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Asymptotics and Mellin-Barnes Integrals is a comprehensive account of the proper-
ties of Mellin-Barnes integrals and their application to problems involving special
functions, primarily the determination of asymptotic expansions. An account of the
basic analytical properties of Mellin-Barnes integrals and Mellin transforms and
their use in applications ranging from number theory to differential and difference
equations is followed by a systematic analysis of the asymptotics of Mellin-Barnes
representations of many important special functions, including hypergeometric,
Bessel and parabolic cylinder functions. An account of the recent developments in
the understanding of the Stokes phenomenon and of hyperasymptotics in the set-
ting of Mellin-Barnes integrals ensues. The book concludes with the application of
ideas set forth in the earlier parts of the book to higher-dimensional Laplace-type
integrals and sophisticated treatments of Euler-Jacobi series, the Riemann zeta
function and the Pearcey integral. Detailed numerical illustrations accompany
many of the results developed in the text.
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Preface

Mellin-Barnes integrals are characterised by integrands involving one or more
gamma functions (and possibly simple trigonometric or other functions) with inte-
gration contours that thread their way around sequences of poles of the integrands.
They are a powerful tool in the development of asymptotic expansions of functions
defined by integrals, sums or differential equations and, combined with the closely
related Mellin transform, form an important part of the toolkit of any practising
analyst. The great utility of these integrals resides in the facts that the asymptotic
behaviour near the origin and at infinity of the function being represented is related
to the singularity structure in the complex plane of the resulting integrand and to
the inherent flexibility associated with deformation of the contour of integration
over subsets of these singularities.

It is a principal aim of this book to describe the theory of these integrals and to
illustrate their power and usefulness in asymptotic analysis. Mellin-Barnes inte-
grals have their early history bound up in the study of hypergeometric functions of
the late nineteenth and early twentieth centuries. This association has lent a classi-
cal feel to their use and in the domain of asymptotic analysis, the account of their
utility in other works has largely been restricted to the analysis of special sums
or their role in inversion of Mellin transforms. For their part, Mellin transforms
have appeared in several settings within mathematics, as far back as Riemann’s
memoir on the distribution of primes, and continue to see application through to
the present day.

This work gathers a detailed account of the asymptotic analysis of Mellin-
Barnes integrals and, conversely, the use of Mellin-Barnes integral representations
to problems in asymptotics, from basic results involving their early application to
hypergeometric functions, to work that is still appearing at the beginning of this
new century. Our account differs from earlier work in the latter half of the twen-
tieth century. For example, texts such as those by Sneddon, The Use of Integral

xiii



xiv Preface

Transforms (1972), and by Davies, Integral Transforms and Their Application
(1978), are primarily concerned with Mellin transforms and their use in the con-
struction of solutions to differential equations. The well-known monograph by
Copson, Asymptotic Expansions (1965), barely mentions Mellin-Barnes integrals,
and that by Olver, Asymptotics and Special Functions (1974), makes little use of
them outside of the problem of determining the asymptotics of sums of special
type. Mellin-Barnes integrals are more prominently employed in the accounts of
Bleistein and Handelsman, Asymptotic Expansion of Integrals (1975), of Wong,
Asymptotic Approximation of Integrals (1989) and of Marichev, Handbook of Inte-
gral Transforms and Higher Transcendental Functions: Theory and Algorithmic
Tables (1982), but there the roles are primarily confined to consequences of the
Parseval formula for Mellin transforms. The classic texts on analysis by Whittaker
and Watson, Modern Analysis (1965), and Copson, Theory of Functions of a Com-
plexVariable (1935), and Generalised Hypergeometric Functions by Slater (1960),
include important sections describing the development of asymptotic expansions
of functions represented by Mellin-Barnes integrals. The monograph by Paris and
Wood, Asymptotics of High Order Differential Equations (1986), contains much of
the foundations of the analysis found here, but in more limited scope, and restricted
to solutions of differential equations of a particular type. We believe that this present
volume, then, is to date the most comprehensive account of Mellin-Barnes integrals
and their interactions with asymptotics.

Additionally, this work liberally employs numerical studies to better display
the calibre of the asymptotic approximations obtained, a strategy we feel gives the
non-expert practitioner a good sense of the concept or method being showcased.
A wide-ranging collection of special functions is used to illustrate the ideas under
discussion in the fine tradition of the texts mentioned earlier, from Bessel and
parabolic cylinder functions, to more exotic functions such as the Mittag-Leffler
function and a Riemann-Siegel type of expansion of the zeta function. This book
should be accessible to anyone with a solid undergraduate background in functions
of a single complex variable.

The book begins with a brief foray into general notions common in asymptotic
analysis, and illustrated with the asymptotic behaviour of some classical (and
more recent) special functions. The main tools employed in the asymptotics of
integrals are found here, including Watson’s lemma and the method of steepest
descent. Also present is a description of the notion of optimal truncation, which
plays a significant role later in the discussion of hyperasymptotics. Brief historical
sketches of the namesakes of the type of integrals under examination round out
the introductory chapter.

Basic results pertaining to Mellin-Barnes integrals and Mellin transforms are
detailed in the next three chapters. Since rational functions of the gamma function
are to be found in almost every Mellin-Barnes integral, a thorough account of the
behaviour of these rational functions is provided, along with convergence rules
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for Mellin-Barnes integrals and error estimates for expansions of ratios of gamma
functions that occur throughout the remainder of the monograph. Mellin transforms
and their properties follow, with applications to the evaluation of slowly convergent
sums, number-theoretic sums, and also to differential, integral and difference
equations. While these latter applications are not strictly speaking necessarily
concerned with asymptotics, they add to the value of the volume and, hopefully,
render it more useful as a reference.

The theme of asymptotics comes to the fore in the remaining chapters. In
the fifth chapter, a careful and systematic analysis is undertaken which extracts
both algebraic and exponential behaviours of Mellin-Barnes-type integrals, with
attention paid to the errors committed in the approximation process. These methods
are illustrated in the settings of several classical special functions, and the calibre
of the approximations illuminated with numerical comparisons. An account of the
Stokes phenomenon ensues in the setting of Bessel functions, and the reader is
drawn into a detailed account of the recent theory of hyperasymptotics applied to
the confluent hypergeometric functions (which incorporate many of the commonly
used special functions). An illustration of this theory is made to the exponentially-
improved asymptotics of the gamma function and amplified by a study of the
numerics of this new expansion.

The penultimate chapter illustrates the manner in which Mellin-Barnes-type
integrals may be successfully deployed to extract the algebraic asymptotic
behaviour of multidimensional Laplace-type integrals in a systematic manner, and
further, interpret the results geometrically. The monograph closes with sophisti-
cated applications of the ideas developed in the text to three particular problems: the
determination of the asymptotics of the generalised Euler-Jacobi series, expansions
for the zeta function on the critical line and the Pearcey integral, a two-variable
generalisation of the classical Airy function.

There is much in this book that is encyclopaedic, but much also is of recent
vintage – a good deal of the mathematics present is less than a decade old, and
continues to develop apace. We feel we have captured the most important tools and
techniques surrounding the analysis and asymptotics of Mellin-Barnes integrals,
and by gathering them in a single source, have made the task of their continued
application to both mathematics and physical science a more tractable and, we
hope, interesting affair.

The authors gratefully acknowledge the long-suffering forbearance of their
respective wives, Jocelyne and Laurie, during the lengthy duration of this project.
The authors also acknowledge the support of their institutions, the Universities
of Abertay Dundee and of Lethbridge, and in the case of the second author, the
research funding made available by the Natural Sciences and Engineering Research
Council of Canada, which underwrote some of the investigations reported on in this
volume. We also owe a considerable debt of gratitude to J. Boersma of Eindhoven
University of Technology for the meticulous care with which he studied the text and
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for his many critical comments on all but two of the chapters, which have improved
the calibre of the volume before you. In spite of our best efforts, however, it is
certain that some errors and misprints are bound to have crept into the text, and
we ask for the reader’s forgiveness for those that prove to be vexing.

R. B. Paris and D. Kaminski



1

Introduction

1.1 Introduction to Asymptotics
Before venturing into our examination of Mellin-Barnes integrals, we present an
overview of some of the basic definitions and ideas found in asymptotic analysis.
The treatment provided here is not intended to be comprehensive, and several
high quality references exist which can provide a more complete treatment than is
given here: in particular, we recommend the tracts by Olver (1974), Bleistein &
Handelsman (1975) andWong (1989) as particularly good treatments of asymptotic
analysis, each with their own strengths.†

1.1.1 Order Relations

Let us begin our survey by defining the Landau symbols O and o and the notion
of asymptotic equality.

Let f and g be two functions defined in a neighbourhood of x0. We say that
f (x) = O(g(x)) as x → x0 if there is a constant M for which

|f (x)| ≤ M |g(x)|
for x sufficiently close to x0. The constant M depends only on how close to x0 we
wish the bound to hold. The notationO(g) is read as ‘big-oh of g’, and the constant
M , which is often not explicitly calculated, is termed the implied constant.

In a similar fashion, we define f (x) = o(g(x)) as x → x0 to mean that

|f (x)/g(x)| → 0

† Olver provides a good balance between techniques used in both integrals and differential equa-
tions; Bleistein & Handelsman present a relatively unified treatment of integrals through the use of
Mellin convolutions; and Wong develops the theory and application of (Schwartz) distributions in the
setting of developing expansions of integrals.
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as x → x0, subject to the proviso that g(x) be nonzero in a neighbourhood of x0.
The expression o(g) is read as ‘little-oh of g’, and from the preceding definition,
it is immediate that f = o(g) implies that f = O(g) (merely take the implied
constant to be any (arbitrarily small) positive number).

The last primitive asymptotic notion required is that of asymptotic equality.
We write

f (x) ∼ g(x)

as x → x0 to mean that

lim
x→x0

f (x)

g(x)
= 1,

provided, of course, that g is nonzero sufficiently close to x0. The tilde here is read
‘is asymptotically equal to’. An equivalent formulation of asymptotic equality is
readily available: for x → x0,

f (x) ∼ g(x) iff f (x) = g(x){1+ o(1)}.
Example 1. The function log x satisfies the order relation log x = O(x − 1) as
x →∞, since the ratio (log x)/(x−1) is bounded for all large x. In fact, it is also
true that log x = o(x − 1) for large x, and for x → 1, log x ∼ x − 1.

Example 2. Stirling’s formula is a well-known asymptotic equality. For large n,
we have

n! ∼ (2π)
1
2 e−nnn+

1
2 .

This result follows from the asymptotic expansion of the gamma function, a result
carefully developed in §2.1.

Example 3. The celebrated Prime Number Theorem is an asymptotic equality. If
we denote by π(x) the number of primes less than or equal to x, then for large
positive x we have the well-known result

π(x) ∼ x

log x
.

With the aid of Gauss’ logarithmic integral,†

li(x) =
∫ x

2

dt

log t

we also have the somewhat more accurate form

π(x) ∼ li(x) (x →∞).

† We note here that li(x) is also used to denote the same integral, but taken over the interval
(0, x), with x > 1. With this larger interval, the integral is a Cauchy principal value integral.
The notation in this example appears to be in use by some number theorists, and is also sometimes
written Li(x).
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That both forms hold can be seen from a simple integration by parts:

li(x) = x

log x
− 2

log 2
+

∫ x

2

dt

(log t)2
.

An application of l’Hôpital’s rule reveals that the resulting integral on the right-
hand side is o(x/ log x), from which the x/ log x form of the Prime Number
Theorem follows.

A number of useful relationships exist for manipulating the Landau symbols.
The following selections are all easily obtained from the above definitions, and are
not established here:

(a) O(O(f )) = O(f ) (e) O(f )+O(f ) = O(f )

(b) o(o(f )) = o(f ) (f) o(f )+ o(f ) = o(f )

(c) O(fg) = O(f ) ·O(g) (g) o(f )+O(f ) = O(f )

(d) O(f ) · o(g) = o(fg) (h) O(o(f )) = o(O(f )) = o(f ).

(1.1.1)

It is easy to deduce linearity of Landau symbols using these properties, and it is
a simple matter to establish asymptotic equality as an equivalence relation. In the
transition to calculus, however, some difficulties surface.

A moment’s consideration reveals that differentiation is, in general, often badly
behaved in the sense that if f = O(g), then it does not necessarily follow that
f ′ = O(g′), as the example f (x) = x + sin ex aptly illustrates: for large, real x,
we have f = O(x), but the derivative of f is not bounded (i.e., not O(1)).

The situation for integration is a good deal better. It is possible to formulate
many results concerning integrals of order estimates, but we content ourselves
with just two.

Example 4. For functions f and g of a real variable x satisfying f = O(g) as
x → x0 on the real line, we have∫ x

x0

f (t) dt = O

(∫ x

x0

|g(t)| dt
)

(x → x0).

A proof can be fashioned along the following lines: for f (t) = O(g(t)), let M be
the implied constant so that |f (t)| ≤ M |g(t)| for t sufficiently close to x0, say
|t − x0| ≤ η. (For x0 = ∞, a suitable interval would be t ≥ N for some large
positive N .) Then

−M |g(t)| ≤ f (t) ≤ M |g(t)| (|t − x0| ≤ η),

whence the result follows upon integration.

Example 5. If f is an integrable function of a real variable x, and f (x) ∼ xν ,
Re(ν) < −1 as x →∞, then∫ ∞

x

f (t) dt ∼ − xν+1

ν + 1
(x →∞).
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A proof of this claim follows from f (x) = xν{1+ ψ(x)} where ψ(x) = o(1) as
x →∞, for then ∫ ∞

x

f (t) dt = − xν+1

ν + 1
+

∫ ∞

x

tνψ(t) dt.

But ψ(t) = o(1) implies that for ε > 0 arbitrarily small, there is an x0 > 0
for which |ψ(t)| < ε whenever t > x0. Thus, the remaining integral may be
bounded as ∣∣∣∣

∫ ∞

x

tνψ(t) dt

∣∣∣∣ < ε

∫ ∞

x

|tν | dt (x > x0).

Accordingly, we find∫ ∞

x

f (t) dt = − xν+1

ν + 1
+ o

(
xν+1

ν + 1

)
= − xν+1

ν + 1
{1+ o(1)},

from which the asymptotic equality is immediate. ✷

It is in the complex plane that we find differentiation of order estimates becomes
better behaved. This is due, in part, to the fact that the Cauchy integral theorem
allows us to represent holomorphic functions as integrals which, as we have noted,
are better behaved in the setting of Landau symbols. A standard result in this
direction is the following:

Lemma 1.1. Let f be holomorphic in a region containing the closed annular
sector S = {z : α ≤ arg(z − z0) ≤ β, |z − z0| ≥ R ≥ 0}, and suppose
f (z) = O(zν) (resp. f (z) = o(zν)) as z → ∞ in the sector, for fixed real ν.
Then f (n)(z) = O(zν−n) (resp. f (n) = o(zν−n)) as z→∞ in any closed annular
sector properly interior to S with common vertex z0.

The proof of this result follows from the Cauchy integral formula for f (n), and
is available in Olver (1974, p. 9).

1.1.2 Asymptotic Expansions

Let a sequence of continuous functions {φn}, n = 0, 1, 2, . . . , be defined on some
domain, and let x0 be a (possibly infinite) limit point of this domain. The sequence
{φn} is termed an asymptotic scale if it happens that φn+1(x) = o(φn(x)) as
x → x0, for every n. If f is some continuous function on the common domain of
the asymptotic scale, then by an (infinite) asymptotic expansion of f with respect
to the asymptotic scale {φn} is meant the formal series

∑∞
n=0 anφn(x), provided the

coefficients an, independent of x, are chosen so that for any nonnegative integerN ,

f (x) =
N∑
n=0

anφn(x)+O(φN+1(x)) (x → x0). (1.1.2)
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In this case we write

f (x) ∼
∞∑
n=0

anφn(x) (x → x0).

Such a formal series is uniquely determined in view of the fact that the coefficients
an can be computed from

aN = lim
x→x0

1

φN(x)

{
f (x)−

N−1∑
n=0

anφn(x)

}
(N = 0, 1, 2, . . . ).

The formal series so obtained is also referred to as an asymptotic expansion of
Poincaré type, or an asymptotic expansion in the sense of Poincaré or, more simply,
a Poincaré expansion. Examples of asymptotic scales and asymptotic expansions
built with them are easy to come by. The most commonplace is the asymptotic
power series: an asymptotic power series is a formal series

∞∑
n=0

an(x − x0)
νn ,

where the appropriate asymptotic scale is the sequence {(x − x0)
νn}, n =

0, 1, 2, . . . , and the νn are constants for which (x − x0)
νn+1 = o

(
(x − x0)

νn
)

as x → x0. Any convergent Taylor series expansion of an analytic function f

serves as an example of an asymptotic power series, with x0 a point in the domain
of analyticity of f , νn = n for any nonnegative integer n, and the coefficients in
the expansion are the familiar Taylor coefficients an = f (n)(x0)/n!.

Asymptotic expansions, however, need not be convergent, as the next two
examples illustrate.

Example 1. Watson’s lemma. A well-known result of Laplace transform theory
is that the Laplace transform of a piecewise continuous function on the interval
[0,+∞) is o(1) as the transform variable grows without bound. By imposing more
structure on the small parameter behaviour of the function being transformed, a
good deal more can be said about the growth at infinity of the transform.

Lemma 1.2. Let g(t) be an integrable function of the variable t > 0 with
asymptotic expansion

g(t) ∼
∞∑
n=0

ant
(n+λ−µ)/µ (t → 0+)

for some constants λ > 0, µ > 0. Then, provided the integral converges for
all sufficiently large x, the Laplace transform of g, L[g; x], has the asymptotic
behaviour

L[g; x] ≡
∫ ∞

0
e−xtg(t) dt ∼

∞∑
n=0

�

(
n+ λ

µ

)
an

x(n+λ)/µ
(x →∞).
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Proof . To see this, let us put, for positive integer N and t > 0,

gN(t) = g(t)−
N−1∑
n=0

ant
(n+λ−µ)/µ

so that the Laplace transform has a finite expansion with remainder given by

L[g; x] =
N−1∑
n=0

�

(
n+ λ

µ

)
an

x(n+λ)/µ
+

∫ ∞

0
e−xtgN(t) dt. (1.1.3)

Since gN(t) = O(t(N+λ−µ)/µ), there are constants KN and tN for which

|gN(t)| ≤ KN t
(N+λ−µ)/µ (0 < t ≤ tN ).

Use of this in the remainder term in our finite expansion (1.1.3) allows us to write∣∣∣∣
∫ tN

0
e−xtgN(t) dt

∣∣∣∣ ≤ KN

∫ tN

0
e−xt t (N+λ−µ)/µdt

< �

(
N + λ

µ

)
KN

x(N+λ)/µ
. (1.1.4)

By hypothesis, L[g; x] exists for all sufficiently large x, so the Laplace transform
of gN must also exist for all sufficiently large x, by virtue of (1.1.3). LetX be such
that L[gN ; x] exists for all x ≥ X, and put

GN(t) =
∫ t

tN

e−XvgN(v) dv.

The functionGN so defined is a bounded continuous function on [tN ,∞), whence
the bound

LN = sup
[tN ,∞)

|GN(t)|

exists. Then for x > X, we have∫ ∞

tN

e−xtgN(t) dt =
∫ ∞

tN

e−(x−X)t e−XtgN(t) dt

= (x −X)

∫ ∞

tN

e−(x−X)tGN(t) dt

after one integration by parts. After applying the uniform bound LN to the integral
that remains, we arrive at∣∣∣∣

∫ ∞

tN

e−xtgN(t) dt
∣∣∣∣ ≤ (x −X)LN

∫ ∞

tN

e−(x−X)t dt = LNe
−(x−X)tN (1.1.5)

for x > X.
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Together, (1.1.4) and (1.1.5) yield∣∣∣∣
∫ ∞

0
e−xtgN(t) dt

∣∣∣∣ < �

(
N + λ

µ

)
KN

x(N+λ)/µ
+ LNe

−(x−X)tN

which, since LNe−(x−X)tN is o(x−ν) for any positive ν, establishes the asymptotic
expansion for L[g; x].

As a simple illustration of the use of Watson’s lemma, consider the Laplace
transform of (1 + t)

1
2 . From the binomial theorem, we have the convergent

expansion as t → 0

(1+ t)
1
2 = 1+ 1

2 t − 1
8 t

2 +
∞∑
n=3

(−)n−1 1 · 3 · 5 · · · (2n− 3)

2nn! tn.

Since (1+t) 1
2 is of algebraic growth, its Laplace transform clearly exists for x > 0,

and Watson’s lemma produces the asymptotic expansion

L[(1+ t)
1
2 ; x] ∼ 1

x
+ 1

2x2
− 1

4x3
+

∞∑
n=3

(−)n−1 1 · 3 · 5 · · · (2n− 3)

2nxn+1

as x → ∞. The resulting asymptotic series is divergent, since the ratio of the
(n+1)th to nth terms in absolute value is (2n−1)/(2x)which, for fixed x, tends to
∞ with n. The reason for this divergence is a simple consequence of our applying
the binomial expansion for (1 + t)

1
2 (valid in 0 ≤ t ≤ 1) in the Laplace integral

beyond its interval of convergence.

Example 2. The confluent hypergeometric function†U(1; 1; z) (which equals the
exponential integral ezE1(z)) has the integral representation

U(1; 1; z) =
∫ ∞

0

e−t dt
t + z

(1.1.6)

for z not a negative number or zero. In fact, it is relatively easy to show that this
integral representation converges uniformly in the closed annular sector Sε,δ =
{z : |z| ≥ ε, | arg z| ≤ π − δ} for every positive ε and every positive δ < π . Such
a demonstration can proceed along the following lines.

Put θ = arg z for z ∈ Sε,δ and observe that for any nonnegative t , |t + z|2 =
t2 + |z|2 + 2|z|t cos θ ≥ t2 + |z|2 − 2|z|t cos δ ≥ |z|2 sin2 δ. Thus, the integrand
of (1.1.6) admits the simple bound

e−t |t + z|−1 ≤ e−t |z|−1 cosec δ

whence we have, upon integrating the bound,

|U(1; 1; z)| ≤ |z|−1 cosec δ

† An alternative notation for this function is <(1; 1; z).
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for z ∈ Sε,δ . The uniform convergence of the integral follows, from which we see
that U(1; 1; z) is holomorphic in the z plane cut along the negative real axis.

Through repeated integration by parts, differentiating in each case the factor
(t + z)−k appearing at each step, we arrive at

U(1; 1; z) =
n∑

k=1

(−)k−1(k − 1)!z−k + Rn(z), (1.1.7)

where the remainder term Rn(z) is

Rn(z) = (−)nn!
∫ ∞

0

e−t

(t + z)n+1
dt. (1.1.8)

Evidently, each term produced in the series in (1.1.7) is a term from the asymptotic
scale {z−j }, j = 1, 2, . . . , so that if we can show that for anyn,Rn(z) = O(z−n−1),
we will have established the asymptotic expansion

U(1; 1; z) ∼
∞∑
k=1

(−)k−1(k − 1)!z−k, (1.1.9)

for z→∞ in the sector | arg z| ≤ π − δ < π .
To this end, we observe that the bound used in establishing the uniform con-

vergence of the integral (1.1.6), namely 1/|t + z| ≤ 1/|z| sin δ, can be brought to
bear on (1.1.8) to yield

|Rn(z)| ≤ n!
(|z| sin δ)n+1

.

The expansion (1.1.9) is therefore an asymptotic expansion in the sense of Poincaré.
It is, however, quite clearly a divergent series, as ratios of consecutive terms in
the asymptotic series diverge to ∞ as (n!/|z|n+1)/((n − 1)!/|z|n) = n/|z|, as
n → ∞, irrespective of the value of z. Nevertheless, the divergent character of
this asymptotic series does not detract from its computational utility. ✷

In Tables† 1.1 and 1.2, we have gathered together computed and approxi-
mate values of U(1; 1; z), with approximate values derived from the finite series
approximation

Sn(z) =
n∑

k=1

(−)k−1(k − 1)!z−k,

obtained by truncating the asymptotic expansion (1.1.9) after n terms. It is appar-
ent from the tables that the calibre of even modest approximations to U(1; 1; z)
becomes quite good once |z| is of the order of 100, and is good to two or more
significant digits for values of |z| as small as 10. This naturally leads one to

† In Tables 1.1 and 1.2 we have adopted the convention of writing x(y) in lieu of the more cumbersome
x × 10y .
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Table 1.1. Computed and approximate values of
U(1; 1; z) for real values of z

z U(1; 1; z) S5(z) S10(z)

10 0.915633(−1) 0.916400(−1) 0.915456(−1)
50 0.196151(−1) 0.196151(−1) 0.196151(−1)
100 0.990194(−2) 0.990194(−2) 0.990194(−2)

Table 1.2. Computed and approximate values of
U(1; 1; z) for imaginary values of z

z U(1; 1; z)
10i 0.948854(−2)− 0.981910(−1)i
50i 0.399048(−3)− 0.199841(−1)i

100i 0.999401(−4)− 0.999800(−2)i

z S5(z)

10i 0.940000(−2)− 0.982400(−1)i
50i 0.399040(−3)− 0.199841(−1)i

100i 0.999400(−4)− 0.999800(−2)i

z S10(z)

10i 0.950589(−2)− 0.982083(−1)i
50i 0.399048(−3)− 0.199841(−1)i

100i 0.999401(−4)− 0.999800(−2)i

wonder how the best approximation can be obtained, in view of the utility of
these finite approximations and the divergence of the full asymptotic expansion:
how can we select n so that the approximation furnished by Sn(z) is the best
possible?

The strategy we detail here, called optimal truncation, is easily stated: for a
fixed z, the successive terms in the asymptotic expansion will reach a minimum
in absolute value, after which the terms must necessarily increase without bound
given the divergent character of the full expansion; see Fig. 1.1. It is readily
shown that the terms in Sn(z) attain their smallest absolute value when k ∼ |z|
(except when |z| is an integer, in which case there are two equally small terms
corresponding to k = |z|− 1 and k = |z|). If the full series is truncated just before
this minimum modulus term is reached, then the finite series that results is the
optimally truncated series, and will yield the best approximation to the original
function, in the present case, U(1; 1; z).

To see that this is so, observe for U(1; 1; z) that for z > 0 the remainder in the
approximation after n terms of the asymptotic series,

Rn(z) = U(1; 1; z)− Sn(z) = (−)nn!
∫ ∞

0

e−t dt
(t + z)n+1

,
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Fig. 1.1. Magnitude of the terms ak = (−)k−1�(k)z−k in the expansionSn(z) against ordinal
number k when z = 10.

is of the sign opposite to that in the last term in Sn(z) and further, is of the same sign
as the first term left in the full asymptotic series after excising Sn(z). In absolute
value, we also have

|Rn(z)| = n!
zn+1

∫ ∞

0

e−t dt
(1+ t/z)n+1

<
n!
zn+1

,

so the remainder term is numerically smaller in absolute value than the modulus of
the first neglected term. Since the series Sn(z) is an alternating series, it follows that
Sn(z) is alternately bigger than U(1; 1; z) and less than U(1; 1; z) as n increases.
The sum Sn(z) will therefore be closest in value to U(1; 1; z) precisely when we
truncate the full expansion just before the numerically smallest term (in absolute
value) in the full expansion. From the preceding inequality, it is easy to note that
the remainder term will then be bounded by this minimal term.

To see the order of the remainder term at optimal truncation, we substitute n ∼ z

(� 1) in the above bound forRn(z), and employ Stirling’s formula to approximate
the factorial, to find

|Rn(z)| < n!
zn+1

� (2π)
1
2
e−nnn+ 1

2

zn+1
�

(
2π

z

) 1
2

e−z.

This shows that at optimal truncation the remainder term for U(1; 1; z) is of order
z− 1

2 e−z as z → +∞ and consequently that evaluation of the function by this
scheme will result in an error that is exponentially small in z; these results can be
extended to deal with complex values of z – see Olver (1974, p. 523) for a more
detailed treatment. We remark that this principle is found to apply to a wide range
of asymptotic series yielding in each case an error term at optimal truncation that
is typically exponentially small in the asymptotic variable.

We observe that not all asymptotic series present the regular behaviour of the
coefficients depicted in Fig. 1.1. In certain compound expansions, with coefficients



1.1. Introduction to Asymptotics 11

containing gamma functions in the numerator, it is possible to find situations
where some of the arguments of the gamma functions approach a nonpositive
integer value. This gives rise to a series of ‘peaks’ superimposed on the basic
structure of Fig. 1.1. A specific example is provided by the compound expansion

z−2/µ(I1 + I2), (1.1.10)

where Ir =∑∞
k=0 a

(r)
k (r = 1, 2) and, for positive parameters m1, m2 and µ,

a
(1)
k = (−)k

k! �

(
1+ µk

m1

)
�

(
m1 −m2(1+ µk)

m1µ

)
z−(1+µk)/m1

with a similar expression for a(2)k with m1 and m2 interchanged. Expansions
of this type arise in the treatment of certain Laplace-type integrals discussed
in Chapter 7. If the parameters m1, m2 and µ are chosen such that the argu-
ments of the second gamma function in a

(1)
k and a

(2)
k are not close to zero or a

negative integer, then the variation of the modulus of the coefficients with ordinal
number k will be similar to that shown in Fig. 1.1. If, however, the parameter
values are chosen so that these arguments become close to a nonpositive inte-
ger† for subsets of k values, then we find that the variation of the coefficients
becomes irregular with a sequence of peaks of variable height. Such a situation
for the coefficients a(1)k is shown in Fig. 1.2 for two sets of parameter values. The
truncation of such series has been investigated in Liakhovetski & Paris (1998),
where it is found that even if the series I1 is truncated at a peak (provided that
the corresponding peak associated with the coefficients a(2)k is included) increas-
ingly accurate asymptotic approximations are obtained by steadily increasing the
truncation indices in the series I1 and I2 until they correspond roughly to the
global minimum of each curve. An inspection of Fig. 1.2, however, would indi-
cate that these optimal points are not as easily distinguished as in the case of
Fig. 1.1.

The notion of optimal truncation will surface in a significant way in the subject
matter of the Stokes phenomenon and hyperasymptotics, and so we defer further
discussion of it until Chapter 6, where a detailed analysis of remainder terms
is undertaken. We do mention, however, that apart from optimally truncating an
asymptotic series, one can sometimes obtain dramatic improvements in the numeri-
cal utility of an asymptotic expansion if one is able to extract exponentially small
(measured against the scale being used) terms prior to developing an asymptotic
expansion. This particular situation can be seen in the following example.

† If the parameter values are such that the second gamma-function argument equals a nonpositive
integer for a subset of k values, then the expansion (1.1.10) becomes nugatory. In the derivation
of (1.1.10) by a Mellin-Barnes approach this would result in a sequence of double poles and the
formation of logarithmic terms.
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Fig. 1.2. Magnitude of the coefficients a(1)k against ordinal number k for µ = 3, m1 = 1.5
when (a) m2 = 1.2, z = 3.0 and (b) m2 = 1.049, z = 3.6. For clarity the points have been
joined.

Example 3. Let us consider the finite Fourier integral

J (λ) =
∫ 1

−1
eiλ(x

3/3+x)dx

with λ large and positive. Introduce the change of variable u = 1
3x

3 + x and
observe that over the interval of integration, the change of variable is one-to-one,
fixes the origin and maps ±1 to ± 4

3 respectively, resulting in

J (λ) =
∫ 4/3

−4/3
eiλux ′(u)du,

where x(u) is the function inverse to the x �→ u change of variable. An explicit
formula for x(u) is available to us from the classical theory of equations, resulting
from the trigonometric solution to the cubic equation, and takes the form

x = 2 sinh θ, where 3θ = arcsinh
(

3
2u

)
,

or

x = (
3
2u+

√
9
4u

2 + 1
)1/3 − (

3
2u+

√
9
4u

2 + 1
)−1/3

.

It is a straightforward matter to deduce that x(k)(−u) = (−)k−1x(k)(u), where
x(n)(u) as usual indicates the nth derivative of the inverse function.
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By repeatedly applying integration by parts, the latter representation for J (λ)
can be seen to yield a finite asymptotic expansion with remainder,

J (λ) =
N∑
n=1

{
e4iλ/3x(n)

(
4
3

)− e−4iλ/3x(n)
(− 4

3

)} (−)n−1

(iλ)n

+ (−)N
(iλ)N

∫ 4/3

−4/3
eiλux(N+1)(u) du. (1.1.11)

In view of the Riemann-Lebesgue lemma, the remainder term is seen to be o(λ−N),
so the finite expansion (1.1.11) leads, after exploiting x(k)(− 4

3 ) = (−)k−1x(k)( 4
3 ),

to the large-λ expansion†

J (λ) ∼ 2 sin
(

4
3λ

) ∞∑
n=0

(−)n
λ2n+1

x(2n+1)
(

4
3

)− 2 cos
(

4
3λ

) ∞∑
n=1

(−)n
λ2n

x(2n)
(

4
3

)
.

If we evaluate the first few derivatives x(n)( 4
3 ) and employ optimal truncation for

modest values of λ, say λ = 4, 5, 6, 7, we obtain the approximate values shown in
the fourth column of Table 1.3. The columns labelledNs andNc show respectively,
for each value of λ, the number of terms of the sine and cosine series in the
expansion of J (λ) retained after optimally truncating each series. As comparison
with the last column of Table 1.3 reveals, the asymptotic approximations obtained
for these modest values of λ are of poor calibre.

However, an improvement in the numerical utility of the expansion can be
obtained by rewriting the integral representation of J (λ) in the following manner.
Because of the exponential decay in the integrand, we can, by Cauchy’s theorem,
write

J (λ) =
{
−

∫ ∞eπi/6

1
+

∫ ∞e5πi/6

−1
+

∫ ∞eπi/6

∞e5πi/6

}
eiλ(x

3/3+x)dx. (1.1.12)

The third integral in this sum can be expressed in terms of the Airy function

Ai(z) = 1

2πi

∫ ∞eπi/3

∞e−πi/3
exp

(
1
3 t

3 − zt
)
dt,

namely,

2πλ−1/3 Ai(λ2/3) =
∫ ∞eπi/6

∞e5πi/6
eiλ(x

3/3+x)dx

upon making the substitution x = itλ−1/3. From this, and integration by parts
applied to each of the remaining integrals in (1.1.12), we arrive at the same expan-
sion and approximation for J (λ) that we found earlier, only now the expansion

† This expansion does not fit the form of a Poincaré-type expansion as we have defined it previously,
but rather is an example (after separating sine and cosine terms) of a compound asymptotic expansion,
discussed in the next section.
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Table 1.3. Comparison of optimally truncated asymptotic approximation,
asymptotic approximation and exponentially decaying correction and

computed values of the Fourier integral J (λ)

Optimally truncated Optimally truncated
λ Ns Nc series series with Airy term J (λ)

4 2 2 −0.213739 −0.153525 −0.154260
5 3 2 0.055788 0.083551 0.083545
6 6 5 0.164661 0.177709 0.177703
7 6 5 0.022816 0.029031 0.029034

includes the term involving the Airy function:

J (λ) ∼ 2π

λ1/3
Ai(λ2/3)+ 2 sin

(
4
3λ

) ∞∑
n=0

(−)n
λ2n+1

x(2n+1)
(

4
3

)

− 2 cos
(

4
3λ

) ∞∑
n=1

(−)n
λ2n

x(2n)
(

4
3

)
.

The Airy function of positive argument can be shown to exhibit exponential decay
as the argument increases, so the additionalAiry function term in the above expres-
sion is o(λ−k) for any nonnegative integer k and can be eliminated entirely from
the asymptotic expansion in view of the definition of asymptotic expansions of
Poincaré type. If it is instead retained, the resulting approximations for the same
modest values of λ used in Table 1.3 show dramatic improvement, giving several
significant figures of the computed values of J (λ) as a comparison of the last two
columns of Table 1.3 reveals. ✷

Another interesting fact concerning asymptotic power series stems from the
observation that given an arbitrary sequence of complex numbers {an}∞n=0, there is
a function f (z) holomorphic in a region containing a closed annular sector which
has the formal series

∑∞
n=0 anz

−n as its asymptotic expansion.
One such construction† proceeds by taking the closed annular sector to be

S = {z : | arg z| ≤ θ, |z| ≥ R > 0} – other sectors can be used by translating and
rotating this initial choice. Then set

f (z) =
∞∑
n=0

anen(z)

zn

where for nonzero an,

en(z) = 1− exp
(−zφrn/|an|),

† This account is drawn from Olver (1974, § I.9). Other examples along this line are also to be
found there.
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for numbers φ and r chosen to satisfy 0 < φ < π/(2θ) and 0 < r < R. Should
an an vanish, the corresponding en is taken to be the zero function, so that the
corresponding term in the sum defining f is effectively excised.

With these terms so defined, in the sector of interest we have | arg(zφ)| < 1
2π

and ∣∣∣∣anen(z)zn

∣∣∣∣ ≤ rn|z|φ−n ≤ |z|φ
(
r

R

)n

, (1.1.13)

since |1−e−ζ | ≤ |ζ |when | arg ζ | ≤ 1
2π . The series definingf therefore converges

uniformly on compact subsets of our sector, and so defines a holomorphic function
there.

That f has the desired asymptotic expansion can be seen from

f (z)−
N−1∑
n=0

an

zn
= −

N−1∑
n=0

an

zn
exp

(
−z

φrn

|an|
)
+

∞∑
n=N

anen(z)

zn
, (1.1.14)

where it bears noting that the infinite series here is uniformly convergent. Because
of the exponential decay of each term in the finite sum on the right, the entire sum
is o(z−n) for any n as z→∞ in our sector. The remaining series on the right-hand
side is easily bounded using (1.1.13) to give∣∣∣∣

∞∑
n=N

anen(z)

zn

∣∣∣∣ ≤ |z|φ
∞∑
n=N

(
r

|z|
)n

= |z|φ
(
r

|z|
)N |z|
|z| − r

= O(zφ−N).

Upon replacingN byN+�φ�+1, we obtain a similar expression to that in (1.1.14),
for which the right-hand side is O(z−N) but for which there are “extra” terms on
the left-hand side. These additional terms, anz−n for n ≥ N , are also O(z−N) and
so can be absorbed into the order estimate that results on the right-hand side.

1.1.3 Other Expansions

Expansions other than Poincaré-type also have currency in asymptotic analysis.
Here, we mention but three types.

To begin, let {φn}be an asymptotic scale asx → x0. A formal series
∑
fn(x) is a

generalised asymptotic expansion of a functionf (x)with respect to the asymptotic
scale {φn} if

f (x) =
N∑
n=0

fn(x)+ o(φN(x)) (x → x0, N = 0, 1, 2, . . . ).

In this event, we write, as we have for Poincaré-type expansions,

f (x) ∼
∞∑
n=0

fn(x) (x → x0, {φn}),

indicating with the formal series the asymptotic scale used to define the expansion.
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The important difference between Poincaré and generalised asymptotic expan-
sions is that the functions fn appearing in the formal series expansion for f need
not, themselves, form an asymptotic scale.

Example 1. Define the sequence of functions {fn}, for nonnegative integer n and
nonzero x, by

fn(x) = cos nx

xn
.

For x →∞, it is apparent that each fn(x) = O(x−n), and that {φn(x)} = {x−n}
is an asymptotic scale. However, the sequence {fn(x)} fails to be an asymptotic
scale, as a ratio of consecutive elements in the sequence gives

fn+1(x)

fn(x)
= cos(n+ 1)x

x cos nx
,

which fails to be o(1) for all x sufficiently large.
Generalised asymptotic expansions are less commonplace than expansions of

Poincaré type, and are not used in our development of asymptotic expansions of
Mellin-Barnes integrals.

A different mechanism for extending Poincaré-type expansions presents itself
naturally in the setting of the method of stationary phase or steepest descent, and
in the domain of expansions of solutions of differential equations. The idea here
is to replace the series expansion of a function, as in (1.1.2), by several different
series, each with different scales.

Put more precisely, by a compound asymptotic expansion of a function f , we
mean a finite sum of Poincaré-type series expansions

f (x) ∼ A1(x)

∞∑
n=0

a1nφ1n(x)+ A2(x)

∞∑
n=0

a2nφ2n(x)

+ · · · + Ak(x)

∞∑
n=0

aknφkn(x) (x → x0),

where, for 1 ≤ m ≤ k, the sequences {φmn} are asymptotic scales, the coefficient
functions Am(x) are continuous, and for N1, N2, . . . , Nk ≥ 0, we have

f (x) = A1(x)

{ N1∑
n=0

a1nφ1n(x)+O(φ1,N1+1(x))

}

+ A2(x)

{ N2∑
n=0

a2nφ2n(x)+O(φ2,N2+1(x))

}

+ · · · + Ak(x)

{ Nk∑
n=0

aknφkn(x)+O(φk,Nk+1(x))

}
(x → x0).
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It is entirely possible that some of the series Aj(x)
∑
ajnφjn(x) could, by virtue

of the coefficient function Aj(x), or choice of scale {φjn}, be o(φmn) for some
m �= j , and so be absorbed into the error terms implied in other series in the
compound expansion. However, in some numerical work, the retention of such
negligible terms, when measured against the other scales in the expansion, can
add to the numerical accuracy of asymptotic approximations of f , especially for
values of x that are at some distance from x0. This, in turn, extends the utility of
such expansions.

In some circumstances, it may be possible to embed the scales {φmn} in a larger
scale, say {ψν}, and so collapse the sum of Poincaré expansions into a single-series
expansion involving this larger scale {ψν}. Success in this direction depends in part
on the coefficient functions Aj(x).

Example 2. Steepest descent method. An integral of the form

I (λ) =
∫
C

g(z)eλf (z)dz,

is said to be of Laplace type if the functions f and g are holomorphic in a region
containing the contour C, and the integral converges for some λ. In the most
common setting, C is an infinite contour, and the parameter λ is large in modulus.
Thus, we require that the integral I (λ) exist for all λ sufficiently large in some
sector.

The idea behind the steepest descent method is deceptively simple: deform the
integration contour C into a sum of contours, C1, C2, . . . , Ck , so that along each
of the contours Cn, the phase function f (z) has a single point zn – a saddle or
saddle point†– at which f ′(zn) vanishes, and as z varies along the contour Cn,
λ[f (z) − f (zn)] ≤ 0, with this difference tending to −∞ as |z| → ∞ along the
contour. If this deformation is possible, the contours C1, C2, . . . , Ck are termed
steepest descent contours, and the integral can be recast as

I (λ) =
k∑

n=1

eλf (zn)
∫
Cn

g(z)eλ[f (z)−f (zn)]dz.

In the case where f ′′(zn) �= 0 for all saddle points zn, each integral in the sum can
be represented as a Gaussian integral, namely

eλf (zn)
∫
Cn

g(z)eλ[f (z)−f (zn)]dz = eλf (zn)
∫ ∞

−∞
g(z(t))e−|λ|t

2
z′(t) dt.

The transformation z �→ t will map one branch of the steepest descent curve from
zn to∞ into the positive real t axis, and the remainder of the steepest descent curve
will be mapped into the negative real t axis. By splitting the integral into integrals

† Saddle points of Fourier-type integrals are often referred to as stationary points.
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taken over negative and positive real t axes separately, a further reduction to a sum
of two Laplace transforms can be achieved, to each of which Watson’s lemma can
then be applied.

For a concrete example, we consider the Pearcey integral

P(x, y) =
∫ ∞

−∞
exp{i(t4 + xt2 + yt)} dt,

where, for the purpose of illustration, we will assume |x| and |y| are both large,
with x < 0 and y > 0. We will also replace x by −x and take x > 0. Thus, we
consider

P(−x, y) = x
1
2

∫ ∞

−∞
exp{ix2(u4 − u2 + yx−3/2u)} du, (1.1.15)

where we have applied the simple change of variable t = x
1
2 u. Denoting the phase

function of this integral by

ψ(u) = u4 − u2 + yx−3/2u,

we have

ψ ′(u) = 4(u3 − 1
2u+ 1

4yx
−3/2)

= 4(u3 − (u1 + u2 + u3)u
2 + (u1u2 + u1u3 + u2u3)u− u1u2u3),

where the roots ofψ ′(u) = 0 are indicated by u1, u2 and u3. Becauseψ ′(u) is a real
cubic polynomial, we always have one real zero. If x is sufficiently large compared
to y, we can ensure that the other two zeros ofψ ′(u) are also real, and that all three
are distinct. Additionally, the elementary theory of equations furnishes us with∑

ui = 0,
∑
i<j

uiuj = − 1
2 , u1u2u3 = − 1

4yx
−3/2,

from which we deduce that one ui < 0, and the other two are positive. Let us label
these so that u1 < 0 < u2 < u3.

We mention here that the theory of equations also provides a trigonometric form
for the roots ui , namely,

u1 = −√2/3 · sin(φ + 1
3π),

u2 = √2/3 · sin φ,
u3 = √2/3 · sin

(
1
3π − φ

)
,

(1.1.16)

where the angle φ is given by

sin(3φ) = y
(

2
3x

)3/2
(1.1.17)

which, under the hypothesis of y( 2
3x)

−3/2 < 1, can be guaranteed to be real.
The zeros displayed in (1.1.16) undergo a confluence when the angle φ tends
to 1

6π . The curve this value of φ defines is the so-called caustic in the real
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plane: y = ( 2
3x)

3/2. The saddles ui are therefore, successively, the locations of a
local minimum, a local maximum and a local minimum of ψ(u).

For real x and y, we may rotate the contour of integration in (1.1.15) onto the
line from ∞e9πi/8 to ∞eπi/8 through an application of Jordan’s lemma. Since
there are three real saddle points for (−x, y) satisfying φ < 1

6π , we may further
represent P(−x, y) as a sum of three contour integrals,

P(−x, y) = x
1
2

3∑
j=1

∫
�j

eix
2ψ(u)du, (1.1.18)

where the contours �j are the steepest descent curves: �1, beginning at ∞e9πi/8,
ending at∞e5πi/8 and passing through u1 < 0; �2, beginning at∞e5πi/8, ending
at ∞e−3πi/8 and passing through u2 > 0; and �3, beginning at ∞e−3πi/8, ending
at∞eπi/8 and passing through u3 > u2. Along these contours, the phase iψ(u) is
real and decreases to −∞ as we move along the �j away from the saddle points
so that each integral is effectively a Gaussian integral. The general situation is
depicted in Fig. 1.3.

Let us set

dj = {(−)j (1− 6u2
j )}

1
2 (j = 1, 2, 3).

In accordance with the steepest descent methodology mentioned previously, we
set ψ(u)− ψ(uj ) = (−)j+1d2

j v
2, to find at each saddle point uj ,

v = (u− uj )

{
1+ 4uj (u− uj )

6u2
j − 1

+ (u− uj )
2

6u2
j − 1

}1/2

whence reversion yields the expansion, for each j ,

u− uj =
∞∑
k=1

bk,j v
k,

Re (  )

Im (  )

u

u

u u u1 2 3

Γ

Γ

Γ

1

2

3

Fig. 1.3. Steepest descent curves through the saddles u1, u2 and u3.
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convergent in a neighbourhood of v = 0. We observe that b1,j = 1 for each j =
1, 2, 3. Substitution into each term in (1.1.18) followed by termwise integration
will furnish ∫

�j

eix
2ψ(u)du ∼ eix

2ψ(uj )+(−)j+1πi/4 π
1
2

xdj
Sj (x, φ),

where Sj (x, φ) denotes the formal asymptotic sum

Sj (x, φ) =
∞∑
k=0

(2k + 1)b2k+1,j
�(k + 1

2 )

�( 1
2 )

(
(−)j+1i

)k
(djx)

−2k.

It then follows that

P(−x, y) ∼
√
π

x

3∑
j=1

eix
2ψ(uj )+(−)j+1πi/4

dj
Sj (x, φ)

for large x. This is evidently a compound asymptotic expansion with each con-
stituent asymptotic series corresponding to a single saddle point of P(−x, y). We
shall meet the Pearcey integral again in Chapter 8, in a less restricted setting. ✷

There also arise situations in which functions depending on parameters other
than the asymptotic one may possess asymptotic expansions which not only depend
on such auxiliary parameters, but may also undergo discontinuous changes of scale
as these parameters vary. Such a discontinuity in the scale can occur, even if the
function involved is holomorphic in the control parameter. In more specific terms,
let us suppose that a function F(λ;µ) has asymptotic parameter λ and control
parameter µ. For λ→ λ0, and µ < µ0, say, one might have an asymptotic form

F(λ;µ) ∼ A1(λ;µ)
∞∑
n=0

a1n(µ)φ
−
1n + · · · + Ak(λ;µ)

∞∑
n=0

akn(µ)φ
−
kn,

where {φ−jn} (1 ≤ j ≤ k) are asymptotic scales in the variable λ, while forµ > µ0,
a different expansion might hold, say

F(λ;µ) ∼ B1(λ;µ)
∞∑
n=0

b1n(µ)φ
+
1n + · · · + Br(λ;µ)

∞∑
n=0

brn(µ)φ
+
rn,

for different scales {φ+jn} (1 ≤ j ≤ r) in λ. For the valueµ = µ0, a third expansion
may hold, involving yet another scale {φjn} (1 ≤ j ≤ s),

F(λ;µ0) ∼ C1(λ)

∞∑
n=0

c1nφ1n + · · · + Cs(λ)

∞∑
n=0

csnφsn (λ→ λ0).

Distinct forms such as these may apply, even if F is analytic in a neighbour-
hood of µ0, and the limiting forms of the expansions may not exist as µ→ µ±0 ,
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compounding the difficulty of using such expansions in a neighbourhood of
µ = µ0.

This setting can be dealt with through the use of a uniform asymptotic
expansion, a (usually) compound expansion

F(λ;µ) ∼ D1(λ;µ)
∞∑
n=0

d1nψ1n + · · · +Dk(λ;µ)
∞∑
n=0

dknψkn,

where the asymptotic scale {ψjn} (1 ≤ j ≤ k) is a sequence of functions of the
asymptotic parameter, which retains its character as an asymptotic scale for all
values of the control parameter in a neighbourhood of µ = µ0, i.e., ψj,n+1 =
o(ψjn) for λ→ λ0, for every µ in some neighbourhood of µ = µ0.

On first glance, it may appear there is little that is new captured in this account.
The essential difference is that the coefficient functions Dj must be continuous in
a neighbourhood of µ = µ0 for all λ in a neighbourhood of λ0. Furthermore, for
µ �= µ0, each Dj must have expansions for λ→ λ0 which, when combined with
the associated Poincaré expansion

∑
djnψjn, allows the recovery of either the A-

or B-coefficient expansions, and for µ = µ0, the recovery of the C-coefficient
series. Because the D-series is continuous in µ in a neighbourhood of µ0, the D-
coefficient expansion interpolates continuously from the A-series to the C-series
to the B-series as µ varies. This continuous interpolation is possible only through
additional complexity in the form of the coefficients Dj .

Example 3. Bessel functions of large order. As an illustration, we cite the
asymptotic expansion of the Bessel function Jν(νx) for large positive order and
argument in the form

Jν(νx) ∼




eν(tanh α−α)

(2πν tanh α)
1
2

∞∑
k=0

ck(coth α)

νk

(
2

πν tan β

) 1
2
{

cos<
∞∑
k=0

c2k(i cot β)

ν2k

−i sin<
∞∑
k=0

c2k+1(i cot β)

ν2k+1

}
,

(1.1.19)

where in the first expansion 0 < x < 1 with x = sechα and in the second
expansion x > 1 with x = secβ. The coefficients ck(t) are polynomials in t

of degree 3k, with c0(t) = 1, c1(t) = 1
24 (3t − 5t3), . . . and < = ν(tan β −

β) − 1
4π ; see Abramowitz & Stegun (1965, p. 366). These expansions describe
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the asymptotic structure of Jν(νx) on either side of the transition point x = 1.
When 0 < x < 1, Jν(νx) decays exponentially away from the point x = 1
while when x > 1, Jν(νx) changes to an oscillatory form with an amplitude that
eventually decays like x− 1

2 as x → +∞. Both these expansions break down in
the neighbourhood of x = 1 and so cannot describe uniformly the behaviour of
Jν(νx) for x > 0.

A uniformly valid expansion which incorporates both the expansions in (1.1.19)
is given by [Abramowitz & Stegun (1965, p. 368)]

Jν(νx) ∼
(

4ζ

1− x2

) 1
4
{

Ai(ν2/3ζ )

ν1/3

∞∑
k=0

ak(ζ )

ν2k
+ Ai′(ν2/3ζ )

ν5/3

∞∑
k=0

bk(ζ )

ν2k

}
,

(1.1.20)

where Ai(z) denotes the Airy function. This expansion holds for ν → +∞ uni-
formly with respect to x in the sector | arg x| ≤ π − ε, ε > 0. The variable ζ is
defined by

2
3ζ

3/2 = log
{
(1+√1− x2)/x

}
−√1− x2

the branches being chosen so that ζ is real when x > 0. The coefficients ak(ζ ),
bk(ζ ) are complicated functions of ζ and are expressed in terms of finite sums of
the coefficients ck((1− x2)− 1

2 ), with

a0(ζ ) = 1, b0(ζ ) = − 5
48ζ

−2 + ζ−
1
2

{
5

24 (1− x2)−
3
2 − 1

8 (1− x2)−
1
2

}
.

Although the coefficient functions ak(ζ ) (k ≥ 1) and bk(ζ ) (k ≥ 0) are analytic
in the neighbourhood of the transition point x = 1 (ζ = 0), they are, in common
with many uniform expansions, expressed in a form that possesses a removable
singularity at this point.

The asymptotic forms (1.1.19) can be obtained from (1.1.20) by insertion of the
expansion for the Airy function and its derivative; see below for the leading-order
terms. When 0 < x < 1, ζ is bounded away from zero and the arguments of
the Airy functions in (1.1.20) are large and positive. These functions are therefore
exponential in character and the expansion (1.1.20) reduces to the first form in
(1.1.19). On the other hand, when x > 1, ζ < 0 and is bounded away from zero,
so that the arguments of the Airy functions are large and negative and consequently
produce oscillatory terms. In this case the expansion (1.1.20) reduces to the second
form in (1.1.19).

At the transition point x = 1 (ζ = 0), we employ the evaluations Ai(0) =
�( 1

3 )/(2 · 31/6π), Ai′(0) = −31/6�( 2
3 )/(2π) together with the limiting value
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{4ζ/(1− x2)} 1
4 = 2

1
3 to find the expansion†

Jν(ν) ∼ 21/3ν−1/3

32/3�
(

2
3

) ∞∑
k=0

ak(0)

ν2k
− 21/3ν−5/3

31/3�
(

1
3

) ∞∑
k=0

bk(0)

ν2k
.

Example 4. The Pearcey integral revisited. As a further illustration, let us
again consider the Pearcey integral. Because of the additional complexity involved,
we shall only consider asymptotic behaviour to leading order; the character of the
uniform expansion will still be apparent in our terse account.

To leading order, for y( 2
3x)

−3/2 < 1 to ensure that the angle φ in (1.1.17)
satisfies φ < 1

6π , the Pearcey integral has the asymptotic form

P(−x, µx3/2) ∼
3∑

j=1

eix
2ψ(uj )+(−)j+1πi/4

dj

√
π

x
(1.1.21)

where we have set µ = y/x3/2. When µ = (2/3)3/2, so that φ = 1
6π , the

saddle points u2 and u3 coalesce into a single saddle of order 2, i.e., a saddle
point at which, additionally, the phase function ψ(u) has a vanishing second
derivative. A modification of the steepest descent method then allows us to deduce
the approximation [Bleistein & Handelsman (1986, pp. 263–265)]

P(−x, (2/3)3/2x3/2) ∼ eix
2ψ(u1)+πi/4

d1

√
π

x

+ eix
2/12

21/231/3x1/6

{
�
(

1
3

)− i�
(

2
3

)
2 · 31/3x2/3

}
(1.1.22)

for x →∞; observe that ψ(u1) = − 2
3 when µ = (2/3)3/2, and that d2 = d3 = 0

of Example 2. For µ > (2/3)3/2, the asymptotic behaviour of the Pearcey integral
is dominated by the contribution from the saddle point u1, for which we find

P(−x, µx3/2) ∼ eix
2ψ(u1)+πi/4

d1

√
π

x
(x →∞). (1.1.23)

As µ increases from below (2/3)3/2, to (2/3)3/2 and then beyond, we see a
discontinuous change in the asymptotic scales used in (1.1.21) and in (1.1.22),
with the complete disappearance of the last two terms in (1.1.22) as we move
to µ > (2/3)3/2. The uniform asymptotic approximation that interpolates con-
tinuously between these disparate forms in a neighbourhood of µ = (2/3)3/2

results from an application of the cubic transformation introduced by Chester et al.
(1957). This transformation captures the essential features of the circumstance of a

† We note that the leading term of this expansion yields the well-known approximation due to Cauchy
given by

Jν(ν) ∼ 21/3ν−1/3

32/3�
(

2
3

) (ν →+∞).
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Laplace-type integral undergoing a confluence of two neighbouring simple saddle
points. Applied to the Pearcey integral, this method yields an approximation of the
form [Kaminski (1989)]

P(−x, µx3/2) ∼ eix
2ψ(u1)+πi/4

d1

√
π

x

+ 2πeix
2η

x1/6

{
p0(µ)Ai(−x4/3ζ )+ iq0(µ)

x2/3
Ai′(−x4/3ζ )

}
,

(1.1.24)

where the quantities η and ζ are given by η = 1
2 {ψ(u2) + ψ(u3)} and ζ 3/2 =

3
4 {ψ(u2) − ψ(u3)}. The coefficients p0(µ) and q0(µ) are continuous functions
in a neighbourhood of µ = (2/3)3/2 and satisfy p0((2/3)3/2) = 2−1/23−1/6 and
q0((2/3)3/2) = 2−3/23−5/6. We note that ζ < 0 for µ > (2/3)3/2 and vice versa,
and that ψ(u2) = ψ(u3) = 1

12 when µ = (2/3)3/2, at which point u2 = u3.
The original asymptotic forms can be recovered from (1.1.24) by applying the

asymptotic forms of the Airy function and its derivative for large |z|, namely
[Abramowitz & Stegun (1965, pp. 448–449)]

Ai(z) ∼ e−2z3/2/3

2
√
π z1/4

(| arg z| < π),

Ai(−z) ∼ 1√
π z1/4

{
sin

(
1
4π + 2

3z
3/2

)− 5
48z

−3/2 cos
(

1
4π + 2

3z
3/2

)}
(| arg z| < 2

3π),

Ai′(z) ∼ −z
1/4e−2z3/2/3

2
√
π

(| arg z| < π),

Ai′(−z) ∼ −z
1/4

√
π

{
cos

(
1
4π + 2

3z
3/2

)− 7
48z

−3/2 sin
(

1
4π + 2

3z
3/2

)}
(| arg z| < 2

3π).

For µ < (2/3)3/2 and bounded away from (2/3)3/2, the arguments of Ai and Ai′

in (1.1.24) are negative, so the preceding asymptotic forms for the Airy function
and its derivative produce oscillatory terms, whence the approximation (1.1.24)
reduces to (1.1.21). Conversely, ifµ > (2/3)3/2, we find ζ 3/2 is pure imaginary, in
which case the exponentially decaying asymptotic forms for the Airy function and
its derivative apply. In this event, the leading term in the asymptotic approximation
of P(−x, µx3/2) is the one arising from the saddle u1, evident in (1.1.23).

Finally, at the point of confluence when µ = (2/3)3/2, we employ the values
of Ai(0) and Ai′(0) given earlier along with the values u2 = u3 = 1/

√
6 and

u1 = −2/
√

6 to recover (1.1.22) from (1.1.24).
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(a) (b)

Fig. 1.4. Portraits of (a) R.H. Mellin (1854–1933) and (b) E.W. Barnes (1874–1953)
(reproduced with permission).

1.2 Biographies of Mellin and Barnes
The names of Mellin and Barnes (Fig. 1.4) are intimately linked with, and were the
main exponents of, the asymptotic procedure discussed in this book. We give below
a brief biographical account of these two eponymous mathematicians, together
with a description of their main mathematical contributions. These accounts are
based on Lindelöf (1933) and Elfving (1981) (for Mellin) and Whittaker (1954),
Rawlinson (1954) and the Obituary Notices of The Times in November 1953 (for
Barnes).

Robert Hjalmar Mellin

Robert Hjalmar Mellin, the son of a clergyman, was born in Liminka, northern
Ostrobothnia, in Finland on 19 June 1854. He grew up and received his schooling in
Hämeenlinna (about 100 km north of Helsinki) and undertook his university studies
in Helsinki, where his teacher was the Swedish mathematician G. Mittag-Leffler.
In the autumn of 1881 Mellin defended his doctoral dissertation on algebraic
functions of a single complex variable. He made two sojourns in Berlin in 1881
and 1882 to study under K. Weierstrass and in 1883–84 he returned to continue
his studies with Mittag-Leffler in Stockholm.

Mellin was appointed as a docent at the University of Stockholm from
1884–91 but never actually gave any lectures. Also in 1884 he was appointed a
senior lecturer in mathematics at the recently founded Polytechnic Institute which
was later (in 1908) to become the Technical University of Finland. In 1901 Mellin
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withdrew his application for the vacant chair of mathematics at the University of
Helsinki in favour of his illustrious (and younger) fellow countryman E. Lindelöf
(1870–1946). During the period 1904–07 Mellin was Director of the Polytechnic
Institute and in 1908 he became the first professor of mathematics at the new uni-
versity. He remained at the university for a total of 42 years, retiring in 1926 at the
age of 72.

With regard to the ever-burning language question, Mellin was a fervent
fennoman with an apparently fiery temperament. It must be recalled, at this junc-
ture, that Finland had for a long time been part of the kingdom of Sweden and had
consequently been subjected to its language and culture.† Mellin was one of the
founders of the Finnish Academy of Sciences in 1908 as a purely Finnish alter-
native to the predominantly Swedish-speaking Society of Sciences. From 1908
until his death on 5 April 1933, at the age of 78, he represented his country on the
editorial board of Acta Mathematica.

Mellin’s research work was principally in the area of the theory of functions
which resulted from the influence of his teachers Mittag-Leffler and Weierstrass.
He studied the transform which now bears his name‡ and established its reci-
procal properties. He applied this technique systematically in a long series of
papers to the study of the gamma function, hypergeometric functions, Dirichlet
series, the Riemann zeta function and related number-theoretic functions. He also
extended his transform to several variables and applied it to the solution of partial
differential equations. The use of the inverse form of the transform, expressed
as an integral along a path parallel to the imaginary axis of the complex plane
of integration, was developed by Mellin as a powerful tool for the generation of
asymptotic expansions. In this theory, he included the possibility of higher-order
poles (thereby leading to the inclusion of logarithmic terms in the expansion) and
to several sequences of poles yielding sums of asymptotic expansions of very
general form.

During the last decade of his life Mellin was, rather curiously for an analyst, pre-
occupied by Einstein’s theory of relativity and he wrote no less than 10 papers on
this topic. In these papers, where he was largely concerned with general philosoph-
ical problems of time and space, he adopted a quixotic standpoint in his attempt
to refute the theory as being logically untenable.

Ernest William Barnes

Ernest William Barnes was born in Birmingham on 1 April 1874, the eldest
of four sons of John Starkie Barnes and Jane Elizabeth Kerry, both elementary

† After the Napoleonic wars Finland became an autonomous Grand Duchy under Russia, to finally
emerge as an independent republic in the aftermath of the First World War.

‡ We point out that similar studies of an incomplete nature had been carried out earlier by Pincherle;
for references, see Watson (1966, p. 190).


