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Theory of Solidification

The processes of freezing and melting were present at the beginnings of the
Earth and continue to affect the natural and industrial worlds. The solidification
of a liquid or the melting of a solid involves a complex interplay of many physical
effects. This book systematically presents the field of continuum solidification
theory based on instability phenomena. An understanding of the physics is de-
veloped by using examples of increasing complexity with the object of creating
a deep physical insight applicable to more complex problems.

Applied mathematicians, engineers, physicists and materials scientists will
all find this volume of interest.

Stephen H. Davis is McCormick Professor and Walter P. Murphy Professor of
Applied Mathematics at Northwestern University.
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Preface

Materials Science is an extremely broad field covering metals, semiconductors,
ceramics, and polymers, just to mention a few. Its study is dominated by the
fabrication of specimens and the characterization of their properties. A rela-
tively small portion of the field is devoted to phase transformation, the dynamic
process by which in the present context a liquid is frozen or a solid is melted.

This book is devoted to the study of liquid (melt)-solid transformations of
atomically rough materials: metals or semiconductors, including model organ-
ics like plastic crystals. The emphasis is on the use of instability behavior as a
means of understanding those processes that ultimately determine the micro-
structure of a crystalline solid. The fundamental building block of this study
is the Mullins–Sekerka instability of a front, which gives conditions for the
growth of infinitesimal disturbances of a soild–liquid front. This is generalized
in many ways: into the nonlinear regime, including thermodynamic disequilib-
rium, anisotropic material properties, and effects of convection in the liquid.
Cellular, eutectic, and dendritic behaviors are discussed. The emphasis is on
dynamic phenomena rather than equilibria. In a sense then, it concerns “physi-
ology” rather than “anatomy.”

The aim of this book is to present in a systematic way the field of continuum
solidification theory. This begins with the primitive field equations for diffusion
and the derivation of appropriate jump conditions on the interface between the
solid and liquid. It then uses such models to explore morphological instabilities
in the linearized range and gives physical explanations for the phenomena
uncovered. To this point the discussion is elementary in terms of mathematical
sophistication. It then enters into the nonlinear theories of morphological change
with the use of bifurcation theory for wave number and pattern selection, long-
wave theories in the strongly nonlinear range, and numerical simulation. The
reader is assumed to be reasonably sophisticated in the mathematical methods,

xiii
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that is, stability theory and its nonlinear extensions and some asymptotic and
perturbation theory, but having little background in materials science. Thus,
the book is deliberately nonuniform in its “degree of difficulty.” Those with
limited mathematical background can skip the nonlinear theories and read about
the physical phenomena and the linearized theories in the various chapters.
The text should take the reader from the elements of the physics to the latest
developments of the theory. It would be hoped that applied mathematicians,
engineers, and physicists would profit from the material presented as would
theoretically inclined materials scientists who could see how mathematics can
generate understanding of relevant physical phenomena. An understanding of
the physics is developed by using examples of increasing complexity with
the objective of creating a deep physical insight applicable to more complex
problems.

My interest in solidification was first stimulated by Jon Dantzig in his Ph.D.
thesis of 1977 and permanently triggered by Ulrich Müller in our 1984 work
on Bénard convection coupled to a freezing front. When learning a new subject
as an “adult,” one leans heavily on the expertise of senior colleagues for their
wisdom. I thus wish to publicly thank Sam Coriell, Jon Dantzig, Paul Fife,
Marty Glicksman, Wilfried Kurz, Jeff McFadden, Uli Müller, Bob Sekerka,
Peter Voorhees, and Grae Worster for their contributions to my education.
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Braun, L. Bühler, D. J. Canright, Y.-J. Chen, J. A. Dantzig, A. A. Golovin, H.-P.
Grimm, D. A. Huntley, P.-Q. Luo, G. B. McFadden, G. J. Merchant, P. Metzener,
U. Müller, D. S. Riley, T. P. Schulze, B. J. Spencer, A. Umantsev, G. W. Young,
and J.-J. Xu.

I am grateful to several people for reading selected chapters of the book
and making important suggestions. They are Dan Anderson, Kirk Brattkus,
Yi-Ju Chen, Jon Dantzig, Sasha Golovin, Jeff McFadden, Tim Schulze, Peter
Voorhees, Grae Worster, and J.-J. Xu.

This book could not have been written without the generous support of
the National Aeronautics and Space Administration Microgravity Sciences and
Applications Program.

Finally, I would like to thank my secretary, Judy Piehl, not only for her
impeccable typing, but for her sense of joy in her work. Her presence in the
department makes it possible for all of us to do better what we do.



1

Introduction

The processes of freezing and melting were present at the beginning of the
Earth and continue to affect the natural and industrial worlds. These processes
created the Earth’s crust and affect the dynamics of magmas and ice floes,
which in turn affect the circulation of the oceans and the patterns of climate and
weather. A huge majority of commercial solid materials were “born” as liquids
and frozen into useful configurations. The systems in which solidification is
important range in scale from nanometers to kilometers and couple with a vast
spectrum of other physics.

The solidification of a liquid or the melting of a solid involves a complex-
interplay of many physical effects. The solid–liquid interface is an active free
boundary from which latent heat is liberated during phase transformation. This
heat is conducted away from the interface through the solid and liquid, result-
ing in the presence of thermal boundary layers near the interface. Across the
interface, the density changes, say, from ρ� to ρs. Thus, if ρs > ρ�, so that the
material shrinks upon solidification, a flow is induced toward the interface from
“infinity.”

If the liquid is not pure but contains solute, preferential rejection or incor-
poration of solute occurs at the interface. For example, if a single solute is
present and its solubility is smaller in the (crystalline) solid than it is in the
liquid, the solute will be rejected at the interface. This rejected material will
be diffused away from the interface through the solid, the liquid, or both, re-
sulting in the presence of concentration boundary layers near the interface. The
thermal and concentration boundary layer structures determine, in large part,
whether morphological instabilities of the interface exist and what the ultimate
microstructure of the solid becomes. Many a solidification problem of interest
couples the preceding purely diffusive effects with effects of thermodynamic
disequilibrium, crystalline anisotropy, and convection in the melt.
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2 1. Introduction

On the coarsest level of understanding, freezing is of concern only as a heat or
mass transfer process. Thus, one cools a glass of bourbon by inserting ice cubes
that extract heat by melting. Likewise, one places salt on icy roads in Evanston
to facilitate melting because salt water has a lower melting temperature than
pure water.

On a finer level of understanding, freezing can create solids whose mi-
crostructures are determined by the process parameters and the intrinsic insta-
bilities of the solid–liquid front. Figure 1.1 shows a longitudinal section of a
Zn–Al alloy casting. Notice the dendritic structures that extend inward from
the cold boundary and a core region in which no microstructure is visible. At
later times, spontaneous nucleation in the core can cause “snowflakes” to grow
in the core. The coarseness or fineness of the microstructure helps determine
whether mechanical and thermal reprocessing can be accomplished without the
appearance of cracks.

Under certain conditions of freezing, the moving solidification front can be
susceptible to traveling-wave instabilities, giving structural patterns that can be
made visible; see Figure 1.2.

When a eutectic alloy is frozen, the solid can take the form of a lamellar
structure, alternate plates of two alloys spatially periodic perpendicular to the
freezing direction. Under certain conditions this mode of growth is stable, giving
rise to the more complex modes of growth, an example of which is shown in
Figure 1.3.

Under conditions of rapid solidification, the microstructure can take on
metastable states and patterns inconsistent with equilibrium thermodynamics.
Figure 1.4 shows a banded structure in an Al–Cu alloy consisting of alternate
layers of structured and unstructured material spatially periodic in the freez-
ing direction. The structured layers may contain cells, dendrites, or eutectic
material, whereas the alternate layers seem to have no visible microstructure.

If the solidification process occurs in a gravitational field, the thermal and
solutal gradients may induce buoyancy-driven convection, which is known to
affect the interfacial patterns greatly and, hence, the solidification microstruc-
tures present in the solidified material. The coupling of fluid flow in the melt
with phase transformation at the interface can result in changes of microstruc-
ture scale and pattern due to alterations of frontal instabilities and the creation
of new ones.

When an alloy is frozen at moderate speeds and dendritic arrays are formed,
interesting dynamics occur in the dendrite–liquid mixture – the mushy zone.
Here, solutal convection can be localized, creating channels parallel to the
freezing direction, as shown in Figure 1.5. The channels frozen into the solid
are called freckles, and their presence can significantly weaken the structure
of the solid.



Figure 1.1. Longitudinal section of the quenched interface of the Zn–27%Al alloy.
From Ayik et al. (1986).

3



4 1. Introduction

Figure 1.2. Etched longitudinal section of a Ga-doped Ge single crystal showing trav-
eling waves on the interface. The arrow indicates the growth direction. From Singh,
Witt, and Gatos (1974).

Figure 1.3. TEM micrographs of laser rapidly solidified Al–40 wt % Cu alloy oscillatory
instabilities. V = 0.03 m/s. From Gill and Kurz (1993).

Given that the solid has crystalline structure, intrinsic symmetries in the
material properties help define the continuum material. The surface energy and
the kinetic coefficient on the interface as well as the bulk transport properties
inherit the directional properties of the crystal, and thus anisotropies are often
significant in determining the cellular or dendritic patterns that emerge. If the
anisotropy is strong enough, the front can exhibit facets and corners.
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Figure 1.4. Enlarged view of the banded structure in Al–Cu 17 wt %. The dark bands
have a dendritic structure, whereas the light bands are microsegregation free. DB= dark
band, LB= light band, TW= total bandwidth, LW= light bandwidth, and Vs = growth
rate. From Zimmermann et al. (1991).

Figure 1.5. A photograph of mushy layer chimneys during an experiment with an am-
monium chloride solution. In this system, pure ammonium chloride crystals are formed
when the solution is cooled below its freezing temperature, leaving behind a diluted so-
lution with a density lower than that of the bulk fluid. In the present case, the mushy layer
is growing away from a fixed cold base that is at a temperature below the eutectic point,
and thus both the solid–mush and mush–liquid interfaces are advancing at a decreasing
rate. At the time the photograph was taken the distance between the base of the tank and
the eutectic front was about 3 cm. Notice that the chimney walls and the mush–liquid
interface are flat to a good first approximation. From Schulze and Worster (1998).

Finally, single crystals can be grown having, one would hope, uniform prop-
erties as long as the growth rate is very small. However, even in such cases the
structure can be interrupted by defects or striations. In Figure 1.6, thermal fluc-
tuations have created solute variations in the form of concentric rings, making
the crystal inhomogeneous. If the crystal were rotated to remove azimuthal



6 1. Introduction

Figure 1.6. Transverse section of a Ba2NaNb5O15 crystal whose rotational striations
form concentric closed loops. The striations are caused by temperature fluctuations in
the melt. From Hurle (1993).

thermal variations, rotational striations could occur having the form of spirals
emanating from the center of rotation.

The challenge to the scientist is to understand the sources of such inhomo-
geneities, quantify the phenomena at work, and learn to control the processes
so as to create desired microstructures in situ on demand. Significant progress
has been made in these directions, though the end point is not at hand. Clearly,
this is a huge field, and inevitably an author must make subjective choices of
what material to include. The view taken here is that one should delve into a
“core” of the field. A grasp of the physics is developed by using examples of
increasing complexity intended to create a deep physical insight applicable to
more complex problems.
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Pure substances

2.1 Planar Interfaces

2.1.1 Mathematical Model

Consider a system in thermal equilibrium so that the temperature T is uniform.
Part of the system is liquid and part is solid. For the two phases to coexist,
the solid–liquid interfaces must be planar, and the temperature must be Tm,

the melting temperature; Tm may depend on pressure and is here taken to be
constant.

The amount of heat required to change a unit mass of solid into liquid at
T = Tm is the latent heat L; if ρs is the density of the solid, then the latent
heat per unit volume is LV , LV = ρsL . The amount of heat required to raise,
without change of phase, the temperature of a unit mass of solid or liquid by
1◦C is the specific heat cp.

Consider now a system in which temperature gradients are present so that
there are heat fluxes. The bulk heat balance in either phase alone can be obtained
by considering a material volume V(t), as shown in Figure 2.1, and is given by

d

dt

∫
V(t)

ρcpT dV = −
∫

∂V(t)

q · nd S, (2.1)

where ρ is the density, q is the heat flux, and n is the unit outward–normal
vector to V on its (closed) boundary ∂V .

The transport theorem for any smooth field F passing through V states that

d

dt

∫
V(t)

FdV =
∫

V(t)

[
∂F

∂t
+ ∇ · (Fv)

]
dV, (2.2)

where v is the velocity field of the material (see, e.g., Serrin 1959).

7



8 2. Pure substances

Figure 2.1. A control volume V entirely with a bulk phase; ∂V is its boundary and n
is the unit outward normal.

If Gauss’s theorem and identity (2.2) are used on relation (2.1), then∫
V(t)

{
∂

∂t
(ρcpT )+ ∇ · (ρcpT v)

}
dV = −

∫
V(t)

∇ · qdV,

and since V is arbitrary and the integrands are supposed smooth, the point form
of the bulk mass balance is obtained as

d

dt
(ρcpT )+ ρcpT∇ · v = −∇ · q, (2.3)

where the material derivative is given by

d

dt
= ∂

∂t
+ v · ∇. (2.4)

To complete the specification of the heat balance, a constitutive law is required
that relates q to the temperature field. It is assumed here that the Fourier law of
heat conduction holds, that is

q = −kT∇T, (2.5)

where kT is the thermal conductivity of the phase. Thus, the final form of the
bulk heat balance is given by

d

dt
(ρcpT )+ ρcpT∇ · v = ∇ · kT∇T . (2.6)

In the absence of bulk flow, v= 0, and for ρ, cp, kT constant, Eq. (2.6) reduces
to the standard heat-conduction equation

∂T

∂t
= κ∇2T, (2.7)
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Figure 2.2. A control voume V spanning the interface S that moves at speed Vn normal
to itself: ∂V is the boundary of V and n is the unit outward normal.

where

κ = kT/ρcp

is the thermal diffusivity of the phase.
On a moving (planar) interface, there is a heat balance. Consider a (two-

dimensional) volume of height δ spanning the interface, as shown in Figure
2.2. If Vn is the speed of the interface (normal to itself), then in a time δt and
for δ → 0,

ρsLVnδt = (q� − qs) · nδt

because the (smooth) heat accumulation vanishes as δ → 0. Thus, if Fourier
heat conduction is applied, Eq. (2.5), the interfacial heat balance is

ρsLVn = (ks
T∇T s − k�

T∇T �) · n. (2.8)

One sees that the net heat entering the interface, the right-hand side, determines
the speed Vn of the front.

In addition, the temperature is continuous across the interface and is known
to be the equilibrium melting temperature Tm,

T s = T � = Tm. (2.9)

2.1.2 One-Dimensional Freezing from a Cold Boundary

Consider a plane boundary at z = 0, which is adjacent to a liquid at initial tem-
perature T = Tm, as shown in Figure 2.3. At t = 0, the boundary is impulsively
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Figure 2.3. Planar solidification from a cold boundary at z = 0 with temperature TB
into a warmer melt at temperature T∞. The interface between solid and liquid is at
z = h(t).

cooled to a temperature TB, such that the undercooling �T is

�T = Tm − TB > 0, (2.10)

creating a solid–liquid interface at z = h(t) and it will be supposed thatρs = ρ�.

Because for t < 0, T = Tm, the temperature in the liquid will not fall below
Tm, hence, the temperature in the liquid is constant for all time,

T � = Tm z > h(t). (2.11a)

In the solid there is heat conduction

T s
t = κsT s

zz 0 < z < h(t). (2.11b)

For t > 0

T s = TB z = 0 (2.11c)

T � = T s = Tm z = h(t) (2.11d)

ρsLȧ = ks
TT s

z z = h(t). (2.11e)

For t = 0,

T s = Tm, h = 0. (2.11f)

Note that the heat flux in the liquid is zero because the temperature there is
constant.

There are no natural time and space scales here, and therefore a similarity
solution can be sought. Let the new independent variable be η,

η = z

2
√
κst

, (2.12a)
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define the nondimensional temperature by θ,

T s = Tb + (�T )θ (η), (2.12b)

and thus θ = 0 at the base and θ = 1 at the front. Finally, consistent with the
preceding equations, the interface position is written as

h(t) = 2�
√
κst, (2.12c)

where the value of �, as yet unknown, determines the speed and position of the
front. Through the use of these forms, system (2.11a) becomes

θ ′′ + 2ηθ ′ = 0 0 < η < � (2.13a)

θ = 0 η = 0 (2.13b)

θ = 1 η = � (2.13c)

θ ′ = 2S� η = � (2.13d)

where the Stefan number S is

S = L

cs
p�T

. (2.14)

Notice that the initial conditions (2.11f) applied at t = 0 corresponds to η→∞
and that the temperature is constant in (h,∞). Thus, the thermal condition can
be applied at η = �, as shown in Eq. (2.13c). One integral of Eq. (2.13a) gives

θ ′ = Ae−η
2
, (2.15a)

where the integration constant A satisfies

2S� = Ae−�
2
. (2.15b)

A second integral that satisfies Eqs. (2.13b,c) is

θ =

∫ η

0
e−s2

ds∫ �

0
e−s2

ds

= erf (η)

erf (�)
, (2.15c)

where the error function is defined by

erf (z) ≡ 2√
π

∫ z

0
e−s2

ds. (2.16)
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Figure 2.4. A sketch of Eq. (2.17) for the interface speed � versus the undercooling
S−1. Solutions exist for all S−1.

When form (2.15c) is substituted into the flux condition (2.13d), one finds
that

√
π �e�

2
erf (�) = S−1, (2.17)

which gives � = �(S), the speed of the front as a function of the undercooling,
as shown in Figure 2.4.

Notes

1. Solutions exist for all values of the nondimensional undercooling S−1.
2. Notice that h ∼ t1/2, and hence ḣ ∼ t−1/2. The solution fails at t = 0, where the

front speed is infinite (owing to the assumption of impulsive heating) and decreases
with time.

3. The temperature gradient GT at the interface is

GT = T s
z |z=h = �T

2
√
κst

θ ′(η) |η=�

= �T√
κst

�S > 0,

(2.18)

and thus the heat flows downward through the solid. Consequently, the front speed
depends on κs, and not κ�. As will be seen, GT > 0 indicates that the front is stable
to disturbances periodic along the front.

4. If, initially, one sets the temperature of the liquid at T � = T∞ > Tm, then there would
also be heat flow in the liquid and the profiles would look as shown in Figure 2.5; the
front speed would then depend on both diffusivities. In both cases T is continuous at
z = h(t),but the gradient Tz is not.

5. The similarity solution posed is a “preferred” solution in the sense that, under rather
weak conditions, all solutions of the initial-value problem (2.11) approach the simi-
larity solution as t →∞.

6. When S−1 is small, �T is small or L is large. Figure 2.4 or Eq. (2.17) shows that �
is small so that freezing takes place very slowly. It is useful to analyze the limit of
small �T separately.
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Figure 2.5. A sketch of the temperature profiles in the solid and liquid for the two-phase
conduction problem.

2.1.3 One-Dimensional Freezing from a Cold Boundary:
Small Undercooling

When S−1 ≡ ε � 1, then the growth rate is small. Scale the original system
Eqs. (2.11) as follows:

ζ = z/�, τ = t/to (2.19a)

A(τ ) = h(t)/�, T s(z, t) = TB + (�T )θ (ζ, τ ), (2.19b)

where � and to are scales undefined for the moment. From the previous solution
it is seen that heat conduction in the solid is important; therefore let to = �2/κs.
System (2.11) then becomes

θτ = θζζ 0 < ζ < A(τ ) (2.20a)

θ = 0 ζ = 0 (2.20b)

θ = 1 ζ = A(τ ) (2.20c)

Aτ = εθζ ζ = A(τ ) (2.20d)

A = A0

θ (ζ, 0) = θ0(0)

}
, τ = 0. (2.20e)
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In the preceding, the problem has been generalized to allow nonzero initial
temperature distributions θ0(ζ ) and initial-front positions A0.

If ∂/∂τ = O(1) and ε → 0, the resulting system remains second order
in time and hence is capable of satisfying both initial conditions. However, at
first approximation Aτ ∼ 0, and thus from time zero to τ = O(1) the interface
is stationary at its initial position and solidification does not occur. In this
time interval one then has a standard heat-conduction problem for θ on a fixed
domain, 0<ζ < A. This represents the inner solution in time. The outer solution
in time, valid for long periods, requires a rescaling of time

τ̂ = ετ, (2.21)

which represents a time scale based on latent heat and undercooling, namely
ρsL�2/kT�T , and so describes the solidification process. In this case, system
(2.11) becomes

εθτ̂ = θζζ 0 < ζ < A(τ̂ ) (2.22a)

θ = 0 ζ = 0 (2.22b)

θ = 1 ζ = A(τ̂ ) (2.22c)

Aτ̂ = θζ ζ = A(τ̂ ) (2.22d)

A = A0, θ = θ0 τ̂ = 0. (2.22e)

The limit ∂/∂τ̂ = O(1) and ε → 0 is a singular perturbation; it is seen that at
first approximation the temperature is quasi-steady,

θζζ = 0. (2.23)

The solution that satisfies Eqs. (2.22b,c) is

θ = ζ/A. (2.24)

Now the flux condition (2.22d) gives

AAτ̂ = 1, (2.25)

which is a nonlinear evolution equation for A (Young 1994). Thus, with the
first of condition (2.22e),

A2(τ̂ )− A2
0 = 2τ̂ . (2.26)

In dimensional terms,

h2 − h2
0 = 2εκst = 2ks

T(�T )t

ρsL
. (2.27)

The inner and outer solutions automatically match asymptotically.
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Figure 2.6. Sketches of the temperature and interface position as functions for the outer
time t̂ for small ε.

Solution (2.27) coincides with the similarity solution for S →∞ and h0 =
0 where h = 2�

√
κst and � ∼ (2S)−1/2.

Note: The length scale �was never defined, and because the original problem
has no intrinsic length scale, � cancels from the results, as seen in Eq. (2.27).

The solutions can be sketched symbolically, as shown in Figure 2.6. For
τ̂ ∼ ε, τ ∼ 1, A is constant, and θ develops. For τ̂ ∼ 1, θ is quasi-steady, and
its time evolution is determined by that of A, as shown.

2.1.4 One-Dimensional Freezing into an Undercooled Melt

Consider the semi-infinite body of fluid shown in Figure 2.7 that is cooled below
Tm to T∞, �T = Tm − T∞.

At t = 0, a plate is inserted at z = 0 at temperature Tm. For ρs = ρ�,

one wishes to determine how the system evolves. The temperature profile at a
fixed time is shown in Figure 2.8; in the solid, T = Tm always, and thus heat
conduction is absent there.

Figure 2.7. Planar solidification into an undercooled melt, where the interface has
position z = h(t).
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Figure 2.8. A sketch of the temperature profiles for planar solidification into an under-
cooled melt.

The governing system is as follows:
In solid, z < h(t),

T s = Tm (2.28a)

In liquid, z > h(t),

T �
t = κ�T �

zz (2.28b)

As z →∞,

T � → T∞ (2.28c)

On z = h(t)

T � = T s = Tm. (2.28d)

ρsLḣ = −k�
TT �

z . (2.28e)

Again, because there are no natural spatial and time scales in the problem, a
similarity solution can be sought. Let the new independent variable be

η = z

2
√
κ�t

, (2.29a)

and let the scaled temperature be θ ,

T � = T∞ + (�T )θ (η). (2.29b)

For consistency, let

h = 2�
√
κ�t, (2.29c)

where the speed coefficient � is to be determined.
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The solution for the temperature is

θ (η) = erfc(η)

erfc(�)
, (2.30)

where the complementary error function is defined by

erfc(z) = 2√
π

∫ ∞

z
e−s2

ds. (2.31)

The flux condition (2.28e) then gives the characteristic equation
√
π�e�

2
erfc(�) = S−1. (2.32)

Note: The temperature gradient GT in the liquid at the interface

GT = Tz[h(t), t] < 0

always, and thus the heat flows through the liquid. Consequently, the front
speed depends on κ� and not κs. As will be seen, GT < 0 indicates that the
front is unstable to disturbances periodic along the front.

If one plots Eq. (2.32), Figure 2.9 is obtained. The curve approaches S−1 = 1,
which is called unit undercooling. There exist no solutions for S−1 ≥ 1. Note
that as S−1 → 1−, � → ∞, and thus the front speed approaches infinity.
This suggests the breakdown of the validity of the thermodynamic equilibrium
assumption appropriate to relatively small front speeds.

Solidification is a surface reaction whose rate depends upon the degree of
undercooling that drives it. The argument of Worster (private communication
1993) will be followed. At T I = Tm a solid–liquid interface is in a dynamic
equilibrium with molecules attaching and detaching continually and at equal
rates. When T I < Tm, molecules become more strongly bound to the interface

Figure 2.9. A sketch of Eq. (2.32) for the interface speed � versus the undercooling
S−1. Solutions exist only for S−1 < 1.
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Figure 2.10. A sketch of the kinetic undercooling versus the speeds.

and thus the number detaching per unit time decreases and the interface advances
at speed Vn; Vn increases with Tm − T I. However, as T I decreases further, the
molecules in the liquid become sluggish and the rate of attachment decreases.
Hence, the figure presumably looks like Figure 2.10. This relation may in fact
not be a simple function of V directly, but a more complicated functional (Bates,
Fife, Gardner, and Jones 1997). Here the model of Figure 2.10 will be used.

For �T small, the graph depends on the mode of attachment (e.g., by adding
molecular planes, screw dislocations, or random attachments). However, for
substances (e.g., metals) having low latent heats, Vn can be approximated as a
linear function of �T ,

Vn = µ(Tm − T I), (2.33)

where the positive constant µ is called the kinetic coefficient. Equation (2.33)
can be rewritten as

T I = Tm − µ−1Vn (2.34)

and represents the effect of kinetic undercooling.
Equation (2.34) determines the interfacial temperature for each front speed

Vn. The presence of kinetic undercooling, µ−1 �= 0, lowers the interfacial
temperature below that in equilibrium.

As will be seen in a moment, replacing Eqn. (2.28d) by (2.34), makes solu-
tions possible for all �T .

2.1.5 One-Dimensional Freezing into an Undercooled Melt:
Effect of Kinetic Undercooling

The generalized governing system now takes the form
In solid, z < h(t),

T s = T I (2.35a)
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In liquid, z > h(t)

T �
t = κ�T �

zz (2.35b)

As z →∞
T � → T∞ (2.35c)

On z = h(t),

T � = T I, (2.35d)

ρsLḣ = −k�T �
z , (2.35e)

ḣ = µ(Tm − T I). (2.35f)

Notice here that T I is now unknown and must be determined as part of the
solution.

An important difference between the equilibrium and nonequilibrium for-
mulations is seen by dimensional analysis. Previously, the scales of length �

and time to were arbitrary, and a relation between them associated with heat
conduction, to = �2/κ�, was used; however, � was still arbitrary. Now, however,
� is determined by the kinetic undercooling, namely

�

(
κ�

�2

)
= µ�T,

and thus

� = κ�

µ�T
; (2.36a)

hence, using to = �2/κ�, we obtain

to = κ�

µ2(�T )2
. (2.36b)

Write again

T � = T∞ + (�T )θ, (2.37)

and the scaled system becomes

θt = θzz z > A(t) (2.38a)

θ → 0 z →∞ (2.38b)

θ = θ I

S Ȧ = −θz

Ȧ = 1− θ I


 , z = A(t) (2.38c)
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The kinetic condition suggests seeking a solution with θ I constant; hence,
Ȧ(t) = V . Let us seek a traveling-wave solution

θ = θ (ζ ), (2.39a)

where

ζ = z − V t, (2.39b)

and so the interface lies at ζ = 0. Here V is a constant and ζ is measured in a
moving frame of reference. The diffusion equation (2.38a) then becomes

−V θ ′ = θ ′′, (2.40)

where a prime denotes d/dζ .
The solution of Eq. (2.40), subject to conditions (2.38b) and the first of

(2.38c), is

θ = θ Ie−V ζ . (2.41)

The Stefan and kinetic conditions, the second and third of Eqs. (2.38c) then
give

θ I = S (2.42)

and

V = 1− S, S < 1. (2.43)

Thus, for all S < 1,

θ = Se−(1−S)(z−V t), (2.44)

and solutions for S−1 > 1 have been found (Glicksman and Schaefer 1967).
Note: Again, GT < 0.
When there is unit undercooling, S= 1, yet a different solution exists

(Umantsev 1985) with h(t) ∼ t2/3. With kinetic undercooling present, there
are solutions for all S:

S−1 < 1, h ∼ t
1
2

S−1 = 1, h ∼ t
2
3

S−1 > 1, h ∼ t


 . (2.45)
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2.2 Curved Interfaces

2.2.1 Boundary Conditions

Consider a two-dimensional solid “drop” on a substrate, as shown in Figure
2.11; no phase transformation is present. Thermodynamic equilibrium implies
that the Helmholtz free energy E of the system, the sum of the surface energies,
must be at a minimum for an equilibrium state to exist. Note that other energies,
such as the elastic energy of “drop” and substrate, are ignored here, as is usual.
The analysis follows Mullins (1963).

Let the system be uniform in the direction normal to the page and let w be
a unit of length in that direction. The Helmholtz free energy is then

E = w

{∫ �2

�1

γ
(
1+ h2

x

)1/2
dx + γ1(�2 − �1)+ γ2[�− (�2 − �1)]

}
, (2.46a)

where z = h(x) is the height of the interface, γ is the energy per unit area on the
drop–liquid interface, and γ1 and γ2 are the corresponding surface energies per
unit area on the solid–substrate and liquid–substrate interfaces, respectively; all
of these are taken to be constants, � is a fixed length, always larger than drop
width, which is introduced to keep the energies finite; x = �1and �2 are the
endpoints of the drop, and θ, measured within the drop, is called the contact
angle. Consider variations in h, �1, and �2 such that the volume V of the drop
is preserved, where

V = w

∫ �2

�1

hdx . (2.46b)

For a discussion of the variational calculus needed for this section, see Courant
and Hilbert (1953), Chap. 4.

Figure 2.11. A solid, two-dimensional drop on a substrate; z = h(x) is the drop shape,
x = �1 and �2 are the locations of the contact lines, � indicates an expanse larger than
the drop, and θ is the contact angle.
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The constrained problem defined above can be written as an unconstrained
variational problem by introducing the Lagrange multiplier λ and writing

E ′ = E + λw

∫ �2

�1

hdx

= w

{∫ �2

�1

[
γ
(
1+ h2

x

)1/2 + λh
]

dx + γ1(�2 − �1)+ γ2 [�− (�2 − �1)]

}
.

(2.47)

In order for E ′ to be minimum, it is necessary for the first variation, δE ′, to be
zero,

w−1δE ′ =
�2∫

�1

{
γ hxδ(hx )(
1+ h2

x

)1/2 + λδh

}
dx

+
{
γ
[(

1+ h2
x

)1/2
]
+ λh
∣∣∣
�2

+ γ1 − γ2

}
δ�2

+
{
−γ
[(

1+ h2
x

)1/2
]
− λh
∣∣∣
�1

− γ1 + γ2

}
δ�1 = 0 (2.48)

Formally, one writes that

δ(hx ) = (δh)x (2.49)

and uses integration by parts to obtain∫ �

�1

hxδhx(
1+ h2

x

)1/2 dx = −
∫ �2

�1

{
hx(

1+ h2
x

)1/2

}
x

δh dx + hxδh(
1+ h2

x

)1/2

∣∣∣∣∣
�2

�1

.

(2.50)

Figure 2.12 shows a neighborhood of the right-hand contact line at x = �2. One
can then write that

δh
∣∣
�2 = −hxδ�

∣∣
�2
, (2.51a)

Figure 2.12. A close-up of the local geometry of the contact-line region near x = �2
of Figure 2.11.
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and similarly at the other contact line

δh
∣∣
�1 = −hxδ�

∣∣
�1

(2.51b)

Thus,

hxδh(
1+ h2

x

)1/2

∣∣∣∣∣
�2

�1

= − h2
xδ�(

1+ h2
x

)1/2

∣∣∣∣∣
�2

�1

. (2.52)

Finally,

w−1δE ′ =
�2∫

�1

{
−γ
[

hx(
1+ h2

x

)1/2

]
x

+ λ

}
δh dx

+

 γ(

1+ h2
x

)1/2

∣∣∣∣∣
�2

+ λh + γ1 − γ2


 δ�2

−

 γ(

1+ h2
x

)1/2

∣∣∣∣∣
�1

+ λh + γ1 − γ2


 δ�1 = 0, (2.53)

where the boundary terms have been combined.
Consider first variations in which the endpoints are fixed, that is, δ�1 =

δ�2 = 0. Given that the integrand of Eq. (2.53) is smooth and δh is otherwise
arbitrary, that integrand must vanish. This gives the Euler–Lagrange equation

−γ
[

hx(
1+ h2

x

)1/2

]
x

+ λ = 0

or

2Hγ = λ (2.54)

Here, for a one-dimensional interface the mean curvature H is defined by

2H = hxx(
1+ h2

x

)3/2 . (2.55)

The interfacial shape h has constant curvature, and thus in two dimensions is
an arc of a circle. By this definition a solid finger extending into the liquid has
H < 0. The Lagrange multiplier is a constant that cannot be determined by
variational calculus but requires some additional physical statement (Hills and
Roberts 1993).

Let the Gibbs free energy � of the system depend on the pressure p and the
temperature T . Let � on the solid side of the interface be equal to that on the
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liquid side. Expand this equation about p = p�, the pressure on the liquid side,
let T = Tm and identify ∂�/∂p by 1/ps, and let ∂�/∂T = −s, the entropy,
and �s = LV/Tm,; then one can write

λ = LV�T/Tm, (2.56a)

where

�T = T I − Tm. (2.56b)

Here T I is the drop–liquid interface temperature and Tm is the equilibrium
melting temperature of the material in the drop.

The results above can be obtained by using the total grand potential (Gibbs
1948, p. 229; Wettlaufer and Worster 1995), and this approach has the advantage
of easy generalization to multicomponent systems.

Equation (2.54) is the Laplace relation for the interface, and the following
is the Gibbs–Thomson relation giving capillary undercooling:

T I = Tm

[
1+ 2H

γ

LV

]
(2.57)

If H is replaced by its generalization to a two-dimensional surface, then Eq.
(2.57) holds for three-dimensional systems. See Chapter 5 for generalizations
to systems where γ depends on the orientation of the surface.

Consider next variations in which the endpoints may move. Because Eq.
(2.54) holds already, one has at each endpoint x = �i , i = 1, 2, that

γ(
1+ h2

x

)1/2 + γ1 − γ2 = 0, (2.58)

because h is zero at the endpoints. If Figure 2.12 is used to evaluate this,(
1+ h2

x

)−1/2 = cos θ, and thus the Young–Laplace relation emerges,

γ cos θ = γ2 − γ1. (2.59)

At equilibrium at each contact line the contact angle θ adjusts itself to give this
surface–energy balance. See Chapter 5 for generalizations to systems where γ

depends on the orientation of the surface.
On a moving interface, there is a heat balance, applied to the domain shown

in Figure 2.13. Call Vn the speed of the interface normal to itself and s the arc
length. In Figure 2.13 as δ → 0 in a time δt,

ρsLVn Aδt − γ A |s+δs + γ A|s = (q� − qs) · nAδt

or

ρsLVn − 1

A

∂

∂t
(γ A) = ks

TT s
n − k�

TT �
n . (2.60)
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Figure 2.13. A sketch of a sector of interface from s to s + �s and a control volume
spanning it.

One can obtain an identity from differential geometry (e.g., see Aris 1989),

1

A

∂A

∂t
= −2H Vn, (2.61)

where ∂A/∂t represents the stretching of the area A. Hence,

(ρsL + 2Hγ )Vn = (ks
T∇T s − k�

T∇T �) · n. (2.62)

The usual form of this heat balance ignores the second term on the left-hand side,
which was first derived by Wollkind (1979). It represents the energy expended
by interfacial stretching. For a solid finger extending into the liquid H < 0,
and thus a portion of the heat liberated by phase transformation goes into the
creation of interface. For a given difference in heat fluxes, L is effectively
decreased, and so Vn is increased.

In sum, the required conditions on a curved interface are as follows:
There is continuity of temperature

T I = T s = T � (2.63a)

and the generalized Gibbs–Thomson equation

T I = Tm

(
1+ 2H

γ

LV

)
− µ−1Vn (2.63b)

where we have included the kinetic undercooling discussed earlier with V
replaced by Vn for a curved front. Thus, the interface temperature is reduced


