especially if one equates ‘turbulent reacting flows’ with ‘combustion.’1)

1 Excellent treatments of modern approaches to combustion modeling are available elsewhere (Kuznetsov and
Sabel’nikov 1990; Warnatz et al. 1996; Peters 2000; Poinsot and Veynante 2001).
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However, if one looks at the complete range of systems wherein turbulence and chemistry

interact, one will find that many of the so-called ‘mixing-sensitive’ systems involve liq-

uids or gas-phase reactions with modest density changes. For these systems, a key feature

that distinguishes them from classical combusting systems is that the reaction rates are

fast regardless of the temperature (e.g., acid–base chemistry). In contrast, much of the

dynamical behavior of typical combusting systems is controlled by the fact that the reac-

tants do not react at ambient temperatures. Combustion can thus be carried out in either

premixed or non-premixed modes, while mixing-sensitive reactions can only be carried

out in non-premixed mode. This distinction is of considerable consequence in the case

of premixed combustion. Indeed, models for premixed combustion occupy a large place

unto themselves in the combustion literature. On the other hand, the methods described in

this book will find utility in the description of non-premixed combustion. In fact, many of

them originated in this field and have already proven to be quite powerful for the modeling

of diffusion flames with detailed chemistry.

In the remainder of this chapter, an overview of the CRE and FM approaches to turbulent

reacting flows is provided. Because the description of turbulent flows and turbulent mixing

makes liberal use of ideas from probability and statistical theory, the reader may wish to

review the appropriate appendices in Pope (2000) before starting on Chapter 2. Further

guidance on how to navigate the material in Chapters 2–7 is provided in Section 1.5.

1.2 Chemical-reaction-engineering approach

The CRE approach for modeling chemical reactors is based on mole and energy balances,

chemical rate laws, and idealized flow models.2 The latter are usually constructed (Wen and

Fan 1975) using some combination of plug-flow reactors (PFRs) and continuous-stirred-

tank reactors (CSTRs). (We review both types of reactors below.) The CRE approach thus

avoids solving a detailed flow model based on the momentum balance equation. However,

this simplification comes at the cost of introducing unknown model parameters to describe

the flow rates between various sub-regions inside the reactor. The choice of a particular

model is far from unique,3 but can result in very different predictions for product yields

with complex chemistry.

For isothermal, first-order chemical reactions, the mole balances form a system of linear

equations. A non-ideal reactor can then be modeled as a collection of Lagrangian fluid

elements moving independently through the system. When parameterized by the amount of

time it has spent in the system (i.e., its residence time), each fluid element behaves as a batch

reactor. The species concentrations for such a system can be completely characterized by

the inlet concentrations, the chemical rate constants, and the residence time distribution

(RTD) of the reactor. The latter can be found from simple tracer experiments carried out

under identical flow conditions. A brief overview of RTD theory is given below.

2 In CRE textbooks (Hill 1977; Levenspiel 1998; Fogler 1999), the types of reactors considered in this book are
referred to as non-ideal. The flow models must take into account fluid-mixing effects on product yields.

3 It has been described as requiring ‘a certain amount of art’ (Fogler 1999).
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For non-isothermal or non-linear chemical reactions, the RTD no longer suffices to

predict the reactor outlet concentrations. From a Lagrangian perspective, local interac-

tions between fluid elements become important, and thus fluid elements cannot be treated

as individual batch reactors. However, an accurate description of fluid-element interac-

tions is strongly dependent on the underlying fluid flow field. For certain types of reactors,

one approach for overcoming the lack of a detailed model for the flow field is to in-

put empirical flow correlations into so-called zone models. In these models, the reactor

volume is decomposed into a finite collection of well mixed (i.e., CSTR) zones connected

at their boundaries by molar fluxes.4 (An example of a zone model for a stirred-tank reac-

tor is shown in Fig. 1.5.) Within each zone, all fluid elements are assumed to be identical

(i.e., have the same species concentrations). Physically, this assumption corresponds to

assuming that the chemical reactions are slower than the local micromixing time.5

For non-linear chemical reactions that are fast compared with the local micromixing

time, the species concentrations in fluid elements located in the same zone cannot be

assumed to be identical (Toor 1962; Toor 1969; Toor and Singh 1973; Amerja et al. 1976).

The canonical example is a non-premixed acid–base reaction for which the reaction rate

constant is essentially infinite. As a result of the infinitely fast reaction, a fluid element

can contain either acid or base, but not both. Due to the chemical reaction, the local

fluid-element concentrations will therefore be different depending on their stoichiometric

excess of acid or base. Micromixing will then determine the rate at which acid and base are

transferred between fluid elements, and thus will determine the mean rate of the chemical

reaction.

If all chemical reactions are fast compared with the local micromixing time, a non-

premixed system can often be successfully described in terms of the mixture fraction.6

The more general case of finite-rate reactions requires a detailed description of micromix-

ing or, equivalently, the interactions between local fluid elements. In the CRE approach,

micromixing is modeled using a Lagrangian description that follows individual fluid ele-

ments as they flow through the reactor. (Examples of micromixing models are discussed

below.) A key parameter in such models is the micromixing time, which must be related

to the underlying flow field.

For canonical turbulent flows (Pope 2000), the flow parameters required to complete the

CRE models are readily available. However, for the complex flow fields present in most

chemical reactors, the flow parameters must be found either empirically or by solving

a CFD turbulence model. If the latter course is taken, the next logical step would be to

attempt to reformulate the CRE model in terms of a set of transport equations that can

be added to the CFD model. The principal complication encountered when following this

path is the fact that the CRE models are expressed in a Lagrangian framework, whilst the

CFD models are expressed in an Eulerian framework. One of the main goals of this book

4 The zones are thus essentially identical to the finite volumes employed in many CFD codes.
5 The micromixing time has an exact definition in terms of the rate of decay of concentration fluctuations.
6 The mixture fraction is defined in Chapter 5.
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Figure 1.1. Sketch of a plug-flow reactor.

is thus to demonstrate how the two approaches can be successfully combined when both

are formulated in terms of an appropriate statistical theory.

In the remainder of this section, we will review those components of the CRE approach

that will be needed to understand the modeling approach described in detail in subsequent

chapters. Further details on the CRE approach can be found in introductory textbooks on

chemical reaction engineering (e.g., Hill 1977; Levenspiel 1998; Fogler 1999).

1.2.1 PFR and CSTR models

The PFR model is based on turbulent pipe flow in the limit where axial dispersion can be

assumed to be negligible (see Fig. 1.1). The mean residence time τpfr in a PFR depends

only on the mean axial fluid velocity 〈Uz〉 and the length of the reactor Lpfr:

τpfr ≡ Lpfr

〈Uz〉 . (1.1)

Defining the dimensionless axial position by z∗ ≡ z/Lpfr, the PFR model for the species

concentrations φ becomes7

dφ

dz∗ = τpfrS(φ) with φ(0) = φin = inlet concentrations, (1.2)

where S is the chemical source term. Given the inlet concentrations and the chemical

source term, the PFR model is readily solved using numerical methods for initial-value

problems to find the outlet concentrations φ(1).

The PFR model ignores mixing between fluid elements at different axial locations. It can

thus be rewritten in a Lagrangian framework by substituting α = τpfrz∗, where α denotes

the elapsed time (or age) that the fluid element has spent in the reactor. At the end of the

PFR, all fluid elements have the same age, i.e., α = τpfr. Moreover, at every point in the

PFR, the species concentrations are uniquely determined by the age of the fluid particles

at that point through the solution to (1.2).

In addition, the PFR model assumes that mixing between fluid elements at the same

axial location is infinitely fast. In CRE parlance, all fluid elements are said to be well

micromixed. In a tubular reactor, this assumption implies that the inlet concentrations are

uniform over the cross-section of the reactor. However, in real reactors, the inlet streams

are often segregated (non-premixed) at the inlet, and a finite time is required as they move

down the reactor before they become well micromixed. The PFR model can be easily

7 The notation is chosen to be consistent with that used in the remainder of the book. Alternative notation is
employed in most CRE textbooks.
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Figure 1.2. Sketch of a continuous-stirred-tank reactor (CSTR).

extended to describe radial mixing by introducing a micromixing model. We will look at

a poorly micromixed PFR model below.

The CSTR model, on the other hand, is based on a stirred vessel with continuous inflow

and outflow (see Fig. 1.2). The principal assumption made when deriving the model is

that the vessel is stirred vigorously enough to eliminate all concentration gradients inside

the reactor (i.e., the assumption of well stirred). The outlet concentrations will then be

identical to the reactor concentrations, and a simple mole balance yields the CSTR model

equation:

dφ

dt∗ = τcstrS(φ) + φin − φ. (1.3)

The CSTR mean residence time is defined in terms of the inlet flow rate qin and the reactor

volume Vcstr by

τcstr ≡ Vcstr

qin
, (1.4)

and the dimensionless time t∗ is defined by t∗ ≡ t/τcstr. At steady state, the left-hand side

of (1.3) is zero, and the CSTR model reduces to a system of (non-linear) equations that

can be solved for φ.

The CSTR model can be derived from the fundamental scalar transport equation (1.28)

by integrating the spatial variable over the entire reactor volume. This process results in

an integral for the volume-average chemical source term of the form:∫
Vcstr

S(φ(x, t)) dx = VcstrS(φ(t)), (1.5)

where the right-hand side is found by invoking the assumption that φ is independent of x.

In the CRE parlance, the CSTR model applies to a reactor that is both well macromixed

and well micromixed (Fig. 1.3). The well macromixed part refers to the fact that a fluid

element’s location in a CSTR is independent of its age.8 This fact follows from the well

8 The PFR is thus not well macromixed since a fluid element’s location in a PFR is a linear function of its age.



7 1.2 Chemical-reaction-engineering approach

well macromixed
poorly micromixed

well macromixed
well micromixed

Figure 1.3. Sketch of a poorly micromixed versus a well micromixed CSTR.

stirred assumption, but is not equivalent to it. Indeed, if fluid elements inside the reactor

did not interact due to micromixing, then the fluid concentrations φ would depend only

on the age of the fluid element. Thus, the CSTR model also implies that the reactor is well

micromixed.9 We will look at the extension of the CSTR model to well macromixed but

poorly micromixed systems below.

The applicability of the PFR and CSTR models for a particular set of chemical reactions

depends on the characteristic time scales of reaction rates relative to the mixing times.

In the PFR model, the only relevant mixing times are the ones that characterize radial

dispersion and micromixing. The former will be proportional to the integral time scale of

the turbulent flow,10 and the latter will depend on the inlet flow conditions but, at worst,

will also be proportional to the turbulence integral time scale. Thus, the PFR model will

be applicable to chemical reaction schemes11 wherein the shortest chemical time scale is

greater than or equal to the turbulence integral time scale.

On the other hand, for the CSTR model, the largest time scale for the flow will usually

be the recirculation time.12 Typically, the recirculation time will be larger than the largest

turbulence integral time scale in the reactor, but smaller than the mean residence time.

Chemical reactions with characteristic time scales larger than the recirculation time can

be successfully treated using the CSTR model. Chemical reactions that have time scales

intermediate between the turbulence integral time scale and the recirculation time should

be treated by a CSTR zone model. Finally, chemical reactions that have time scales smaller

than the turbulence integral time scale should be described by a micromixing model.

9 In the statistical theory of fluid mixing presented in Chapter 3, well macromixed corresponds to the condition
that the scalar means 〈φ〉 are independent of position, and well micromixed corresponds to the condition that
the scalar variances are null. An equivalent definition can be developed from the residence time distribution
discussed below.

10 In Chapter 2, we show that the turbulence integral time scale can be defined in terms of the turbulent kinetic
energy k and the turbulent dissipation rate ε by τu = k/ε. In a PFR, τu is proportional to D/〈Uz〉, where D is
the tube diameter.

11 The chemical time scales are defined in Chapter 5. In general, they will be functions of the temperature, pressure,
and local concentrations.

12 Heuristically, the recirculation time is the average time required for a fluid element to return to the impeller
region after leaving it.
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Figure 1.4. Sketch of the residence time distribution (RTD) in a non-ideal reactor.

1.2.2 RTD theory

In the CRE literature, the residence time distribution (RTD) has been shown to be a

powerful tool for handling isothermal first-order reactions in arbitrary reactor geometries.

(See Nauman and Buffham (1983) for a detailed introduction to RTD theory.) The basic

ideas behind RTD theory can be most easily understood in a Lagrangian framework. The

residence time of a fluid element is defined to be its age α as it leaves the reactor. Thus,

in a PFR, the RTD function E(α) has the simple form of a delta function:

Epfr(α) = δ(α − τpfr), (1.6)

i.e., all fluid elements have identical residence times. On the other hand, in a CSTR, the

RTD function has an exponential form:13

Ecstr(α) = 1

τcstr
exp

(
− α

τcstr

)
. (1.7)

RTD functions for combinations of ideal reactors can be constructed (Wen and Fan 1975)

based on (1.6) and (1.7). For non-ideal reactors, the RTD function (see example in Fig. 1.4)

can be measured experimentally using passive tracers (Levenspiel 1998; Fogler 1999), or

extracted numerically from CFD simulations of time-dependent passive scalar mixing.

In this book, an alternative description based on the joint probability density function

(PDF) of the species concentrations will be developed. (Exact definitions of the joint PDF

and related quantities are given in Chapter 3.) The RTD function is in fact the PDF of the

fluid-element ages as they leave the reactor. The relationship between the PDF description

and the RTD function can be made transparent by defining a fictitious chemical species

13 The outflow of a CSTR is a Poisson process, i.e., fluid elements are randomly selected regardless of their position
in the reactor. The waiting time before selection for a Poisson process has an exponential probability distribution.
See Feller (1971) for details.
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φτ whose inlet concentration is null, and whose chemical source term is Sτ = 1. Owing to

turbulent mixing in a chemical reactor, the PDF ofφτ will be a function of the composition-

space variable ψ , the spatial location in the reactor x, and time t . Thus, we will denote

the PDF by fτ (α; x, t). The PDF of φτ at the reactor outlet, xoutlet, is then equal to the

time-dependent RTD function:

E(α, t) = fτ (α; xoutlet, t). (1.8)

At steady state, the PDF (and thus the RTD function) will be independent of time.

Moreover, the internal-age distribution at a point x inside the reactor is just I (α; x, t) =
fτ (α; x, t). For a statistically homogeneous reactor (i.e., a CSTR), the PDF is independent

of position, and hence the steady-state internal-age distribution I (α) will be independent

of time and position.

One of the early successes of the CRE approach was to show that RTD theory suffices

to treat the special case of non-interacting fluid elements (Danckwerts 1958). For this

case, each fluid element behaves as a batch reactor:

dφbatch

dα
= S(φbatch) with φbatch(0) = φin. (1.9)

For fixed initial conditions, the solution to this expression is uniquely defined in terms of

the age, i.e., φbatch(α). The joint composition PDF fφ(ψ; x, t) at the reactor outlet is then

uniquely defined in terms of the time-dependent RTD distribution:14

fφ(ψ; xoutlet, t) =
∫ ∞

0
δ(ψ − φbatch(α))E(α, t) dα, (1.10)

where the multi-variable delta function is defined in terms of the product of single-variable

delta functions for each chemical species by

δ(ψ − φ) ≡
∏
β

δ(ψβ − φβ). (1.11)

For the general case of interacting fluid elements, (1.9) and (1.10) no longer hold.

Indeed, the correspondence between the RTD function and the composition PDF breaks

down because the species concentrations inside each fluid element can no longer be

uniquely parameterized in terms of the fluid element’s age. Thus, for the general case of

complex chemistry in non-ideal reactors, a mixing theory based on the composition PDF

will be more powerful than one based on RTD theory.

The utility of RTD theory is best illustrated by its treatment of first-order chemical reac-

tions. For this case, each fluid element can be treated as a batch reactor.15 The concentration

14 At steady state, the left-hand side of this expression has independent variables ψ. For fixed ψ = ψ∗, the integral
on the right-hand side sweeps over all fluid elements in search of those whose concentrations φbatch are equal to
ψ∗. If these fluid elements have the same age (say,α = α∗), then the joint PDF reduces to fφ(ψ∗; xoutlet) = E(α∗),
where E(α∗) dα∗ is the fraction of fluid elements with age α∗.

15 Because the outlet concentrations will not depend on it, micromixing between fluid particles can be neglected.
The reader can verify this statement by showing that the micromixing term in the poorly micromixed CSTR and
the poorly micromixed PFR falls out when the mean outlet concentration is computed for a first-order chemical
reaction. More generally, one can show that the chemical source term appears in closed form in the transport
equation for the scalar means.
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of a chemical species in a fluid element then depends only on its age through the solution

to the batch-reactor model:

dφ

dα
= −kφ with φ(0) = φin, (1.12)

i.e.,

φ(α) = φine−kα. (1.13)

In RTD theory, the concentrations at the reactor outlet are found by averaging over the

ages of all fluid elements leaving the reactor:16

φout =
∫ ∞

0
φ(α)E(α) dα. (1.14)

Thus, for first-order reactions, exact solutions can be found for the outlet concentration,

e.g., from (1.13):(
φout

φin

)
pfr

= e−kτpfr and

(
φout

φin

)
cstr

= 1

1 + kτcstr
.

For higher-order reactions, the fluid-element concentrations no longer obey (1.9). Ad-

ditional terms must be added to (1.9) in order to account for micromixing (i.e., local

fluid-element interactions due to molecular diffusion). For the poorly micromixed PFR

and the poorly micromixed CSTR, extensions of (1.9) can be employed with (1.14) to

predict the outlet concentrations in the framework of RTD theory. For non-ideal reactors,

extensions of RTD theory to model micromixing have been proposed in the CRE liter-

ature. (We will review some of these micromixing models below.) However, due to the

non-uniqueness between a fluid element’s concentrations and its age, micromixing models

based on RTD theory are generally ad hoc and difficult to validate experimentally.

1.2.3 Zone models

An alternative method to RTD theory for treating non-ideal reactors is the use of zone

models. In this approach, the reactor volume is broken down into well mixed zones (see

the example in Fig. 1.5). Unlike RTD theory, zone models employ an Eulerian framework

that ignores the age distribution of fluid elements inside each zone. Thus, zone models

ignore micromixing, but provide a model for macromixing or large-scale inhomogeneity

inside the reactor.

Denoting the transport rate of fluid from zone i to zone j by fi j , a zone model can be

expressed mathematically in terms of mole balances for each of the N zones:

dφ(i)

dt
=

N+1∑
j=0

(
f jiφ

( j) − fi jφ
(i))+ S

(
φ(i)) i = 1, . . . , N . (1.15)

16 For non-interacting fluid elements, the RTD function is thus equivalent to the joint PDF of the concentrations.
In composition space, the joint PDF would lie on a one-dimensional sub-manifold (i.e., have a one-dimensional
support) parameterized by the age α. The addition of micromixing (i.e., interactions between fluid elements)
will cause the joint PDF to spread in composition space, thereby losing its one-dimensional support.
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Figure 1.5. Sketch of a 16-zone model for a stirred-tank reactor.

In this expression, the inlet-zone ( j = 0) concentrations are defined by φ(0) = φin, and the

inlet transport rates are denoted by f0i . Likewise, the outlet transport rates are denoted

by fi N+1. Thus, by definition, fi0 = fN+1 i = 0.

The transport rates fi j will be determined by the turbulent flow field inside the reac-

tor. When setting up a zone model, various methods have been proposed to extract the

transport rates from experimental data (Mann et al. 1981; Mann et al. 1997), or from

CFD simulations. Once the transport rates are known, (1.15) represents a (large) system

of coupled ordinary differential equations (ODEs) that can be solved numerically to find

the species concentrations in each zone and at the reactor outlet.

The form of (1.15) is identical to the balance equation that is used in finite-volume

CFD codes for passive scalar mixing.17 The principal difference between a zone model

and a finite-volume CFD model is that in a zone model the grid can be chosen to optimize

the capture of inhomogeneities in the scalar fields independent of the mean velocity and

turbulence fields.18 Theoretically, this fact could be exploited to reduce the number of

zones to the minimum required to resolve spatial gradients in the scalar fields, thereby

greatly reducing the computational requirements.

In general, zone models are applicable to chemical reactions for which local micromix-

ing effects can be ignored. In turbulent flows, the transport rates appearing in (1.15)

will scale with the local integral-scale turbulence frequency19 (Pope 2000). Thus, strictly

speaking, zone models20 will be applicable to turbulent reacting flows for which the local

chemical time scales are all greater than the integral time scale of the turbulence. For

chemical reactions with shorter time scales, micromixing can have a significant impact

on the species concentrations in each zone, and at the reactor outlet (Weinstein and Adler

1967; Paul and Treybal 1971; Ott and Rys 1975; Bourne and Toor 1977; Bourne et al.

1977; Bourne 1983).

17 In a CFD code, the transport rate will depend on the mean velocity and turbulent diffusivity for each zone.
18 The CFD code must use a grid that also resolves spatial gradients in the mean velocity and turbulence fields.

At some locations in the reactor, the scalar fields may be constant, and thus a coarser grid (e.g., a zone) can be
employed.

19 The integral-scale turbulence frequency is the inverse of the turbulence integral time scale. The turbulence time
and length scales are defined in Chapter 2.

20 Similar remarks apply for CFD models that ignore sub-grid-scale mixing. The problem of closing the chemical
source term is discussed in detail in Chapter 5.
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Figure 1.6. Four micromixing models that have appeared in the literature. From top to
bottom: maximum-mixedness model; minimum-mixedness model; coalescence-redispersion
model; three-environment model.

1.2.4 Micromixing models

Danckwerts (1953) pointed out that RTD theory is insufficient to predict product yields

for complex kinetics and noted that a general treatment of this case is extremely difficult

(Danckwerts 1957; Danckwerts 1958). Nonetheless, the desire to quantify the degree

of segregation in the RTD context has led to a large collection of micromixing models

based on RTD theory (e.g., Zwietering 1959; Zwietering 1984). Some of these models are

discussed in CRE textbooks (e.g., Fogler 1999). Four examples are shown in Fig. 1.6. Note

that these micromixing models do not contain or use any information about the detailed

flow field inside the reactor. The principal weakness of RTD-based micromixing models is

the lack of a firm physical basis for determining the exchange parameters. We will discuss

this point in greater detail in Chapter 3. Moreover, since RTD-based micromixing models

do not predict the spatial distribution of reactants inside the reactor, it is impossible to

validate fully the model predictions.

Another class of micromixing models is based on fluid environments (Nishimura and

Matsubara 1970; Ritchie and Tobgy 1979; Mehta and Tarbell 1983a; Mehta and Tarbell

1983b). The basic idea behind these models is to divide composition space into a small

number of environments that interact due to micromixing. Thus, unlike zone models, which

divide up physical space, each environment can be thought of as existing at a particular
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spatial location with a certain probability. In some cases, the probabilities are fixed (e.g.,

equal to the inverse of the number of environments). In other cases, the probabilities evolve

due to the interactions between environments. In Section 5.10 we will discuss in detail

the general formulation of multi-environment micromixing models in the context of CFD

models. Here, we will limit our consideration to two simple models: the interaction by

exchange with the mean (IEM) model for the poorly micromixed PFR and the IEM model

for the poorly micromixed CSTR.

The IEM model for a non-premixed PFR employs two environments with probabilities

p1 and p2 = 1 − p1, where p1 is the volume fraction of stream 1 at the reactor inlet. In

the IEM model, p1 is assumed to be constant.21 The concentration in environment n is

denoted by φ(n) and obeys

dφ(n)

dα
= 1

tiem

(〈φ(α)〉 − φ(n))+ S
(
φ(n)) with φ(n)(0) = φ(n)

in , (1.16)

where φ(n)
in is the inlet concentration to environment n, and tiem is the IEM micromixing

time. The first term on the right-hand side of (1.16) is a simple linear model for fluid–

particle interactions. In this case, all fluid elements with age α are assumed to interact by

exchanging matter with a fictitious fluid element whose concentration is 〈φ(α)〉.
By definition, averaging (1.16) with respect to the operator 〈·〉 (defined below in (1.18))

causes the micromixing term to drop out:22

d〈φ〉
dα

= 〈S〉 with 〈φ(0)〉 = 〈φin〉. (1.17)

Note that in order to close (1.16), the micromixing time must be related to the underlying

flow field. Nevertheless, because the IEM model is formulated in a Lagrangian framework,

the chemical source term in (1.16) appears in closed form. This is not the case for the

chemical source term in (1.17).

The mean concentrations appearing in (1.16) are found by averaging with respect to

the internal-age transfer function23 H (α, β) and the environments:24

〈φ(α)〉 =
2∑

n=1

pn

∫ ∞

0
φ(n)(β)H (α, β) dβ. (1.18)

For the PFR and the CSTR, H (α, β) has particularly simple forms:

Hpfr(α, β) = δ(β − α) and Hcstr(α, β) = Ecstr(β). (1.19)

21 If p1 is far from 0.5 (i.e., non-equal-volume mixing), the IEM model yields poor predictions. Alternative models
(e.g., the E-model of Baldyga and Bourne (1989)) that account for the evolution of p1 should be employed to
model non-equal-volume mixing.

22 In Chapter 6, this is shown to be a general physical requirement for all micromixing models, resulting from the
fact that molecular diffusion in a closed system conserves mass. 〈φ(α)〉 is the mean concentration with respect
to all fluid elements with age α. Thus, it is a conditional expected value.

23 H (α, β) is a weighting kernel to generate the contribution of fluid elements with age β to the mean concentration
at age α. Similarly, in the transported PDF codes discussed in Chapter 6, a spatial weighting kernel of the form
hW(s) appears in the definition of the local mean concentrations.

24 For a CSTR, (1.18) is numerically unstable for small tiem (Fox 1989). For numerical work, it should thus be
replaced by an equivalent integro-differential equation (Fox 1991).
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Note that the mean concentrations in the PFR are just the volume-averaged concentrations

of the two environments with the same age. On the other hand, in the CSTR, the mean

concentrations are independent of age (i.e., they are the same at every point in the reactor).

The IEM model can be extended to model unsteady-state stirred reactors (Fox and

Villermaux 1990b), and to study micromixing effects for complex reactions using bifur-

cation theory (Fox and Villermaux 1990a; Fox et al. 1990; Fox 1991; Fox et al. 1994).

Nevertheless, its principal weaknesses when applied to stirred reactors are the need to

specify an appropriate micromixing time and the assumption that the mean concentrations

are independent of the spatial location in the reactor. However, as discussed in Section 5.10,

these shortcomings can be overcome by combining multi-environment micromixing mod-

els with CFD models for stirred-tank reactors. A more detailed, but similar, approach

based on transported PDF methods is discussed in Chapter 6. Both multi-environment

CFD models and transported PDF methods essentially combine the advantages of both

zone models and micromixing models to provide a more complete description of turbulent

reacting flows. An essential ingredient in all approaches for modeling micromixing is the

choice of the micromixing time, which we discuss next.

1.2.5 Micromixing time

The micromixing time is a key parameter when modeling fast chemical reactions in non-

premixed reactors (Fox 1996a). Indeed, in many cases, the choice of the micromixing

time has a much greater impact on the predicted product distribution than the choice of

the micromixing model. When combining a CRE micromixing model with a CFD turbu-

lence model, it is thus paramount to understand the relationship between the micromixing

time and the scalar dissipation rate.25 The latter is employed in CFD models for scalar

mixing based on the transport equation for the scalar variance. The relationship between

the micromixing time and the scalar dissipation rate is most transparent for the poorly

micromixed PFR. We will thus consider this case in detail using the IEM model.

Consider an inert (non-reacting) scalar φ in a poorly micromixed PFR. The IEM model

for this case reduces to

dφ(n)

dα
= 1

tiem

(〈φ(α)〉 − φ(n)
)

with n = 1, 2, (1.20)

where

〈φ(α)〉 = p1φ
(1)(α) + p2φ

(2)(α). (1.21)

Since the inlet concentrations will have no effect on the final result, for simplicity we let

φ(1)(0) = 0 and φ(2)(0) = 1. Applying (1.18) to (1.20), it is easily shown that the scalar

mean is constant and given by 〈φ(α)〉 = p2.

25 The scalar dissipation rate is defined in Chapter 3.
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The next step is to derive an expression for the scalar variance defined by

〈φ′2(α)〉 ≡ 〈φ2(α)〉 − 〈φ(α)〉2 (1.22)

wherein

〈φ2(α)〉 =
2∑

n=1

pn
(
φ(n)(α)

)2
. (1.23)

Differentiating (1.22) with respect to α and substituting (1.20) leads to

d〈φ′2〉
dα

= − 2

tiem
〈φ′2〉. (1.24)

In Section 3.2, we show that under the same conditions the right-hand side of (1.24) is

equal to the negative scalar dissipation rate ((3.45), p. 70). Thus, the micromixing time is

related to the scalar dissipation rate εφ and the scalar variance by

tiem = τφ ≡ 2〈φ′2〉
εφ

. (1.25)

Choosing the micromixing time in a CRE micromixing model is therefore equivalent to

choosing the scalar dissipation rate in a CFD model for scalar mixing.

In the CRE literature, turbulence-based micromixing models have been proposed that

set the micromixing time proportional to the Kolmogorov time scale:

tiem ∝
(ν
ε

)1/2
, (1.26)

where ν is the kinematic viscosity of the fluid, and ε is the turbulent dissipation rate. As

discussed in detail in Chapter 3, this choice is only valid under very limited inlet conditions.

In fact, the micromixing time will be strongly dependent on the inlet conditions of the

scalar field and the underlying turbulence fields. In CFD models for scalar mixing, the

micromixing time is usually found either by assuming that the scalar dissipation rate

is controlled by the rate of scalar energy transfer from large to small scales (the so-

called equilibrium model), or by solving a transport equation for ε. We will look at both

approaches in Chapters 3 and 4.

1.3 Fluid-mechanical approach

The FM approach to modeling turbulent reacting flows had as its initial focus the de-

scription of turbulent combustion processes (e.g., Chung 1969; Chung 1970; Flagan and

Appleton 1974; Bilger 1989). In many of the early applications, the details of the chemical

reactions were effectively ignored because the reactions could be assumed to be in local

chemical equilibrium.26 Thus, unlike the early emphasis on slow and finite-rate reactions

26 In other words, all chemical reactions are assumed to occur much faster than micromixing.
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in the CRE literature, much of the early FM literature on reacting flows emphasized the

modeling of the turbulent flow field and the effects of density changes due to chemical

reactions. However, more recently, the importance of finite-rate reactions in combustion

processes has become clear. This, in turn, has led to the development of FM approaches

that can handle complex chemistry but are numerically tractable (Warnatz et al. 1996;

Peters 2000).

Like CRE micromixing models, the goal of current FM approaches is the accurate

treatment of the chemical source term and molecular mixing. As a starting point, most FM

approaches for turbulent reacting flows can be formulated in terms of the joint PDF of the

velocity and the composition variables. Thus, many experimental and theoretical studies

have reported on velocity and concentration fluctuation statistics in simple canonical

flows (Corrsin 1958; Corrsin 1961; Toor 1962; Lee and Brodkey 1964; Keeler et al. 1965;

Vassilatos and Toor 1965; Brodkey 1966; Gegner and Brodkey 1966; Lee 1966; Corrsin

1968; Toor 1969; Torrest and Ranz 1970; Mao and Toor 1971; Gibson and Libby 1972; Lin

and O’Brien 1972; Dopazo and O’Brien 1973; Lin and O’Brien 1974; Dopazo and O’Brien

1976; Hill 1976; Breidenthal 1981; Bennani et al. 1985; Lundgren 1985; Koochesfahani

and Dimotakis 1986; Hamba 1987; Komori et al. 1989; Bilger et al. 1991; Guiraud et al.

1991; Komori et al. 1991a; Komori et al. 1991b; Brown and Bilger 1996 ). In Chapters 2

and 3, we review the statistical description of turbulent flows and turbulent scalar mixing.

In the remainder of this section, we give a brief overview of the FM approach to modeling

turbulent reacting flows. In the following section, we will compare the similarities and

differences between the CRE and FM approaches.

1.3.1 Fundamental transport equations

For the constant-density flows considered in this work,27 the fundamental governing equa-

tions are the Navier–Stokes equation for the fluid velocity U (Bird et al. 2002):

∂Ui

∂t
+ U j

∂Ui

∂x j
= ν ∂

2Ui

∂x j∂x j
− 1

ρ

∂ p

∂xi
, (1.27)

and the reacting scalar transport equation (φα represents a chemical species concentration

or enthalpy):

∂φα

∂t
+ U j

∂φα

∂x j
= �α ∂

2φα

∂x j∂x j
+ Sα(φ). (1.28)

In interpreting these expressions, the usual summation rules for roman indices apply, e.g.,

ai bi = a1b1 + a2b2 + a3b3. Note that the scalar fields are assumed to be passive, i.e., φ

does not appear in (1.27).

The fluid density appearing in (1.27) is denoted by ρ and is assumed to be constant. The

molecular-transport coefficients appearing in the governing equations are the kinematic

27 Although this choice excludes combustion, most of the modeling approaches can be directly extended to non-
constant-density flows with minor modifications.
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viscosity ν, and the molecular and thermal diffusivities �α for the chemical species and

enthalpy fields. The pressure field p appearing on the right-hand side of (1.27) is governed

by a Poisson equation:

∇2 p = −ρ ∂Ui

∂x j

∂U j

∂xi
. (1.29)

This expression is found from (1.27) using the continuity equation for a constant-density

flow:

∇ · U = 0. (1.30)

The last term on the right-hand side of (1.28) is the chemical source term. As will be

seen in Chapter 5, the chemical source term is often a complex, non-linear function of the

scalar fields φ, and thus solutions to (1.28) are very different than those for the inert-scalar

transport equation wherein S is null.

1.3.2 Turbulence models

Under the operating conditions of most industrial-scale chemical reactors, the solution

to (1.27) will be turbulent with a large range of length and time scales (Bischoff 1966;

McKelvey et al. 1975; Brodkey 1984; Villermaux 1991). As a consequence of the com-

plexity of the velocity field, chemical-reactor models based on solving (1.27) directly

are computationally intractable. Because of this, in its early stages of development, the

FM approach for turbulent mixing was restricted to describing canonical turbulent flows

(Corrsin 1951a; Corrsin 1951b; Corrsin 1957; Gibson and Schwarz 1963a; Gibson and

Schwarz 1963b; Lee and Brodkey 1964; Nye and Brodkey 1967a; Nye and Brodkey 1967b;

Gibson 1968a; Gibson 1968b; Grant et al. 1968; Christiansen 1969; Gibson et al. 1970),

and thus had little impact on CRE models for industrial-scale chemical reactors. However,

with the advances in computing technology, CFD has become a viable tool for simulating

industrial-scale chemical reactors using turbulence models based on the statistical theory

of turbulent flows.

The potential economic impact of CFD in many engineering disciplines has led to con-

siderable research in developing Reynolds-averaged Navier–Stokes (RANS) turbulence

models (Daly and Harlow 1970; Launder and Spalding 1972; Launder 1991; Hanjalić

1994; Launder 1996) that can predict the mean velocity 〈U〉, turbulent kinetic energy k,

and the turbulent dissipation rate ε in high-Reynolds-number turbulent flows.28 These and

more sophisticated models are now widely available in commercial CFD codes, and are

routinely employed for reactor design in the chemical process industry. For completeness,

we review some of the most widely used turbulence models in Chapter 4. A more thorough

discussion of the foundations of turbulence modeling can be found in Pope (2000).

Similarly, turbulent scalar transport models based on (1.28) for the case where the

chemical source term is null have been widely studied. Because (1.28) in the absence

28 The experienced reader will recognize these CFD models as the so-called RANS turbulence models.
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of chemical reactions is linear in the scalar variable, CFD models for the mean scalar

field closely resemble the corresponding turbulence models for k and ε. In Chapter 3,

the transport equation for the scalar mean is derived starting from (1.28) using Reynolds

averaging. For inert-scalar turbulent mixing, the closure problem reduces to finding an

appropriate model for the scalar flux. In most CFD codes, the scalar flux is found either

by a gradient-diffusion model or by solving an appropriate transport equation. Likewise,

scalar fluctuations can be characterized by solving the transport equation of the scalar

variance (see Chapter 3). For reacting-scalar turbulent mixing, the chemical source term

poses novel, and technically more difficult, closure problems.

1.3.3 Chemical source term

Despite the progress in CFD for inert-scalar transport, it was recognized early on that the

treatment of turbulent reacting flows offers unique challenges (Corrsin 1958; Danckwerts

1958). Indeed, while turbulent transport of an inert scalar can often be successfully de-

scribed by a small set of statistical moments (e.g., 〈U〉, k, ε, 〈φ〉, and 〈φ′2〉), the same is

not true for scalar fields, which are strongly coupled through the chemical source term in

(1.28). Nevertheless, it has also been recognized that because the chemical source term

depends only on the local molar concentrations c and temperature T :

S(φ), where φT = (cA, cB, . . . , T ),

knowledge of the one-point, one-time composition PDF fφ(ψ; x, t) at all points in the

flow will suffice to predict the mean chemical source term 〈S〉, which appears in the

reacting-scalar transport equation for the scalar means 〈φ〉 (Chung 1976; O’Brien 1980;

Pope 1985; Kollmann 1990).

As discussed in Chapter 2, a fully developed turbulent flow field contains flow struc-

tures with length scales much smaller than the grid cells used in most CFD codes (Daly

and Harlow 1970).29 Thus, CFD models based on moment methods do not contain the

information needed to predict fφ(ψ; x, t). Indeed, only the direct numerical simulation

(DNS) of (1.27)–(1.29) uses a fine enough grid to resolve completely all flow structures,

and thereby avoids the need to predict fφ(ψ; x, t). In the CFD literature, the small-scale

structures that control the chemical source term are called sub-grid-scale (SGS) fields, as

illustrated in Fig. 1.7.

Heuristically, the SGS distribution of a scalar field φ(x, t) can be used to estimate the

composition PDF by constructing a histogram from all SGS points within a particular

CFD grid cell.30 Moreover, because the important statistics needed to describe a scalar

field (e.g., its expected value 〈φ〉 or its variance 〈φ′2〉) are nearly constant on sub-grid

29 Only direct numerical simulation (DNS) resolves all scales (Moin and Mahesh 1998). However, DNS is com-
putationally intractable for chemical reactor modeling.

30 The reader familiar with the various forms of averaging (Pope 2000) will recognize this as a spatial average over
a locally statistically homogeneous field.
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m Nm

Figure 1.7. Sketch of sub-grid-scale (SGS) distribution of φ.

scales, the SGS field can be considered statistically homogeneous. This implies that all

points sampled from the same CFD grid cell are statistically equivalent, i.e., sampled from

the same composition PDF.

As an example of estimating a scalar PDF, consider a bounded, one-dimensional scalar

field φ ∈ [0, 1] defined on x ∈ [0, L], where L is the CFD grid size as shown in Fig. 1.7. In

a CFD calculation, only φ(0) and φ(L) would be computed (or, more precisely, the mean

values 〈φ(0)〉 and 〈φ(L)〉 at the grid points). However, if φ(x) were somehow available

for all values of x , a histogram could be constructed as follows:

(i) Choose a fine grid with spacing l � L , and let N = 1 + integer(L/ l). Sample φ(x)

on the fine grid:

ψ1 = φ(0), ψ2 = φ(l), ψ3 = φ(2l), . . . , ψN = φ((N − 1)l).

(ii) Use the samples (ψ1, . . . , ψN ) to construct a histogram for φ:

(a) Construct M bins in composition space ψ ∈ [0, 1] with spacing � = 1/M .

(b) Count the number of samples Nm that fall in bin m ∈ 1, . . . ,M .

(c) Define the value of the histogram at bin m by

h(m�) ≡ Nm

N�
. (1.31)

(Note that in anticipation of considering the histogram as an approximation of

the PDF of φ, h(ψ) has been normalized so that its integral over composition

space is unity.)

(iii) The histogram can then be plotted versus the mid-point value for each bin as shown

in Fig. 1.8.

In the limit where l → 0, the number of samples N will become very large, and the

bin spacing � can be decreased while keeping Nm large enough to control statistical

fluctuations. The histogram then becomes nearly continuous in ψ and can be used to
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Figure 1.8. Histogram for sub-grid-scale distribution of φ based on 24 samples and seven
bins.

estimate the PDF of φ:

lim
N ,M→∞

h(m�) → f̂ φ(ψ). (1.32)

The true PDF fφ(ψ) is defined axiomatically (see Chapter 3), but can be thought of as

representing all possible realizations of φ(x) generated with the same flow conditions

(i.e., an ensemble). Because f̂ φ(ψ) has been found based on a single realization, it may

or may not be a good approximation for fφ(ψ), depending on how well the single real-

ization represents the entire ensemble. Generally speaking, in a turbulent flow the latter

will depend on the value of the integral scale of the quantity of interest relative to the

grid spacing L . For a turbulent scalar field, the integral scale Lφ is often approximately

equal to L , in which case f̂ φ(ψ) offers a poor representation of fφ(ψ). However, for sta-

tistically stationary flows, the estimate can be improved by collecting samples at different

times.31

For turbulent reacting flows, we are usually interested in chemical reactions involving

multiple scalars. As for a single scalar, a histogram can be constructed from multiple

scalar fields (Fig. 1.9). For example, if there are two reactants A and B, the samples will

be bi-variate:

ψ1 = (φA(0), φB(0)),

ψ2 = (φA(l), φB(l)),

ψ3 = (φA(2l), φB(2l)),
...

ψN = (φA((N − 1)l), φB((N − 1)l)).

The resultant histogram is also bi-variate, hA,B(mA�A,mB�B), and can be represented

by a contour plot, as shown in Fig. 1.10.

31 This procedure is widely used when extracting statistical estimates from DNS data.
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Figure 1.9. Sketch of sub-grid-scale distribution of φA and φB. The bin numbers for each sample
point are given at the top of the figure.

Figure 1.10. Contour plot of the joint histogram for φA and φB.

Likewise, in the limit of large numbers of samples and bins, the bi-variate histogram

can be used to compute an estimate for the joint PDF of φA and φB:

lim
N ,MA,MB→∞

hA,B(ψA, ψB) → f̂ A,B(ψA, ψB). (1.33)

We shall see in Chapter 5 that knowledge of fA,B(ψA, ψB) suffices to close the chemical

source term for the isothermal, second-order reaction

A + B
k1−→ P.

The procedure presented above can be easily extended to estimate the joint PDF of a

vector of K composition variables fφ(ψ). For example, the mean chemical source term

〈S〉 inside a CFD grid cell can be estimated by sampling the chemical source term at every
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point on a finer grid:

S1 = S(ψ1),

S2 = S(ψ2),

S3 = S(ψ3),
...

SN = S(ψN );

and summing over all samples:

〈S〉 ≡
∫ +∞

−∞
· · ·
∫ +∞

−∞
S(ψ) fφ(ψ) dψ

≈
M1∑

m1=1

· · ·
MK∑

mK =1

S(m1�1, . . . ,mK�K )h(m1�1, . . . ,mK�K )�1 · · ·�K (1.34)

≈ 1

N

N∑
n=1

S(ψn).

The last term in (1.34) follows by approximating S evaluated at the bin center by its value

at a sample point contained in the bin. In the limit where the fine grid becomes infinitely

fine, the last term is just the spatial-average chemical source term:

〈S〉L =
∫ L

0
S(φ(x)) dx = lim

N→∞
1

N

N∑
n=1

S(ψn). (1.35)

Note that (1.34) defines the mean chemical source term in terms of fφ(ψ), and that the

latter contains considerably less information than the original scalar fields φ(x).32

In summary, the FM approach to turbulent reacting flows is closely connected (either

directly or indirectly) with the determination of the joint composition PDF. As is true

for turbulent flows (Pope 2000), statistical models for turbulent reacting flows are best

derived axiomatically (e.g., in terms of 〈S〉 instead of 〈S〉L ). In the examples given above,

we assumed that the SGS scalar fields were known, and thus were able to estimate the

composition joint PDF using a histogram. The challenge posed in the FM approach to

turbulent reacting flows is thus to derive adequate representations for the mean chemical

source term consistent with known theoretical constraints and experimental observations

without direct knowledge of the SGS scalar fields. For this purpose, many one-point

models (with widely differing degrees of generality) have been proposed and successfully

implemented. In Chapter 5, the most general and widely employed models are discussed

in some detail. A common feature of all one-point models for turbulent reacting flows is

the need for a description of molecular mixing.

32 For example, all information is lost concerning the relative spatial locations of two random samples. As discussed
in Chapter 2, this fact implies that all information concerning the spatial derivatives of the scalar fields is lost
when the scalar field is described by its one-point joint PDF.
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Figure 1.11. A non-premixed scalar PDF as a function of time for inert-scalar mixing. Note
that at very short times the PDF is bi-modal since all molecular mixing occurs in thin diffusion
layers between regions of pure fluid where φ = 0 or 1. On the other hand, for large times, the
scalar PDF is nearly Gaussian.

1.3.4 Molecular mixing

As seen above, the mean chemical source term is intimately related to the PDF of the

concentration fluctuations. In non-premixed flows, the rate of decay of the concentration

fluctuations is controlled by the scalar dissipation rate. Thus, a critical part of any model

for chemical reacting flows is a description of how molecular diffusion works to damp out

concentration fluctuations at the SGS level.

As an example, consider the Lagrangian formulation of (1.28):

dφ∗
α

dt
= 〈�α∇2φα|φ = φ∗〉 + Sα(φ∗). (1.36)

The first term on the right-hand side is the expected value of the scalar Laplacian con-

ditioned on the scalars having values φ∗.33 An example of the time evolution of the

conditional scalar Laplacian, corresponding to the scalar PDF in Fig. 1.11, is plotted in

Fig. 1.12 for an initially non-premixed inert-scalar field. The closure of the conditional

scalar Laplacian is discussed in Chapter 6. For the time being, it suffices to note the simi-

larity between (1.36) and the IEM model, (1.16). Indeed, the IEM model is a closure for

the conditional scalar Laplacian, i.e.,

〈�α∇2φα|φ = φ∗〉 = 1

τφ
(〈φ〉 − φ∗), (1.37)

which is widely employed in transported PDF simulations of turbulent reacting flows.34

In other closures for the chemical source term, a model for the conditional scalar dis-

sipation rate 〈εφ|φ = ψ〉 is required. (An example is plotted in Fig. 1.13 for the scalar

PDF shown in Fig. 1.11.) Like the conditional scalar Laplacian, the conditional scalar

33 Conditional expectations are defined in Chapter 2.
34 Note that all terms in (1.37) can be directly extracted from DNS data for turbulent-scalar mixing. Thus, unlike

the CRE approach, the FM approach allows for the direct validation of micromixing models.
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Figure 1.12. The conditional scalar Laplacian 〈�∇2φ|ψ〉 for the scalar PDF in Fig. 1.11. Note
that at very short times 〈�∇2φ|ψ = 0.5〉 = 0, since all molecular mixing occurs in thin diffusion
layers between regions of pure fluid where φ = 0 or 1. On the other hand, for large times,
〈�∇2φ|ψ = 〈φ〉〉 = 0. In this limit, the scalar field is nearly Gaussian, and the conditional scalar
Laplacian can be accurately described by the IEM model.

Figure 1.13. The conditional scalar dissipation rate 〈εφ |ψ〉 for the scalar PDF in Fig. 1.11.

dissipation rate can be extracted from DNS data for model validation. For non-premixed

reacting flows, the effects of chemical reactions on the molecular mixing terms are gener-

ally ignored (e.g., τφ in (1.37) is assumed to be the same for all scalars). Nevertheless, one

of the great advantages of the FM approach is that assumptions of this type can be verified

using DNS data for turbulent reacting flows. Indeed, since the advent of DNS, significant

improvements in molecular mixing models have resulted due to model validation studies.

1.4 Relationship between approaches

The relationship between the CRE approach and the FM approach to modeling turbulent

reacting flows is summarized in Table 1.1. Despite the obvious and significant differences


