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Introduction

This book is an attempt to cover most of the results on reducibility of poly-
nomials over fairly large classes of fields; results valid only over finite fields,
local fields or the rational field have not been included. On the other hand,
included are many topics of interest to the author that are not directly related
to reducibility, e.g. Ritt’s theory of composition of polynomials.

Here is a brief summary of the six chapters.
Chapter 1 (Arbitrary polynomials over an arbitrary field) begins with

Lüroth’s theorem (Sections 1 and 2). This theorem is nowadays usually pre-
sented with a short non-constructive proof, due to Steinitz. We give a construc-
tive proof and present the consequences Lüroth’s theorem has for subfields of
transcendence degree 1 of fields of rational functions in several variables. The
much more difficult problem of the minimal number of generators for subfields
of transcendence degree greater than 1 belongs properly to algebraic geometry
and here only references are given.

The next topic to be considered (Sections 3 and 4) originated with Ritt.
Ritt 1922 gave a complete analysis of the behaviour of polynomials in one
variable over C under composition. He called a polynomial prime if it is not
the composition of two polynomials of lower degree and proved the two main
results:

(i) In every representation of a polynomial as the composition of prime poly-
nomials the number of factors is the same and their degrees coincide up to
a permutation.

(ii) If A, H and B,G are polynomials of relatively prime degrees m and n,
respectively, and

A(G) = B(H), (1)

then A, B,G, H can be given explicitly.

1



2 Introduction

Ritt showed also how every representation of a polynomial as the composi-
tion of prime polynomials can be obtained from a given one by solving several
equations of the form (1), where A and B are prime.

We present an extension of Ritt’s result to polynomials over an arbitrary
field, for (ii) obtained only recently by Zannier 1993. Ritt’s term ‘prime’ is
replaced by ‘indecomposable’.

Indecomposability plays an essential role in the next topic: reducibility of
polynomials of the form ( f (x)− f (y))/(x − y) (Section 5). A necessary and
sufficient condition for reducibility over fields of characteristic 0 was proved
by Fried 1970. We give a proof of Fried’s theorem published recently by Turn-
wald 1995 and summarize the more recent progress on this topic and the state
of knowledge on reducibility of f (x) − g(y), where g, h are polynomials.
Section 6 contains results of Kronecker on factorization of polynomials. They
include properties of the Kronecker substitution, a theorem of Kronecker once
called fundamental and now nearly forgotten, that will be used later, and the
theorem of Kronecker and A. Kneser. The latter describes a connection be-
tween reducibility of a polynomial f ∈ k[x] over k(η) and that of a polynomial
g ∈ k[x] over k(ξ), where f (ξ) = g(η) = 0. Section 7 takes again the study of
reducibility of polynomials with separated variables. H. Davenport and the au-
thor proved in 1963 that a polynomial of the form F(x, y)+G(z) is reducible
over a field k of characteristic 0 if and only if F = H(A(x, y)), A, H ∈ k[t]
and H(t) + G(z) is reducible over k. Section 7 contains a natural general-
ization of this result and a discussion of the related results of Tverberg and
Geyer. After some auxiliary results have been established in Section 8, a con-
nection between irreducibility of a polynomial and of its substitution value af-
ter a specialization of some of the variables is treated in Section 9. This topic,
connected with the names of Bertini and Hilbert, will be considered again in
Chapter 3, Section 3 and Chapter 4, Section 4. The last Section 10 deals with
the properties of the Newton polytope of a polynomial in many variables, a
natural generalization of the Newton polygon.

Chapter 2 (Lacunary polynomials over an arbitrary field) begins with the-
orems of Capelli and M. Kneser. Capelli 1898 gave a simple necessary and
sufficient condition for reducibility of a binomial xn − a over a subfield of
C. The case of positive characteristic was settled by Rédei 1967. The the-
orem can also be viewed as a necessary and sufficient condition for an ele-
ment of a field k to satisfy the equality [k( n

√
a) : k] = n. In this aspect

the theorem is open to generalization, specifically, one can study the degree
[k( n1
√

a1, n2
√

a2, . . . , nl
√

al) : k]. An all encompassing result in this direction
for separable extensions has been found by M. Kneser 1975. It is reproduced
in Section 1 together with a more immediate extension of Capelli’s theorem.



Introduction 3

It is an almost immediate consequence of Capelli’s theorem that for a �= 0
the polynomial xm + yn + a is irreducible over every field of characteristic 0
containing a. This observation is generalized in Section 2 to an easily applica-
ble irreducibility criterion for polynomials in many variables.

Following the work of Ritt 1927, Gourin 1933 proved that for a polyno-
mial F(x1, . . . , xs) with more than two terms, irreducible over C, and for
arbitrary positive integers t1, . . . , ts , the factorization of F(xt1

1 , . . . , xts
s ) into

irreducible factors can be derived from the factorization of F(xt1
1 , . . . , xts

s ),
where 〈t1, . . . , ts〉 belongs to a finite set of integral vectors depending only on
F . Gourin’s proof applies with small modifications to polynomials over an
arbitrary algebraically closed field and to integers t1, . . . , ts non-divisible by
the characteristic of the field. An extension of the theorem to polynomials over
fields no longer algebraically closed is given in Section 3. The only polynomi-
als to which this extension does not apply apart from cxi are of the form

F0

(
s∏

i=1

xδi
i

)
s∏

i=1

x−d min(0,δi )
i , (2)

where F0(x) is a polynomial of degree d and δ1, . . . , δs are integers, possibly
negative.

The long Section 4 deals with reducibility of trinomials over any rational
function field k(y). A necessary and sufficient condition for reducibility is
given for any trinomial xn + Axm + B (n > m > 0) such that A−n Bn−m �∈ k
and nm(n−m) is not divisible by the characteristic of k. The cases A ∈ k and
B ∈ k are given special attention. These results are used in Section 5 to charac-
terize reducible quadrinomials depending essentially on at least two variables
and such that the exponent vectors are all different modulo the characteristic
of the ground field.

Section 6 presents a lower estimate for the number of non-zero coefficients
of f l in terms of l and of the number of non-zero coefficients of a polynomial
f in one variable. An upper estimate is also given, valid in infinitely many
essentially different cases.

Chapter 3 (Polynomials over an algebraically closed field) begins with the
result of E. Noether, according to which a form of degree d in n variables is
reducible over an algebraically closed field if and only if its coefficients sat-
isfy a system of algebraic equations depending only on d and n (Section 1).
Section 2 presents a theorem of Ruppert in which for n = 3 and characteris-
tic 0 a system of equations with the above property is explicitly constructed.
Section 3 is devoted to Bertini’s theorem on reducibility. This theorem in its
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original formulation characterizes forms

f0(x)+ λ1 f1(x)+ · · · + λn fn(x)

defined over C that become reducible over C for every choice of parameters
λ1, . . . , λn . We present an extension of this result to all algebraically closed
fields with a proof due to Krull 1937.

Section 4 differs definitely from the former three in that it concerns ex-
clusively polynomials over C. For such polynomials, in any number of
variables, Mahler has introduced a measure M , that is multiplicative, i.e.
M( f g) = M( f )M(g). This measure has many interesting properties itself
and also helps to describe the behaviour at the multiplication of other mea-
sures, e.g. of the length, defined for a polynomial as the sum of the absolute
values of its coefficients. Section 4 presents several theorems on the Mahler
measure of polynomials over C, some of them quite recent.

Chapter 4 (Polynomials over a finitely generated field) begins with an exten-
sion of Gourin’s theorem (discussed in Chapter 2, Section 3) to polynomials
of the form (2), which is possible for every finitely generated ground field K,
provided the polynomial F0 is irreducible over K and has neither 0 nor roots of
unity as zeros (Section 1). Section 2 presents the best known lower bound in
terms of the degree for the Mahler measure of an irreducible non-cyclotomic
polynomial with integer coefficients. This bound is used in Section 3 to the
study of the following problem.

Suppose that P, Q are coprime polynomials over a field K. Then there
exists a number c(P, Q) with the following property. If P(ξn1 , . . . , ξnk ) =
Q(ξn1 , . . . , ξnk ) = 0 for some integers n1, . . . , nk and some ξ �= 0 in the al-
gebraic closure of K then either ξq = 1 for a positive integer q or there exist
integers γ1, . . . , γk such that

k∑
i=1

γi ni = 0 and 0 < max
1≤i≤k

|γi | ≤ c(P, Q).

This is established in Section 3 only for k ≤ 3,K arbitrary and for k arbi-
trary, K of positive characteristic. The result is placed in Chapter 4 rather than
in Chapter 2 since the decisive role is played by the field generated over the
prime field of K by the coefficients of P and Q.

For k > 3, K of zero characteristic, the assertion is established in the ap-
pendix written by Umberto Zannier, entitled Proof of Conjecture 1. Indeed, in
the first version of Section 3 the assertion in full generality was only conjec-
tured and the name Conjecture has been retained.

Section 4 is devoted to Hilbert’s irreducibility theorem. The simplest case
of this theorem asserts that if a polynomial F(x, t) is irreducible over Q as a
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polynomial in two variables then F(x, t∗) is irreducible over Q for infinitely
many integers t∗. Section 4 presents a much more general form of the theorem,
in which in particular Q is replaced by an arbitrary finitely generated field. In
order to prove the theorem in such generality we use a method of Eichler based
on some deep properties of equations over finite fields, rather than the more
elementary approach sufficient to establish the theorem for number fields.

Hilbert’s theorem in its simplest form stated above is closely related to
the following property of diophantine equations. If an algebraic equation
F(x, t) = 0 is soluble in rational or integer x for a sufficiently large set of
integers t , then it is soluble for x in Q(t) or Q[t], respectively. A question
suggests itself, whether a similar statement holds for equations with a greater
number of unknowns and parameters and with Q replaced by a number field
K. The bulk (Sections 1–8) of Chapter 5 (Polynomials over a number field)
is devoted to the study of this question. Section 1 constitutes an introduction
to Sections 2–8, therefore here we only explain the fact that many theorems
proved in this section concern polynomials over C rather than over a number
field. Specifically, in every such case the main difficulty lies in proving the the-
orem for polynomials over K and then the general statement follows by linear
algebra.

The result of Section 9 is tantamount to the following theorem. Let F ∈
K[x1, . . . , xs], where K is a number field, be irreducible over K, not a scalar
multiple of xi and not of the form (2), where F0 has roots of unity as zeros.
Then there exists a number c0(K, F) with the following property. If for some
integers n1, . . . , ns the only zeros of F(xn1 , . . . , xns ) are 0 and roots of unity,
then there exist integers γ1, . . . , γk such that

s∑
i=1

γi ni = 0 and 0 < max |γi | ≤ c0(K, F).

The title of the last chapter ‘Polynomials over a Kroneckerian field’ itself
requires an explanation. By a Kroneckerian field (a term due to K. Győry) we
mean a totally real number field or a totally complex quadratic extension of
such a field. Among polynomials defined over a Kroneckerian field and prime
to the product of the variables, exceptional in several respects are polynomials
called self-inversive, i.e. polynomials F that satisfy an identity

F(x−1
1 , . . . , x−1

k )

k∏
i=1

xdi
i = cF(x1, . . . , xk),

where di is the degree of F with respect to xi , c ∈ C and the bar denotes
complex conjugation.
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Section 1 presents estimates for the Mahler measure of non-self-inversive
polynomials. They are far better than the estimates true in general.

Section 2 shows, for arbitrary integers n1, . . . , nk , how all non-self-inversive
factors of a polynomial F(xn1 , . . . , xnk ) irreducible over a Kroneckerian field
K can be obtained together with their multiplicities from the factorization of
finitely many polynomials

F

(
r∏

i=1

yνi1
i , . . . ,

r∏
i=1

yνik
i

)
, where max |νi j | ≤ c(K, F).

For k = 1 this is a consequence of the result of Chapter 4, Section 1. For
k > 1 there is an analogy between the two results, but the above result lies
much deeper, concerning reducibility of polynomials in one variable. Probably
a similar result is true for all factors of F(xn1 , . . . , xnk ) irreducible over K that
have neither 0 nor roots of unity as zeros, however this is far from being proved
and Section 3 presents only some steps in this direction. As a consequence one
obtains for a given algebraic number a �= 0,±1 and a given polynomial f (x)
with algebraic coefficients the existence of a polynomial

xn + axm + f (x) irreducible over K(a, f ),

where f is the coefficient vector of f . Unfortunately, there is a very restrictive
condition that the field K(a, f ) should be linearly disjoint with all cyclotomic
fields.

Section 4, the last one, gives an exposition of the work of Győry on re-
ducibility over Kroneckerian fields of composite polynomials F(G(x)).

The choice of material has been dictated by the personal taste of the author;
out of 82 theorems, 37 belong to him and out of these 23 (Theorems 23, 24,
52, 54, 56, 58–66, 72, 74–81) have not been published before with the same
degree of generality. Also Theorems 17, 29, 43, 50, 51, 55, 57, 67–71 are tech-
nically new, although their crucial special cases have been published before. In
particular, Theorem 43 is taken from an unpublished and now lost manuscript
of the late J. Wójcik.

Theorems proved in the sequel, conjectures and definitions are numbered
successively for the whole book except the appendices; lemmas, conventions,
remarks, examples and formulae are numbered separately for each section.

The book is not self-contained, the reader is often referred to the following
five books:

E. Hecke, Lectures on the theory of algebraic numbers,
S. Lang, Algebra,
H. Mann, Introduction to algebraic number theory,
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W. Rudin, Principles of mathematical analysis,
W. Rudin, Real and complex analysis,

abbreviated as [H], [L], [M], [P], [R]. The definitions and the results needed to
follow the exposition, not found in the above books, are collected in 10 appen-
dices: A, B, C, D, E, F, G, I, J, K. The reference Theorem E5, say, means The-
orem 5 of Appendix E, the reference Theorem [L] 10.1 means Theorem 10.1
of Lang’s book.

At the end of the book there are an index of theorems and an index of defi-
nitions and conjectures covering the main part of the book, not the appendices.
The index of terms covers the whole book. There is no index of names, but in
the bibliography for each reference, except ones listed as standard, there are
indicated pages, where this reference is cited.



Notation

The letters k and K are reserved for fields, in Chapters 4–6 the letter K denotes
a finitely generated field.

char k is the characteristic of k,
k∗ is the multiplicative group of the field k,
k is the algebraic closure of k,ksep the maximal subfield of k separable over
k.
OK is the ring of integers of a number field K, disc K is its discriminant,
O∗K the group of units. For an extension K/k, tr.deg. K/k is the transcen-
dence degree of K over k. For a finite extension K/k the symbols NK/k

and TrK/k denote the norm and the trace, respectively, from K to k or from
K(x1, . . . , xn) to k(x1, . . . , xn), where x1, . . . , xn are variables.
Q,R,C are the fields of rational, real and complex numbers, respectively,
Fq is the finite field of q elements,
Z is the ring of rational integers,
N,N0,R+ are the sets of positive integers, non-negative integers and non-
negative real numbers, respectively,
Mk,l(S) is the set of all matrices with k rows and l columns and with entries
from the set S, t M, and rank M are the transpose and the rank of a matrix
M , a M and det M the adjoint and the determinant of a square matrix M ,
respectively. Vectors are treated as matrices with one row. For a set S of
vectors rank S is the number of linearly independent vectors in S.
GL(Z, n) is the multiplicative group formed by all elements of Mn,n(Z)
with determinant ±1,
In is the identity matrix of order n.

Bold face letters denote fields or vectors; which of the two should be clear
from the context; in addition C(F) and M(F) have a special meaning explained
in Chapter 1, Section 10 and bold face letters are freely used in Chapter 4,

8



Notation 9

Section 3. If a is a vector, ai is its i th coordinate; for two vectors a and b, ab
and a ∧ b denote the inner and the external product, respectively. German let-
ters, except M with subscripts, denote prime divisors and prime ideals, script
letters usually denote groups.

If distinct bold face letters occur as arguments of a polynomial, it is assumed
that the coordinates of the relevant vectors are independent variables. For a
polynomial F(x1, x2, . . ., xn) over an integral domain D or a field k:
∂xi F is the maximum degree of F with respect to x , where x runs over all

variables occurring in xi , if n = 1, ∂x1 F =: ∂F , however ∂F
∂x is the partial

derivative of F with respect to x ;

deg xi
F is the degree of F viewed as a polynomial in xi , if n = 1,

deg x1
F =: deg F .

If f = F
G , where F,G are coprime polynomials, then deg f := max{deg F,

deg G}.
If f, g ∈ k(x), f ∼=

k
g means that f g−1 ∈ k \ {0} ( f, g are scalar multiples of

each other) and f �∼=
k

g means that the above relation does not hold. Further

F(x)
can=
D

const
s∏

σ=1

Fσ (x)eσ

means that

F(x)
s∏

σ=1

Fσ (x)−eσ ∈ D \ {0},

the polynomials Fσ ∈ D[x] (1 ≤ σ ≤ s) are irreducible over the quotient field
of D and pairwise relatively prime, eσ ∈ N.

The leading coefficient of F is the coefficient of the first term of F in the
antilexicographic order†. A polynomial with leading coefficient 1 is called
monic, the greatest common divisor of non-zero polynomials is assumed to be
monic,

discx F is the discriminant of F with respect to the variable x ,
cont F is the content of F defined as the greatest common divisor of the

coefficients of F , F is primitive if cont F = 1. For rational functions f and g
in one variable we set

f ◦ g = f (g(x)).

For a rational function of the form

f (x1, x2, . . . , xn) = xα1
1 xα2

2 . . . xαn
n F(x1, x2, . . . , xn),

† i.e. such a term a
∏n

i=1 x
αi
i (a �= 0) that for every other term b

∏n
i=1 x

βi
i (b �= 0) there is a

k ≥ 0 satisfying αi = βi (i ≤ k), αk+1 > βk+1.
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where F is a polynomial prime to x1x2 . . . xn we set

J f (x1, x2, . . . , xn) = F(x1, x2, . . . , xn)

and consider the leading coefficient and the content of F as those of f . A ho-
mogeneous polynomial is called a form. A form F ∈ k[x, y] is called singular
if it has a multiple factor over k, and non-singular otherwise.

res

(
H1, . . . , Hs

x1, . . . , xs

)
is the resultant of forms H1, . . . , Hs with respect to vari-

ables x1, . . . , xs .
Braces denote sets, card S is the cardinality of S, Sn is usually the Cartesian

nth power of S, but occasionally, when k is a field, kn = {xn : x ∈ k} and
similarly for groups or rings. For sets A and B : A \ B = {x ∈ A : x �∈ B},
A − B = {a − b : a ∈ A, b ∈ B}.

Parenthesis is used as above to denote matrices, but (abc . . .) denotes the
cycle a → b → c . . .→ a;
(a, b, c, . . .) denotes the greatest common divisor of a, b, c, . . ., but occa-

sionally (a, b) = {x ∈ R : a < x < b};
k(S) denotes the least field containing the field k and the set S,
k((x)) is the field of Laurent series over k of the variable vector x.
Brackets [a, b, c, . . .] denote the least common multiple of a, b, c, . . ., but

occasionally, [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b) = {x ∈ R : a ≤ x < b};
[L : K] or [H : G] denotes the degree of extension L/K or the index of the

group G in H, depending on the context;
D[S] denotes the least ring containing the ring D and the set S,
D[[x]] is the ring of power series over D of the variable vector x.
For an x ∈ R : �x� = max{n ∈ Z : n ≤ x}, �x� = min{n ∈ Z : n ≥ x}.
Brackets 〈 〉 denote vectors, G〈S〉 denotes the least group containing the

group G and the set S, also if S is a set of permutations, 〈S〉 denotes the least
group of permutations containing S.
| · | denotes an absolute value or the Euclidean norm (except in Chapter 1,

Section 9), but |G|, where G is a group, denotes the order of G.
For z ∈ C, z is the complex conjugate of z, Re z and Im z are the real and

the imaginary part of z, respectively. For A = (ai j ) ∈ Mk,l(C) : A = (ai j ),
unless stated to the contrary. For P ∈ C[x], P is the polynomial with the
coefficients equal to the complex conjugates of the corresponding coefficients
of P .

For P ∈ k[x], P ′ = d P

dx
.

ζn is a primitive root of unity of order n,
µ is the Möbius function,
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ϕ is the Euler function,
Sn is the symmetric group on n letters,
bn � an means that the sequence bna−1

n is bounded,
O(an) is any sequnce such that bn � an ,
ord p a is the highest power to which a prime element p of a unique factor-
ization domain or a prime ideal p of a Dedekind domain divides an element
a of this domain. pπ‖a means that ord p a = n.

Here is the list of special symbols used in more than one section of the book,
arranged alphabetically, except the last five:

Aν,µ, Bν,µ: Chapter 2, Section 4, Table 1,
A∗ν,µ: Chapter 2, Section 4, Table 3,
B∗ν,µ: Chapter 2, Section 4, Table 2,
C(F): Chapter 1, Section 10, Definition 9,
C0(K, r, s), C1(K, r, s), C2(K, r, s), C3(K, r, s): Chapter 5, Section 1, Defi-
nitions 23–26,
Dn(x, a), Dn(x): Chapter 1, Section 4, Definition 3,
Dn : Chapter 2, Section 3, Theorem 24,
d(σ ): Chapter 5, Section 6, Convention 1,
d(J ): Chapter 5, Section 6, Convention 2,
E(α,K): Chapter 4, Section 1, Convention 2,
h(A): Chapter 3, Section 4, Definition 13,
H( f ): Chapter 3, Section 2, Definition 12,
K F : Chapter 4, Section 3, Definition 20,
L( f ): Chapter 3, Section 2, Definition 12,
LK F : Chapter 6, Section 2, Definition 30,
M(F): Chapter 1, Section 10, Definition 9,
M(F): Chapter 3, Section 4, Definition 14,
M(α): Chapter 4, Section 2, Definition 19,
µ(K): Chapter 5, Section 9, Convention 1,
Pn,d(z, a): Chapter 3, Section 1, Convention,
Sd : Chapter 1, Section 6, Definition 5,
τ j (x1, . . . , xm): Chapter 1, Section 6, Convention 2,
∼: Chapter 1, Section 3, Definition 2,
zA, where A is a matrix: Chapter 3, Section 4, Convention 4,
|| ||: Chapter 3, Section 4, Definition 14,
�: Chapter 4, Section 2, Definition 19,
∼=: Definition A 8.



1

Arbitrary polynomials over an arbitrary field

1.1 Lüroth’s theorem

We first prove

Theorem 1. If k ⊂ K ⊂ k(x), then K = k(g1, . . . , gt ), where the gi lie in
k(x). If char k = 0, t ≤ 1+ tr. deg.K/k.

Proof. Let x = 〈x1, . . . , xn〉. By Theorem [L] 10.1 we have tr. deg. k(x)/k =
n, hence r := tr. deg.K/k ≤ n. Let {g1, . . . , gr } be a transcendence
basis of K/k. By the quoted theorem, one can renumber the xs so that
{g1, . . . , gr , xr+1, . . . , xn} is a transcendence basis for k(x)/k. We assert that

[K: k(g1, . . . , gr )] ≤ [K(xr+1, . . . , xn): k(g1, . . . , gr , xr+1, . . . , xn)]

≤ [k(x): k(g1, . . . , gr , xr+1, . . . , xn)] <∞.

The second and the third inequality are clear. Suppose that the first inequality is
not true, so we have y1, . . . , ys ∈ K, linearly independent over k(g1, . . . , gr ),
but linearly dependent over k(g1, . . . , gr , xr+1, . . . , xn); thus

b1 y1 + · · · + bs ys = 0,

where

bi =
∑

j∈Nn−r
0

ai jx
jr+1

r+1 . . . x
jn
n , ai j ∈ k(g1, . . . , gr ).

We can write this as ∑
j∈Nn−r

0

x jr+1
r+1 . . . x

jn
n

s∑
i=1

ai j yi = 0,

12



1.1 Lüroth’s theorem 13

whence
s∑

i=1
ai j yi = 0 for all j ∈ Nn−r

0 . By the assumption ai j = 0 for all i, j,

so bi = 0 for all i ≤ s. Thus our assertion is proved and we take gr+1, . . . , gt

to be generators of K over k(g1, . . . , gr ). If char K = 0, we need to add only
one generator by Theorem [L] 7.14.

Remark. More generally, if k ⊂ K ⊂ L and L is finitely generated over k
then K is finitely generated over k.

It follows from Theorem [L] 10.1 that, in the notation of Theorem 1, t ≥
tr. deg.K/k. Lüroth’s theorem states that in the case n = 1, we have here an
equality.

Theorem 2. If k ⊂ K ⊂ k(x) and K �= k, then K = k(g), g ∈ k(x) \ k.

Proof. By Theorem 1 we have K = k(g1, . . . , gs), gi ∈ k(x) \k. Let gi = Fi
Gi

,
where Fi ,Gi ∈ k(x), (Fi ,Gi ) = 1. Consider the polynomials

Fi (t)− gi Gi (t) ∈ k(x)[t], (i = 1, . . . , s),

all divisible by t − x , and let their highest common factor be D(x,t)
d0(x)

, where
D(x, t) is primitive as a polynomial in t with the leading coefficient d0(x).
Since t − x | D(x, t) we have D �∈ k[t]. By Gauss’s lemma ([L], Ch. V, §6)

Fi (t)Gi (x)− Fi (x)Gi (t) = D(x, t)Ci (x, t), where Ci (x, t) ∈ k[x, t].

Take i such that ∂gi = m is least. If ∂t D(x, t) < m then ∂t Ci > 0. Sup-
pose ∂x Ci (x, t) = 0, say Ci (x, t) = Ci (t). Let Fi (t) ≡ F̃i (t)

(
mod Ci (t)

)
,

∂ F̃i < ∂Ci , similarly Gi (t) ≡ G̃i (t)
(

mod Ci (t)
)
, ∂G̃i < ∂Ci . We have

F̃i (t)Gi (x)− Fi (x)G̃i (t) ≡ 0
(

mod Ci (t)
)

and comparing degrees in t we get
F̃i (t)Gi (x) = Fi (x)G̃i (t). But (Fi ,Gi ) = 1, hence either Fi ∈ k or F̃i (t) = 0
and either Gi ∈ k or G̃i (t) = 0. All four resulting cases are impossible,
since ∂gi > 0 and (Fi ,Gi ) �≡ 0(mod Ci ). Hence Ci depends on both x, t and
∂x D < m. Now D(x,t)

d0(x)
is monic in k(x)[t]. Its coefficients belong to K, have

degree < m and at least one coefficient must be non-constant since D �∈ k[t].
We add one of the non-constant coefficients to the generators g1, . . . , gs and
repeat the whole procedure.

By repeating the procedure with the larger set of generators, we must come
to a point where

g.c.d.
i≥1

{Fi (t)− gi (x)Gi (t)} = c
(
Fν(t)− gν(x)Gν(t)

)
, c ∈ k(x). (1)
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Then gν(x) is the required generator. Indeed, for each i

Fi (t)− gi (x)Gi (t) =
(
Fν(t)− gν(x)Gν(t)

)
Ci (t), Ci ∈ k(x)[t].

Now in k(gν)[t] for a given i there exist P , Q, R, S such that

Fi (t) = P(t)[Fν(t)− gνGν(t)]+ Q(t), ∂t Q < ∂t [Fν(t)− gνG(t)]

Gi (t) = R(t)[Fν(t)− gνGν(t)]+ S(t), ∂t S < ∂t [Fν(t)− gνG(t)].

If Q = 0, Fi (t) = P(t)[Fν(t) − gνGν(t)] and writing P(t) as T (gν ,t)
p(gν )

, where
T , p are polynomials over k, we get

Fi (t) = T (gν, t)

p(gν)
[Fν(t)− gνGν(t)],

Fi (t)p(gν) = T (gν, t)[Fν(t)− gνGν(t)],

which is impossible, since Fν(t)− gνGν(t) does not factor in k[gν, t].
Hence Q �= 0 and similarly S �= 0. Also

Fi (t)− gi Gi (t) = [P(t)− gi R(t)][Fν(t)− gνGν(t)]+ Q(t)− gi S(t).

It follows from (1) that Q(t) = gi S(t). Taking the leading coefficients q0, s0

of Q, S respectively we get

q0 = gi s0 ∈ k(gν), so gi = q0

s0
∈ k(gν).

The above proof is constructive, that is it permits one to find a generator of
K given as k(g1, . . . , gs) and to express g1, . . . , gs in terms of this generator.

Notes. Theorem 1 was proved by E. Noether 1926 and rediscovered by
Samuel 1953. The Remark is taken from Ojanguren 1990. Theorem 2 was
proved by Lüroth 1876 for k = C, by Steinitz 1910 in general. Steinitz’s
proof, short but non-constructive, is reproduced in van der Waerden 1967. The
proof given above is Ostrowski’s 1936 proof, made effective by Chebotarev
1948, and not Netto’s 1895 proof, as stated by mistake in [S].

If tr. deg.K/k = 2 and k = C then in analogy with Lüroth’s theorem
K = k(g1, g2) for suitable g1, g2 (Castelnuovo 1894). Castelnuovo’s proof
was simplified by Conforto 1939 (Chapter 7) and by Kodaira (see Algebraic
Surfaces 1967, Chap. III), but it remains difficult and non-constructive. The
case of algebraically closed fields of positive characteristic is treated by Zariski
1958. If k is not algebraically closed, e.g. if k = Q or R the equality
K = k(g1, g2) need not hold, as shown by Segre 1951 and more recently
by Ojanguren 1990. If tr. deg.K/k = 3 then, even for k = C, K/k may need
four generators (Artin and Mumford 1972, Clemens and Griffiths 1972 and



1.2 Theorems of Gordan and E. Noether 15

Iskovskih and Manin 1971, see also Ojanguren 1990, which however is not
free from errors).

For an extension of Lüroth’s theorem in a different direction see Moh and
Heinzer 1979.

1.2 Theorems of Gordan and E. Noether

Theorem 3. If k ⊂ K ⊂ k(x), tr. deg.K/k = 1, then K= k(g), g ∈ k(x).

Proof. Let x = 〈x1, . . . , xn〉. We shall first consider the case of k infinite. By
Theorem 1 K = k(ϕ1, . . . , ϕt ). By Theorem [L] 10.1, on renumbering xs one
can assume x2, . . . , xn are algebraically independent over K. We have

k(x2, . . . , xn) ⊂ K(x2, . . . , xn) ⊂ k(x1, . . . , xn).

By Lüroth’s theorem

K(x2, . . . , xn) = k(x2, . . . , xn, η), where η ∈ k(x1, . . . , xn).

Hence

ϕi = gi (η, x2, . . . , xn), where gi ∈ k(y1, . . . , yn) (1 ≤ i ≤ t)

and

η = h(ϕ1, . . . , ϕt , x2, . . . , xn), where h ∈ k(y1, . . . , yt , x2, . . . , xn).

Therefore

ϕi = gi
(
h(ϕ1, . . . , ϕt , x2, . . . , xn), x2, . . . , xn

)
(1 ≤ i ≤ t) (1)

identically over K, since x2, . . . , xn are algebraically independent over
K. Choose values x∗2 , . . . , x∗n in k so that after substitution xi = x∗i
the rational functions on the right hand side of (1) make sense. Now
h(ϕ1, . . . , ϕt , x∗2 , . . . , x∗n ) is the desired generator for K/k, since

ϕi = gi
(
h(ϕ1, . . . , ϕt , x∗2 , . . . , x∗n ), x∗1 , . . . , x∗n

)
for all i ≤ t.

If k is a finite field the above proof gives only the existence of a finite extension
k0 of k such that k0 K = k0(g0), where g0 is in k0(x1, . . . , xn). k0 should be
large enough to contain values x∗2 , . . . , x∗n with the property required above.
Let

g0 = P/Q, where P, Q ∈ k0[x1, . . . , xn], (P, Q) = 1.

Since g0 �∈ k0, there exist monomials M1 and M2 such that the coefficients pi ,
qi of Mi in P and Q respectively satisfy p1q2 − q1 p2 �= 0.
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Now let σ be the substitution, which generates the Galois group of k0/k
(the so-called Frobenius substitution). It operates in the obvious way on
k0[x1, . . . , xn] and we have gσ0 = Pσ /Qσ . On the other hand

k0(g
σ
0 ) = kσ0 (g

σ
0 ) =

(
k0(g0)

)σ = (k0K)σ = k0K = k0(g0),

hence (see [L], Chapter V, Exercise 9)

gσ0 =
ag0 + b

cg0 + d
=
(

a b
c d

)
g0, where a, b, c, d ∈ k0 and

∣∣∣∣ a b
c d

∣∣∣∣ �= 0.

Since a P+bQ
cP+d Q = Pσ

Qσ and (Pσ , Qσ ) = 1 = (a P + bQ, cP + d Q), we have
for suitable e ∈ k0 that a P + bQ = ePσ , cP + d Q = eQσ . Comparing the
coefficients of the monomial Mi on both sides we obtain

api + bqi = epσi , cpi + dqi = eqσi ,

which gives(
a b
c d

)(
p1 p2

q1 q2

)
=
(

pσ1 pσ2
qσ1 qσ2

)(
e 0
0 e

)
.

Putting

g =
(

p1 p2

q1 q2

)−1

g0

we find

gσ =
(

pσ1 pσ2
qσ1 qσ2

)−1

gσ0 =
(

pσ1 pσ2
qσ1 qσ2

)−1 (
a b
c d

)
g0

=
(

pσ1 pσ2
qσ1 qσ2

)−1 (
a b
c d

)(
p1 p2

q1 q2

)
g =

(
e 0
0 e

)
g.

Hence g ∈ K and since k0K = k0(g0) = k0(g) and [k0K: K] = [k0: k] we get
[k0(g): K] = [k0: k] = [k0(g): k(g)], hence K = k(g).

Theorem 4. If, under the assumption of Theorem 3, K contains a non-constant
polynomial over k, then K has a generator which is a polynomial over k.

We recall that for a polynomial F in one variable ∂F is the degree of F .

Lemma. Let P, Q ∈ k[x], R, S ∈ k[x], (P, Q) = (R, S) = 1, R(x, y) =
y∂R R

( x
y

)
, S(x, y) = y∂S S

( x
y

)
.

Then Q, R(P, Q), S(P, Q) are prime in pairs.
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Proof. We write RU + SV = 1, where U, V ∈ k[x], ∂U < ∂S, ∂V < ∂R
and we obtain

R(x, y)U (x, y)+ S(x, y)V (x, y) = y∂(RU ).

Now we substitute x = P , y = Q and obtain

R(P, Q)U (P, Q)+ S(P, Q)V (P, Q) = Q∂(RU ).

The lemma follows since
(
R(P, Q), Q

) = (
S(P, Q), Q

) = 1.

Proof of Theorem 4. Let the generator g of K have the form

g = P

Q
, P, Q ∈ k[x], (P, Q) = 1.

By hypothesis there is a polynomial F in K

F = R

S
(g) = R(P/Q)

S(P/Q)
= R(P, Q)

S(P, Q)
Qs−r , r = ∂R, s = ∂S.

By the lemma, S(P, Q) ∈ k, Q ∈ K or s ≥ r . Factoring S(P, Q) we obtain

S(P, Q) = α(P − ξ1 Q)(P − ξ2 Q) . . . (P − ξs Q) ∈ k∗,

hence

P − ξi Q = γi ∈ k̄.

Now S(x) cannot have two different roots, since otherwise (ξ1−ξ2)Q = −γ1+
γ2 implies successively Q ∈ k̄, P ∈ k̄, g ∈ k̄, which is impossible. Thus

S(P, Q) = α(P − ξQ)s, P − ξQ = γ.

If Q �∈ k then ξ ∈ k, γ ∈ k, g = P
Q = ξ + γ

Q is expressed as a rational
function of Q and we take Q to be a generator. If Q ∈ k, we may take P to be
a generator.

Notes. Theorem 3 was proved by Gordan 1887 for k = C, by Igusa 1951 in
general. The proof given above is due to Samuel 1953 for k infinite, to Laubie
and Schinzel 1982 for k finite.

Theorem 4 was proved by E. Noether 1915 for char k = 0, by Schinzel
1963b in general, and the latter proof is given above.
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1.3 Ritt’s first theorem

Convention. Ordinary capital letters denote polynomials in one variable.

Theorem 5. If k(F) ∩ k(G) contains a polynomial H such that ∂H �≡
0 mod char k, then

[k(F): k(F) ∩ k(G)] = [∂F, ∂G]

∂F
,

[k(F,G): k(F)] = ∂F

(∂F, ∂G)
.

Lemma 1. If H ∈ k(F), then H = A(F).

Proof. If H = R
S (F), (R, S) = 1, then

(
R(F), S(F)

) = 1 and hence S ∈ k.

Lemma 2. [k(x): k(F)] = ∂F.

Proof. If F = a0xn+· · ·+an , then G = a0 Xn+· · ·+an−F is an irreducible
polynomial in k[F, X ] because it is linear in F , whence it is irreducible over
k(F) with x as a zero.

Lemma 3. If A ∈ k[x] is monic and ∂A = r , r �≡ 0(mod char k), then there
exists a monic polynomial C ∈ k[x] such that ∂C = n, ∂(A−Cr ) < n(r − 1).

Proof. For each non-negative i ≤ n there exists Ci ∈ k[x] such that ∂Ci = n,
∂(A − Cr

i ) < nr − i . We prove this by induction on i . If i = 0, C0 = xn .
Suppose the statement proved for i − 1, where 0 < i ≤ n. Hence we have a
polynomial Ci−1 of degree n such that ∂(A − Cr

i−1) < nr − i + 1. We look
for Ci of the form

Ci = Ci−1 + ξ xn−i .

We have

Cr
i = Cr

i−1 + rCr−1
i−1 ξ xn−i +

(
r

2

)
Cr−2

i−1 ξ
2x2(n−i) + · · · .

The degree of the third and latter terms is at most n(r − 2) + 2(n − i) =
nr−2i < nr− i . Consider A−Cr

i−1−rξCr−1
i−1 xn−i . We have ∂(Cr−1

i−1 xn−i ) =
nr − i . Select ξ so that the terms of degree nr − i cancel each other and then
∂(A − Cr

i ) < nr − i . Since C0 is monic the construction ensures all Ci are
monic.
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Proof of Theorem 5. By Lemma 1 and the hypothesis we have H = A(F) =
B(G). Without loss of generality we may assume H , F , G, A, B all monic. If
∂F = n = dν, ∂G = m = dµ, where (µ, ν) = 1 we have ∂H = rdµν �≡
0(mod char k). Also ∂A = rµ, ∂B = rν.

By Theorem 4, there exists a polynomial generating k(F) ∩ k(G); by
Lemma 1 we may assume it without loss of generality to be H . We shall
prove r = 1. By Lemma 3 there exist monic polynomials C, D ∈ k[x] such
that ∂C = µ, ∂D = ν,

∂(A − Cr ) < µ(r − 1), ∂(B − Dr ) < ν(r − 1).

Hence
∂
(

A(F)− Cr (F)
)
< dµν(r − 1),

∂
(
B(G)− Dr (G)

)
< dµν(r − 1),

∂
(
Cr (F)− Dr (G)

)
< dµν(r − 1).

But Cr (F)− Dr (G) = (
C(F)− D(G)

)(
Cr−1(F)+ · · · + Dr−1(G)

)
. Since

C , D, F , G are monic and r �≡ 0(mod char k), the second factor has degree
(r − 1) dµν and therefore C(F) = D(G) ∈ k(F) ∩ k(G) = k(H). Then
∂C(F) ≥ ∂H , i.e. dµν ≥ r dµν, where r = 1. Hence

[k(F): k(F) ∩ k(G)] = [k(F): k(H)] = [k(F): k(A(F))]

= ∂A = µ = [∂F, ∂G]

∂F
.

Similarly

[k(G): k(F) ∩ k(G)] = [∂F, ∂G]

∂G

and since the right hand sides of the above equalities are coprime

[k(F,G): k(F) ∩ k(G)] = [∂F, ∂G]

(∂F, ∂G)
.

The theorem follows.

The following examples show that the assumption ∂H �≡ 0(mod char k)
cannot be omitted.

Example 1. k = F2, F = x2, G = x2 + x , H = x4 + x2 = F2 + F = G2;
k(F) ∩ k(G) = k(H), k(F,G) = k(x).

Example 2. k = F3, F = x2, G = x2+x , H = x6+x4+x2 = F3+F2+F =
G3 + G2; k(F) ∩ k(G) = k(H), k(F,G) = k(x).
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Corollary 1. [k(F): k(F)∩k(G)] = [k(F,G): k(G)], if ∂H �≡ 0(mod char k).

The second example given above shows that the assumption ∂H �≡
0(mod char k) cannot be omitted here either.

Definition 1. A polynomial F is indecomposable over k if F = F1 ◦ F2,
F1, F2 ∈ k[x] implies ∂F1 = 1 or ∂F2 = 1.

Corollary 2. If F is indecomposable over k, the same is true for L ◦ F and
F ◦ L, where L is a linear function.

Proof. Clear.

Corollary 3. F ∈ k[x] is indecomposable over k if and only if the extension
k(x)/k(F) is primitive, i.e. if and only if k(F) ⊂ K ⊂ k(x) implies K = k(F)
or K = k(x).

Proof. Suppose k(F) ⊂ K ⊂ k(x). Then by Theorem 4, K = k(G) and hence
by Lemma 1 F = H(G). Thus K is primitive if and only if the above equality
implies ∂H = 1 or ∂G = 1, which means that F is indecomposable.

Theorem 6. If ∂F �≡ 0(mod char k) and F is indecomposable over k, then it
is indecomposable over any extension of k.

Proof. Let F = F1 ◦ F2 be a decomposition of F over some extension K of k,
∂F1 = r , ∂F2 = n.

Assume without loss of generality that F is monic. If F1 = a0xr+a1xr−1+
· · · + ar we can write F = F̃1 ◦ F̃2, where F̃1(x) = F1

(
x − a1

a0r

)
, F̃2(x) =

F2(x)+ a1
a0r and the coefficient of xr−1 in F̃1(x) is 0.

By Lemma 3 there exists C ∈ k[x] such that ∂C = n and ∂(F − Cr ) <

n(r−1), so ∂(F̃1◦F̃2−Cr ) < n(r−1). It follows that ∂(a0 F̃r
2−Cr ) < n(r−1).

However

a0 F̃r
2 − Cr = a0

r∏
ν=1

(F̃2 − ζ νr a−1/r
0 C)

and at most one factor has degree < n.
It follows that F̃2 = ζ νr a−1/r

0 C for some ν ≤ r . Setting F̃1(x) = a0xr +
r∑

i=1
ãi xr−i we infer from F = F̃1 ◦ F̃2 by induction on i that ãiζ

−νi
r a

i
r −1
0 ∈ k,

whence F̃1(ζ
ν
r a−1/r

0 x) ∈ k[x]. But then F is decomposable over k.
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Example 3. Let k = F2. Then F(x) = x4 + x2 + x = (x2 + αx)2 +
α−1(x2 + αx) where α2 − α + 1 = 0, α ∈ F4 shows that the assumption
∂F �≡ 0(mod char k) cannot be omitted.

Definition 2. Two decompositions of F , say F = F1 ◦ F2 ◦ · · · ◦ Fr and F =
G1 ◦G2 ◦ · · · ◦Gr are equivalent, symbolically 〈F1, . . . , Fr 〉 ∼ 〈G1, . . . ,Gr 〉
or 〈Fi 〉i≤r ∼ 〈Gi 〉i≤r if either r = 1, F1 = G1 or r ≥ 2 and there exist linear
functions L1, . . . , Lr−1, such that G1 = F1 ◦ L1, G j = L−1

j−1 ◦ Fj ◦ L j (1 <

j < r), Gr = L−1
r−1 ◦ Fr .

Corollary 4. The relation ∼ is an equivalence.

Corollary 5. If 〈Fi 〉i≤r ∼ 〈Gi 〉i≤r then for any H

〈Fi , . . . , Fr , H〉 ∼ 〈G1, . . . ,Gr , H〉.

Theorem 7. If ∂F �≡ 0(mod char k), and F = G1 ◦G2 ◦ · · · ◦Gr = H1 ◦H2 ◦
· · · ◦ Hs, where Gi , Hi are indecomposable of degree > 1, then r = s, and the
sequences 〈∂Gi 〉i≤r , 〈∂Hi 〉i≤r are permutations of each other. Moreover, there
exists a finite chain of decompositions F = F ( j)

1 ◦ · · · ◦ F ( j)
r ( j ≤ n), such that

〈F (1)
i 〉i≤r = 〈Gi 〉i≤r , 〈F (n)

i 〉i≤r ∼ 〈Hi 〉i≤r

and

for each j < n, 〈F ( j)
i 〉i≤r and 〈F ( j+1)

i 〉i≤r differ only by having two (1)

consecutive terms with the same composition and reversed coprime

degrees.

Proof by induction on ∂F . For ∂F = 1 the theorem holds. Assume it is true for
polynomials of degree< ∂F and let F = G1◦G2◦· · ·◦Gr = H1◦H2◦· · ·◦Hs ,
where Gi , Hi are as above.

Case 1. k(Gr ) = k(Hs). Then Hs = L ◦ Gr , ∂L = 1,

G1 ◦ G2 ◦ · · · ◦ Gr−1 ◦ Gr = H1 ◦ H2 ◦ · · · ◦ Hs−1 ◦ L ◦ Gr .

If r = 1, then also s = 1 and we take n = 1, F (1)
1 = G1 = H1. If r > 1 then

by Corollary 2 also s > 1. On the other hand A ◦ B = C ◦ B, ∂B > 0 implies
A = C . Hence G1 ◦ G2 ◦ · · · ◦ Gr−1 = H1 ◦ H2 ◦ · · · ◦ (Hs−1 ◦ L).
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By Corollary 2 and by the inductive assumption r−1 = s−1, r = s. More-
over, there exists a chain of decompositions 〈F ( j)

i 〉i≤r−1 ( j ≤ n) satisfying (1)
with r replaced by r − 1, such that

〈F (1)
i 〉i≤r−1 = 〈Gi 〉i≤r−1, 〈F (n)

i 〉i≤r−1 ∼ 〈H1, . . . , Hr−1 ◦ L〉.
We set F ( j)

r = Gr (1 ≤ j ≤ n), find that the new chain satisfies (1) and by
Corollary 5

〈F (n)
i 〉i≤r ∼ 〈H1, . . . , Hr−2, Hr−1 ◦ L ,Gr 〉 ∼ 〈Hi 〉i≤r

whence by Corollary 4 〈F (n)
i 〉i≤r ∼ 〈Hi 〉i≤r .

Case 2. k(Gr ) �= k(Hs). Then k(x) ⊃ k(Gr , Hs) � k(Gr ), thus by Corol-
lary 3 k(Gr , Hs) = k(x). By Corollary 1 (recall F ∈ k(Gr ) ∩ k(Hs))

[k(Gr ): k(Gr ) ∩ k(Hs)] = [k(Gr , Hs): k(Gr )] = [k(x): k(Hs)] = ∂Hs .

Since F ∈ k(Gr ) ∩ k(Hs), by Theorem 4 the intersection k(Gr ) ∩ k(Hs)

is generated by some polynomial P , hence P = A ◦ Gr , ∂A = ∂Hs and
P = B ◦Hs , ∂B = ∂Gr . Suppose A = A1 ◦ A2. Since k(Gr )∩k(Hs) = k(P),
P ∈ k(A2 ◦ Gr ) ∩ k(Hs) implies k(A2 ◦ Gr ) ∩ k(Hs) = k(P). On the other
hand k(Hs) ⊂ k(Hs, A2◦Gr ) ⊂ k(x). Therefore either k(Hs) = k(A2◦Gr ) or
k(Hs, A2 ◦ Gr ) = k(x). In the first case k(P) = k(A2 ◦ Gr ), hence ∂A1 = 1.
In the second case by Corollary 1

[k(A2 ◦ Gr ): k(A2 ◦ Gr ) ∩ k(Hs)] = [k(x): k(Hs)] = ∂Hs = ∂A,

[k(A2 ◦ Gr ): k(A1 ◦ A2 ◦ Gr )] = ∂A,

but the above degree also equals ∂A1; ∂A1 = ∂A, thus ∂A2 = 1. It follows
that A is indecomposable and by symmetry so is B.

We have now F = C ◦ P . If ∂C = 1 we have

F =
{

C ◦ A ◦ Gr = G1 ◦ · · · ◦ Gr−1 ◦ Gr ,

C ◦ B ◦ Hs = H1 ◦ · · · ◦ Hs−1 ◦ Hs,

hence C ◦ A = G1 ◦ · · · ◦ Gr−1, C ◦ B = H1 ◦ · · · ◦ Hs−1 and by Corollary 2,
r−1 = 1 = s−1, r = s = 2, ∂G1 = ∂A = ∂H2, ∂H1 = ∂B = ∂G2. Besides,
by Theorem 5 (∂H2, ∂G2) = 1. Thus the chain 〈F (1)

1 , F (1)
2 〉 = 〈G1,G2〉,

〈F (2)
1 , F (2)

2 〉 = 〈H1, H2〉 satisfies the condition (1) for r = 2. Assume now that
∂C > 1 and let C = C1 ◦ · · · ◦ Ct , where C j are indecomposable, ∂C j > 1.
We have

F =
{

C1 ◦ · · · ◦ Ct ◦ A ◦ Gr = G1 ◦ · · · ◦ Gr−1 ◦ Gr ,

C1 ◦ · · · ◦ Ct ◦ B ◦ Hs = H1 ◦ · · · ◦ Hs−1 ◦ Hs,



1.3 Ritt’s first theorem 23

hence C1 ◦ · · · ◦ Ct ◦ A = G1 ◦ · · · ◦ Gr−1,

C1 ◦ · · · ◦ Ct ◦ B = H1 ◦ · · · ◦ Hs−1 (2)

and by the inductive assumption r − 1 = t + 1 = s − 1; r = s. Moreover,
there exists a chain of decompositions satisfying (1) with r replaced by r − 1
and such that

〈F (1)
i 〉i≤r−1 = 〈Gi 〉i≤r−1,

〈F (n)
i 〉i≤r−1 ∼ 〈C1, . . . ,Cr−2, A〉.

It follows that for some linear function L

F (n)
1 ◦ · · · ◦ F (n)

r−2 = C1 ◦ · · · ◦ Cr−2 ◦ L−1, F (n)
r−1 = L ◦ A,

F (n)
1 ◦ · · · ◦ F (n)

r−2 ◦ (L ◦ B) = C1 ◦ · · · ◦ Cr−2 ◦ B. (3)

On the other hand by (2) and (3), we have a chain of decompositions
〈F ( j)

i 〉i≤r−1 (n < j ≤ n + m) satisfying (1) with r replaced by r − 1, where

〈F (n+1)
1 , . . . , F (n+1)

r−1 〉 = 〈F (n)
1 , . . . , F (n)

r−2, L ◦ B〉,
〈F (n+m)

1 , . . . , F (n+m)
r−1 〉 ∼ 〈H1, . . . , Hs−1〉.

Define

F ( j)
r =

{
Gr if j ≤ n,
Hs if n < j ≤ n + m.

The new chain satisfies all conditions since by Theorem 5, (∂Gr , ∂Hs)= 1.

Without the assumption ∂F �≡ 0(mod char k) Theorem 7 is not true in gen-
eral, as it is shown by the following

Example 4.

F(x) = x p+1 ◦ (x p + x) ◦ (x p − x) = (x p2 − x)p+1

= (x p2 − x p2−p+1 − x p + x) ◦ x p+1.

Notes. Theorem 5 is due to Engstrom 1941 for char k = 0, to Fried & MacRae
1969 in general. These authors also proved Theorem 6. Theorem 7 was proved
by Ritt 1922 for k = C, by Engstrom 1941 for char k = 0, in general the first
part was proved by Fried & MacRae 1969, the second part in [S]. Example 2
is due to Bremner & Morton 1978, Example 4 to Dorey & Whaples 1974.
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1.4 Ritt’s second theorem

Ritt’s second theorem deals with the case to which Theorem 7 reduces the
problem of decomposition of polynomials, i.e. with the equation

G ◦ A = H ◦ B, where ∂G = ∂B and ∂A = ∂H are coprime.

We put char k = π ≥ 0.

Definition 3. Dickson’s polynomials Dn(x, a) are given by the recurrence
formulae:

D0(x, a) = 2, D1(x, a) = x, Dn(x, a) = x Dn−1(x, a)− aDn−2(x, a).

We put Dn(x, 1) = Dn(x).

Corollary 1. Dn(x, a) =
�n/2�∑
i=0

n

n − i

(
n − i

i

)
(−a)i xn−2i (n ≥ 1).

Corollary 2. Dn(x + a
x , a) = xn + ( a

x )
n (n ≥ 1).

Corollary 3. Dn(x, a) = √an Dn(
x√
a
) (a �= 0).

Corollary 4. If π = 2, n ≥ 2,

Dn+2(x) = x2 Dn(x)+ Dn−2(x).

Proofs are by induction on n.

Theorem 8. Let A, B, G, H ∈ k[x], ∂G = ∂B = m > 1, ∂H = ∂A = n > 1,
(m, n) = 1, m > n and G ′H ′ �= 0. The equation G(A) = H(B) holds if and
only if there exist linear functions L1, L2 ∈ k[x] such that either

(i) 〈L1 ◦ G, A ◦ L2〉 ∼ 〈xr P(x)n, xn〉,
〈L1 ◦ H, B ◦ L2〉 ∼ 〈xn, xr P(xn)〉, where P ∈ k[x], r = m − n∂P ∈ N

or

(ii) 〈L1 ◦ G, A ◦ L2〉 ∼ 〈Dm(x, an), Dn(x, a)〉,
〈L1 ◦ H, B ◦ L2〉 ∼ 〈Dn(x, am), Dm(x, a)〉, where a ∈ k.

Lemma 1. The conditions are sufficient.

Proof. (i) implies

L1 ◦ G ◦ A ◦ L2 = xrn P(xn)n = L1 ◦ H ◦ B ◦ L2,
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hence G ◦ A = H ◦ B.
(ii) implies

L1 ◦ G ◦ A ◦ L2 = Dm(Dn(x, a), an).

Now, by Corollary 2

Dm(Dn(x + a

x
, a), an) = Dm(x

n + (a

x
)n, an) = xmn + amn

xmn

= Dn(Dm(x + a

x
, a), am).

Hence Dm(Dn(x, a), an) = Dn(Dm(x, a), am) = L1◦H ◦B◦L2 and G◦A =
H ◦ B.

Lemma 2. If the conditions are necessary for the field k̄ they are necessary
for k.

Proof. Consider first the condition (i) and let L̄1, L̄2, L̄3, L̄4, P̄ ∈ k̄[x] be
such that

L̄1 ◦ G = xr P̄(x)n ◦ L̄3, A ◦ L̄−1
2 = L̄−1

3 ◦ xn,

L̄1 ◦ H = xn ◦ L̄4, B ◦ L̄−1
2 = L̄−1

4 ◦ xr P̄(xn).

Put L̄ i = λi (x + µi ) (i ≤ 4). We shall prove that µi ∈ k. Indeed we have

λ1(H + µ1) = Ln
4 = λn

4(x + µ4)
n,

and, comparing the coefficients of xn and of xn−1, λ−1
1 λn

4 ∈ k, nµ4 ∈ k. Since
H ′ �= 0 we have n �≡ 0(mod π), hence µ4 ∈ k, H + µ1 = λ−1

1 λn
4(x + µ4)

n ,
λ−1

1 λn
4µ

n
4 − µ1 = H(0) ∈ k, hence µ1 ∈ k.

Similarly from

λ3(A + µ3) = L̄3 ◦ A = L̄n
2 = λn

2(x + µ2)
n

we infer that µ2, µ3 ∈ k, λ3λ
−n
2 ∈ k.

Define

L1 = λ1λ
−n
4 (x + µ1), L2 = x + µ2, L3 = λ3λ

−n
2 (x + µ3),

L4 = x + µ4, P(x) = λ−1
4 λr

2 P̄(λn
2 x).

We obtain

L4 ◦ B ◦ L−1
2 = λ−1

4 L̄4 ◦ B ◦ L̄−1
2 (λ2x) = λ−1

4 (λ2x)r P̄(λn
2 xn) = xr P(xn),

since L−1
2 = L̄−1

2 (λ2x). Hence P ∈ k[x]. Moreover,

B ◦ L−1
2 = L−1

4 ◦ xr P(xn).
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We check

L1 ◦ H = λ−n
4 L̄1 ◦ H = λ−n

4 L̄n
4 = (x + µ4)

n = xn ◦ L4,

A ◦ L−1
2 = A ◦ L̄−1

2 (λ2x) = L̄−1
3 ◦ xn ◦ (λ2x)

= L̄−1
3 ◦ (λ2x)n = λ−1

3 λn
2 xn − µ3 = L−1

3 ◦ xn,

L1 ◦ G ◦ L−1
3 ◦ xn = L1 ◦ G ◦ A ◦ L−1

2

= L1 ◦ H ◦ B ◦ L−1
2 = xrn P(xn)n,

L1 ◦ G ◦ L−1
3 = xr P(x)n,

L1 ◦ G = xr P(x)n ◦ L3.

Hence

〈L1 ◦ G, A ◦ L−1
2 〉 ∼ 〈xr P(x)n, xn〉, 〈L1 ◦ H, B ◦ L−1

2 〉 ∼ 〈xn, xr P(xn)〉.
Consider now the condition (ii). If this condition is satisfied over k̄ there exist
by Corollary 3 linear functions L̄i ∈ k[x] (i ≤ 4) such that

L̄1 ◦ G = Dm ◦ L̄3, A ◦ L̄−1
2 = L̄−1

3 ◦ Dn,

L̄1 ◦ H = Dn ◦ L̄4, B ◦ L̄−1
2 = L̄−1

4 ◦ Dm .

Let L̄ i = λi (x+µi ). In the first of the above equations the quotient of the first
two coefficients on the left is in k, on the right we have Dm(λ3(x + µ3)), so
we obtain mµ3 ∈ k. Since G ′ �= 0 we have D′m �= 0, hence

D′m
(

x + 1

x

)(
1− 1

x2

)
�= 0 and, by Corollary 2, m �≡ 0(mod π).

Thus µ3 ∈ k. It follows similarly that all µi ∈ k. Let g0 be the leading
coefficient of G. From L̄1 ◦ G = Dn ◦ L̄3 we obtain λ1g0 = λm

3 , λ1λ
−m
3 ∈ k.

Similarly we have λ3λ
−n
2 ∈ k. In the identity

λ1(G + µ1) = Dm(λ3(x + µ3))

substitute x − µ3 for x . We obtain

G(x − µ3)+ µ1 = λ−1
1 Dm(λ3x).

The third coefficient on the right (see Corollary 1) is −mλm−2
3 λ−1

1 ∈ k, thus
λ2

3 ∈ k. Similarly λ2
2 ∈ k. We also obtain

λ−1
1 λm

3 , λ
−1
3 λn

2, λ
−1
1 λmn

2 ∈ k; λ4λ
−m
2 ∈ k.

Put now

a = λ−2
2 , L1 = λ1λ

−mn
2 (x + µ1), L2 = x + µ2,

L3 = λ3λ
−n
2 (x + µ3), L4 = λ4λ

−m
2 x + µ4.
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We have a ∈ k, Li ∈ k[x]. Moreover,

L1 ◦ G = Dm(x, an) ◦ L3, A ◦ L−1
2 = L−1

3 ◦ Dn(x, a),

L1 ◦ H = Dn(x, am) ◦ L4, B ◦ L−1
2 = L−1

4 ◦ Dm(x, a),

hence (ii) is satisfied with L2 replaced by L−1
2 .

From now on we assume k algebraically closed, but not till Lemma 16 in-
clusive that m > n.

Lemma 3. The polynomial f (x, y) = G(y)− H(x) is irreducible over k.

Proof. Suppose that f (y, x) = f1(y, x) f2(y, x), where fi ∈ k[y, x],
deg fi > 0 (i = 1, 2). Let us give x the weight m, y the weight n. The
part of the greatest weight of f , aym − bxn , must be the product of the parts
of the greatest weight of f1(x, y), f2(x, y). Hence these two are of the form
ai yµi +· · ·+bi xνi (i = 1, 2), where µi n = νi m and 0 < µi < m, 0 < νi < n.
However in view of (m, n) = 1 this is impossible.

Lemma 4. If π �= 2 the equation

(Q(t)− q1)(Q(t)− q2) = (t − ξ1)(t − ξ2)R
2(t), Q, R ∈ k[t],

q1, q2, ξ1, ξ2 ∈ k, q1 �= q2, ξ1 �= ξ2, d = ∂Q implies

Q(t) = L ◦ Dd ◦ M−1,

where for a suitable ε = ±1

L(t) = ε
q1 − q2

4
t + q1 + q2

2
, M(t) = ξ1 − ξ2

4
t + ξ1 + ξ2

2
.

Proof. Without loss of generality we may assume that one of the following
holds:

Q(t)− qi = (t − ξi )R
2
i (i = 1, 2) (1)

or

Q(t)− q1 = (t − ξ1)(t − ξ2)R
2
3(t), Q(t)− q2 = R4(t)

2, (2)

or

Q(t)− q1 = R2
3(t), Q(t)− q2 = (t − ξ1)(t − ξ2)R4(t)

2, (3)

where Ri ∈ k(t). Put

P(t) = L−1 ◦ Q ◦ M.
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In the case (1) we obtain

q1 − q2

4
(P(t)± 2) = ξ1 − ξ2

4
(t ± 2)R2

3±1
2
(M(t)), (4)

in the case (2) or (3) for the upper or lower sign, respectively,

q1 − q2

2
(P(t)∓ 2ε) =

(ξ1 − ξ2

4

)2
(t2 − 4)R2

3(M(t)),

q1 − q2

2
(P(t)± 2ε) = R4(M(t))2.

(5)

Choose now ε so that ∓2ε = −2 and substitute t = z + z−1. From both (4)
and (5) we obtain

P(z + z−1)− 2 = z−∂P S1(z)
2, P(z + z−1)+ 2 = z−∂P S2(z)

2

and S1(1) = 0. Thus

4z∂P = S2
2 − S2

1 = (S2 − S1)(S2 + S1).

Since π �= 2, max{∂(S2−S1), ∂(S2+S1)} = ∂P , hence min{∂(S2−S1), ∂(S2+
S1)} = 0 and for a suitable sign S2 ± S1 = s ∈ k̄. Then s(s ∓ 2S1) = 4z∂P

and on substituting z = 1 we obtain s2 = 4.

Now

S1 = ±2

s
(1− z∂P ),

and

P(z + z−1) = 2+ z−∂P S1(z)
2 = 2+ 4

s2
z−∂P (z∂P − 1)2 = z∂P + z−∂P .

Hence by Corollary 2 P(t) = D∂P (t), which proves the lemma since ∂P =
∂Q = d.

Lemma 5. Let n > 1 and assume π /| n and

Dn(at + b)+ d = cDn(t), (6)

where a, c ∈ k∗, b, d ∈ k.

Then b = 0 and either n = 2 or d = 0, a = ±1, c = an.

Proof. On comparing the coefficients of tn and tn−1 on both sides of (6) and
using Corollary 1 we find

an = c, nan−1b = 0,
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hence b = 0. For n > 2 on comparing the coefficients of tn−2 we find

−nan−2 = −nc = −nan,

hence a2 = 1, a = ±1 and

d = cDn(t)− Dn(at) = an D(t)− an D(t) = 0.

Convention 1. F = k(x, y), where G(y) − H(x) = 0. For a prime divisor v
of F/k we shall denote ord v again by v and for f ∈ F with v( f ) ≥ 0 we shall
denote by f (v) the element a of k such that v( f − a) > 0. Similar convention
applies to prime divisors of k(x)/k and of k(y)/k.

Convention 2. If a ∈ k we shall denote by wa, w
∗
a the prime divisor of

k(x)/k, k(y)/k, respectively, such that wa(x − a) > 0, w∗a(y − a) > 0, re-
spectively. By w∞, w∗∞ we shall denote the prime divisor of k(x)/k, k(y)/k

such that w∞(x−1) > 0, w∞(y−1) > 0, respectively. By Sa,b we shall denote
the set of prime divisors of F/k lying simultaneously above wa, w

∗
b .

Corollary 5. If a, b �= ∞, then

Sa,b = {v|v(x − a) > 0, v(y − b) > 0},
where v runs through the prime divisors of F.

Lemma 6. Let I be a prime ideal in R = k[X1, . . . , Xn], K be the quotient
field of R/I and 〈a1, . . . , an〉 ∈ kn be such that p(a1, . . . , an) = 0 for p ∈ I .
Then there exists a valuation of K trivial on k with the maximal ideal M of
the valuation ring such that Xi − ai ∈ M for all i ≤ n, where Xi − ai is the
residue class of Xi − ai mod I .

Proof. Put in the Corollary to Theorem [L] 9.1 : A = R/I, K = K, L = k and
define ϕ by the formula ϕ(ā) = a for a ∈ k, ϕ(X̄i ) = ai (1 ≤ i ≤ n). Then
by the corollary, the maximal subring B of K to which ϕ may be prolonged
as homomorphism into k has the property that if x ∈ K∗ then either x ∈ B
or x−1 ∈ B. Let U = {x ∈ B : x−1 ∈ B}. The factor group K∗/U can be
ordered (see [L], Chapter XII, § 4), hence the map assigning to each element
x ∈ K∗ the coset xU and to x = 0 the element 0 is a valuation of K. Since
ϕ(ā) = a for a ∈ k, the valuation is trivial on k. Since, by the definition of
B, ϕ(Xi − ai ) = 0, we have (Xi − ai )

−1 �∈ B, hence

Xi − ai ∈ B \U

and as shown in [L], Chapter XII, § 4, B \U is the maximal ideal of B.
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Lemma 7. w∞ is totally ramified in F, so there is just one prime divisor of F,
denoted by v∞, above w∞. If t∞ is a local parameter at v∞ we have

v∞
( dx

dt∞

)
= −m − 1+ n(m − 1− δ),

where δ = ∂G ′.

Proof. Write am + bn = 1 with integers a, b. Set u = xa yb ∈ F and
t = x−n ym . We obtain

x = umt−b, y = unta . (7)

Now

t = ym

G(y)

H(x)

xn
=

H∗
(

1
x

)
G∗
(

1
y

) ,
where H∗, G∗ are polynomials with H∗(0)G∗(0) �= 0.

Since clearly both 1/x and 1/y are zero at every prime divisor v of F above
w∞ we see that t is a unit at each such prime divisor.

From the first equation of (7) we thus derive the initial part of the lemma.
Moreover, we see that 1/u is a local parameter at v∞.

If π /| m we have δ = m− 1. Also, Theorem A5 (ii) combined with the first
equation of (7) again shows that

v∞
( dx

d(1/u)

)
= −m − 1,

so Lemma 7 holds in this case.

Suppose now that π | m. Directly from the definition of u we have

du

u
= a

x
dx + b

y
dy =

(a

x
+ bH ′(x)

yG ′(y)

)
dx . (8)

Also, from (7)

v∞(y) = −n, v∞(G ′(y)) = −nδ, v∞(H ′(x)) = −m(n − 1)

since ∂H ′ = n − 1, as π /| n. But π /| b also, for am + bn = 1 so

v∞
(

bH ′(x)
yG ′(y)

)
= n(1+ δ − m)+ m < m, since δ ≤ m − 2 in this case.

But v∞(a/x) ≥ v∞(1/x) = m, so (8) implies

v∞
(du

dx

)
= v∞(u)+ n(1+ δ − m)+ m = −1+ n(1+ δ − m)+ m,
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whence finally

v∞
( du

d(1/u)

)
= v∞

(dx

du

)
− 2 = −m − 1+ n(m − 1− δ),

as required.

We now deal with the splitting of finite prime divisors of k(x).

Lemma 8. Let r ≥ 1, s ≥ 1, (r, s) = d, r = dr ′, s = ds′, p, q ∈ k[t]. The
ideal I of k[X, Y, T ] generated by the polynomials

F1 = Xs′T − Y r ′ , F2 = T dq(Y )− p(X)

is a prime ideal, provided yr q(y) − xs p(x) is irreducible over k and
p(0)q(0) �= 0.

Proof. Put f (X, Y ) = Y r q(Y )− Xs p(X). Assume that gh ∈ I , where g, h ∈
k[X, Y, T ]. Then clearly the rational function g

(
X, Y, Y r ′

Xs′
)

h
(

X, Y, Y r ′

Xs′
)
∈

k[X, X−1, Y ] has a numerator divisible by f (X, Y ). Since this is irreducible it

divides the numerator of, say, g
(

X, Y, Y r ′

Xs′
)

. We have, after division by T− Y r ′

Xs′

in k[X, X−1, Y ][T ], the equation

g(X, Y, T ) = g
(

X, Y,
Y r ′

Xs′

)
+ F1g1(X, Y, T ), (9)

where g1 ∈ k[X, X−1, Y ][T ].
Since

0 ≡ Xs F2 = (F1 + Y r ′)dq(Y )− Xs p(X) ≡ f (mod I )

we have f ∈ I and we see by (9) that if a is a sufficiently large integer,
Xag ∈ I . It suffices now in order to show g ∈ I to prove that Xg ∈ I implies
g ∈ I for any g ∈ k[X, Y, T ].

Write Xg = αF1+βF2. Then α(0, Y, T )Y r ′ = β(0, Y, T )(T dq(Y )− p(0)),
whence

α(0, Y, T ) = ρ(Y, T )(T dq(Y )− p(0)), β(0, Y, T ) = ρ(Y, T )Y r ′

for some ρ ∈ k(Y, T ) and so, clearly

α(X, Y, T ) = ρF2 + Xγ, β(X, Y, T ) = −ρF1 + Xδ,

where γ, δ ∈ k[X, Y, T ]. So αF1+βF2 = ρF2 F1+ Xγ F1− ρF1 F2+ XδF2.
Finally g = γ F1 + δF2 ∈ I , as required.



32 1 Arbitrary polynomials over an arbitrary field

Lemma 9. Let G(y) = yr p(y), H(x) = xsq(x), where r ≥ 1, s ≥ 1,
p, q ∈ k[X ], p(0)q(0) �= 0. Put r = dr ′, s = ds′, d = (r, s) and let a, b be
any integers satisfying ar ′ + bs′ = 1, also write d = d∗πµ, when π /| d∗ ∈ Z,

t = x−s′ yr ′ , u = xa yb. (10)

We have

(i) If v ∈ S0,0, then
r

(r, s)
|e(v|w0).

(ii) The function t is a unit at each v ∈ S0,0.
Also

card {t (v): v ∈ S0,0} = (r, s)∗.

(iii)
∑
v∈S0,0

e(v|w0) = r .

(iv) (r, s)∗ ≤ card S0,0 ≤ (r, s).

Proof. Observe that

tdq(y) = p(x) (11)

and that

x = ur ′ t−b, y = us′ ta . (12)

That t is a unit at each prime divisor v ∈ S0,0 follows from (11), since
p(0)q(0) �= 0, so we have the first part of (ii). This fact combined with the
first half of (10) proves (i). We now prove the second half of (ii). Consider the
ideal I of k[X, Y, T ] described in Lemma 8. By that lemma and Lemma 3 I
is a prime ideal, hence the quotient field F∗ of k[X, Y, T ]/I is well defined.
Let x∗, y∗, t∗ be the images of X, Y, T in F∗. Then clearly, since t∗ = x−s′∗ yr ′∗
F∗ = k(x∗, y∗), where f (x∗, y∗) = 0. Since f is irreducible F∗ is isomorphic
to F.

By Lemma 6 and by the fact that every valuation of F trivial on k is discrete
(see [L], Chapter XII, § 4, Example) each point 〈0, 0, a〉 ∈ k3, where adq(0) =
p(0) corresponds to at least one prime divisor v of F such that x(v) = y(v) =
0, t (v) = a, so in particular v ∈ S0,0.

On the other hand, if v ∈ S0,0 clearly td(v)q(0) = p(0). But the equation
zd = p(0)

q(0) has exactly d∗ distinct solutions in k, so (ii) is completely proved.

To prove (iii) we use Theorem A2 and factor l−1 f = l−1(Y r q(Y ) −
Xs p(X)) (l is the leading coefficient of q) over k((X)), obtaining

l−1 f = P1(Y, X) . . . Ph(Y, X),
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where Pi are elements of k[[X ]][Y ] monic in Y and irreducible over k((X)).
If the valuation vi corresponds to the factor Pi , and if moreover vi ∈ S0,0,
i.e. vi (y) > 0, then, by Theorem A2 and Corollary A6, Pi (Y, 0) = Y ei and
conversely.

So (iii) follows on comparing the greatest power of Y dividing the sides of
the equation

l−1Y r q(Y ) = P1(Y, 0) . . . Ph(Y, 0).

Now (iv) is trivial, the lower bound following from (ii), the upper bound from
(i) and (iii).

Convention 3. We put

c(x0, y0) =
∑

v∈Sx0,y0

v
( dx

dtv

)
, (13)

G(y)− G(y0) = (y − y0)
r(y0)Qy0(y), where Qy0(y0) �= 0, (14)

H(x)− H(x0) = (x − x0)
s(x0)Px0(x), where Px0(x0) �= 0, (15)

µ(y0) = ord y−y0 Q′y0
in the case that π |r(y0), (16)

� = {〈x0, y0〉 ∈ k2|G(y0) = H(x0)}. (17)

Lemma 10. For 〈x0, y0〉 ∈ � we have

(i) c(x0, y0) ≥ r(y0)− (r(y0), s(x0)).

If there is equality then

(a) card Sx0,y0 = (r(y0), s(x0)).

(b) For all v ∈ Sx0,y0 we have that π /| e(v|wx0) = r(y0)
(r(y0),s(x0))

.

(ii) If π | r(y0), but π /| s(x0) then

c(x0, y0) ≥ r(x0)− (r(y0), s(x0))+ s(x0)(1+ µ(y0)).

Proof. For each 〈x0, y0〉 ∈ � the polynomials G̃(y) = G(y + y0) − G(y0),
H̃(x) = H(x+x0)−H(x0) satisfy the assumptions of Lemma 9, and denoting
the parameters corresponding to them by S̃, c̃, we have

Sx0,y0 = S̃0,0, c(x0, y0) = c̃0,0, r(y0) = r,

Qy0(y + y0) = q(y), s(x0) = s, Px0(x + x0) = p(x).

Therefore, we may at once suppose that x0 = y0 = 0. G, H satisfy the
assumptions of Lemma 9 and µ(0) = ord y q ′(y) = µ.
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By Theorem A5 (ii) we have

v(dx/dtv) ≥ e(v|w0)− 1 for all v above w0,

with equality if and only if π /| e(v|w0), so

c(0, 0) ≥
∑
v∈S0,0

e(v|w0)− card S0,0 = r − card S0,0

by (iii) of Lemma 9. If equality holds then π /| e(v|w0) for all v ∈ S0,0.
Now part (i) follows at once from this inequality combined with (i) and (iv) of
Lemma 9.

To prove (ii) observe that π /| (r, s) implies, by Lemma 9 again, that
card S0,0 = (r, s) and e(v|w0) = r

(r,s) = r ′ for all v ∈ S0,0.

Also, the equation x = ur ′ t−b implies that u is a local parameter at each
such v, where t, u are defined by (10).

To calculate v(dx/du)we argue as in the proof of Lemma 7 and differentiate
the equation u = xa yb obtaining

du

u
= a

dx

x
+ b

dy

y
,

or
du

dx
= u

(
a

x
+ b

y

dy

dx

)
. (18)

Since yr q(y) = xs p(x) and since π |r , π /| s we obtain

yr q ′(y)dy = xs−1(sp(x)+ xp′(x))dx

and

rv(y)+ v(q ′(y))+ v
(

dy

dx

)
= (s − 1)v(x). (19)

In fact v(sp(x)+ xp′(x)) = 0 since p(0) �= 0 and since π /| s.
On the other hand v(y) = s′, v(x) = r ′, by (12). Since rv(y) = rs′ =

sr ′ = sv(x) equation (19) gives

v

(
dy

dx

)
= −v(x)− µv(y) ≤ −v(x). (20)

But the equation ar ′+bs′ = 1 implies π /| b, so v((b dy)/y dx) = −v(y)+
v(dy/dx) ≤ −v(y)− v(x) < −v(x) ≤ v(a/x).

In conclusion (18) gives

v

(
dx

du

)
= −v(u)−v

(
b

y

dy

dx

)
= v(x)+v(y)(1+µ)−1 = r ′+s′(1+µ)−1.

Summing over v ∈ S0,0 we obtain (ii).
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Lemma 11. Assume that the curve G(y) = H(x) has genus 0 and that if r is
a prime number then for all λ ∈ k neither G − λ nor H − λ is the rth power
of a polynomial. Then either for some linear functions L1, M1 and M2

L1 ◦ G ◦ M1 = Dm, L1 ◦ H ◦ M2 = Dn (21)

or

G(y) = (y − η)Qr (y)+ λ∗, H(x) = (x − ξ)Pr (x)+ λ∗,
where Q(η)P(ξ) �= 0, P, Q have only simple zeros and π | r . Moreover,

card Sx0,y0 = (r(y0), s(x0)) for all 〈x0, y0〉 ∈ �.

Proof. We use Theorem A5 (i) applied with z = x (separability is guaranteed
by G ′ �= 0) and g = 0. We split the summation over v as follows

−2 =
∑

〈x0,y0〉∈�
c(x0, y0)+ v∞

(
dx

dt∞

)
.

This is permissible since at each prime divisor v above wx0 the value y(v) of
the function y clearly satisfies G(y(v)) = H(x0).

Using the value for the last term obtained in Lemma 7 we obtain, after a
short calculation

δ =
∑

〈x0,y0〉∈�
c(x0, y0)+ (n − 1)(m − 1− δ), (22)

where δ = ∂G ′.
Define now, for y0 ∈ k, δ(y0) by

δ(y0) = 1+ µ(y0) if π | r(y0), 0 otherwise, (23)

where µ(y0) has been defined by (16).

If π /| r(y0) we have

r(y0)− 1+ δ(y0) = ord y−y0 G ′(y). (24)

If π |r(y0), differentiating (15) we find

G ′(y) = (y − y0)
r0 Q′y0

(y)

and (22) holds again, thus it is true generally. In particular

δ =
∑
y0∈k

(r(y0)− 1+ δ(y0)).
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By Lemma 10 we have, for given y0 ∈ k∑
x0,〈x0,y0〉∈�

c(x0, y0) ≥
∑

x0,〈x0,y0〉∈�
(r(y0)− (r(y0), s(x0))+ s(x0)δ(x0, y0)),

(25)
where

δ(x0, y0) = 1+ µ(y0) if π |r(y0), π /| s(x0), 0 otherwise. (26)

Using (22), (24) and (25) we thus obtain∑
y0∈k

{r(y0)− 1+ δ(y0)} ≥
∑
y0∈k

σ(y0)+ (n − 1)(m − 1− δ), (27)

where

σ(y0) =
∑

x0,〈x0,y0〉∈�
(r(y0)− (r(y0), s(x0))+ s(x0)δ(x0, y0)).

We proceed to estimate the terms σ(y0).
First observe that, if r(y0) > 1, then r(y0) cannot divide s(x0) for all x0

such that 〈x0, y0〉 ∈ �, for otherwise H(x)−G(y0)would be an r(y0)th power
contrary to the assumption. We have thus two possibilities for given r(y0) > 1,
namely

Case 1. There exist two values of x0 with 〈x0, y0〉 ∈ � and r(y0) /| s(x0).
Case 2. There is just one value x∗0 with 〈x∗0 , y0〉 ∈ � and r(y0) /| s(x∗0 ).

We shall consider these cases successively.

Case 1. Since for the values in question r(y0) − (r(y0), s(x0)) ≥ r(y0)
2 , we

have

σ(y0) ≥ r(y0)+
∑

x0,〈x0,y0〉∈�
s(x0)δ(x0, y0) ≥ r(y0)+ δ(y0). (28)

In fact π /| s(x∗0 ) for at least one x∗0 with 〈x∗0 , y0〉 ∈ �, whence s(x∗0 )δ(x
∗
0 , y0)

= s(x∗0 )δ(y0) ≥ δ(y0).

Case 2. Now clearly (r(y0), s(x∗0 )) divides s(x0) for all relevant x0,
whence H(x) − G(y0) is an (r(y0), s(x∗0 ))th power. By the assumption
(r(y0), s(x∗0 )) = 1, whence

σ(y0) ≥ r(y0)− 1+ δ(y0). (29)

The same inequality clearly holds also if r(y0) = 1, so using (27), (28) and
(29) we see that Case 1 cannot occur, and that moreover (n−1)(m−1−δ) = 0,
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so

δ = m − 1, i.e. π /| m (30)

as n > 1.
Also, all the inequalities involved in (27) and (28) must be equalities for all
y0 ∈ k, so in particular ∑

x0,〈x0,y0〉∈�
s(x0)δ(x0, y0) = δ(y0). (31)

Assume there exist at least two values y1 �= y2 with r(yi ) > 1 for i = 1, 2
and, say, λ1 = G(y1) �= G(y2) = λ2.

Since we always end up in Case 2, producing (29) above, we have if r(yi ) /|
s(xi ) for certain xi such that 〈xi , yi 〉 ∈ �

H(x)− λi = (x − xi )
s(xi )Hr(yi )

i (x) i = 1, 2. (32)

Differentiating we find that H ′(x), (which is �= 0), is divisible by both the
polynomials (x − xi )

s(xi )−1 Hr(yi )−1
i , which are coprime, since λ1 �= λ2. So,

in particular

s(x1)+ s(x2)− 2+ r(y1)∂H1 + r(y2)∂H2 − ∂H1 − ∂H2 ≤ ∂H ′ ≤ n − 1,

which gives

n − 1 ≤ ∂H1 + ∂H2.

But, since s(xi ) ≥ 1, r(yi ) ≥ 2, (32) implies that ∂H ≤ n−1
2 , so we have

in fact always equality, i.e. s(x1) = s(x2) = 1, r(y1) = r(y2) = 2, ∂H1 =
∂H2 = n−1

2 and finally ∂H ′ = n − 1, or equivalently, π /| n.
Also, π �= 2, for otherwise, in view of (32) H2

i would divide H ′ for i = 1, 2,
whence in particular 2(n− 1) ≤ n− 1, which is impossible. So we may apply
Lemma 4 to the equation

(H(x)− λ1)(H(x)− λ2) = (x − x1)(x − x2)(H1 H2)
2,

which follows from (32) and the subsequent remarks. We obtain

H(x) ◦ M−1
1 =

(
λ1 − λ2

4
x + λ1 + λ2

2

)
◦ Dn(x) (33)

for a suitable linear M1.
Now, if there exists y3 with r(y3) > 1, while λ3 = G(y3) �= λi for i = 1, 2,

we have similarly

H(x)− λ3 = (x − x3)H
2
3 (x).
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But then H ′ would be divisible by H1 H2 H3, whence 3
2 (n− 1) ≤ n− 1, which

is impossible.
So we may assume that

if r(y0) > 1 then G(y0) = λi for i = 1 or i = 2. (34)

Moreover, we have seen that necessarily r(y0) = 1 or 2 in any case, and that
π �= 2.

Write G ′(y) = α(y − ξ1) . . . (y − ξm−1). ξi are distinct, for otherwise
r(ξi ) > 2 for some i . So if, say

G(ξ1) = · · · = G(ξh) = λ1, G(ξh+1) = · · · = G(ξm−1) = λ2,

we must have m − 1 ≥ max{2h, 2(m − 1 − h)}: in fact G(y) − λ1 has the
roots ξ1, . . . , ξh with multiplicity 2, and at least one root (otherwise it would
be a square, contrary to the assumption), so m ≥ 1 + 2h, and similarly for
G(y)− λ2. So necessarily h = m−1

2 and, for i = 1, 2

G(y)− λi = (y − ηi )(y − ξ1+h(i−1))
2 . . . (y − ξhi )

2,

say. Again Lemma 4 applies, so, for a suitable linear M2

G(y) ◦ M−1
2 =

(
λ1 − λ2

4
y + λ1 + λ2

2

)
◦ Dm(y).

We thus end up in the case (21).
On excluding (34), where λ1 �= λ2 there remains the only possibility

r(y0) > 1 implies G(y0) = λ1. (35)

By symmetry we may assume

s(x0) > 1 implies H(x0) = λ2. (36)

Equivalently

G ′(y0) = 0 implies G(y0) = λ1, H ′(x0) = 0 implies H(x0) = λ2. (37)

Write

G(y)− λ1 = (y − y1)
r(y1) . . . (y − yh)

r(yh)V π (y),

where V (yi ) �= 0 for i = 1, . . . , h and where π /| r(y1) . . . r(yh).
We find

G ′(y) = (y − y1)
r(y1)−1 . . . (y − yh)

r(yh)−1V π (y)U (y),

where deg U = h − 1 and where U (yi ) �= 0.
If π∂V = 0 then, letting U (y0) = 0 we would have G ′(y0) = 0, G(y0) �=

λ1. The existence of y0 would therefore contradict (37). Thus π∂V = 0
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implies h = 1, or G(y) − λ1 = α(y − y1)
r(y1), contrary to the assumption.

Therefore, π∂V > 0.
Let V (y0) = 0. Then π |r(y0). Also by (31)∑

x0,〈x0,y0〉∈�
s(x0)δ(x0, y0) = s + µ(y0)

or ∑
x0,〈x0,y0〉∈�, π /|s(x0)

s(x0)(1+ µ(y0)) = 1+ µ(y0).

We conclude that there is exactly one x∗0 such that 〈x∗0 , y0〉 ∈ �, π /| s(x∗0 ),
and that moreover s(x∗0 ) = 1.

This means that

H(x)− λ1 = (x − x∗0 )Z
π (x).

Necessarily ∂Z > 0, so by (36), λ1 = λ2 = λ∗1, say.
By symmetry we have also h = 1 and r(y1) = 1. So we may write

G(y) = (y − y1)V
π (y)+ λ∗, H(x) = (x − x∗0 )Z

π (x)+ λ∗

for some non-constant polynomials V , Z such that V (y1)Z(x∗0 ) �= 0.
Recall that, for each 〈x0, y0〉 ∈ � we must end up in the case producing

(29), i.e. every multiplicity of every zero of V π must divide the multiplicity of
every zero, but one, of H(x) − λ∗, so it must divide the multiplicity of every
zero of Zπ , and by symmetry, also the converse holds. So all multiplicities
involved must be equal and we may write

G(y) = (y − η)Qr (y)+ λ∗, H(x) = (x − ξ)Hr (x)+ λ∗, (38)

where Q(η)P(ξ) �= 0, P , Q have only simple zeros and π |r .
Recall also that all the inequalities involved in (27) and (29) must be equal-

ities. In particular

card Sx0,y0 = (r(y0), s(x0)) (39)

for all 〈x0, y0〉 ∈ �.

Lemma 12. If r > 2 the second term of the alternative in Lemma 11 is impos-
sible. If r = 2 we have y3

0 Q′2(y0+1) = x3
0 P ′2(x0+1) for all x0, y0 satisfying

Q(y0 + η) = P(x0 + ξ) = 0.

Proof. Assume that the second term of the alternative holds. After a translation
on x , y if necessary we may write the equation G(y) = H(x) as

yQr (y) = x Pr (x), (40)
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where P(0)Q(0) �= 0. Let P(x0) = Q(y0) = 0. The formula for card Sx0,y0

now reads card Sx0,y0 = r , so there are r prime divisors in Sx0,y0 each nec-
essarily unramified above wx0 by (iii) of Lemma 9. Since each prime divi-
sor v ∈ Sx0,y0 is unramified above wx0 , a local parameter at each such v is
x−x0 = u, say. Let y = S(u) be the power series expansion of y at v ∈ Sx0,y0 .
Write

Q(y) = (y − y0)Q1(y), P(x) = (x − x0)P1(x),

where Q1(y0)P1(x0) �= 0.
We have, say, S(u) = y0 + c1u + c2u2 + · · ·, so by (40)

(y0 + c1u + · · ·)(c1 + c2u + · · ·)r = (x0 + u)

(
P1(x0 + u)

Q1(S(u))

)r

. (41)

Comparing constant terms we have

y0cr
1 = x0

(
P1(x0)

Q1(y0)

)r

. (42)

Write now
P1(x0 + u)

Q1(S(u))
= T (u) = P1(x0)

Q1(y0)
+ t1u + · · · .

Since π |r we have

(T (u))r ≡
(

P1(x0)

Q1(y0)

)r

(mod uπ ).

Also

(c1 + c2u + · · ·)r ≡ cr
1(mod uπ ),

whence, by (41), comparing coefficients of u we find

cr+1
1 =

(
P1(x0)

Q1(y0)

)r

. (43)

Since x0 y0 P1(x0)Q1(y0) �= 0 we may combine (42) and (43) to obtain

c1 = y0

x0
. (44)

On the other hand c1 is the value at v of the function t = y−y0
x−x0

, so this value is
uniquely determined by x0, y0 and otherwise independent of v ∈ Sx0,y0 .

The present function t coincides with the one introduced in Lemma 9: in
fact we now have, with the notation of Lemma 9, r = s, d = r , r ′ = s′ = 1.

By (ii) of Lemma 9 we have that (r(y0), s(x0))∗ = 1, i.e. r∗ = 1, so r is a
power of π , r = πµ, say.

We now show that, provided r > 2, the series S(u) is uniquely determined
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by x0, y0, so at most one prime divisor in Sx0,y0 is unramified above wx0 in
contradiction to what was shown at the beginning of the proof.

From (40) and the fact that r = πµ we may write

y = (x0 + u)S1(u
r )

for a certain S1 ∈ k[[u]].
Put ur = z and S1(u) = s0 + s1u + s2u2 + · · ·. We have s0 = x0

y0
and, from

(40)

S1(z)(y − y0)
r Q2((y − y0)

r ) = z P2(z), (45)

say, for certain Q2, P2 ∈ k[T ], which depend only on x0, y0 and satisfy
Q2(0)P2(0) �= 0.

Put

Q2(T ) = γ1 + γ2T + · · · , P2(T ) = δ1 + δ2T + · · · .
Now y − y0 = s0u + (x + u)s1z + (x0 + u)s2z2 + · · ·, whence

(y − y0)
r = sr

0z + (xr
0 + z)sr

1zr + (xr
0 + z)sr

2z2r + · · · . (46)

Assume s0, . . . , sh−1 given, where h ≥ 1.
Let us consider the coefficient �h of zh+1 on both sides of (45). On the left

hand side write

(y − y0)
r Q2((y − y0)

r ) = A1z + A2z2 + · · · .
By (46) the coefficients of 1, z, z2, . . . , zh+1 in the series for (y− y0)

r depend
only on the si with i ≤ h+1

r , so we may write, for j ≤ h + 1

A j = A j (s0, s1, . . . , sν) ∈ k[s0, . . . , sν],

where ν = � h+1
r �. We have

�h = sh A1 + sh−1 A2 + · · · + s0 Ah+1 = δh+1.

But, since A1 = sr
0γ1 �= 0, we see that, provided h > ν, sh is uniquely

determined by s0, . . . , sh−1, x0, y0. Now r > 2, so, for h ≥ 1, we have (r −
1)h ≥ r − 1 > 1 and h > h+1

2 ≥ ν. Since s0 = y0
x0

depends only on x0, y0,
induction shows that the same holds for all the sh , as required.

This proves the above contention about the uniqueness of the power series
for y and concludes the proof for r > 2. If r = 2 we combine (43) and (44) to
obtain

y3
0 Q2

1(y0) = x3
0 P2

1 (x0).

Recall that this equation must hold for every x0, y0 satisfying Q(y0) =
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P(x0) = 0. Also observe that Q1(y0) = Q′(y0) and P1(x0) = P ′(x0) for
each such x0, y0.

Lemma 13. If π = 2, for every positive integer n there is at most one solution
of the equation

t A2 + B2 + 1+ t AB = 0, A, B ∈ k[t] (47)

with ∂(t A2 + B2) = n.

Proof. The equation (47) can be written as

(B + 1)2 = t A(A + B).

Since (A, B) = 1 only two cases may arise, namely

Case 1 : A = tC2, A + B = D2, B + 1 = tC D

or Case 2 : A = D2, A + B = tC2, B + 1 = tC D,

where C , D are suitable polynomials in k[t].
In both cases, we obtain, eliminating A, B

tC2 + D2 + 1+ tC D = 0, B = tC2 + D2.

We now proceed to prove the lemma by induction on n. If n = 0 then A = 0
and ∂B = 0 so B = 1. Assume that the lemma holds with n replaced by m,
where m < n.

If n = 2m, then ∂B = m, hence by the inductive assumption C , D are
uniquely determined and so is B. Now of the two polynomials A satisfying
(47) at most one has degree < ∂B, thus the condition n = ∂(t A2 + B2) also
determines A uniquely.

If n = 2m + 1, then m = ∂A ≥ ∂B. On the other hand in both cases
considered above ∂A ≡ ∂(A + B) + 1(mod 2), whence ∂B = ∂A = m, by
the inductive assumption C , D are uniquely determined and so is B. Of the
two polynomials A satisfying (47) at most one has degree= ∂B, thus A is also
uniquely determined.

Lemma 14. If n is such that a solution A, B of (47) exists with n = ∂(t A2 +
B2), put

Rn = t A2 + B2.

Rn satisfies the differential equation

t3 R′2(t)+ 1 = R2(t)+ t2 R(t)R′(t). (48)
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Proof. We have R′(t) = A2 and we find

t3 R′2(t)+ 1− R2(t)− t2 R(t)R′(t) = (t A2 + B2 + t AB + 1)2 = 0.

Lemma 15. If R is a polynomial of degree n satisfying (48) then R = Rn.

Proof. Write R = t A2 + B2, A, B ∈ k[t]. (48) gives in view of R′ = A2,

1+ t3 A4 = t2 A4 + B4 + t3 A4 + t2 A2 B2,

i.e.

1+ t2 A4 + B4 + t2 A2 B2 = 0.

But this is just the square of (47). It now suffices to apply Lemma 13.

Lemma 16. Let

R∗0 = 1, R∗1 = t + 1, R∗n = t R∗n−1 + R∗n−2 for n ≥ 2. (49)

Then R∗n = Rn.

Proof. Put

R∗n = t A∗n
2 + B∗n

2
.

We have deg R∗n = n. Also (49) easily implies, for n ≥ 2

A∗n = B∗n−1 + A∗n−2, B∗n = t A∗n−1 + B∗n−2.

Hence by induction

t A∗m A∗m−1 + B∗m B∗m−1 = 1

and

t A∗n
2 + B∗n

2 + t A∗n B∗n + 1 = 0

which in view of Lemma 13 implies the lemma.

Lemma 17. t R2
n = D2n+1.

Proof. According to Lemma 16 we have Rn = t Rn−1 + Rn−2, whence after
squaring t R2

n = t3 R2
n−1 + t R2

n−2. Thus setting Un = t R2
n we find

U0 = t, U1 = t3 + t, Un = t2Un−1 +Un−2.
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However, according to Corollary 4 the polynomials D2n+1 satisfy the same
recurrence formula and since D1 = U0, D3 = U1 by inspection, we have
D2n+1 = Un for all n.

Lemma 18. If π = 2 a polynomial R ∈ k[t] has at least one simple zero,
satisfies R(0) �= 0 and t3

0 R′2(t0) = λ whenever R(t0) = 0, then t R2 =
λD2n+1

(
t
γ

)
, where γ ∈ k∗, n = ∂R.

Proof. If t1 is a simple zero of R then t1 �= 0 and R′(t1) �= 0, so λ �= 0 and all
zeros of R are simple. So

t3 R′2(t) = λ+ R(t)V (t), (50)

where V ∈ k[t].
We clearly have

∂V = 3+ 2∂R′ − ∂R ≡ ∂R + 1(mod 2).

Also, differentiating (50) we find

t3 R′2(t) = R′(t)V (t)+ R(t)V ′(t) (51)

whence, since (R, R′) = 1, we have that

R′ divides V ′. (52)

Now if ∂R is even then ∂V is odd, whence ∂V ′ = ∂V − 1 = 2+ 2∂R′ − ∂R.
But ∂R′ ≤ ∂R − 2 in this case, so ∂V ′ ≤ ∂R′.

If, on the other hand, ∂R is odd then ∂R′ = ∂R− 1 and ∂V is even, whence
∂V ′ ≤ ∂V − 2 = 1+ 2∂R′ − ∂R = ∂R′.

So ∂V ′ ≤ ∂R′ in any case, whence by (52)

V ′ = γ R′ (53)

for some γ ∈ k. Actually γ �= 0, for otherwise t |V (t), by (51), whence λ = 0,
a contradiction.

Plugging (53) into (51) we find

V (t) = t2 R′(t)+ γ R(t)

so

t3 R′2(t)+ λ = γ R2(t)+ t2 R(t)R′(t). (54)
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Set R1(t) = 1
α

R(γ t), where α2 = λ
γ

. Then R(t) = αR1(t/γ ) and substituting
into (54) we obtain

α2

γ 2
t3 R′21 (t/γ )+ λ = γα2 R2

1(t/γ )+
α2

γ
t2 R1(t/γ )R

′
1(t/γ ).

Change t into γ t to find

α2γ t3 R′21 (t)+ λ = α2γ R2
1(t)+ α2γ t2 R1(t)R

′
1(t),

since α2γ = λ �= 0 we see that R1 satisfies (48) and by Lemma 17

t R2
1(t) = D2n+1, where n = ∂R.

Hence

t R2(t) = λD2n+1(t/γ ).

Lemma 19. If r = 2 the second term of the alternative in Lemma 11 gives
(21).

Proof. The second term of the alternative in Lemma 11 gives for r = 2

G(y) = (y − η)Q2(y)+ λ∗, H(x) = (x − ξ)P2(x)+ λ∗,
where Q(η), P(ξ) �= 0, p, Q = 2. By Lemma 12 we have

y3
0 Q′(y0 + η) = x3

0 P ′2(x0 + ξ) = λ

for all x0, y0 satisfying Q(y0 + η) = P(x0 + ξ) = 0. Hence polynomials
Q(t + η), P(t + ξ) satisfy the assumptions of Lemma 18 and by that lemma

t Q(t + η)2 = λDm(t/γ ), t Pn(t + ξ)2 = λDn(t/β),

where β, γ ∈ k∗. Thus (21) holds with

L−1
1 = λt + λ∗, M−1

1 = t − η
γ

, M−1
2 = t − ξ

β
.

Lemma 20. Let G, H ∈ k[t] have coprime degrees m, n, respectively. (We no
longer assume m, n > 1.) Assume that both derivatives G ′, H ′ are non-zero,
and that the curve G(y) = H(x) has genus 0. Then there exist linear functions
L1, M1, M2 such that one of the following cases holds

L1 ◦ G ◦ M1 = tr Pn(t), L1 ◦ H ◦ M2 = tn (55a)

(here P is a suitable polynomial, while r ∈ N),

the same as (55a), but with G, H and m, n interchanged, (55b)


