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consistency (a principal philosophical construct for solving machine vision problems) and
optimization (the mathematical tool used to implement those methods).
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To the instructor

This textbook covers both fundamentals and advanced topics in computer-based
recognition of objects in scenes. It is intended to be both a text and a reference. Al-
most every chapter has a “Fundamentals” section which is pedagogically structured
as a textbook, and a “Topics” section which includes extensive references to the
current literature and can be used as a reference. The text is directed toward grad-
uate students and advanced undergraduates in electrical and computer engineering,
computer science, or mathematics.

Chapters 4 through 17 cover topics including edge detection, shape characteriza-
tion, diffusion, adaptive contours, parametric transforms, matching, and consistent
labeling. Syntactic and statistical pattern recognition and clustering are introduced.
Two recurrent themes are used throughout these chapters: Consistency (a principal
philosophical construct for solving machine vision problems) and optimization (the
mathematical tool used to implement those methods). These two topics are so per-
vasive that we conclude each chapter by discussing how they have been reflected
in the text. Chapter 18 uses one application area, automatic target recognition, to
show how all the topics presented in the previous chapters can be integrated to solve
real-world problems.

This text assumes a solid graduate or advanced-undergraduate background including
linear algebra and advanced calculus. The student who successfully completes this
course can design a wide variety of industrial, medical, and military machine vision
systems. Software and data used in the book can be found at www.cambridge.org/
9780521830461. The software will run on PCs running Windows or Linux, Macin-
tosh computers running OS-X, and SUN computers running SOLARIS. Software
includes ability to process images whose pixels are of any data type on any com-
puter and to convert to and from “standard” image formats such as JPEG.

Although it can be used in a variety of ways, we designed the book primarily as
a graduate textbook in machine vision, and as a reference in machine vision. If
used as a text, the students would be expected to read the basic topics section of
each chapter used in the course (there is more material in this book than can be
covered in a single semester). For use in a first course at the graduate level, we
present a sample syllabus in the following table.

xv



Sample syllabus.

Lecture Topics Assignment (weeks) Reading assignment

1 Introduction, terminology, operations on images, pattern
classification and computer vision, image formation,
resolution, dynamic range, pixels

2.2–2.5 and 2.9 (1) Read Chapter 2. Convince
yourself that you have the
background for this course

2 The image as a function. Image degradation. Point spread
function. Restoration

3.1 (1) Chapters 1 and 3

3 Properties of an image, isophotes, ridges, connectivity 3.2, 4.1 (2) Sections 4.1–4.5

4 Kernel operators: Application of kernels to estimate edge
locations

4.A1, 4.A2 (1) Sections 5.1 and 5.2

5 Fitting a function (a biquadratic) to an image. Taking
derivatives of vectors to minimize a function

5.1, 5.2 (1) Sections 5.3–5.4 (skip hexagonal
pixels)

6 Vector representations of images, image basis functions.
Edge detection, Gaussian blur, second and higher
derivatives

5.4, 5.5 (2) and 5.7, 5.8,
5.9 (1)

Sections 5.5 and 5.6 (skip section
5.7)

7 Introduction to scale space. Discussion of homeworks 5.10, 5.11 (1) Section 5.8 (skip section 5.9)

8 Relaxation and annealing 6.1, 6.3 (1) Sections 6.1–6.3

9 Diffusion 6.2 (2) Sections 6A.2

10 Equivalence of MFA and diffusion 6.7 and 6.8 (1) Section 6A.4

11 Image morphology 7.5–7.7 (1) Section 7.1

12 Morphology, continued. Gray-scale morphology.
Distance transform

7.10 (2) Sections 7.2, 7.3

13 Closing gaps in edges, connectivity 7.4 (1) Section 7A.4

14 Segmentation by optimal thresholding Sections 8.1, 8.2

15 Connected component labeling 8.2 (1) Section 8.3

16 2D geometry, transformations 9.3 (1) Sections 9.1, 9.2

17 2D shape features, invariant moments, Fourier
descriptors, medial axis

9.2, 9.4, 9.10 (1) Sections 9.3–9.7

18 Segmentation using snakes and balloons Sections 8.5, 8.5.1

19 PDE representations and level sets Section 8.5.2

20 Shape-from-X and structured illumination 9.10 (1) Sections 9A.2.2, 9A.2.3

21 Graph-theoretic image representations: Graphs, region
adjacency graphs. Subgraph isomorphism

Chapter 12

22 Consistent and relaxation labeling 10.1 (1) Chapter 10

23 Hough transform, parametric transforms 11.1 (2) Sections 11.1, 11.2, 11.3.3

24 Generalized Hough transform, Gauss map, application to
finding holes in circuit boards

Section 11A.3

25 Iconic matching, springs and templates, association
graphs

13.2 and 13.3 (1) Sections 13.1–13.3

26 The role of statistical pattern recognition



xvii To the instructor

The assignments are projects which must include a formal report. Since there is usu-
ally programming involved, we allow more time to accomplish these assignments –
suggested times are in parentheses in column 3. It is also possible, by careful selec-
tion of the students and the topics, to use this book in an advanced undergraduate
course.

For advanced students, the “Topics” sections of this book should serve as a col-
lection of pointers to the literature. Be sure to emphasize to your students (as we
do in the text) that no textbook can provide the details available in the literature,
and any “real” (that is, for a paying customer) machine vision project will require
the development engineer to go to the published journal and conference literature.
As stated above, the two recurrent themes throughout this book are consistency
and optimization. The concept of consistency occurs throughout the discipline as a
principal philosophical construct for solving machine vision problems. When con-
fronted with a machine vision application, the engineer should seek to find ways to
determine sources of information which are consistent. Optimization is the princi-
pal mathematical tool for solving machine vision problems, including determining
consistency. At the end of each chapter which introduces techniques, we remind the
student where consistency fits into the problems of that chapter, as well as where
and which optimization methods are used.
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1 Introduction

The proof is straightforward, and thus omitted
Ja-Chen Lin and Wen-Hsiang Tsai1

1.1 Concerning this book

We have written this book at two levels, the principal level being introductory.This is an important
observation: This book
does NOT have enough
information to tell you
how to implement
significant large systems.
It teaches general
principles. You MUST
make use of the literature
when you get down to the
gnitty gritty.

“Introductory” does not mean “easy” or “simple” or “doesn’t require math.” Rather,
the introductory topics are those which need to be mastered before the advanced
topics can be understood.

In addition, the book is intended to be useful as a reference. When you have to
study a topic in more detail than is covered here, in order, for example, to implement a
practical system, we have tried to provide adequate citations to the relevant literature
to get you off to a good start.

We have tried to write in a style aimed directly toward the student and in a
conversational tone.

We have also tried to make the text readable and entertaining. Words which are
deluberately missppelled for humorous affects should be ubvious. Some of the humor
runs to exaggeration and to puns; we hope you forgive us.

We did not attempt to cover every topic in the machine vision area. In particu-
lar, nearly all papers in the general areas of optical character recognition and face
recognition have been omitted; not to slight these very important and very success-
ful application areas, but rather because the papers tend to be rather specialized; in
addition, we simply cannot cover everything.

There are two themes which run through this book: consistency and optimization.
Consistency is a conceptual tool, implemented as a variety of algorithms, which helps
machines to recognize images – they fuse information from local measurements to
make global conclusions about the image. Optimization is the mathematical mech-
anism used in virtually every chapter to accomplish the objectives of that chapter,
be they pattern classification or image matching.

1 Ja-Chen Lin and Wen-Hsiang Tsai, “Feature-preserving Clustering of 2-D Data for Two-class Problems Using
Analytical Formulas: An Automatic and Fast Approach,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16(5), 1994.

1



2 Introduction

These two topics, consistency and optimization, are so important and so pervasive,
that we point out to the student, in the conclusion of each chapter, exactly where those
concepts turned up in that chapter. So read the chapter conclusions. Who knows, it
might be on a test.

1.2 Concerning prerequisites

The target audience for this book is graduate students or advanced undergraduates
in electrical engineering, computer engineering, computer science, math, statistics,To find out if you meet

this criterion, answer the
following question: What
do the following words
mean? “transpose,”
“inverse,” “determinant,”
“eigenvalue.” If you do
not have any idea, do not
take this course!

or physics. To do the work in this book, you must have had a graduate-level course
in advanced calculus, and in statistics and/or probability. You need either a formal
course or experience in linear algebra.

Many of the homeworks will be projects of sorts, and will be computer-based.
To complete these assignments, you will need a hardware and software environment
capable of

(1) declaring large arrays (256 × 256) in CYou will have to write
programs in C (yes, C or
C++, not Matlab) to
complete this course.

(2) displaying an image
(3) printing an image.

Software and data used in the book can be found at www.cambridge.org/
9780521830461.

We are going to insist that you write programs, and that you write them at a
relatively low level. Some of the functionality that you will be coding is available
in software packages like Matlab. However, while you learn something by simply
calling a function, you learn more by writing and debugging the code yourself.
Exceptions to this occur, of course, when the coding is so extensive that the pro-
gramming gets in the way of the image analysis. For that reason, we provide the
student with a library of subroutines which allow the student to ignore details like
data type, byteswapping, file access, and platform dependencies, and instead focus
on the logic of making image analysis algorithms work.

You should have an instructor, and if you do, we strongly recommend that you
GO to class, even though all the information you really need is in this book. Read
the assigned material in the text, then go to class, then read the text material again.
Remember:

A hacker hermit named Dave
Tapped in to this course in his cave.
He had to admit
He learned not a bit.
But look at the money he saved.

And now, on to the technical stuff.



3 1.3 Some terminology

1.3 Some terminology

Students usually confuse machine vision with image processing. In this section, we
define some terminology that will clarify the differences between the contents and
objectives of these two topics.

1.3.1 Image processing

Many people consider the content of this course as part of the discipline of image
processing. However, a better use of the term is to distinguish between image pro-
cessing and machine vision by the intent. “Image processing” strives to make images
look better, and the output of an image processing system is an image. The output
of a “machine vision” system is information about the content of the image. The
functions of an image processing system may include enhancement, coding, com-
pression, restoration, and reconstruction.

Enhancement

Enhancement systems perform operations which make the image look better, as
perceived by a human observer. Typical operations include contrast stretching
(including functions like histogram equalization), brightness scaling, edge sharp-
ening, etc.

Coding

Coding is the process of finding efficient and effective ways to represent the infor-
mation in an image. These include quantization methods and redundancy removal.
Coding may also include methods for making the representation robust to bit-errors
which occur when the image is transmitted or stored.

Compression

Compression includes many of the same techniques as coding, but with the specific
objective of reducing the number of bits required to store and/or transmit the image.

Restoration

Restoration concerns itself with fixing what is wrong with the image. It is unlike
enhancement, which is just concerned with making images look better. In order
to “correct” an image, there must be some model of the image degradation. It is
common in restoration applications to assume a deterministic blur operator, followed
by additive random noise.
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Reconstruction

Reconstruction usually refers to the process of constructing an image from sev-
eral partial images. For example, in computed tomography (CT),2 we make a large
number, say 360, of x-ray projections through the subject. From this set of one-
dimensional signals, we can compute the actual x-ray absorption at each point in the
two-dimensional image. Similar methods are used in positron emission tomography
(PET), magnetic resonance imagery (MRI), and in several shape-from-X algorithms
which we will discuss later in this course.

1.3.2 Machine vision

Machine vision is the process whereby a machine, usually a digital computer, auto-
matically processes an image and reports “what is in the image.” That is, it recognizes
the content of the image. Often the content may be a machined part, and the objective
is not only to locate the part, but to inspect it as well. We will in this book discuss
several applications of machine vision in detail, such as automatic target recognition
(ATR), and industrial inspection. There are a wide variety of other applications, such
as determining the flow equations from observations of fluid flow [1.1], which time
and space do not allow us to cover.

The terms “computer vision” and “image understanding” are often also used to
denote machine vision.

Machine vision includes two components – measurement of features and pattern
classification based on those features.

Measurement of features

The measurement of features is the principal focus of this book. Except for
Chapters 14 and 15, in this book, we focus on processing the elements of images
(pixels) and from those pixels and collections of pixels, extract sets of measurements
which characterize either the entire image or some component thereof.

Pattern classification

Pattern classification may be defined as the process of making a decision about a
measurement. That is, we are given a measurement or set of measurements made
on an unknown object. From that set of measurements with knowledge about the
possible classes to which that unknown might belong, we make a decision. For

2 Sometimes, CT is referred to as “CAT scanning.” In that case, CAT stands for “computed axial tomography.”
There are other types of tomography as well.
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example, the set of possible classes might be men and women and one measurement
which we could make to distinguish men from women would be height (clearly,
height is not a very good measurement to use to distinguish men from women, for
if our decision is that anyone over five foot six is male we will surely be wrong in
many instances).

Pattern recognition

Pattern recognition may be defined as the process of assigning unknowns to classes
just as in the definition of pattern classification. However, the definition is extended
to include the process of making the measurements.

1.4 Organization of a machine vision system

Fig. 1.1 shows schematically, at the most basic level, the organization of a machine
vision system. The unknown is first measured and the values of a number of features
are determined. In an industrial application, such features might include the length,
width, and area of the image of the part being measured. Once the features are
measured, their numerical values are passed to a process which implements a decision
rule. This decision rule is typically implemented by a subroutine which performs
calculations to determine to which class the unknown is most likely to belong based
on the measurements made.

As Fig. 1.1 illustrates, a machine vision system is really a fairly simple architec-
tural structure. The details of each module may be quite complex, however, and many
different options exist for designing the classifier and the feature measuring system.
In this book, we mention the process of classifier design. However, the process of
determining and measuring features is the principal topic of this book.

The “feature measurement” box can be further broken down into more detailed
operations as illustrated in Fig. 1.2. At that level, the organization chart becomes
more complex because the specific operations to be performed vary with the type
of image and the objective of the tasks. Not every operation is performed in every
application.

Raw data Feature vector Class identity
Pattern

classifier

Feature

measurement

Fig. 1.1. Organization of a machine vision system.
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Raw data  
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Fig. 1.2. Some components of a feature characterization system. Many machine vision
applications do not use every block, and information often flows in other ways. For
example, it is possible to perform matching directly on the image data.

1.5 The nature of images

We will pay much more attention to the nature of images in Chapter 4. We will
observe that there are several different types of images as well as several different
ways to represent images. The types of images include what we call “pictures,” that
is, two-dimensional images. In addition, however, we will discuss three-dimensional
images and range images. We will also consider different representations for images,
including iconic, functional, linear, and relational representations.

1.6 Images: Operations and analysis

We will learn many different operations to perform on images. The emphasis in thisSome equivalent words.

course is “image analysis,” or “computer vision,” or “machine vision,” or “image
understanding.” All these phrases mean the same thing. We are interested in making
measurements on images with the objective of providing our machine (usually, but
not always, a computer) with the ability to recognize what is in the image. This
process includes several steps:

� denoising – all images are noisy, most are blurred, many have other distortions
as well. These distortions need to be removed or reduced before any further
operations can be carried out. We discuss two general approaches for denoising
in Chapters 6 and 7.

� segmentation – we must segment the image into meaningful regions. Segmenta-
tion is covered in Chapter 8.

� feature extraction – making measurements, geometric or otherwise, on those
regions is discussed in Chapter 9.
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� consistency – interpreting the entire image from local measurements is covered
in Chapters 10 and 11.

� classification and matching – recognizing the object is covered in Chapter 12
through Chapter 16.

So turn to the next chapter. (Did you notice? No homework assignments in this
chapter? Don’t worry. We’ll fix that in future chapters.)

Reference

[1.1] C. Shu and R. Jain, “Vector Field Analysis for Oriented Patterns,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 16(9), 1994.



2 Review of mathematical principles

Everything, once understood, is trivial
W. Snyder

2.1 A brief review of probability

Let us imagine a statistical experiment: rolling two dice. It is possible to roll any
number between two and twelve (inclusive), but as we know, some numbers are
more likely than others. To see this, consider the possible ways to roll a five.

We see from Fig. 2.1 that there are four possible ways to roll a five with two dice.
Each event is independent. That is, the chance of rolling a two with the second die
(1 in 6) does not depend at all on what is rolled with die number 1.

Independence of events has an important implication. It means that the joint
probability of the two events is equal to the product of their individual probabilities
and the conditional probabilities:

Pr (a|b)P(b)= Pr (a)Pr (b)= Pr (b|a)Pr (a)= Pr (a, b). (2.1)

In Eq. (2.1), the symbols a and b represent events, e.g., the rolling of a six. Pr (b) is the
probability of such an event occurring, and Pr (a | b) is the conditional probability
of event a occurring, given that event b has occurred.

In Fig. 2.1, we tabulate all the possible ways of rolling two dice, and show the
resulting number of different ways that the numbers from 2 to 12 can occur. We
note that 6 different events can lead to a 7 being rolled. Since each of these events
is equally probable (1 in 36), then a 7 is the most likely roll of two dice. In Fig. 2.2
the information from Fig. 2.1 is presented in graphical form.

In pattern classification, we are most often interested in the probability of a par-
ticular measurement occurring. We have a problem, however, when we try to plot a
graph such as Fig. 2.2 for a continuously-valued function. For example, how do we
ask the question: “What is the probability that a man is six feet tall?” Clearly, the
answer is zero, for an infinite number of possibilities could occur (we might equally
well ask, “What is the probability that a man is (exactly) 6.314 159 267 feet tall?”).
Still, we know intuitively that the likelihood of a man being six feet tall is higher
than the likelihood of his being ten feet tall. We need some way of quantifying this
intuitive notion of likelihood.

8
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0
1
2
3
4
5
6
7
8
9
10
11
12

1–1
2–1, 1–2 
1–3, 3–1, 2–2
2–3, 3–2, 4 –1, 1–4 
1–5, 5–1, 2–4, 4–2, 3–3 
3–4, 4 –3, 2–5, 5–2, 1–6,  6–1 
2–6, 6 –2, 3–5, 5–3, 4 –4
3–6, 6 –3, 4 –5, 5– 4 
4 –6, 6 –4, 5–5
6 –5, 5–6

6–6

Sum

0
0
1
2
3
4
5
6
5
4
3
2
1

Number
of ways

Fig. 2.1. The possible ways to roll two dice.

0   1   2   3   4   5   6   7   8   9   10 11  12

1
2
3
4
5
6

N
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r 

of
 w

ay
s

Sum

Fig. 2.2. The information of Fig. 2.1, in graphical form.

One question that does make sense is, “What is the probability that a man is
less than six feet tall?” Such a function is referred to as a probability distribution
function

P(x)= Pr (z < x) (2.2)

for some measurement, z.
Fig. 2.3 illustrates the probability distribution function for the result of rolling

two dice.
When we asked “what is the probability that a man is less than x feet tall?” we

obtained the probability distribution function. Another well-formed question would
be “what is the probability that a man’s height is between x and x +�x?” Such a
question is easily answered in terms of the density function:

Pr (x ≤ h < x +�x) = Pr (h < x +�x)− Pr (h < x) = P(x +�x)− P(x)

Dividing by �x and taking the limit as �x → 0, we see that we may define the
probability density function as the derivative of the distribution function:

p(x) = d

dx
P(x). (2.3)
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x0     1     2     3     4     5     6     7     8     9     10    11    12

1

Fig. 2.3. The probability distribution of Fig. 2.2, showing the probability of rolling two dice to get
a number LESS than x. Note that the curve is steeper at the more likely numbers.

p(x) has all the properties that we desire. It is well defined for continuously-valued
measurements and it has a maximum value for those values of the measurement
which are intuitively most likely.

Furthermore:

∞∫
−∞

p(x) dx = 1, (2.4)

which we must require, since some value will certainly occur.

2.2 A review of linear algebra

In this section, we very briefly review vector and matrix operations. Generally, we
denote vectors in boldface, scalars in lowercase Roman, and matrices in uppercase
Roman.

Vectors are always considered to be column vectors. If we need to write one

This section will serve
more as a reference than a
teaching aid, since you
should know this material
already.

horizontally for the purpose of saving space in a document, we use transpose notation.
For example, we denote a vector which consists of three scalar elements as:

v = [x1 x2 x3]T.

The inner product of two vectors is a scalar, v = aTb. Its value is the sum of products
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of the corresponding elements of the two vectors:

aTb =
∑

i

ai bi .

You will also sometimes see the notation 〈x, y〉 used for inner product. We do not like
this because it looks like an expected value of a random variable. One sometimes
also sees the “dot product” notation x · y for inner product.

The magnitude of a vector is |x| =
√

xTx. If |x| = 1, x is said to be a “unit vector.”
If xT y = 0, then x and y are “orthogonal.” If x and y are orthogonal unit vectors,
they are “orthonormal.”

The concept of orthogonality can easily be extended to continuous functions by
simply thinking of a function as an infinite-dimensional vector. Just list all the values
of f (x) as x varies between, say, a and b. If x is continuous, then there are an infinite
number of possible values of x between a and b. But that should not stop us – we
cannot enumerate them, but we can still think of a vector containing all the values
of f (x). Now, the concept of summation which we defined for finite-dimensional
vectors turns into integration, and an inner product may be written

〈 f (x), g(x)〉 =
b∫

a

f (x)g(x) dx . (2.5)

The concepts of orthogonality and orthonormality hold for this definition of the
inner product as well. If the integral is equal to zero, we say the two functions are
orthogonal. So the transition from orthogonal vectors to orthogonal functions is not
that difficult. With an infinite number of dimensions, it is impossible to visualize
orthogonal as “perpendicular,” of course, so you need to give up on thinking about
things being perpendicular. Just recall the definition and use it.

Suppose we have n vectors x1, x2, . . . xn; if we can write v = a1x1 + a2x2 +
· · · anxn , then v is said to be a “linear combination” of x1, x2, . . . xn .

A set of vectors x1, x2, . . . xn is said to be “linearly independent” if it is impossible
to write any of the vectors as a linear combination of the others.

Given d linearly independent vectors, of d dimensions, x1, x2, . . . xd defined on

d , then any vector y in the space may be written y = a1x1 + a2x2 + · · · ad xd .

Since any d-dimensional real-valued vector y may be written as a linear combi-
nation of x1, . . . xd , then the set {xi} is called a “basis” set and the vectors are said
to “span the space” 
d . Any linearly independent set of vectors can be used as a
basis (necessary and sufficient). It is often particularly convenient to choose basis
sets which are orthonormal.

For example, the following two vectors form a basis for 
2

x1 = [0 1]T and x2 = [1 0]T.
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x2
y

x1

a1

Fig. 2.4. x1 and x2 are orthonormal bases. The projection of y onto x1 has length a1.

This is the familiar Cartesian coordinate system. Here’s another basis set for 
2

x1 = [1 1]T x2 = [−1 1]T.

If x1, x2, . . . xd span 
d , and y = a1x1 + a2x2 + · · · ad xd , then the “components”

Is this set orthonormal?

of y may be found by

ai = yTxi (2.6)

and ai is said to be the “projection” of y onto xi . In a simple Cartesian geometric
interpretation, the inner product of Eq. (2.6) is literally a projection as illustrated in
Fig. 2.4. However, whenever Eq. (2.6) is used, the term “projection” may be used as
well, even in a more general sense (e.g. the coefficients of a Fourier series).

The only vector spaces which concern us here are those in which the vectors are
real-valued.

2.2.1 Linear transformations

A “linear transformation,” A, is simply a matrix. Suppose A is m × d. If applied to aWhat does this say about
m and d? vector x ∈ 
d , y = Ax, then y ∈ 
m . So A took a vector from one vector space,
d ,

and produced a vector in 
m . If that vector y could have been produced by applying
A to one and only one vector in 
d , then A is said to be “one-to-one.” Now suppose
that there are no vectors in 
m that can not be produced by applying A to some
vector in 
d . In that case, A is said to be “onto.” If A is one-to-one and onto, then
A−1 exists. Two matrices A and B are “conformable” if the matrix multiplication
C = AB makes sense.

Some important (and often forgotten) properties: If A and B are conformable,We assume you know the
meanings of transpose,
inverse, determinant, and
trace. If you do not, look
them up.

then

(AB)T = BT AT (2.7)

and

(AB)−1 = B−1 A−1 (2.8)
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if A and B are invertible at all.
A couple of other useful properties are

det(AB) = det(B A) and tr(AB) = tr(B A)

which only is true, of course, if A and B are square. If a matrix A satisfies

AAT = AT A = I (2.9)

then obviously, the transpose of the matrix is the inverse as well, and A is said to
be an “orthonormal transformation” (OT), which will correspond geometrically to
a rotation. If A is a d × d orthonormal transformation, then the columns of A are
orthonormal, linearly independent, and form a basis spanning the space of 
d . For

3, three convenient OTs are the rotations about the Cartesian axes:

Some example
orthonormal
transformations.

Rx =

⎡
⎢⎣1 0 0

0 cos � −sin �

0 sin � cos �

⎤
⎥⎦Ry =

⎡
⎢⎣cos � 0 −sin �

0 1 0
sin � 0 cos �

⎤
⎥⎦ Rz =

⎡
⎢⎣cos � −sin � 0

sin � cos � 0
0 0 1

⎤
⎥⎦

Suppose R is an OT, and y = Rx, then

|y| = |x|. (2.10)

A matrix A is “positive definite” if

y = xT Ax > 0 ∀x ∈ 
d , x = 0

xT Ax is called a quadratic form.
The derivative of a quadratic form is particularly useful:

What happens here if A is
symmetric? d

dx
(xT Ax) = (A + AT)x.

Since we mentioned derivatives, we might as well mention a couple of other vector
calculus things:

Suppose f is a scalar function of x, x ∈ 
d , then

d f

dx
=
[

∂ f

∂x1

∂ f

∂x2
· · · ∂ f

∂xd

]T

, (2.11)

and is called the “gradient.” This will be often used when we talk about edges in
images, and f (x) will be the brightness as a function of the two spatial directions.
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If f is vector-valued, then the derivative is a matrix

d f T

dx
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1

∂x1

∂ f2

∂x1
· · · ∂ fm

∂x1
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
∂ f1

∂xd

∂ f2

∂xd
· · · ∂ fm

∂xd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.12)

and is called the “Jacobian.”
One more: If f is scalar-valued, the matrix of second derivatives⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2 f

∂x2
1

∂2 f

∂x1∂x2
· · · ∂2 f

∂x1∂xd

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
∂2 f

∂xd∂x1

∂2 f2

∂xd∂x2
· · · ∂2 f

∂x2
d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.13)

is called the “Hessian.”

2.2.2 Derivative operators

Here, we introduce a new notation, a vector containing only derivative operators,

∇ =
[

∂

∂x1

∂

∂x2
· · · ∂

∂xd

]T

. (2.14)

It is important to note that this is an OPERATOR, not a vector. We will do linear
algebra sorts of things with it, but by itself, it has no value, not even really any
meaning – it must be applied to something to have any meaning. For most of this
book, we will deal with two-dimensional images, and with the two-dimensional form
of this operator,

∇ =
[

∂

∂x

∂

∂y

]T

. (2.15)

Apply this operator to a scalar, f , and we get a vector which does have meaning,
the gradient of f :

∇ f =
[
∂ f

∂x

∂ f

∂y

]T

. (2.16)

Similarly, we may define the divergence using the inner (dot) product (in all the
following definitions, only the two-dimensional form of the del operator defined in
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Eq. (2.16) is used. However, remember that the same concepts apply to operators of
arbitrary dimension):

div f = ∇ f =
[

∂

∂x

∂

∂y

][
f1

f2

]
= ∂ f1

∂x
+ ∂ f2

∂y
. (2.17)

We will also have opportunity to use the outer product of the del operator with a
matrix:

∇ × f =

⎡
⎢⎢⎣

∂

∂x
∂

∂y

⎤
⎥⎥⎦ [ f1 f2] =

⎡
⎢⎢⎣

∂ f1

∂x

∂ f2

∂x
∂ f1

∂y

∂ f2

∂y

⎤
⎥⎥⎦ . (2.18)

2.2.3 Eigenvalues and eigenvectors

If matrix A and vector x are conformable, then one may write the “characteristic
equation”

Ax = �x, � ∈ 
. (2.19)

Since Ax is a linear operation, A may be considered as mapping x onto itself with
only a change in length. There may be more than one “eigenvalue1” �, which satisfies
Eq. (2.19). For x ∈ 
d , A will have exactly d eigenvalues (which are not, however,
necessarily distinct). These may be found by solving det(A − �I ) = 0. (But for
d > 2, we do not recommend this method. Use a numerical package instead.)For any given matrix,

there are only a few
eigenvalue/eigenvector
pairs.

Given some eigenvalue �, which satisfies Eq. (2.19), the corresponding x is called
the corresponding “eigenvector.”

2.3 Introduction to function minimization

Minimization of functions is a pervasive element of engineering: One is always tryingIn this book, essentially
EVERY machine vision
topic will be discussed in
terms of some sort of
minimization, so get used
to it!

to find the set of parameters which minimizes some function of those parameters.
Notationally, we state the problem as: Find the vector x which produces a minimum
of some function H (x):

�
H = minx H (x) (2.20)

where x is some d-dimensional parameter vector, and H is a scalar function of x,
often referred to as an “objective function.” We denote the x which results in the

1 “Eigen-” is the German prefix meaning “principal” or “most important.” These are NOT named for Mr Eigen.
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minimal H as x

x = arg minx H (x). (2.21)

The most straightforward way to minimize a function is to set its derivative to zero:The authors get VERY
annoyed at improper use
of the word “optimal.” If
you didn’t solve a formal
optimization problem to
get your result, you didn’t
come up with the
“optimal” anything.

∇H (x) = 0, (2.22)

where ∇ is the gradient operator – the set of partial derivatives. Eq. (2.22) results in
a set of equations, one for each element of x, which must be solved simultaneously:

∂

∂x1
H (x) = 0

∂

∂x2
H (x) = 0 (2.23)

· · ·
∂

∂xd
H (x) = 0.

Such an approach is practical only if the system of Eq. (2.23) is solvable. This may
be true if d = 1, or if H is at most quadratic in x.

EXERCISE

Find the vector x = [x1, x2, x3]T which minimizes

H = ax2
1 + bx1 + cx2

2 + dx2
3

where a, b, c, and d are known constants.

Solution

∂ H

∂x1
= 2ax1 + b

∂ H

∂x2
= 2cx2

∂ H

∂x3
= 2dx3

minimized by

x3 = x2 = 0, x1 = −b

2a
.

If H is some function of order higher than two, or is transcendental, the technique
of setting the derivative equal to zero will not work (at least, not in general) and we
must resort to numerical techniques. The first of these is gradient descent.

In one dimension, the utility of the gradient is easy to see. At a point x (k)

(Fig. 2.5), the derivative points AWAY FROM the minimum. That is, in one
dimension, its sign will be positive on an “uphill” slope.
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x(k)

Fig. 2.5. The sign of the derivative is always away from the minimum.

Thus, to find a new point, xk+1, we let

x (k+1) = x (k) − �
∂ H

∂x

∣∣∣∣
x (k)

(2.24)

where � is some “small” constant.
In a problem with d variables, we write

x(k+1) = x(k) − �∇H (x)|x(k) . (2.25)

2.3.1 Newton–Raphson

It is not immediately obvious in Eq. (2.25) how to choose the variable �. If � is too
small, the iteration of Eq. (2.25) will take too long to converge. If � is too large, the
algorithm may become unstable and never find the minimum.

We can find an estimate for � by considering the well-known Newton–Raphson
method for finding roots: (In one dimension), we expand the function H (x) in a
Taylor series about the point x (k) and truncate, assuming all higher order terms are
zero,

H
(
x (k+1)

) = H
(
x (k)

)+ (x (k+1) − x (k)
)
H ′(x (k)

)
.

Since we want x (k+1) to be a zero of H , we set

H
(
x (k)

)+ (x (k+1) − x (k)
)
H ′(x (k)

) = 0, (2.26)

and find that to estimate a root, we should use

x (k+1) = x (k) − H
(
x (k)

)
H ′(x (k)

) . (2.27)

In optimization however, we are not finding roots, but rather, we are minimizing a
function, so how does knowing how to find roots help us? The minima of the function
are the roots of its derivative, and our algorithm becomes
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Algorithm: Gradient descent

x (k+1) = x (k) − H ′(x (k)
)

H ′′(x (k)
) . (2.28)

In higher dimensions, Equation (2.28) becomes

x(k+1) = x(k) −H−1∇H, (2.29)

where H is the Hessian matrix of second derivatives, which we mentioned earlier in
this chapter:

H =
[

∂2

∂xi∂x j
H (x)

]
. (2.30)

EXAMPLE

Given a set of x, y data pairs {(xi , yi )} and a function of the form

y = aebx , (2.31)

find the parameters a and b which minimize

H (a, b) =
∑

i

(yi − aebxi )2. (2.32)

Solution
We can solve this problem with the linear approach by observing that
ln y = ln a + bx and re-defining variables g = ln y and r = ln a.
With these substitutions, Eq. (2.32) becomes

H (r, b) =
∑

i

(gi − r − bxi )
2 (2.33)

∂ H

∂b
= 2

∑
i

(gi − r − bxi )(−xi ) (2.34)

∂ H

∂r
= 2

∑
i

(gi − r − bxi )(−1). (2.35)

Setting Eq. (2.34) to zero, we have∑
i

gi xi −
∑

i

r xi −
∑

i

bx2
i = 0 (2.36)

or

r
∑

i

xi + b
∑

i

x2
i =

∑
i

gi xi (2.37)

and from Eq. (2.35) ∑
i

gi − r
∑

i

1− b
∑

i

xi = 0 (2.38)
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or

Nr + b
∑

i

xi =
∑

i

gi (2.39)

where N is the number of data points. Eqs. (2.37) and (2.39) are two simultaneous
linear equations in two unknowns which are readily solved. (See [2.2, 2.3, 2.4] for
more sophisticated descent techniques such as the conjugate gradient method.)

2.3.2 Local vs. global minima

Gradient descent suffers from a serious problem: Its solution is strongly dependent
on the starting point. If started in a “valley,” it will find the bottom of that valley. We
have no assurance that this particular minimum is the lowest, or “global,” minimum.

Before continuing, we will find it useful to distinguish two kinds of nonlinear
optimization problems.

� Combinatorial optimization. In this case, the variables have discrete values,
typically 0 and 1. With x consisting of d binary-valued variables, 2d possible
values exist for x. Minimization of H (x) then (in principle) consists of sim-
ply generating each possible value for x and consequently of H (x), and choos-
ing the minimum. Such “exhaustive search” is in general not practical due to
the exponential explosion of possible values. We will find that simulated an-
nealing provides an excellent approach to solving combinatorial optimization
problems.

� Image optimization. Images have a particular property: Each pixel is influenced
only by its neighborhood (this will be explained in more detail later), however,
the pixel values are continuously-valued, and there are typically many thousand
such variables. We will find that mean field annealing is most appropriate for the
solution of these problems.

2.3.3 Simulated annealing

We will base much of the following discussion of minimization techniques on an
algorithm known as “simulated annealing” (SA) which proceeds as follows. (See
the book by Aarts and Van Laarhoven for more detail [2.1].)

Algorithm: Simulated annealing

Choose (at random) an initial value of x, and an initial value of T > 0.
While T > Tmin, do

(1) Generate a point y which is a neighbor of x. (The exact definition of neighbor
will be discussed soon.)

(2) If H (y) < H (x) then replace x with y.
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(3) Else compute Py = exp(− (H (y)−H (x))
T ). If Py ≥ R then replace x with y, where

R is a random number uniformly distributed between 0 and 1.
(4) Decrease T slightly and go to step 1.

How simulated annealing works

Simulated annealing is most easily understood in the context of combinatorial op-
timization. In this case, the “neighbor” of a vector x is another vector x2, such that
only one of the elements of x is changed (discretely) to create x2.2 Thus, if x is
binary and of dimension d, one may choose a neighboring y = x⊕ z, where z is a
binary vector in which exactly one element is nonzero, and that element is chosen
at random, and ⊕ represents exclusive OR.

In step 2 of the algorithm, we perform a descent. Thus we “always fall down hill.”
In step 3, we provide a mechanism for sometimes making uphill moves. Initially,

we ignore the parameter T and note that if y represents an uphill move, the probability
of accepting y is proportional to e−(H (y)−H (x)). Thus, uphill moves can occur, but
are exponentially less likely to occur as the size of the uphill move becomes larger.
The likelihood of an uphill move is, however, strongly influenced by T . Consider the
case that T is very large. Then H (y)−H (x)

T � 1 and Py ≈ 1. Thus, all moves will be
accepted. As T is gradually reduced, uphill moves become gradually less likely until
for low values of T (T � (H (y)− H (x))), such moves are essentially impossible.

One may consider an analogy to physical processes in which the state of each
variable (one or zero) is analogous to the spin of a particle (up or down). At high tem-
peratures, particles randomly change state, and if temperature is gradually reduced,
minimum energy states are achieved. The parameter T in step 4 is thus analogous to
(and often referred to as) temperature, and this minimization technique is therefore
called “simulated annealing.”

2.4 Markov models

A Markov process is most easily described in terms of time, although in machine
vision we are primarily interested in interactions over spatial distances. The concept
is that the probability of something happening is dependent on a thing that just
recently happened. We will use Markov processes primarily in the noise removal
and segmentation issues in Chapter 6, however, they find applications in a wide
variety of problems, including character recognition [16.1].

We start by introducing the simplest kind of Markov model, the Markov chain.
This type of model is appropriate whenever a sequence of things can be identified,

2 Thus the set of neighbors of x consists of all x’s of Hamming distance= 1.
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for example, when a string of symbols is received over a computer network, or a
sequence of words is input to a natural language processor. Let the symbols which are
received be denoted by y(t), where the argument t denotes the (discrete) time instant
at which that symbol is received. Thus, y(1) is received before y(2). Let w denote
the class to which a symbol belongs, w ∈ {w1, w2, . . . wc}, if there are c possible
classes. As an example the signals could represent 0 or 1, as in a communications
system.

We are interested in the probability that y(t) belongs to some particular class. For
example, what is the probability that the kth symbol will be a one? We are interested
in that probability as a function of history. For example, let w1 represent the class 1.
We formalize our previous discussion by asking what is the probability that y(t)DONT PANIC! It’s just

notation, and it is
explained, right after the
equation.

is a 1, given the last N symbols received:

P(y(t) ∈ w1|y(t − 1) ∈ wt−1, y(t − 2) ∈ wt−2, . . . , y(t − N ) ∈ wt−N ). (2.40)

This is an awkward bit of notation, but here is what it means. When you see the
term “y(t)” think “the symbol received at time t .” When you see the “∈,” think “is.”
When you see “wk” think “1” or think “0” or think “whatever might be received at
time k.” For example, we might ask “what is the probability that you receive at time
k the symbol 1, when the last four symbols received previously were 0110?” Which,
in our notation is to ask what is

P(y(k) ∈ w1|(y(k − 1) ∈ w0, y(k − 2) ∈ w1, y(k − 3) ∈ w1, y(k − 4) ∈ w0)).

It is possible that in order to compute this probability, we must know all of the
history, or it is possible that we need only know the class of the last few symbols.
One particularly interesting case is when we need only know the class of the last
symbol received. In that case, we could say that the probability of class assignments
for symbol y(t), given all of the history, is precisely the same as the probability
knowing only the last symbol:

P(y(k)|y(k − 1)) = P(y(k)|(y(k − 1), y(k − 2), . . .)) (2.41)

where we have simplified the notation slightly by omitting the set element symbols.
That is, y(k) does not denote the fact that the kth symbol was received, but rather
that the kth symbol belongs to some particular class. If this is the case – that the
probability conditioned on all of history is identical to the probability conditioned
on the last symbol received – we refer to this as a Markov process.3

This relationship implies that

P(y(N )∈w N , . . . y(1) ∈ w1)=
{

N∏
t=2

P(y(t)∈wt |(y(t − 1)∈wt−1))

}
P(y(1)∈w1).

3 To be perfectly correct, this is a first-order Markov process, but we will not be dealing with any other types in
this chapter.
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Suppose there are only two classes possible, say 0 and 1. Then we need to know only
four possible “transition probabilities,” which we define using subscripts as follows:

P(y(t) = 0|y(t − 1) = 0) ≡ P00

P(y(t) = 0|y(t − 1) = 1) ≡ P01

P(y(t) = 1|y(t − 1) = 0) ≡ P10

P(y(t) = 1|y(t − 1) = 1) ≡ P11.

In general, there could be more than two classes, so we denote the transition proba-
bilities by Pi j , and can therefore describe a Markov chain by a c × c matrix P whose
elements are Pi j .

We will take another look at Markov processes when we think about Markov
random fields in Chapter 6.

Assignment 2.1

Is the matrix P symmetric? Why or why not? Does P have

any interesting properties? Do its rows (or columns)

add up to anything interesting?

2.4.1 Hidden Markov models

Hidden Markov models (HMMs) occur in many applications, including in partic-
ular recent research in speech recognition. In a hidden Markov model, we assume
that there may be more than one transition matrix, and that there is an unmeasur-
able (hidden) process which switches between transition matrices. Furthermore, that
switching process itself may be statistical in nature, and we normally assume it is
a Markov process. This is illustrated in Fig. 2.6, where the position of the switch
determines whether the output y(t) is connected to the output of Markov Process 1
or Markov Process 2. The switch may be thought of as being controlled by a finite

Markov

Markov
Switch

y(t)

y(t) =

process
2

1
process

Fig. 2.6. A hidden Markov model may be viewed as a process which switches randomly
between two signals.
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Switch
up

Switch
down

Fig. 2.7. The finite state machine of switches.

state machine (FSM), which at each time instant may stay in the same state or may
switch, as shown in Fig. 2.7.

Here is our problem: We observe a sequence of symbols

Y = [y(t = 1), y(t = 2), . . .] = [y(1), y(2), . . .].

What can we infer? The transition probabilities? The state sequence? The structure
of the FSM? The rules governing the FSM? Let’s begin by estimating the state
sequence.

Estimating the state sequence

Let s(t) t = 1, . . . , N denote the state associated with measurement y(t), and denote
the sequence of states S = [s(1), s(2), . . . s(N )], where each s(t) ∈ {s1, s2, . . . sm}.
We seek a sequence of states, S, which maximizes the conditional probability that
the sequence is correct, given the measurements; P(S|Y ).

Using Bayes’ rule

P(S|Y ) = p(Y |S)P(S)

p(Y )
. (2.42)

We assume the states form a Markov chain, so

P(S) =
[

N∏
t=2

Ps(t),s(t−1)

]
Ps(0). (2.43)

Now, let’s make a temporarily unbelievable assumption, that the probability density
of the output depends only on the state. Denote that relationship by p(y(t)|s(t)).
Then the posterior conditional probability of the sequence can be written:

p(Y |S)P(S) =
[

N∏
t=1

p(y(t)|s(t))

][
N∏

t=2

Ps(t),s(t−1)

]
Ps(0). (2.44)

Define Ps(1),s(0) ≡ Ps(0), and Eq. (2.44) simplifies to

p(Y |S)P(S) =
N∏

t=1

p(y(t)|s(t))Ps(t),s(t−1). (2.45)
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Now look back at Eq. (2.42). The choice of S does not affect the denominator, so
all we need to do is find the sequence S which maximizes

E =
N∏

t=1

p(y(t)|s(t))Ps(t),s(t−1). (2.46)

Surprisingly, there is an algorithm which will solve this maximization problem. It
is called the Viterbi algorithm. It has many, many applications. We explain it in the
next section, since this seems like a good place to motivate it.

2.4.2 The Viterbi algorithm

This is used for a particular kind of optimization problem, one where each state s(t)
has only two neighboring states, s(t + 1) and s(t − 1). Imposing this “neighboring
state” requirement allows us to use an efficient algorithm.

First, it is (almost) always easier to work with a sum than with a product, so let’s
define a new objective function by taking logs.

L ≡ ln E ≡
N∑

t=1

(�(t)+�i, j ) (2.47)

where �(t) = ln p(y(t)|s(t)) and �i, j = ln Pi, j .
Pictorially, we illustrate the set of all possible sequences as a graph as illustrated

in Fig. 2.8.
A particular sequence of states describes a path through this graph. For example,

for a graph like this with N = 4, m = 3, the path [s1, s2, s3, s1] is illustrated in
Fig. 2.9.

A path like this implies a set of values for the functions. For each node in the graph,
we associate a value of �. Suppose we measured y(1) = 2, y(2) = 1, y(3) = 2.2,

sm sm sm

s3

s2

s1

s3

s2

s1

s3

s2

s1

t=1 t=2 t=N

sq

Fig. 2.8. Every possible sequence of states can be thought of as a path through such a graph.
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s3

s2

s1

s4

s3

s2

s1

s4

s3

s2

s1

s4

s3

s2

s1

s4

Fig. 2.9. A path through a problem with four states and four time values.

y(4) = 1. The function � has value

� = ln p(y(1) = 2|s(1) = s1)+ ln p(y(2) = 1|s(2) = s2)

+ ln p(y(3) = 2.2|s(3) = s3)+ ln p(y(4) = 1|s(4) = s1).

There is a value associated with each edge in the graph as well, the function �

determined by the associated transition probability. So every possible path through
the graph has a corresponding value of the objective function L . We describe the
algorithm to find the best path as an induction: Suppose at time t we have already
found the best path to each node, with cost denoted LBi (t), i = 1, . . . , m. Then we
can compute the cost of going from each node at time t to each node at time t + 1
(m2 calculations) by

L ′i j (t + 1) = L Bi (t)+�(y(t + 1)|s j (t + 1))+�i, j . (2.48)

The best path to node j at time t + 1 is the maximum of these. When we finally
reach time step N , the node which terminates the best path is the final node.

The computational complexity of this algorithm is thus Nm2, which is a lot less
than m N , the complexity of a simple exhaustive search of all possible paths.

2.4.3 Markov outputs

In the description above, we assumed that the probability of a particular output
depended only on the state. We do not have to be that restrictive; we could allow the
outputs themselves to be the Markov processes.

Assume if the state changes, the first output depends only on the state, as before.
But afterward, if the state remains the same, the outputs obey a Markov chain. We
can formulate this problem in the same way, and solve it with the Viterbi algorithm.

2.4.4 Estimating model parameters

One final detail still eludes us: Given an observation Y , how do we estimate the
conditional output probabilities p(y(k)|s(k)), and those transition probabilities for
the states, Pi, j ?
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To do this, first, we need to go from a continuous to a discrete representation
for the values of y(t), in order to be able to use probabilities rather than densities.
Assume y(t) ∈ {y1, y2, . . . yr }. Then, we may define an output probability matrix
� = [�k,l], k = 1, . . . m; l = 1, . . . r , which represents the probability of observing
output yl if in state sk .

Define

Pi, j |Y (t) = Pr ((s(t − 1) = i, s(t) = j)|Y ). (2.49)

That is, given the observation sequence, what is the probability that we went from
state i to state j at time t? We can compute that quantity using the methods of
section 2.4.2 if we know the transition probabilities Pi, j and the output probabilities
�k, l . Suppose we do know those. Then, we estimate the transition probability by
averaging the probabilities over all the inputs.

Pi, j =
∑N

t=2 Pi, j |Y (t)∑N
t=2 Pj |Y (t)

(2.50)

where, since in order to go into state j , the system had to go there from somewhere,

Pj |Y (t) =
N∑

i=1

Pi j |Y (t). (2.51)

Then we estimate the probability of the observation by again averaging all the
observations.

�k,l =
∑N

t=1,y(t)= j Pi |Y (t)∑N
t=1 Pi |Y (t)

. (2.52)

At each iteration, we use Eqs. (2.50) and (2.52) to update the parameters. We then
use Eqs. (2.49) and (2.51) to update the conditional probabilities. The process then
repeats until it converges.

2.4.5 Applications of HMMs

Hidden Markov models have found many applications in speech recognition and
document content recognition [17.29].


