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Preface

This book evolved from a set of lecture notes for a course on `Introduction to

Mathematical Physics', that I have given at California State University, Stanislaus

(CSUS) for many years. Physics majors at CSUS take introductory mathematical

physics before the physics core courses, so that they may acquire the expected

level of mathematical competency for the core course. It is assumed that the

student has an adequate preparation in general physics and a good understanding

of the mathematical manipulations of calculus. For the student who is in need of a

review of calculus, however, Appendix 1 and Appendix 2 are included.

This book is not encyclopedic in character, nor does it give in a highly mathe-

matical rigorous account. Our emphasis in the text is to provide an accessible

working knowledge of some of the current important mathematical tools required

in physics.

The student will ®nd that a generous amount of detail has been given mathe-

matical manipulations, and that `it-may-be-shown-thats' have been kept to a

minimum. However, to ensure that the student does not lose sight of the develop-

ment underway, some of the more lengthy and tedious algebraic manipulations

have been omitted when possible.

Each chapter contains a number of physics examples to illustrate the mathe-

matical techniques just developed and to show their relevance to physics. They

supplement or amplify the material in the text, and are arranged in the order in

which the material is covered in the chapter. No eÿort has been made to trace the

origins of the homework problems and examples in the book. A solution manual

for instructors is available from the publishers upon adoption.

Many individuals have been very helpful in the preparation of this text. I wish

to thank my colleagues in the physics department at CSUS.

Any suggestions for improvement of this text will be greatly appreciated.

Turlock, California TA I L. CHOW

2000
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1

Vector and tensor analysis

Vectors and scalars

Vector methods have become standard tools for the physicists. In this chapter we

discuss the properties of the vectors and vector ®elds that occur in classical

physics. We will do so in a way, and in a notation, that leads to the formation

of abstract linear vector spaces in Chapter 5.

A physical quantity that is completely speci®ed, in appropriate units, by a single

number (called its magnitude) such as volume, mass, and temperature is called a

scalar. Scalar quantities are treated as ordinary real numbers. They obey all the

regular rules of algebraic addition, subtraction, multiplication, division, and so

on.

There are also physical quantities which require a magnitude and a direction for

their complete speci®cation. These are called vectors if their combination with

each other is commutative (that is the order of addition may be changed without

aÿecting the result). Thus not all quantities possessing magnitude and direction

are vectors. Angular displacement, for example, may be characterised by magni-

tude and direction but is not a vector, for the addition of two or more angular

displacements is not, in general, commutative (Fig. 1.1).

In print, we shall denote vectors by boldface letters (such as A) and use ordin-

ary italic letters (such as A) for their magnitudes; in writing, vectors are usually

represented by a letter with an arrow above it such as ~A. A given vector A (or ~A)

can be written as

A � AÂ; �1:1�

where A is the magnitude of vector A and so it has unit and dimension, and Â is a

dimensionless unit vector with a unity magnitude having the direction of A. Thus

Â � A=A.
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A vector quantity may be represented graphically by an arrow-tipped line seg-

ment. The length of the arrow represents the magnitude of the vector, and the

direction of the arrow is that of the vector, as shown in Fig. 1.2. Alternatively, a

vector can be speci®ed by its components (projections along the coordinate axes)

and the unit vectors along the coordinate axes (Fig. 1.3):

A � A1ê1 � A2ê2 � Aê3 �
X3
i�1

Aiêi; �1:2�

where êi (i � 1; 2; 3) are unit vectors along the rectangular axes xi �x1 � x; x2 � y;

x3 � z�; they are normally written as î; ĵ; k̂ in general physics textbooks. The

component triplet (A1;A2;A3) is also often used as an alternate designation for

vector A:

A � �A1;A2;A3�: �1:2a�
This algebraic notation of a vector can be extended (or generalized) to spaces of

dimension greater than three, where an ordered n-tuple of real numbers,

(A1;A2; . . . ;An), represents a vector. Even though we cannot construct physical

vectors for n > 3, we can retain the geometrical language for these n-dimensional

generalizations. Such abstract ``vectors'' will be the subject of Chapter 5.

2
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Figure 1.1. Rotation of a parallelpiped about coordinate axes.

Figure 1.2. Graphical representation of vector A.



Direction angles and direction cosines

We can express the unit vector Â in terms of the unit coordinate vectors êi. From

Eq. (1.2), A � A1ê1 � A2ê2 � Aê3, we have

A � A
A1

A
ê1 �

A2

A
ê2 �

A3

A
ê3

� �
� AÂ:

Now A1=A � cos�;A2=A � cosþ, and A3=A � cos ÿ are the direction cosines of

the vector A, and �, þ, and ÿ are the direction angles (Fig. 1.4). Thus we can write

A � A�cos�ê1 � cosþê2 � cos ÿê3� � AÂ;

it follows that

Â � �cos�ê1 � cosþê2 � cos ÿê3� � �cos�; cosþ; cos ÿ�: �1:3�

3
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Figure 1.3. A vector A in Cartesian coordinates.

Figure 1.4. Direction angles of vector A.



Vector algebra

Equality of vectors

Two vectors, say A and B, are equal if, and only if, their respective components

are equal:

A � B or �A1;A2;A3� � �B1;B2;B3�
is equivalent to the three equations

A1 � B1;A2 � B2;A3 � B3:

Geometrically, equal vectors are parallel and have the same length, but do not

necessarily have the same position.

Vector addition

The addition of two vectors is de®ned by the equation

A� B � �A1;A2;A3� � �B1;B2;B3� � �A1 � B1;A2 � B2;A3 � B3�:
That is, the sum of two vectors is a vector whose components are sums of the

components of the two given vectors.

We can add two non-parallel vectors by graphical method as shown in Fig. 1.5.

To add vector B to vector A, shift B parallel to itself until its tail is at the head of

A. The vector sum A� B is a vector C drawn from the tail of A to the head of B.

The order in which the vectors are added does not aÿect the result.

Multiplication by a scalar

If c is scalar then

cA � �cA1; cA2; cA3�:
Geometrically, the vector cA is parallel to A and is c times the length of A. When

c � ÿ1, the vector ÿA is one whose direction is the reverse of that of A, but both

4
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Figure 1.5. Addition of two vectors.



have the same length. Thus, subtraction of vector B from vector A is equivalent to

adding ÿB to A:

Aÿ B � A� �ÿB�:
We see that vector addition has the following properties:

(a) A� B � B� A (commutativity);

(b) (A� B� � C � A� �B� C� (associativity);

(c) A� 0 � 0� A � A;

(d) A� �ÿA� � 0:

We now turn to vector multiplication. Note that division by a vector is not

de®ned: expressions such as k=A or B=A are meaningless.

There are several ways of multiplying two vectors, each of which has a special

meaning; two types are de®ned.

The scalar product

The scalar (dot or inner) product of two vectors A and B is a real number de®ned

(in geometrical language) as the product of their magnitude and the cosine of the

(smaller) angle between them (Figure 1.6):

A � B � AB cos � �0 � � � ��: �1:4�
It is clear from the de®nition (1.4) that the scalar product is commutative:

A � B � B � A; �1:5�
and the product of a vector with itself gives the square of the dot product of the

vector:

A � A � A2: �1:6�
IfA � B � 0 and neitherA nor B is a null (zero) vector, thenA is perpendicular to B.

5

THE SCALAR PRODUCT

Figure 1.6. The scalar product of two vectors.



We can get a simple geometric interpretation of the dot product from an

inspection of Fig. 1.6:

�B cos ��A � projection of B onto A multiplied by the magnitude of A;

�A cos ��B � projection of A onto B multiplied by the magnitude of B:

If only the components of A and B are known, then it would not be practical to

calculate A � B from de®nition (1.4). But, in this case, we can calculate A � B in

terms of the components:

A � B � �A1ê1 � A2ê2 � A3ê3� � �B1ê1 � B2ê2 � B3ê3�; �1:7�
the right hand side has nine terms, all involving the product êi � êj . Fortunately,
the angle between each pair of unit vectors is 908, and from (1.4) and (1.6) we ®nd

that

êi � êj � �ij ; i; j � 1; 2; 3; �1:8�
where �ij is the Kronecker delta symbol

�ij �
0; if i 6� j;

1; if i � j:

(
�1:9�

After we use (1.8) to simplify the resulting nine terms on the right-side of (7), we

obtain

A � B � A1B1 � A2B2 � A3B3 �
X3
i�1

AiBi: �1:10�

The law of cosines for plane triangles can be easily proved with the application

of the scalar product: refer to Fig. 1.7, where C is the resultant vector of A and B.

Taking the dot product of C with itself, we obtain

C2 � C � C � �A� B� � �A� B�
� A2 � B2 � 2A � B � A2 � B2 � 2AB cos �;

which is the law of cosines.

6

VECTOR AND TENSOR ANALYSIS

Figure 1.7. Law of cosines.



A simple application of the scalar product in physics is the work W done by a

constant force F: W � F � r, where r is the displacement vector of the object

moved by F.

The vector (cross or outer) product

The vector product of two vectors A and B is a vector and is written as

C � A� B: �1:11�
As shown in Fig. 1.8, the two vectors A and B form two sides of a parallelogram.

We de®ne C to be perpendicular to the plane of this parallelogram with its

magnitude equal to the area of the parallelogram. And we choose the direction

of C along the thumb of the right hand when the ®ngers rotate from A to B (angle

of rotation less than 1808).

C � A� B � AB sin �êC �0 � � � ��: �1:12�
From the de®nition of the vector product and following the right hand rule, we

can see immediately that

A� B � ÿB� A: �1:13�
Hence the vector product is not commutative. If A and B are parallel, then it

follows from Eq. (1.12) that

A� B � 0: �1:14�
In particular

A� A � 0: �1:14a�
In vector components, we have

A� B � �A1ê1 � A2ê2 � A3ê3� � �B1ê1 � B2ê2 � B3ê3�: �1:15�

7

THE VECTOR (CROSS OR OUTER) PRODUCT

Figure 1.8. The right hand rule for vector product.



Using the following relations

êi � êi � 0; i � 1; 2; 3;

ê1 � ê2 � ê3; ê2 � ê3 � ê1; ê3 � ê1 � ê2;
�1:16�

Eq. (1.15) becomes

A� B � �A2B3 ÿ A3B2�ê1 � �A3B1 ÿ A1B3�ê2 � �A1B2 ÿ A2B1�ê3: �1:15a�
This can be written as an easily remembered determinant of third order:

A� B �
ê1 ê2 ê3

A1 A2 A3

B1 B2 B3

þþþþþþþ
þþþþþþþ: �1:17�

The expansion of a determinant of third order can be obtained by diagonal multi-

plication by repeating on the right the ®rst two columns of the determinant and

adding the signed products of the elements on the various diagonals in the result-

ing array:

The non-commutativity of the vector product of two vectors now appears as a

consequence of the fact that interchanging two rows of a determinant changes its

sign, and the vanishing of the vector product of two vectors in the same direction

appears as a consequence of the fact that a determinant vanishes if one of its rows

is a multiple of another.

The determinant is a basic tool used in physics and engineering. The reader is

assumed to be familiar with this subject. Those who are in need of review should

read Appendix II.

The vector resulting from the vector product of two vectors is called an axial

vector, while ordinary vectors are sometimes called polar vectors. Thus, in Eq.

(1.11), C is a pseudovector, while A and B are axial vectors. On an inversion of

coordinates, polar vectors change sign but an axial vector does not change sign.

A simple application of the vector product in physics is the torque s of a force F

about a point O: s � F� r, where r is the vector from O to the initial point of the

force F (Fig. 1.9).

We can write the nine equations implied by Eq. (1.16) in terms of permutation

symbols "ijk:

êi � êj � "ijkêk; �1:16a�
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a1 a2 a3
b1 b2 b3
c1 c2 cc

2
4

3
5 a1 a2
b1 b2
c1 c2

ÿ ÿ ÿ � � �
--

--
--

--
--

--

--
--

--

ÿ
ÿ

!

ÿ
ÿ

!

ÿ
ÿ

!



where "ijk is de®ned by

"ijk �
�1
ÿ1
0

if �i; j; k� is an even permutation of �1; 2; 3�;
if �i; j; k� is an odd permutation of �1; 2; 3�;
otherwise �for example; if 2 or more indices are equal�:

8<
: �1:18�

It follows immediately that

"ijk � "kij � "jki � ÿ"jik � ÿ"kji � ÿ"ikj :

There is a very useful identity relating the "ijk and the Kronecker delta symbol:

X3
k�1

"mnk"ijk � �mi�nj ÿ �mj�ni; �1:19�

X
j;k

"mjk"njk � 2�mn;
X
i;j;k

"2ijk � 6: �1:19a�

Using permutation symbols, we can now write the vector product A� B as

A� B �
X3
i�1

Aiêi

ý !
�

X3
j�1

Bjêj

ý !
�

X3
i;j

AiBj êi � êj
ÿ � � X3

i;j;k

AiBj"ijk
ÿ �

êk:

Thus the kth component of A� B is

�A� B�k �
X
i;j

AiBj"ijk �
X
i;j

"kijAiBj:

If k � 1, we obtain the usual geometrical result:

�A� B�1 �
X
i;j

"1ijAiBj � "123A2B3 � "132A3B2 � A2B3 ÿ A3B2:
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Figure 1.9. The torque of a force about a point O.



The triple scalar product A E (B�C)

We now brie¯y discuss the scalar A � �B� C�. This scalar represents the volume of

the parallelepiped formed by the coterminous sides A, B, C, since

A � �B� C� � ABC sin � cos� � hS � volume;

S being the area of the parallelogram with sides B and C, and h the height of the

parallelogram (Fig. 1.10).

Now

A � �B� C� � A1ê1 � A2ê2 � A3ê3� � �
ê1 ê2 ê3

B1 B2 B3

C1 C2 C3

þþþþþþþþ

þþþþþþþþ
� A1�B2C3 ÿ B3C2� � A2�B3C1 ÿ B1C3� � A3�B1C2 ÿ B2C1�

so that

A � �B� C� �
A1 A2 A3

B1 B2 B3

C1 C2 C3

þþþþþþþ
þþþþþþþ: �1:20�

The exchange of two rows (or two columns) changes the sign of the determinant

but does not change its absolute value. Using this property, we ®nd

A � �B� C� �
A1 A2 A3

B1 B2 B3

C1 C2 C3

þþþþþþþ
þþþþþþþ � ÿ

C1 C2 C3

B1 B2 B3

A1 A2 A3

þþþþþþþ
þþþþþþþ � C � �A� B�;

that is, the dot and the cross may be interchanged in the triple scalar product.

A � �B� C� � �A� B� � C �1:21�
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Figure 1.10. The triple scalar product of three vectors A, B, C.



In fact, as long as the three vectors appear in cyclic order, A ! B ! C ! A, then

the dot and cross may be inserted between any pairs:

A � �B� C� � B � �C� A� � C � �A� B�:
It should be noted that the scalar resulting from the triple scalar product changes

sign on an inversion of coordinates. For this reason, the triple scalar product is

sometimes called a pseudoscalar.

The triple vector product

The triple product A� �B� C) is a vector, since it is the vector product of two

vectors: A and B� C. This vector is perpendicular to B� C and so it lies in the

plane of B and C. If B is not parallel to C, A� �B� C� � xB� yC. Now dot both

sides with A and we obtain x�A � B� � y�A � C� � 0, since A � �A� �B� C�� � 0.

Thus

x=�A � C� � ÿy=�A � B� � � �� is a scalar�
and so

A� �B� C� � xB� yC � ��B�A � C� ÿ C�A � B��:
We now show that � � 1. To do this, let us consider the special case when B � A.

Dot the last equation with C:

C� �A� �A� C�� � ���A � C�2 ÿ A2C2�;
or, by an interchange of dot and cross

ÿ�A � C�2 � ���A � C�2 ÿ A2C2�:
In terms of the angles between the vectors and their magnitudes the last equation

becomes

ÿA2C2 sin2 � � ��A2C2 cos2 �ÿ A2C2� � ÿ�A2C2 sin2 �;

hence � � 1. And so

A� �B� C� � B�A � C� ÿ C�A � B�: �1:22�

Change of coordinate system

Vector equations are independent of the coordinate system we happen to use. But

the components of a vector quantity are diÿerent in diÿerent coordinate systems.

We now make a brief study of how to represent a vector in diÿerent coordinate

systems. As the rectangular Cartesian coordinate system is the basic type of

coordinate system, we shall limit our discussion to it. Other coordinate systems
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will be introduced later. Consider the vector A expressed in terms of the unit

coordinate vectors �ê1; ê2; ê3�:

A � A1ê1 � A2ê2 � Aê3 �
X3
i�1

Aiêi:

Relative to a new system �ê 01; ê 02; ê 03� that has a diÿerent orientation from that of

the old system �ê1; ê2; ê3�, vector A is expressed as

A � A 0
1ê

0
1 � A 0

2ê
0
2 � A 0ê 03 �

X3
i�1

A 0
i ê

0
i :

Note that the dot product A � ê 01 is equal to A 0
1, the projection of A on the direction

of ê 01; A � ê 02 is equal to A 0
2, and A � ê 03 is equal to A 0

3. Thus we may write

A 0
1 � �ê1 � ê 01�A1 � �ê2 � ê 01�A2 � �ê3 � ê 01�A3;

A 0
2 � �ê1 � ê 02�A1 � �ê2 � ê 02�A2 � �ê3 � ê 02�A3;

A 0
3 � �ê1 � ê 03�A1 � �ê2 � ê 03�A2 � �ê3 � ê 03�A3:

9>>=
>>; �1:23�

The dot products �êi � ê 0j � are the direction cosines of the axes of the new coordi-

nate system relative to the old system: ê 0i � êj � cos�x 0
i ; xj�; they are often called the

coe�cients of transformation. In matrix notation, we can write the above system

of equations as

A 0
1

A 0
2

A 0
3

0
B@

1
CA �

ê1 � ê 01 ê2 � ê 01 ê3 � ê 01
ê1 � ê 02 ê2 � ê 02 ê3 � ê 02
ê1 � ê 03 ê2 � ê 03 ê3 � ê 03

0
B@

1
CA

A1

A2

A3

0
B@

1
CA:

The 3� 3 matrix in the above equation is called the rotation (or transformation)

matrix, and is an orthogonal matrix. One advantage of using a matrix is that

successive transformations can be handled easily by means of matrix multiplica-

tion. Let us digress for a quick review of some basic matrix algebra. A full account

of matrix method is given in Chapter 3.

A matrix is an ordered array of scalars that obeys prescribed rules of addition

and multiplication. A particular matrix element is speci®ed by its row number

followed by its column number. Thus aij is the matrix element in the ith row and

jth column. Alternative ways of representing matrix ~A are [aij] or the entire array

~A �

a11 a12 ::: a1n

a21 a22 ::: a2n

::: ::: ::: :::

am1 am2 ::: amn

0
BBBB@

1
CCCCA:
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~A is an n�m matrix. A vector is represented in matrix form by writing its

components as either a row or column array, such as

~B � �b11 b12 b13� or ~C �
c11

c21

c31

0
B@

1
CA;

where b11 � bx; b12 � by; b13 � bz, and c11 � cx; c21 � cy; c31 � cz.

The multiplication of a matrix ~A and a matrix ~B is de®ned only when the

number of columns of ~A is equal to the number of rows of ~B, and is performed

in the same way as the multiplication of two determinants: if ~C= ~A ~B, then

cij �
X
k

aikbkl :

We illustrate the multiplication rule for the case of the 3� 3 matrix ~A multiplied

by the 3� 3 matrix ~B:

If we denote the direction cosines ê 0i � êj by �ij, then Eq. (1.23) can be written as

A 0
i �

X3
j�1

ê 0i � êjAj �
X3
j�1

�ijAj: �1:23a�

It can be shown (Problem 1.9) that the quantities �ij satisfy the following relations

X3
i�1

�ij�ik � �jk � j; k � 1; 2; 3�: �1:24�

Any linear transformation, such as Eq. (1.23a), that has the properties required by

Eq. (1.24) is called an orthogonal transformation, and Eq. (1.24) is known as the

orthogonal condition.

The linear vector space Vn

We have found that it is very convenient to use vector components, in particular,

the unit coordinate vectors êi (i � 1, 2, 3). The three unit vectors êi are orthogonal

and normal, or, as we shall say, orthonormal. This orthonormal property

is conveniently written as Eq. (1.8). But there is nothing special about these
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orthonormal unit vectors êi. If we refer the components of the vectors to a

diÿerent system of rectangular coordinates, we need to introduce another set of

three orthonormal unit vectors f̂1; f̂2, and f̂3:

f̂i f̂j � �ij �i; j � 1; 2; 3�: �1:8a�

For any vector A we now write

A �
X3
i�1

ci f̂i; and ci � f̂i � A:

We see that we can de®ne a large number of diÿerent coordinate systems. But

the physically signi®cant quantities are the vectors themselves and certain func-

tions of these, which are independent of the coordinate system used. The ortho-

normal condition (1.8) or (1.8a) is convenient in practice. If we also admit oblique

Cartesian coordinates then the f̂i need neither be normal nor orthogonal; they

could be any three non-coplanar vectors, and any vector A can still be written as a

linear superposition of the f̂i

A � c1 f̂1 � c2 f̂2 � c3 f̂3: �1:25�

Starting with the vectors f̂i, we can ®nd linear combinations of them by the

algebraic operations of vector addition and multiplication of vectors by scalars,

and then the collection of all such vectors makes up the three-dimensional linear

space often called V3 (V for vector) or R3 (R for real) or E3 (E for Euclidean). The

vectors f̂1; f̂2; f̂3 are called the base vectors or bases of the vector space V3. Any set

of vectors, such as the f̂i, which can serve as the bases or base vectors of V3 is

called complete, and we say it spans the linear vector space. The base vectors are

also linearly independent because no relation of the form

c1 f̂1 � c2 f̂2 � c3 f̂3 � 0 �1:26�

exists between them, unless c1 � c2 � c3 � 0.

The notion of a vector space is much more general than the real vector space

V3. Extending the concept of V3, it is convenient to call an ordered set of n

matrices, or functions, or operators, a `vector' (or an n-vector) in the n-dimen-

sional space Vn. Chapter 5 will provide justi®cation for doing this. Taking a cue

from V3, vector addition in Vn is de®ned to be

�x1; . . . ; xn� � �y1; . . . ; yn� � �x1 � y1; . . . ; xn � yn� �1:27�

and multiplication by scalars is de®ned by

��x1; . . . ; xn� � ��x1; . . . ; �xn�; �1:28�
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where � is real. With these two algebraic operations of vector addition and multi-

plication by scalars, we call Vn a vector space. In addition to this algebraic

structure, Vn has geometric structure derived from the length de®ned to be

Xn
j�1

x2j

ý !1=2

�
���������������������������
x21 � � � � � x2n

q
�1:29�

The dot product of two n-vectors can be de®ned by

�x1; . . . ; xn� � �y1; . . . ; yn� �
Xn
j�1

xjyj: �1:30�

In Vn, vectors are not directed line segments as in V3; they may be an ordered set

of n operators, matrices, or functions. We do not want to become sidetracked

from our main goal of this chapter, so we end our discussion of vector space here.

Vector diÿerentiation

Up to this point we have been concerned mainly with vector algebra. A vector

may be a function of one or more scalars and vectors. We have encountered, for

example, many important vectors in mechanics that are functions of time and

position variables. We now turn to the study of the calculus of vectors.

Physicists like the concept of ®eld and use it to represent a physical quantity

that is a function of position in a given region. Temperature is a scalar ®eld,

because its value depends upon location: to each point (x, y, z) is associated a

temperature T�x; y; z�. The function T�x; y; z� is a scalar ®eld, whose value is a

real number depending only on the point in space but not on the particular choice

of the coordinate system. A vector ®eld, on the other hand, associates with each

point a vector (that is, we associate three numbers at each point), such as the wind

velocity or the strength of the electric or magnetic ®eld. When described in a

rotated system, for example, the three components of the vector associated with

one and the same point will change in numerical value. Physically and geo-

metrically important concepts in connection with scalar and vector ®elds are

the gradient, divergence, curl, and the corresponding integral theorems.

The basic concepts of calculus, such as continuity and diÿerentiability, can be

naturally extended to vector calculus. Consider a vector A, whose components are

functions of a single variable u. If the vector A represents position or velocity, for

example, then the parameter u is usually time t, but it can be any quantity that

determines the components of A. If we introduce a Cartesian coordinate system,

the vector function A(u) may be written as

A�u� � A1�u�ê1 � A2�u�ê2 � A3�u�ê3: �1:31�
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A(u) is said to be continuous at u � u0 if it is de®ned in some neighborhood of

u0 and

lim
u!u0

A�u� � A�u0�: �1:32�

Note that A(u) is continuous at u0 if and only if its three components are con-

tinuous at u0.

A(u) is said to be diÿerentiable at a point u if the limit

dA�u�
du

� lim
�u!0

A�u��u� ÿ A�u�
�u

�1:33�

exists. The vector A 0�u� � dA�u�=du is called the derivative of A(u); and to diÿer-

entiate a vector function we diÿerentiate each component separately:

A 0�u� � A 0
1�u�ê1 � A 0

2�u�ê2 � A 0
3�u�ê3: �1:33a�

Note that the unit coordinate vectors are ®xed in space. Higher derivatives of A(u)

can be similarly de®ned.

If A is a vector depending on more than one scalar variable, say u, v for

example, we write A � A�u; v�. Then
dA � �@A=@u�du� �@A=@v�dv �1:34�

is the diÿerential of A, and

@A

@u
� lim

�u!0

A�u��u; v� ÿ A�u; v�
@u

�1:34a�

and similarly for @A=@v.

Derivatives of products obey rules similar to those for scalar functions.

However, when cross products are involved the order may be important.

Space curves

As an application of vector diÿerentiation, let us consider some basic facts about

curves in space. If A(u) is the position vector r(u) joining the origin of a coordinate

system and any point P�x1; x2; x3� in space as shown in Fig. 1.11, then Eq. (1.31)

becomes

r�u� � x1�u�ê1 � x2�u�ê2 � x3�u�ê3: �1:35�
As u changes, the terminal point P of r describes a curve C in space. Eq. (1.35) is

called a parametric representation of the curve C, and u is the parameter of this

representation. Then

�r

�u
� r�u��u� ÿ r�u�

�u

� �
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is a vector in the direction of �r, and its limit (if it exists) dr=du is a vector in the

direction of the tangent to the curve at �x1; x2; x3�. If u is the arc length smeasured

from some ®xed point on the curve C, then dr=ds � T̂ is a unit tangent vector to

the curve C. The rate at which T̂ changes with respect to s is a measure of the

curvature of C and is given by dT̂/ds. The direction of dT̂/ds at any given point on

C is normal to the curve at that point: T̂ � T̂ � 1, d�T̂ � T̂�=ds � 0, from this we

get T̂ � dT̂=ds � 0, so they are normal to each other. If N̂ is a unit vector in this

normal direction (called the principal normal to the curve), then dT̂=ds � �N̂,

and � is called the curvature of C at the speci®ed point. The quantity � � 1=� is

called the radius of curvature. In physics, we often study the motion of particles

along curves, so the above results may be of value.

In mechanics, the parameter u is time t, then dr=dt � v is the velocity

of the particle which is tangent to the curve at the speci®c point. Now we

can write

v � dr

dt
� dr

ds

ds

dt
� vT̂

where v is the magnitude of v, called the speed. Similarly, a � dv=dt is the accel-

eration of the particle.

Motion in a plane

Consider a particle P moving in a plane along a curve C (Fig. 1.12). Now r � rêr,

where êr is a unit vector in the direction of r. Hence

v � dr

dt
� dr

dt
êr � r

dêr
dt

:
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Now dêr=dt is perpendicular to êr. Also jdêr=dtj � d�=dt; we can easily verify this

by diÿerentiating êr � cos �ê1 � sin �ê2: Hence

v � dr

dt
� dr

dt
êr � r

d�

dt
ê�;

ê� is a unit vector perpendicular to êr.

Diÿerentiating again we obtain

a � dv

dt
� d2r

dt2
êr �

dr

dt

dêr
dt

� dr

dt

d�

dt
ê� � r

d2�

dt2
ê� � r

d�

dt
ê�

� d2r

dt2
êr � 2

dr

dt

d�

dt
ê� � r

d2�

dt2
ê� ÿ r

d�

dt

� �2

êr 5
dê�
dt

� ÿ d�

dt
êr

� �
:

Thus

a � d2r

dt2
ÿ r

d�

dt

� �2
" #

êr �
1

r

d

dt
r2
d�

dt

� �
ê�:

A vector treatment of classical orbit theory

To illustrate the power and use of vector methods, we now employ them to work

out the Keplerian orbits. We ®rst prove Kepler's second law which can be stated

as: angular momentum is constant in a central force ®eld. A central force is a force

whose line of action passes through a single point or center and whose magnitude

depends only on the distance from the center. Gravity and electrostatic forces are

central forces. A general discussion on central force can be found in, for example,

Chapter 6 of Classical Mechanics, Tai L. Chow, John Wiley, New York, 1995.

Diÿerentiating the angular momentum L � r� p with respect to time, we

obtain

dL=dt � dr=dt� p� r� dp=dt:
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Figure 1.12. Motion in a plane.



The ®rst vector product vanishes because p � mdr=dt so dr=dt and p are parallel.

The second vector product is simply r� F by Newton's second law, and hence

vanishes for all forces directed along the position vector r, that is, for all central

forces. Thus the angular momentum L is a constant vector in central force

motion. This implies that the position vector r, and therefore the entire orbit,

lies in a ®xed plane in three-dimensional space. This result is essentially Kepler's

second law, which is often stated in terms of the conservation of area velocity,

jLj=2m.

We now consider the inverse-square central force of gravitational and electro-

statics. Newton's second law then gives

mdv=dt � ÿ�k=r2�n̂; �1:36�
where n̂ � r=r is a unit vector in the r-direction, and k � Gm1m2 for the gravita-

tional force, and k � q1q2 for the electrostatic force in cgs units. First we note that

v � dr=dt � dr=dtn̂� rdn̂=dt:

Then L becomes

L � r� �mv� � mr2�n̂� �dn̂=dt��: �1:37�
Now consider

d

dt
�v� L� � dv

dt
� L � ÿ k

mr2
�n̂� L� � ÿ k

mr2
�n̂�mr2�n̂� dn̂=dt��

� ÿk�n̂�dn̂=dt � n̂� ÿ �dn̂=dt��n̂ � n̂��:
Since n̂ � n̂ � 1, it follows by diÿerentiation that n̂ � dn̂=dt � 0. Thus we obtain

d

dt
�v� L� � kdn̂=dt;

integration gives

v� L � kn̂� C; �1:38�
where C is a constant vector. It lies along, and ®xes the position of, the major axis

of the orbit as we shall see after we complete the derivation of the orbit. To ®nd

the orbit, we form the scalar quantity

L2 � L � �r�mv� � mr � �v� L� � mr�k� C cos ��; �1:39�
where � is the angle measured from C (which we may take to be the x-axis) to r.

Solving for r, we obtain

r � L2=km

1� C=�k cos �� �
A

1� " cos �
: �1:40�

Eq. (1.40) is a conic section with one focus at the origin, where " represents the

eccentricity of the conic section; depending on its values, the conic section may be
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a circle, an ellipse, a parabola, or a hyperbola. The eccentricity can be easily

determined in terms of the constants of motion:

" � C

k
� 1

k
j�v� L� ÿ kn̂j

� 1

k
�jv� Lj2 � k2 ÿ 2kn̂ � �v� L��1=2

Now jv� Lj2 � v2L2 because v is perpendicular to L. Using Eq. (1.39), we obtain

" � 1

k
v2L2 � k2 ÿ 2kL2

mr

" #1=2

� 1� 2L2

mk2
1

2
mv2 ÿ k

r

� �" #1=2

� 1� 2L2E

mk2

" #1=2

;

where E is the constant energy of the system.

Vector diÿerentiation of a scalar ®eld and the gradient

Given a scalar ®eld in a certain region of space given by a scalar function

��x1; x2; x3� that is de®ned and diÿerentiable at each point with respect to the

position coordinates �x1; x2; x3�, the total diÿerential corresponding to an in®ni-

tesimal change dr � �dx1; dx2; dx3� is

d� � @�

@x1
dx1 �

@�

@x2
dx2 �

@�

@x3
dx3: �1:41�

We can express d� as a scalar product of two vectors:

d� � @�

@x1
dx1 �

@�

@x2
dx2 �

@�

@x3
dx3 � r�� � � dr; �1:42�

where

r� � @�

@x1
ê1 �

@�

@x2
ê2 �

@�

@x3
ê3 �1:43�

is a vector ®eld (or a vector point function). By this we mean to each point

r � �x1; x2; x3� in space we associate a vector r� as speci®ed by its three compo-

nents (@�=@x1; @�=@x2; @�=@x3): r� is called the gradient of � and is often written

as grad �.

There is a simple geometric interpretation of r�. Note that ��x1; x2; x3� � c,

where c is a constant, represents a surface. Let r � x1ê1 � x2ê2 � x3ê3 be the

position vector to a point P�x1; x2; x3� on the surface. If we move along the

surface to a nearby point Q�r� dr�, then dr � dx1ê1 � dx2ê2 � dx3ê3 lies in the

tangent plane to the surface at P. But as long as we move along the surface � has a

constant value and d� � 0. Consequently from (1.41),

dr � r� � 0: �1:44�
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Eq. (1.44) states that r� is perpendicular to dr and therefore to the surface (Fig.

1.13). Let us return to

d� � �r�� � dr:
The vector r� is ®xed at any point P, so that d�, the change in �, will depend to a

great extent on dr. Consequently d� will be a maximum when dr is parallel to r�,

since dr � r� � jdrjjr�j cos �, and cos � is a maximum for � � 0. Thus r� is in

the direction of maximum increase of ��x1; x2; x3�. The component of r� in the

direction of a unit vector û is given by r� � û and is called the directional deri-

vative of � in the direction û. Physically, this is the rate of change of � at

(x1; x2; x3� in the direction û.

Conservative vector ®eld

By de®nition, a vector ®eld is said to be conservative if the line integral of the

vector along any closed path vanishes. Thus, if F is a conservative vector ®eld

(say, a conservative force ®eld in mechanics), thenI
F � ds � 0; �1:45�

where ds is an element of the path. A (necessary and su�cient) condition for F

to be conservative is that F can be expressed as the gradient of a scalar, say

�:F � ÿgrad �:Z b

a

F � ds � ÿ
Z b

a

grad� � ds � ÿ
Z b

a

d� � ��a� ÿ ��b�:

it is obvious that the line integral depends solely on the value of the scalar � at the

initial and ®nal points, and
H
F � ds � ÿ H

grad� � ds � 0.
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The vector diÿerential operator r
We denoted the operation that changes a scalar ®eld to a vector ®eld in Eq. (1.43)

by the symbol r (del or nabla):

r � @

@x1
ê1 �

@

@x2
ê2 �

@

@x3
ê3; �1:46�

which is called a gradient operator. We often write r� as grad �, and the vector

®eld r��r� is called the gradient of the scalar ®eld ��r�. Notice that the operator

r contains both partial diÿerential operators and a direction: it is a vector diÿer-

ential operator. This important operator possesses properties analogous to those

of ordinary vectors. It will help us in the future to keep in mind that r acts both

as a diÿerential operator and as a vector.

Vector diÿerentiation of a vector ®eld

Vector diÿerential operations on vector ®elds are more complicated because of the

vector nature of both the operator and the ®eld on which it operates. As we know

there are two types of products involving two vectors, namely the scalar and

vector products; vector diÿerential operations on vector ®elds can also be sepa-

rated into two types called the curl and the divergence.

The divergence of a vector

If V�x1; x2;x3� � V1ê1 � V2ê2 � V3ê3 is a diÿerentiable vector ®eld (that is, it is

de®ned and diÿerentiable at each point (x1; x2; x3) in a certain region of space),

the divergence of V, written r � V or div V, is de®ned by the scalar product

r � V � @

@x1
ê1 �

@

@x2
ê2 �

@

@x3
ê3

� �
� V1ê1 � V2ê2 � V3ê3� �

� @V1

@x1
� @V2

@x2
� @V3

@x3
: �1:47�

The result is a scalar ®eld. Note the analogy with A � B � A1B1 � A2B2 � A3B3,

but also note that r � V 6� V � r (bear in mind that r is an operator). V � r is a

scalar diÿerential operator:

V � r � V1

@

@x1
� V2

@

@x2
� V3

@

@x3
:

What is the physical signi®cance of the divergence? Or why do we call the scalar

product r � V the divergence of V? To answer these questions, we consider, as an

example, the steady motion of a ¯uid of density ��x1; x2; x3�, and the velocity ®eld

is given by v�x1; x2; x3� � v1�x1; x2; x3�e1 � v2�x1; x2; x3�e2 � v3�x1; x2; x3�e3. We
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now concentrate on the ¯ow passing through a small parallelepiped ABCDEFGH

of dimensions dx1dx2dx3 (Fig. 1.14). The x1 and x3 components of the velocity v

contribute nothing to the ¯ow through the face ABCD. The mass of ¯uid entering

ABCD per unit time is given by �v2dx1dx3 and the amount leaving the face EFGH

per unit time is

�v2 �
@��v2�
@x2

dx2

� �
dx1dx3:

So the loss of mass per unit time is �@��v2�=@x2�dx1dx2dx3. Adding the net rate of

¯ow out all three pairs of surfaces of our parallelepiped, the total mass loss per

unit time is

@

@x1
��v1� �

@

@x2
��v2� �

@

@x3
��v3�

� �
dx1dx2dx3 � r � ��v�dx1dx2dx3:

So the mass loss per unit time per unit volume is r � ��v�. Hence the name

divergence.

The divergence of any vector V is de®ned as r � V. We now calculate r � � fV�,
where f is a scalar:

r � �f V� � @

@x1
� fV1� �

@

@x2
� fV2� �

@

@x3
� fV3�

� f
@V1

@x1
� @V2

@x2
� @V3

@x3

� �
� V1

@f

@x1
� V2

@f

@x2
� V3

@f

@x3

� �

or

r � � fV� � fr � V� V � rf : �1:48�
It is easy to remember this result if we remember that r acts both as a diÿerential

operator and a vector. Thus, when operating on f V, we ®rst keep f ®xed and letr
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operate on V, and then we keep V ®xed and let r operate on f �r � f is nonsense),

and as rf and V are vectors we complete their multiplication by taking their dot

product.

A vector V is said to be solenoidal if its divergence is zero: r � V � 0.

The operator r2, the Laplacian

The divergence of a vector ®eld is de®ned by the scalar product of the operator r
with the vector ®eld. What is the scalar product of r with itself ?

r2 � r � r � @

@x1
ê1 �

@

@x2
ê2 �

@

@x3
ê3

� �
� @

@x1
ê1 �

@

@x2
ê2 �

@

@x3
ê3

� �

� @2

@x21
� @2

@x22
� @2

@x23
:

This important quantity

r2 � @2

@x21
� @2

@x22
� @2

@x23
�1:49�

is a scalar diÿerential operator which is called the Laplacian, after a French

mathematician of the eighteenth century named Laplace. Now, what is the diver-

gence of a gradient?

Since the Laplacian is a scalar diÿerential operator, it does not change the

vector character of the ®eld on which it operates. Thus r2��r� is a scalar ®eld

if ��r� is a scalar ®eld, and r2�r��r�� is a vector ®eld because the gradient r��r�
is a vector ®eld.

The equation r2� � 0 is called Laplace's equation.

The curl of a vector

If V�x1; x2; x3� is a diÿerentiable vector ®eld, then the curl or rotation of V,

written r� V (or curl V or rot V), is de®ned by the vector product

curl V � r� V �

ê1 ê2 ê3

@

@x1

@

@x2

@

@x3

V1 V2 V3

þþþþþþþþþþ

þþþþþþþþþþ
� ê1

@V3

@x2
ÿ @V2

@x3

� �
� ê2

@V1

@x3
ÿ @V3

@x1

� �
� ê3

@V2

@x1
ÿ @V1

@x2

� �

�
X
i;j;k

"ijkêi
@Vk

@xj
: �1:50�
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The result is a vector ®eld. In the expansion of the determinant the operators

@=@xi must precede Vi;
P

ijk stands for
P

i

P
j

P
k; and "ijk are the permutation

symbols: an even permutation of ijk will not change the value of the resulting

permutation symbol, but an odd permutation gives an opposite sign. That is,

"ijk � "jki � "kij � ÿ"jik � ÿ"kji � ÿ"ikj ; and

"ijk � 0 if two or more indices are equal:

A vector V is said to be irrotational if its curl is zero: r� V�r� � 0. From this

de®nition we see that the gradient of any scalar ®eld ��r� is irrotational. The proof
is simple:

r� �r�� �

ê1 ê2 ê3

@

@x1

@

@x2

@

@x3

@

@x1

@

@x2

@

@x3

þþþþþþþþþþþþ

þþþþþþþþþþþþ
��x1; x2; x3� � 0 �1:51�

because there are two identical rows in the determinant. Or, in terms of the

permutation symbols, we can write r� �r�� as

r� �r�� �
X
ijk

"ijkêi
@

@xj

@

@xk
��x1; x2; x3�:

Now "ijk is antisymmetric in j, k, but @2=@xj@xk is symmetric, hence each term in

the sum is always cancelled by another term:

"ijk
@

@xj

@

@xk
� "ikj

@

@xk

@

@xj
� 0;

and consequently r� �r�� � 0. Thus, for a conservative vector ®eld F, we have

curl F � curl (grad �� � 0.

We learned above that a vector V is solenoidal (or divergence-free) if its diver-

gence is zero. From this we see that the curl of any vector ®eld V(r) must be

solenoidal:

r � �r � V� �
X
i

@

@xi
�r � V�i �

X
i

@

@xi

X
j;k

"ijk
@

@xj
Vk

ý !
� 0; �1:52�

because "ijk is antisymmetric in i, j.

If ��r� is a scalar ®eld and V(r) is a vector ®eld, then

r� ��V� � ��r � V� � �r�� � V: �1:53�
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We ®rst write

r� ��V� �

ê1 ê2 ê3

@

@x1

@

@x2

@

@x3

�V1 �V2 �V3

þþþþþþþþþþ

þþþþþþþþþþ
;

then notice that

@

@x1
��V2� � �

@V2

@x1
� @�

@x1
V2;

so we can expand the determinant in the above equation as a sum of two deter-

minants:

r� ��V� � �

ê1 ê2 ê3

@

@x1

@

@x2

@

@x3

V1 V2 V3

þþþþþþþþþþþ

þþþþþþþþþþþ
�

ê1 ê2 ê3

@�

@x1

@�

@x2

@�

@x3

V1 V2 V3

þþþþþþþþþþþ

þþþþþþþþþþþ
� ��r � V� � �r�� � V:

Alternatively, we can simplify the proof with the help of the permutation symbols

"ijk:

r� ��V� �
X
i; j;k

"i jkêi
@

@xj
��Vk�

� �
X
i; j;k

"i jkêi
@Vk

@xj
�
X
i; j;k

"ijkêi
@�

@xj
Vk

� ��r � V� � �r�� � V:

A vector ®eld that has non-vanishing curl is called a vortex ®eld, and the curl of

the ®eld vector is a measure of the vorticity of the vector ®eld.

The physical signi®cance of the curl of a vector is not quite as transparent as

that of the divergence. The following example from ¯uid ¯ow will help us to

develop a better feeling. Fig. 1.15 shows that as the component v2 of the velocity

v of the ¯uid increases with x3, the ¯uid curls about the x1-axis in a negative sense

(rule of the right-hand screw), where @v2=@x3 is considered positive. Similarly, a

positive curling about the x1-axis would result from v3 if @v3=@x2 were positive.

Therefore, the total x1 component of the curl of v is

�curl v�1 � @v3=�@x2 ÿ @v2=@x3;

which is the same as the x1 component of Eq. (1.50).
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Formulas involving r
We now list some important formulas involving the vector diÿerential operatorr,

some of which are recapitulation. In these formulas, A and B are diÿerentiable

vector ®eld functions, and f and g are diÿerentiable scalar ®eld functions of

position �x1; x2; x3�:
(1) r� fg� � frg� grf ;

(2) r � � fA� � fr � A�rf � A;
(3) r� � fA� � fr� A�rf � A;

(4) r� �rf � � 0;

(5) r � �r � A� � 0;

(6) r � �A� B� � �r � A� � Bÿ �r � B� � A;

(7) r� �A� B� � �B � r�Aÿ B�r � A� � A�r � B� ÿ �A � r�B;
(8) r� �r � A� � r�r � A� ÿ r2A;

(9) r�A � B� � A� �r � B� � B� �r � A� � �A � r�B� �B � r�A;
(10) �A � r�r � A;

(11) r � r � 3;

(12) r� r � 0;

(13) r � �rÿ3r� � 0;

(14) dF � �dr � r�F� @F

@t
dt �F a diÿerentiable vector ®eld quantity);

(15) d' � dr � r'� @'

@t
dt (' a diÿerentiable scalar ®eld quantity).

Orthogonal curvilinear coordinates

Up to this point all calculations have been performed in rectangular Cartesian

coordinates. Many calculations in physics can be greatly simpli®ed by using,

instead of the familiar rectangular Cartesian coordinate system, another kind of
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system which takes advantage of the relations of symmetry involved in the parti-

cular problem under consideration. For example, if we are dealing with sphere, we

will ®nd it expedient to describe the position of a point in sphere by the spherical

coordinates (r; �; ��. Spherical coordinates are a special case of the orthogonal

curvilinear coordinate system. Let us now proceed to discuss these more general

coordinate systems in order to obtain expressions for the gradient, divergence,

curl, and Laplacian. Let the new coordinates u1; u2; u3 be de®ned by specifying the

Cartesian coordinates (x1; x2; x3) as functions of (u1; u2; u3�:
x1 � f �u1; u2; u3�; x2 � g�u1; u2; u3�; x3 � h�u1; u2; u3�; �1:54�

where f, g, h are assumed to be continuous, diÿerentiable. A point P (Fig. 1.16) in

space can then be de®ned not only by the rectangular coordinates (x1; x2; x3) but

also by curvilinear coordinates (u1; u2; u3).

If u2 and u3 are constant as u1 varies, P (or its position vector r) describes a curve

which we call the u1 coordinate curve. Similarly, we can de®ne the u2 and u3 coordi-

nate curves throughP.We adopt the convention that the new coordinate system is a

right handed system, like the old one. In the new system dr takes the form:

dr � @r

@u1
du1 �

@r

@u2
du2 �

@r

@u3
du3:

The vector @r=@u1 is tangent to the u1 coordinate curve at P. If û1is a unit vector

at P in this direction, then û1 � @r=@u1=j@r=@u1j, so we can write @r=@u1 � h1û1,

where h1 � j@r=@u1j. Similarly we can write @r=@u2 � h2û2 and @r=@u3 � h3û3
,

where h2 � j@r=@u2j and h3 � j@r=@u3j, respectively. Then dr can be written

dr � h1du1û1 � h2du2û2 � h3du3û3: �1:55�
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The quantities h1; h2; h3 are sometimes called scale factors. The unit vectors û1, û2,

û3 are in the direction of increasing u1; u2; u3, respectively.

If û1, û2, û3 are mutually perpendicular at any point P, the curvilinear coordi-

nates are called orthogonal. In such a case the element of arc length ds is given by

ds2 � dr � dr � h21du
2
1 � h22du

2
2 � h23du

2
3: �1:56�

Along a u1 curve, u2 and u3 are constants so that dr � h1du1û1. Then the

diÿerential of arc length ds1 along u1 at P is h1du1. Similarly the diÿerential arc

lengths along u2 and u3 at P are ds2 � h2du2, ds3 � h3du3 respectively.

The volume of the parallelepiped is given by

dV � j�h1du1û1� � �h2du2û2� � �h3du3û3�j � h1h2h3du1du2du3

since jû1 � û2 � û3j � 1. Alternatively dV can be written as

dV � @r

@u1
� @r

@u2
� @r

@u3

þþþþ
þþþþdu1du2du3 � @�x1; x2; x3�

@�u1; u2; u3�
þþþþ

þþþþdu1du2du3; �1:57�

where

J � @�x1; x2; x3�
@�u1; u2; u3�

�

@x1
@u1

@x1
@u2

@x1
@u3

@x2
@u1

@x2
@u2

@x2
@u3

@x3
@u1

@x3
@u2

@x3
@u3

þþþþþþþþþþþþþþ

þþþþþþþþþþþþþþ
is called the Jacobian of the transformation.

We assume that the Jacobian J 6� 0 so that the transformation (1.54) is one to

one in the neighborhood of a point.

We are now ready to express the gradient, divergence, and curl in terms of

u1; u2, and u3. If � is a scalar function of u1; u2, and u3, then the gradient takes the

form

r� � grad� � 1

h1

@�

@u1
û1 �

1

h2

@�

@u2
û2 �

1

h3

@�

@u3
û3: �1:58�

To derive this, let

r� � f1û1 � f2û2 � f3û3; �1:59�
where f1; f2; f3 are to be determined. Since

dr � @r

@u1
du1 �

@r

@u2
du2 �

@r

@u3
du3

� h1du1û1 � h2du2û2 � h3du3û3;
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we have

d� � r� � dr � h1 f1du1 � h2 f2du2 � h3 f3du3:

But

d� � @�

@u1
du1 �

@�

@u2
du2 �

@�

@u3
du3;

and on equating the two equations, we ®nd

fi �
1

hi

@�

@ui
; i � 1; 2; 3:

Substituting these into Eq. (1.57), we obtain the result Eq. (1.58).

From Eq. (1.58) we see that the operator r takes the form

r � û1
h1

@

@u1
� û2
h2

@

@u2
� û3
h3

@

@u3
: �1:60�

Because we will need them later, we now proceed to prove the following two

relations:

(a) jruij � hÿ1
i ; i � 1, 2, 3.

(b) û1 � h2h3ru2 �ru3 with similar equations for û2 and û3. (1.61)

Proof: (a) Let � � u1 in Eq. (1.51), we then obtain ru1 � û1=h1 and so

jru1j � jû1jhÿ1
1 � hÿ1

1 ; since jû1j � 1:

Similarly by letting � � u2 and u3, we obtain the relations for i � 2 and 3.

(b) From (a) we have

ru1 � û1=h1; ru2 � û2=h2; and ru3 � û3=h3:

Then

ru2 �ru3 �
û2 � û3
h2h3

� û1
h2h3

and û1 � h2h3ru2 �ru3:

Similarly

û2 � h3h1ru3 �ru1 and û3 � h1h2ru1 �ru2:

We are now ready to express the divergence in terms of curvilinear coordinates.

If A � A1û1 � A2û2 � A3û3 is a vector function of orthogonal curvilinear coordi-

nates u1, u2, and u3, the divergence will take the form

r � A � divA � 1

h1h2h3

@

@u1
�h2h3A1� �

@

@u2
�h3h1A2� �

@

@u3
�h1h2A3�

� �
: �1:62�

To derive (1.62), we ®rst write r � A as

r � A � r � �A1û1� � r � �A2û2� � r � �A3û3�; �1:63�
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then, because û1 � h1h2ru2 �ru3, we express r � �A1û1) as

r � �A1û1� � r � �A1h2h3ru2 �ru3� �û1 � h2h3ru2 �ru3�
� r�A1h2h3� � ru2 �ru3 � A1h2h3r � �ru2 �ru3�;

where in the last step we have used the vector identity: r � ��A� �
�r�� � A� ��r � A�. Now rui � ûi=hi; i � 1, 2, 3, so r � �A1û1) can be rewritten

as

r � �A1û1� � r�A1h2h3� �
û2
h2

� û3
h3

� 0 � r�A1h2h3� �
û1
h2h3

:

The gradient r�A1h2h3� is given by Eq. (1.58), and we have

r � �A1û1� �
û1
h1

@

@u1
�A1h2h3� �

û2
h2

@

@u2
�A1h2h3� �

û3
h3

@

@u3
�A1h2h3�

� �
� û1
h2h3

� 1

h1h2h3

@

@u1
�A1h2h3�:

Similarly, we have

r � �A2û2� �
1

h1h2h3

@

@u2
�A2h3h1�; and r � �A3û3� �

1

h1h2h3

@

@u3
�A3h2h1�:

Substituting these into Eq. (1.63), we obtain the result, Eq. (1.62).

In the same manner we can derive a formula for curl A. We ®rst write it as

r� A � r� �A1û1 � A2û2 � A3û3�

and then evaluate r� Aiûi.

Now ûi � hirui; i � 1, 2, 3, and we express r� �A1û1� as

r� �A1û1� � r � �A1h1ru1�
� r�A1h1� � ru1 � A1h1r�ru1

� r�A1h1� �
û1
h1

� 0

� û1
h1

@

@u1
A1h1� � � û2

h2

@

@u2
A2h2� � � û3

h3

@

@u3
A3h3� �

� �
� û1
h1

� û2
h3h1

@

@u3
A1h1� � ÿ û3

h1h2

@

@u2
�A1h1�;

31

ORTHOGONAL CURVILINEAR COORDINATES



with similar expressions for r� �A2û2� and r� �A3û3�. Adding these together,

we get r� A in orthogonal curvilinear coordinates:

r� A � û1
h2h3

@

@u2
A3h3� � ÿ @

@u3
A2h2� �

� �
� û2
h3h1

@

@u3
A1h1� � ÿ @

@u1
A3h3� �

� �

� û3
h1h2

@

@u1
A2h2� � ÿ @

@u2
�A1h1�

� �
: �1:64�

This can be written in determinant form:

r� A � 1

h1h2h3

h1û1 h2û2 h3û3

@

@u1

@

@u2

@

@u3

A1h1 A2h2 A3h3

þþþþþþþþþþ

þþþþþþþþþþ
: �1:65�

We now express the Laplacian in orthogonal curvilinear coordinates. From

Eqs. (1.58) and (1.62) we have

r� � grad� � 1

h1

@�

@u1
û1 �

1

h2

@�

@u2
û� 1

h3

@�

@u3
û3;

r � A � divA � 1

h1h2h3

@

@u1
�h2h3A1� �

@

@u2
�h3h1A2� �

@

@u3
�h1h2A3�

� �
:

If A � r�, then Ai � �1=hi�@�=@ui, i � 1, 2, 3; and

r � A � r � r� � r2�

� 1

h1h2h3

@

@u1

h2h3
h1

@�

@u1

� �
� @

@u2

h3h1
h2

@�

@u2

� �
� @

@u3

h1h2
h3

@�

@u3

� �� �
: �1:66�

Special orthogonal coordinate systems

There are at least nine special orthogonal coordinates systems, the most common

and useful ones are the cylindrical and spherical coordinates; we introduce these

two coordinates in this section.

Cylindrical coordinates ��; �; z�

u1 � �; u2 � �; u3 � z; and û1 � e�; û2 � e�û3 � ez:

From Fig. 1.17 we see that

x1 � � cos�; x2 � � sin�; x3 � z
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where

� � 0; 0 � � � 2�;ÿ1 < z < 1:

The square of the element of arc length is given by

ds2 � h21�d��2 � h22�d��2 � h23�dz�2:
To ®nd the scale factors hi, we notice that ds2 � dr � dr where

r � � cos�e1 � � sin�e2 � ze3:

Thus

ds2 � dr � dr � �d��2 � �2�d��2 � �dz�2:
Equating the two ds2, we ®nd the scale factors:

h1 � h� � 1; h2 � h� � �; h3 � hz � 1: �1:67�
From Eqs. (1.58), (1.62), (1.64), and (1.66) we ®nd the gradient, divergence, curl,

and Laplacian in cylindrical coordinates:

r� � @�

@�
e� �

1

�

@�

@�
e� �

@�

@z
ez; �1:68�

where � � ���; �; z� is a scalar function;

r � A � 1

�

@

@�
��A�� �

@A�

@�
� @

@z
��Az�

� �
; �1:69�
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Figure 1.17. Cylindrical coordinates.



where

A � A�e� � A�e� � Azez;

r� A � 1

�

e� �e� ez

@

@�

@

@�

@

@z

A� �A� Az

þþþþþþþþþþ

þþþþþþþþþþ
; �1:70�

and

r2� � 1

�

@

@�
�
@�

@�

� �
� 1

�2
@2�

@�2
� @2�

@z2
: �1:71�

Spherical coordinates �r; �; ��

u1 � r; u2 � �; u3 � �; û1 � er; û2 � e�; û3 � e�

From Fig. 1.18 we see that

x1 � r sin � cos�; x2 � r sin � sin�; x3 � r cos �:

Now

ds2 � h21�dr�2 � h22�d��2 � h23�d��2

but

r � r sin � cos�ê1 � r sin � sin�ê2 � r cos �ê3;
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Figure 1.18. Spherical coordinates.



so

ds2 � dr � dr � �dr�2 � r2�d��2 � r2 sin2 ��d��2:

Equating the two ds2, we ®nd the scale factors: h1 � hr � 1, h2 � h� � r,

h3 � h� � r sin �. We then ®nd, from Eqs. (1.58), (1.62), (1.64), and (1.66), the

gradient, divergence, curl, and the Laplacian in spherical coordinates:

r� � êr
@�

@r
� ê�

1

r

@�

@�
� ê�

1

r sin �

@�

@�
; �1:72�

r � A � 1

r2 sin �
sin �

@

@r
�r2Ar� � r

@

@�
�sin �A�� � r

@A�

@�

� �
; �1:73�

r � A � 1

r2 sin �

êr rê� r sin �ê�

@

@r

@

@�

@

@�

Ar rAr r sin �A�

þþþþþþþþþþ

þþþþþþþþþþ
; �1:74�

r2� � 1

r2 sin �
sin �

@

@r
r2
@�

@r

� �
� @

@�
sin �

@�

@�

� �
� 1

sin �

@2�

@�2

" #
: �1:75�

Vector integration and integral theorems

Having discussed vector diÿerentiation, we now turn to a discussion of vector

integration. After de®ning the concepts of line, surface, and volume integrals of

vector ®elds, we then proceed to the important integral theorems of Gauss,

Stokes, and Green.

The integration of a vector, which is a function of a single scalar u, can proceed

as ordinary scalar integration. Given a vector

A�u� � A1�u�ê1 � A2�u�ê2 � A3�u�ê3;

then Z
A�u�du � ê1

Z
A1�u�du� ê2

Z
A2�u�du� ê3

Z
A3�u�du� B;

where B is a constant of integration, a constant vector. Now consider the integral

of the scalar product of a vector A�x1; x2; x3) and dr between the limit

P1�x1;x2; x3) and P2�x1; x2; x3�:
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Z P2

P1

A � dr �
Z P2

P1

�A1ê1 � A2ê2 � A3ê3� � �dx1ê1 � dx2ê2 � dx3ê3�

�
Z P2

P1

A1�x1; x2;x3�dx1 �
Z P2

P1

A2�x1; x2; x3�dx2

�
Z P2

P1

A3�x1; x2; x3�dx3:

Each integral on the right hand side requires for its execution more than a knowl-

edge of the limits. In fact, the three integrals on the right hand side are not

completely de®ned because in the ®rst integral, for example, we do not the

know value of x2 and x3 in A1:

I1 �
Z P2

P1

A1�x1; x2; x3�dx1: �1:76�

What is needed is a statement such as

x2 � f �x1�; x3 � g�x1� �1:77�

that speci®es x2, x3 for each value of x1. The integrand now reduces to

A1�x1; x2; x3� � A1�x1; f �x1�; g�x1�� � B1�x1� so that the integral I1 becomes

well de®ned. But its value depends on the constraints in Eq. (1.77). The con-

straints specify paths on the x1x2 and x3x1 planes connecting the starting point

P1 to the end point P2. The x1 integration in (1.76) is carried out along these

paths. It is a path-dependent integral and is called a line integral (or a path

integral). It is very helpful to keep in mind that: when the number of integration

variables is less than the number of variables in the integrand, the integral is not yet

completely de®ned and it is path-dependent. However, if the scalar product A � dr is
equal to an exact diÿerential, A � dr � d' � r' � dr, the integration depends only

upon the limits and is therefore path-independent:

Z P2

P1

A � dr �
Z P2

P1

d' � '2 ÿ '1:

A vector ®eld A which has above (path-independent) property is termed conser-

vative. It is clear that the line integral above is zero along any close path, and the

curl of a conservative vector ®eld is zero �r � A � r� �r'� � 0�. A typical

example of a conservative vector ®eld in mechanics is a conservative force.

The surface integral of a vector function A�x1; x2; x3� over the surface S is an

important quantity; it is de®ned to beZ
S

A � da;
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where the surface integral symbol
R
s stands for a double integral over a certain

surface S, and da is an element of area of the surface (Fig. 1.19), a vector quantity.

We attribute to da a magnitude da and also a direction corresponding the normal,

n̂, to the surface at the point in question, thus

da � n̂da:

The normal n̂ to a surface may be taken to lie in either of two possible directions.

But if da is part of a closed surface, the sign of n̂ relative to da is so chosen that it

points outward away from the interior. In rectangular coordinates we may write

da � ê1da1 � ê2da2 � ê3da3 � ê1dx2dx3 � ê2dx3dx1 � ê3dx1dx2:

If a surface integral is to be evaluated over a closed surface S, the integral is

written as I
S

A � da:

Note that this is diÿerent from a closed-path line integral. When the path of

integration is closed, the line integral is write it asI
ÿ
^ A � ds;

where ÿ speci®es the closed path, and ds is an element of length along the given

path. By convention, ds is taken positive along the direction in which the path is

traversed. Here we are only considering simple closed curves. A simple closed

curve does not intersect itself anywhere.

Gauss' theorem (the divergence theorem)

This theorem relates the surface integral of a given vector function and the volume

integral of the divergence of that vector. It was introduced by Joseph Louis

Lagrange and was ®rst used in the modern sense by George Green. Gauss'
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Figure 1.19. Surface integral over a surface S.



name is associated with this theorem because of his extensive work on general

problems of double and triple integrals.

If a continuous, diÿerentiable vector ®eld A is de®ned in a simply connected

region of volume V bounded by a closed surface S, then the theorem states thatZ
V

r � AdV �
I
S

A � da; �1:78�

where dV � dx1dx2dx3. A simple connected region V has the property that every

simple closed curve within it can be continuously shrunk to a point without

leaving the region. To prove this, we ®rst writeZ
V

r � AdV �
Z
V

X3
i�1

@Ai

@xi
dV;

then integrate the right hand side with respect to x1 while keeping x2x3 constant,

thus summing up the contribution from a rod of cross section dx2dx3 (Fig. 1.20).

The rod intersects the surface S at the points P and Q and thus de®nes two

elements of area daP and daQ:Z
V

@A1

@x1
dV �

I
S

dx2dx3

Z Q

P

@A1

@x1
dx1 �

I
S

dx2dx3

Z Q

P

dA1;

where we have used the relation dA1 � �@A1=@x1�dx1 along the rod. The last

integration on the right hand side can be performed at once and we haveZ
V

@A1

@x1
dV �

I
S

�A1�Q� ÿ A1�P��dx2dx3;

where A1�Q� denotes the value of A1 evaluated at the coordinates of the point Q,

and similarly for A1�P�.
The component of the surface element da which lies in the x1-direction is

da1 � dx2dx3 at the point Q, and da1 � ÿdx2dx3 at the point P. The minus sign
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Figure 1.20. A square tube of cross section dx2dx3.



arises since the x1 component of da at P is in the direction of negative x1. We can

now rewrite the above integral asZ
V

@A1

@x1
dV �

Z
SQ

A1�Q�da1 �
Z
SP

A1�P�da1;

where SQ denotes that portion of the surface for which the x1 component of the

outward normal to the surface element da1 is in the positive x1-direction, and SP

denotes that portion of the surface for which da1 is in the negative direction. The

two surface integrals then combine to yield the surface integral over the entire

surface S (if the surface is su�ciently concave, there may be several such as right

hand and left hand portions of the surfaces):Z
V

@A1

@x1
dV �

I
S

A1da1:

Similarly we can evaluate the x2 and x3 components. Summing all these together,

we have Gauss' theorem:Z
V

X
i

@Ai

@xi
dV �

I
S

X
i

Aidai or

Z
V

r � AdV �
I
S

A � da:

We have proved Gauss' theorem for a simply connected region (a volume

bounded by a single surface), but we can extend the proof to a multiply connected

region (a region bounded by several surfaces, such as a hollow ball). For inter-

ested readers, we recommend the book Electromagnetic Fields, Roald K.

Wangsness, John Wiley, New York, 1986.

Continuity equation

Consider a ¯uid of density ��r� which moves with velocity v(r) in a certain region.

If there are no sources or sinks, the following continuity equation must be satis-

®ed:

@��r�=@t�r � j�r� � 0; �1:79�
where j is the current

j�r� � ��r�v�r� �1:79a�
and Eq. (1.79) is called the continuity equation for a conserved current.

To derive this important equation, let us consider an arbitrary surface S enclos-

ing a volume V of the ¯uid. At any time the mass of ¯uid within V is M � R
V �dV

and the time rate of mass increase (due to mass ¯owing into V ) is

@M

@t
� @

@t

Z
V

�dV �
Z
V

@�

@t
dV ;
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while the mass of ¯uid leaving V per unit time isZ
S

�v � n̂ds �
Z
V

r � ��v�dV ;

where Gauss' theorem is used in changing the surface integral to volume integral.

Since there is neither a source nor a sink, mass conservation requires an exact

balance between these eÿects:Z
V

@�

@t
dV � ÿ

Z
V

r � ��v�dV ; or

Z
V

@�

@t
�r � ��v�

� �
dV � 0:

Also since V is arbitrary, mass conservation requires that the continuity equation

@�

@t
�r � ��v� � @�

@t
r � j � 0

must be satis®ed everywhere in the region.

Stokes' theorem

This theorem relates the line integral of a vector function and the surface integral

of the curl of that vector. It was ®rst discovered by Lord Kelvin in 1850 and

rediscovered by George Gabriel Stokes four years later.

If a continuous, diÿerentiable vector ®eld A is de®ned a three-dimensional

region V, and S is a regular open surface embedded in V bounded by a simple

closed curve ÿ, the theorem states thatZ
S

r� A � da �
I
ÿ

A � dl; �1:80�

where the line integral is to be taken completely around the curve ÿ and dl is an

element of line (Fig. 1.21).

40

VECTOR AND TENSOR ANALYSIS

Figure 1.21. Relation between da and dl in de®ning curl.


