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Preface

This text is aimed at students and researchers in both
astronomy and physics. Spectroscopy links the two dis-
ciplines; one as the point of application and the other
as the basis. However, it is not only students but also
advanced researchers engaged in astronomical observa-
tions and analysis who often find themselves rather at a
loss to interpret the vast array of spectral information that
routinely confronts them. It is not readily feasible to reach
all the way back into the fundamentals of spectroscopy,
while one is involved in detailed and painstaking analysis
of an individual spectrum of a given astrophysical object.
At the same time (and from the other end of the spec-
trum, so to speak) physics graduate students are not often
exposed to basic astronomy and astrophysics at a level that
they are quite capable of understanding, and, indeed, that
they may contribute to if so enabled.

Therefore, we feel the need for a textbook that lays
out steps that link the mature field of atomic physics,
established and developed for well over a century, to
the latest areas of research in astronomy. The challenge
is recurring and persistent: high-resolution observations
made with great effort and cost require high-precision
analytical tools, verified and validated theoretically and
experimentally.

Historically, the flow of information has been both
ways: astrophysics played a leading role in the devel-
opment of atomic physics, and as one of the first great
applications of quantum physics. As such, it is with basic
quantum mechanics that we begin the study of astrophysi-
cal spectroscopy. The atomic physics and the astrophysics
content are intended to be complementary, and attempt to
provide a working knowledge in the two areas, as nec-
essary for spectral analysis and modelling. The emphasis
is on the introductory theoretical basics, leading up to
a practical framework for applications of atomic spec-
troscopy. While we limit ourselves to atomic physics, we
have attempted to highlight and delineate its reach into the
main areas of astronomy.

The link between basic-to-advanced atomic physics
and spectral analysis is increasingly important in ever

more sophisticated astrophysical models. But the chal-
lenge of writing a book such as this one has been to
find a balance between basic physics treatment that is
not superficial, and state-of-the-art astrophysical appli-
cations that are not too technical. Though that defined
and delimited the scope, it was still clear from the out-
set that the material should encompass a wide variety
of topics. But what is essential and what is superflu-
ous is, to some extent, a matter of subjective judgement.
The level of depth and breadth of each topic is subject
to these constraints. However, owing to the objective
needs before us, we have tried to be as comprehen-
sive as possible (limited by our own expertise, of
course).

The text is evenly divided into atomic physics and
astrophysics. The first seven chapters form the founda-
tional elements of atomic processes and spectroscopy. The
next seven chapters deal with astrophysical applications
to specific objects and physical conditions. Each chapter
follows the same plan. We begin with the essentials that
all readers should be able to follow easily. However,
towards the end of each chapter we outline some of the
more advanced or specialized areas. The subject mat-
ter is broadly divided into ‘basic’ material in both areas,
and ‘advanced’ material that incorporates state-of-the-art
methods and results. The underlying atomic physics is
intended as an introduction to more specialized areas, such
as spectral diagnostics, astrophysical models, radiative
transfer, plasma opacities, etc.

Emphasizing the unifying and connecting themes, the
text is planned as follows. Following the Introduction,
the next six chapters cover ‘basic’ collisional and radia-
tive atomic structure and processes. The second part of
the text, the other seven chapters, are the ‘applications’ of
the physical framework developed in the first part. Chap-
ters 8 and 9 describe the interaction of radiation with
matter and spectral formation. The remainder of the text,
Chapters 10–14, deals with descriptions of astronomical
sources: stars, nebulae, active galactic nuclei and cos-
mology. A special chapter is devoted to a description of
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the largest single application of atomic physics to astron-
omy: stellar opacities (Chapter 11). However, the content
of these chapters is not designed to be exhaustive, but
mainly to exemplify spectral formation in astrophysical
environments. Each of Chapters 10–14 contains tables
and sample spectra characteristic of the particular astro-
physical source(s). The appendices provide some of the
tools, and some of the atomic data, needed in spec-
tral modelling. However, they are not comprehensive and
readers are advised to consult the websites described
below.

Supplementary to the present text are the authors’
websites.1 They will provide continual updates and revi-
sions related to atomic data and developments in atomic
astrophysics. Eventually, this facility is designed to be
user-interactive, with features such as on-line calcula-
tion of spectral line intensities and ratios, model cal-
culations of ionization fractions, etc., using up-to-date
atomic data.

1 www.astronomy.ohio-state.edu/ ∼pradhan and

www.astronomy.ohio-state.edu/ ∼nahar.
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1 Introduction

1.1 Atomic astrophysics
and spectroscopy

Spectroscopy is the science of light–matter interaction.
It is one of the most powerful scientific tools for study-
ing nature. Spectroscopy is dependent on, and therefore
reveals, the inherent as well as the extrinsic properties
of matter. Confining ourselves to the present context, it
forms the link that connects astronomy with fundamental
physics at atomic and molecular levels. In the broadest
sense, spectroscopy explains all that we see. It under-
lies vision itself, such as the distinction between colours.
It enables the study of matter and light through the
wavelengths of radiation (‘colours’) emitted or absorbed
uniquely by each element. Atomic astrophysics is atomic
physics and plasma physics applied to astronomy, and it
underpins astrophysical spectroscopy. Historically, astro-
physical spectroscopy is older than modern astrophysics
itself. One may recall Newton’s experiments in the seven-
teenth century on the dispersion of sunlight by a prism
into the natural rainbow colours as an identification of
the visible band of radiation. More specifically, we may
trace the beginning of astrophysical spectroscopy in the
early nineteenth century to the discovery of dark lines
in the solar spectrum by Wollaston in 1802 and Fraun-
hofer in 1815. The dark lines at discrete wavelengths
arise from removal or absorption of energy by atoms or
ions in the solar atmosphere. Fraunhofer observed hun-
dreds of such features that we now associate with several
constituent elements in the Sun, such as the sodium D
lines.

Figure 1.1 shows the Fraunhofer lines. Fraunhofer
himself did not associate the lines with specific elements;
that had to await several other crucial developments,
including laboratory experiments, and eventually quantum
theory. He labelled the lines alphabetically, starting from
A in the far red towards shorter wavelengths. It is instruc-
tive to revisit the proper identification of these historic

lines. Going from right to left in Fig. 1.1, the first two
lines A (7594 Å) and B (6867 Å) do not originate in the
Sun but are due to absorption by oxygen in the terrestrial
atmosphere. The line C at 6563 Å is due to absorption by
hydrogen (the same transition in emission is a bright red
line). The three lines A, B and C lie towards the red end
of the visible spectrum. In the middle region of the spec-
trum are the two orange lines D1 and D2 (5896, 5890 Å,
respectively) that are the characteristic ‘doublet’ lines of
sodium (sodium lamps have an orange hue, owing to emis-
sion in the very same transitions). Towards the blue end
we have the strong line E at 5270 Å, due to absorption by
neutral iron, and another line, F (4861 Å), due to hydro-
gen. The molecular G band of CH lies around 4300 Å.
Farther into the blue, there are the H and K lines (3968,
3934 Å, respectively) from singly ionized calcium, which
are among the strongest absorption lines in the solar spec-
trum. Although the letters have no physical meaning, this
historic notation is carried through to the present day.
Much of early astrophysics consisted of the identifica-
tion of spectral lines, according to the presence of various
atomic species in stars and nebulae.

The lightest and most abundant element in the Uni-
verse is hydrogen, chemical symbol H. The abundances
and line intensities of other elements are expressed rel-
ative to H, which has the most common spectroscopic
features in most astronomical sources. Observed line
wavelengths led to an early grasp of specific spectra, but
it needed the advent of quantum mechanics to understand
the underlying structure. The pioneering exploration of
the hydrogen spectrum and of alkali atoms by Rydberg
was the first systematic attempt to analyze the pattern
of spectral lines. We shall see later how useful simple
variants of the empirical Rydberg formula can be in the
analysis of astrophysical spectra.

Spectroscopy also predates quantum mechanics. In
spite of the empirical work and analysis, a quantitative
understanding of spectroscopy had to await the quantum
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FIGURE 1.1 The Fraunhofer lines (Courtesy Institute for Astronomy, University of Hawaii, www.harmsy.freeuk.com).

theory of the atom. Schrödinger’s success in finding the
right equation that would reproduce the observed hydro-
genic energy levels according to the Bohr model and the
Rydberg formula was the crucial development. Mathemat-
ically, Schrödinger’s equation is a rather straightforward
second-order differential equation, well-known in math-
ematical analysis as Whittaker’s equation [1]. It was the
connection of its eigenvalues with the energy levels of
the hydrogen atom that established basic quantum the-
ory. In the next chapter, we shall retrace the derivation
that leads to the quantization of apparently continuous
variables such as energy. However, with the exception
of the hydrogen atom, the main problem was (and to
a significant extent still is!) that atomic physics gets
complicated very fast as soon as one moves on to non-
hydrogenic systems, starting with the very next element,
helium. This is not unexpected, since only hydrogen (or
the hydrogenic system) is a two-body problem amenable
to an exact mathematical solution. All others are three-
body or many-body problems that mainly have numerical
solutions obtained on solving generalized forms of the
Schrödinger’s equation. With modern-day supercomput-
ers, however, non-hydrogenic systems, particularly those
of interest in astronomy, are being studied with increasing
accuracy. A discussion of the methods and results is one
of the main topics of this book.

Nearly all astronomy papers in the literature iden-
tify atomic transitions by wavelengths, and not by the
spectral states involved in the transitions. The reason
for neglecting basic spectroscopic information is because
it is thought to be either too tedious or irrelevant to
empirical analysis of spectra. Neither is quite true. But
whereas the lines of hydrogen are well-known from under-
graduate quantum mechanics, lines of more complicated
species require more detailed knowledge. Strict rules,
most notably the Pauli exclusion principle, govern the
formation of atomic states. But their application is not
straightforward, and the full algebraic scheme must be
followed, in order to derive and understand which states
are allowed by nature to exist, and which are not. More-
over, spectroscopic information for a given atom can

be immensely valuable in correlating with other similar
atomic species.

While we shall explore atomic structure in detail in
the next chapter, even a brief historical sketch of atomic
astrophysics would be incomplete without the noteworthy
connection to stellar spectroscopy. In a classic paper in
1925 [2], Russell and Saunders implemented the then new
science of quantum mechanics, in one of its first major
applications, to derive the algebraic rules for recoupling
total spin and angular momenta S and L of all electrons
in an atom. The so-called Russell–Saunders coupling or
LS coupling scheme thereby laid the basis for spectral
identification of the states of an atom – and hence the
foundation of much of atomic physics itself. Hertzsprung
and Russell then went on to develop an extremely use-
ful phenomenological description of stellar spectra based
on spectral type (defined by atomic lines) vs. tempera-
ture or colour. The so-called Hertzsprung–Russell (HR)
diagram that plots luminosity versus spectral type or tem-
perature is the starting point for the classification of all
stars (Chapter 10).

In this introductory chapter, we lay out certain salient
properties and features of astrophysical sources.

1.2 Chemical and physical properties
of elements

There are similarities and distinctions between the chemi-
cal and the physical properties of elements in the periodic
table (Appendix 1). Both are based on the electronic
arrangements in shells in atoms, divided in rows with
increasing atomic number Z . The electrons, with prin-
cipal quantum number n and orbital angular momentum
�, are arranged in configurations according to shells (n)
and subshells (nl), denoted as 1s, 2s, 2p, 3s, 3p, 3d . . . (the
number of electrons in each subshell is designated as the
exponent). The chemical properties of elements are well-
known. Noble gases, such as helium, neon and argon, have
low chemical reactivity owing to the tightly bound closed
shell electronic structure: 1s2 (He, Z = 2) 1s22s22p6 (Ne,
Z = 10) and 1s22s22p63s23p6 (argon, Z = 18). The
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alkalis, lithium (Li, Z = 3), sodium (Na, Z = 11), potas-
sium (K, Z = 19), etc., have relatively high chemical
reactivity owing to the single valence electron ns out-
side a closed shell configuration, e.g., 1s22s1 (Li) (see
Chapter 2 for a detailed discussion). Chemical reactiv-
ity is responsible for molecular formation and processes.
Sodium or potassium atoms combine easily with chlo-
rine, a halogen with a vacancy in the 3p electronic orbit
(1s22s22p63s23p5), to form NaCl or KCl (common salts);
the pairing is through an ionic bond, reflecting the fact that
the Na atom ‘donates’ an electron, while the chlorine atom
gains an electron to fill the ‘vacancy’ to close the outer
shell. The chemical properties involving valence electrons
and the reactivity of an element are determined by the
electron affinity, the energy required to remove valence
electrons. Atoms with more than one valence electron in
an open shell form molecular bonds in a similar man-
ner. The carbon atom has two valence electrons in the 2p
shell, which can accommodate six electrons as a closed
shell. The four vacancies can be filled by single elec-
trons from four H atoms to form one of the most common
molecular compounds in nature, CH4 (methane), which,
for instance, is probably the predominant constituent of
‘oceans’ on Saturn’s moon Titan. Carbon monoxide, CO,
is one of the most abundant molecular species in astro-
nomical sources. Its stability lies in the match between
the two valence electrons in the carbon atom and the two
vacancies in the oxygen atom, which has four electrons in
the 2p shell. In general, the chemical properties of ele-
ments are concerned with valence electrons and shells
of atoms.

On the other hand, by physical properties of elements,
we refer largely to spectroscopic and atomic processes,
such as energy level structure, radiative transitions, exci-
tations, ionization and more. Of course, these are also
based on the electronic structure of atoms and ions but
in a different manner than those of chemical processes.
To begin with, the physical and chemical properties are
expected to be similar for elements along the columns of
the periodic table, since the electronic structures are simi-
lar (discussed in detail in Chapter 2). For example, boron
(B) and aluminium (Al) both have a single valence elec-
tron in the p shell, preceded by an inner two-electron filled
s shell: 1s22s22p1 (B) and 1s22s22p63s23p1 (Al). There-
fore, the energy-level structure and processes involving
those levels are usually similar. Both boron and alu-
minium display two-level fine structure splitting of the

ground state np
(

2Po
1 2
− 2Po

3 2

)
. Transitions between these

two levels generate a weak ‘forbidden’ spectroscopic line
in both the elements. Likewise, the atoms of flourine and

chlorine in the halogen column have energy-level struc-
tures and spectral features similar to B and Al, owing to
the fact that a single-vacancy p shell has the same spec-
tral composition as a single-valence p electron: 1s22s22p5

(F) and 1s22s22p63s23p5 (Cl); both atoms also have the
same ground state as B and Al, 2Po, and the same type of
forbidden transition.

From the point of view of atomic and astrophysical
spectroscopy one of the most important manifestations
of physical properties is for ions along an isoelectronic
sequence: ions of different elements and atomic number
Z , but with the same number N of electrons. For example,
the helium isolectronic sequence consists of the ions of all
elements of the periodic table stripped down to two elec-
trons: 1s2 in the ground state (He-like ions. The columns
of the periodic table already provide a guide to similarity
of physical properties, for if similar electronic structure
leads to similar properties, then the same electronic struc-
ture should do so also. For example, the singly charged
carbon ion (expressed by C+ or C II) has five electrons,
isoelectronic with boron; similarly the nitrogen ion N III,
the oxygen ion O IV and each ion of an element (Z > 5)
with five electrons belongs to the boron sequence. How-
ever, there is a crucial physical difference with neutral
elements along a column in the periodic table: not only
is the atomic number Z different, but also the charge on
each ion +z = Z − N in the isoelectronic sequence is
different. Therefore, the atomic physics, which depends
basically on the electromagnetic potential in the atom or
ion, is different for each ion. As Z increases, the attractive
electron–nucleus Coulomb potential increases, resulting
in higher-speed electrons. When the velocities are suf-
ficiently high, relativistic effects become important. The
energy-level splittings and processes dependent on rela-
tivistic and inter-electron interactions lead to significant
differences in spectral formation for ions within the same
isoelectronic sequence. We shall discuss a number of
aspects of isoelectronic sequences in much more detail in
later chapters.

Physical properties of elements also refer to interac-
tion of radiation with matter on the atomic scale, which
brings forth some physical processes not usually within
the realm of chemistry, such as excitation and ionization
of electrons.1 Finally, physical phenomena are dependent

1 To some extent the distinction between physical and chemical

processes, as we have drawn here, is superficial from a fundamental

viewpoint. But we do so purposefully to emphasize the physical nature

of elemental species as they lead to atomic and astrophysical

spectroscopy.
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on environmental properties, primarily the temperature
and density of the ambient plasma medium. The diver-
sity of astrophysical environments makes it necessary to
consider the intrinsic physical properties of atoms in con-
junction with extrinsic plasma parameters. This book is
concerned with the physical properties of elements in var-
ious ionization stages, particularly from an astrophysical
perspective.

1.3 Electromagnetic spectrum
and observatories

Astrophysical observations using state-of-the-art spec-
trometers on-board space missions and on ground-based
telescopes are revealing spectral features at very high
resolution in all wavelength ranges. Indeed, one may
view astronomical sources as ‘astrophysical laboratories’
for atomic physics – a reversal of roles that greatly
enhances the reach of both disciplines, atomic physics and
astronomy.

Radiation emission from astronomical objects ranges
over the whole electromagnetic spectrum from radio
waves to gamma rays. The photon energy hν and wave-
length λ corresponding to each type of radiation are
related inversely as

ν = c/λ. (1.1)

The least energetic radio wave photons have the longest
wavelength λ > 1 m, and the most energetic gamma
rays have wavelengths more than ten orders of magnitude
smaller, λ< 0.1 Å. (Note that 1 Å= 10−10 m= 10−4 μm
= 0.1 nm, where a μm is also referred to as micron and
‘nm’ refers to nano-metre.)

Figure 1.2 is a schematic representation of the dif-
ferent regions of the electromagnetic spectrum of solar
radiation transmitting through the terrestrial atmosphere.
The atmosphere blocks out most regions of the spectrum
(shaded area), except the optical or visible (vis), the near
infrared (NIR), and the radio waves. The visible band is,

in fact, a very narrow range in wavelength, but of course
the one most accessible. The shaded regions are opaque to
an observer on the ground, owing to higher atmospheric
opacity. For example, water vapour in the atmosphere
is very effective in blocking out IR radiation, owing to
absorption by H2O molecules, except in a few ‘windows’
or bands around 100–1000 nm or 1–10 μm (discussed
later). This atmospheric ‘blanketing’ is also beneficial to
us since it not only retains the re-radiated energy from the
Earth (the greenhouse effect), but also absorbs the more
energetic radiation from the Sun. Even a little more of the
Sun’s ultraviolet (UV) radiation could be biologically dis-
astrous, not to mention the effect of high energy particles
and other cosmic radiation of shorter wavelengths, which,
although some do get through, are largely blocked out by
the atmosphere. The use of ground-based telescopes is,
therefore, confined to the wavelength ranges accessible
from the Earth, after propagation of radiation through the
atmosphere. For all other wavelengths we need to go into
Outer Space.

Figure 1.2 also shows the general division of the elec-
tromagnetic spectrum for the Earth-based and space-based
telescopes. Satellite-based space observatories make
observations in the opaque regions. Some recent space
observatories are the Compton Gamma-Ray Observatory
(GRO), the X-ray Multi-Mirror Mission-Newton (XMM-
Newton), the Chandra X-ray Observatory (CXO), Hubble
Space Telescope (HST), Spitzer Infra-red Observatory,
etc., respectively named after famous scientists: Arthur
Compton, Isaac Newton, Subrahmanyan Chandrasekhar,
Edwin Hubble and Lyman Spitzer. Another current mis-
sion includes the multi-wavelength X-ray–γ -ray NASA
satellite Swift, to study gamma-ray bursts that are found
to occur all across the sky, and X-ray observations from
active galactic nuclei and other sources.

There is significant overlap in the approximate wave-
length ranges given, depending on the detectors and
instrumentation. Ground-based telescopes have sensitive
spectrometers that can range somewhat outside the range
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FIGURE 1.2 The electromagnetic spectrum of transmitted radiation through the Earth’s atmosphere (http://imagine.gsfc.nasa.gov).
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visible to the human eye, 4000–7000 Å. Optical CCDs
(charge-coupled devices) can detect radiation from near
UV to near IR, 3000–10 000 Å. The detector capability,
measured in terms of the percentage of photons detected,
called the quantum efficiency, deteriorates rapidly near
the edges of some spectral windows. Subsequent chap-
ters on astronomical objects will describe the prominent
atomic species and spectral features. Atomic and molec-
ular processes play the dominant role at all wavelengths
except gamma-rays due to nuclear processes and electron–
positron annihilation or synchrotron radiation.

Exercise 1.1 Compile a list of current major ground and
space observatories with spectroscopic instruments and
corresponding wavelength ranges.

1.4 Astrophysical and laboratory
plasmas

Ionized materials in astrophysical plasmas constitute over
99% of the observed matter in the Universe – that is,
all the matter in stars, nebulae and interstellar matter,
which comprise observable galaxies.2 As we mentioned,
the analysis of characteristic light is the science of spec-
troscopy, and nearly all information on observable matter
is derived from spectroscopy. This is how we really see the
Universe in all its glory. Observable matter spans a huge
range in density–temperature parameter space. Whereas
the interstellar medium may be cold and thin, down to
a few K and to less than one particle per cm3, highly
energetic plasmas in the vicinity of black holes at cen-
tres of galaxies may approach a thousand million K and
immense (as yet unknown) densities. An important set

2 It is worth mentioning how astronomers currently view matter and

energy. There is considerable evidence that observable matter

comprises only 4% of the Universe. About 22% is so-called ‘dark

matter’ that apparently does not interact with electromagnetic radiation

to emit or absorb light, and is therefore not observed. The existence of

dark matter may be inferred by its gravitational influence on objects.

For example, the rotation rate of matter within galaxies is observed not

to decrease with increasing distance from the centre as expected, but

rather remains roughly constant to very large distances. This implies

that there is unseen matter in and beyond the observable halo of

galaxies. Some of the matter may also be hidden in hot and highly

ionized gas in the intergalactic medium, which is indicated by X-ray

spectroscopy. The remaining 74% constituent is called dark energy, if

one interprets the observed acceleration in the expansion rate of the

Universe as part of the gravitational mass-energy balance. We discuss

these topics in detail in Chapter 14.
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FIGURE 1.3 Temperature–density regimes of plasmas in
astrophysical objects, compared with laboratory plasmas in
magnetic confinement fusion devices, such as tokamaks, and
inertial confinement fusion (ICF) devices, such as Z -pinch
machines and high-powered laser facilities. BLR-AGN refers to
‘broad-line regions in active galactic nuclei’, where many
spectral features associated with the central massive black hole
activity manifest themselves.

of temperature–density combinations is the one in stellar
cores: exceeding ten million K and 100 g cm−3 , condi-
tions required for hydrogen nuclear fusion that provides
most of stellar energy.

Figure 1.3 shows astrophysical and laboratory plasma
sources and their approximate temperatures and densities.
As one might see, the astrophysical objects correspond
to several regimes of electron temperature Te and den-
sity ne. Often, only some parts of a source are observed.
Ordinary stars, for instance, range from a temperature
T ∼ 2000–3000 K in their outer atmospheres to >107 K
in the core, where thermonuclear fusion creates their
energy. The directly observable parts of a star are its pho-
tosphere, from which most of its radiation is emitted, and
the hot highly ionized gas in the corona, a tenuous but
extended region surrounding the main body of the star.
In an extreme manifestation of temperature ranges, a stel-
lar condition called supernova begins with an explosive
plasma ball of some thousand million degrees, to less
than 103 K after a few years of expansion into a ‘neb-
ular’ remnant of the diffuse ionized plasma. It contains
mainly H II and the material ejected from the progeni-
tor star, as well as matter swept up from the interstellar
medium. The detailed temperature–density–abundance–
ionization structure of objects is revealed by spectral
analysis of the observable regions of each type of object
in different wavelength ranges, as discussed in individual
chapters.
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1.4.1 Laboratory astrophysics

Is it possible to create conditions in the laboratory that
simulate those in astrophysical sources? If yes, then it
would be possible to study precisely the physical pro-
cesses at play as well as measure the basic physical
quantities that would enable modelling or numerical sim-
ulation of the source plasma in general. As we have seen,
owing to the vast range of conditions prevailing in astro-
physical sources, that is only possible under the restricted
conditions available in a laboratory. In fact, experimen-
tal conditions are often quite stringent. The temperatures,
densities and particle energies must be precisely measur-
able to obtain meaningful results for physical parameters
of interest, such as cross sections and rates. Neverthe-
less, such experiments constitute what is called laboratory
astrophysics. Laboratory devices need to create and main-
tain a plasma for sufficiently long periods of time for
measurements to be carried out. This is quite difficult,
especially for measuring absolute cross sections with high
accuracy, since the results need to be calibrated relative to
some independent criterion.

Essentially, the experimental techniques are designed
to enable electrons and photons to interact with atoms or
ions. This is accomplished either by colliding or merging
beams of interacting particles, or in devices that confine
an (electron + ion) plasma. Among these instruments for
high-resolution measurements are electron beam ion traps
(EBIT), which create a trapped plasma of ions interacting
with an electron beam of controlled energy within some
beam width, ion storage rings, where ions are magneti-
cally trapped for long periods of time in a ring-like struc-
ture, enabling electron-ion experiments, and advanced
light sources (ALS) of photons mounted on synchrotron
accelerators for targeting the ‘stored’ ions and measur-
ing photoionization cross sections. We will describe these
experiments later, while discussing benchmarking and
validation of theoretical results.

Laboratory plasma sources, while quite different from
astrophysical sources in spatial and temporal behaviour,
also span a wide range of temperature–density regimes.
Most of the spectral diagnostics and atomic data we
describe in this text also apply to laboratory plasmas. In
particular, two classes of device for controlled thermonu-
clear fusion are shown in Fig. 1.3: (i) magnetically con-
fined plasma reactors, called tokamaks, and (ii) inertial
confinement fusion (ICF) devices. The ICF machines are
essentially of two types. The first kind is based on laser-
induced fusion, wherein an arrangement of symmetrically
directed and powerful lasers is fired at a small deuterium-
tritium pellet (heavy isotopes of hydrogen containing

either one or two neutrons respectively), causing it to
implode. The second kind are the so-called Z -pinch3

machines, wherein a very high electrical discharge passes
through wires of a heavy element, arranged cylindrically,
which explode and emit X-rays that are directed towards
the pellet. The fusion pellet is placed inside the cylindri-
cal formation or cavity, which is called the hohlraum. At
high temperatures, heavy elements exist in many ioniza-
tion stages and emit copious amount of radiation; gold
(Z = 79) is the common choice for hohlraum wires.

1.4.2 Astrophysical plasma composition and
abundances

Astronomical objects are generally electrically neutral,
i.e., an equal number of negative (electrons) and positive
(protons and other ions) charges exists. The electrons are
the dominant and most ‘active’ constituents, since their
velocities compared with those of protons are ve/vp =√

mp/me = 42.85. In astronomical plasmas, typical pro-
ton densities are ∼80% of ne, and other heavier ions,
such as helium nuclei (α particles), and partially or fully
stripped ions of heavier elements constitute the rest of the
positively charged particles. In astrophysical nomencla-
ture, all elements heavier than helium are called ‘metals’.
Cosmic plasma compositions denote the H-abundance as
‘X’, He-abundance as ‘Y’, and all other metals combined
as ‘Z’. For instance, the solar elemental composition by
mass is X = 0.70, Y = 0.28, Z = 0.02. Although met-
als constitute only 2% of the plasma, they are responsible
for most of the spectral features, and they crucially deter-
mine properties, such as the plasma opacity that governs
the transfer of radiation through the source (Chapter 10).
Further study of plasmas in various situations requires
us to consider the fundamental bulk properties associated
with this most prevalent state of matter.

1.5 Particle distributions

A plasma of charged particles and a radiation field of
photons can be treated with certain distribution functions.

3 The ‘Z’ here refers not to the atomic number but the fact that a current

passing along the z-axis through a wire creates a surrounding magnetic

field, which acts naturally to constrain or ‘pinch’ the exploding plasma;

the wires are indeed made of high-Z material!
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1.5.1 Fermions and bosons

Concepts of indistinguishability and symmetry play a fun-
damental role in quantum mechanics. All particles of a
given kind; electrons, protons, photons, etc., have the
same observational property of being indistinguishable
from other particles of the same kind. This universal fact
is of profound importance and is known as the prin-
ciple of indistinguishability [3]. Quantum mechanically,
all observable quantities are expressed in terms of prob-
abilities derived from a wavefunction formed for each
kind of particle in terms of its spatial and spin coordi-
nates. But the probabilities are related to the squares of
the wavefunctions. That introduces an ambiguity in the
actual sign of the wavefunction, which can be ‘+’ or ‘−’.
The total wavefunction of an ensemble of identical parti-
cles is therefore fixed by nature into two kinds. The first
kind, bosons, refers to a symmetric total wavefunction,
corresponding to the fact that interchange of coordinates
of any two particles leaves the sign of the wavefunction
unchanged. The second kind are called fermions, which
correspond to an antisymmetric total wavefunction that
changes sign upon interchange of coordinates.4 The spin
is a special ‘coordinate’, and has a value that is either inte-
gral (or zero), or half-integral. Bosons are particles of zero
or integral spin, and fermions possess half-integral intrin-
sic angular momentum. Bosons and fermions obey differ-
ent statistical mechanics: Bose–Einstein statistics in the
case of bosons, and Fermi–Dirac statistics for fermions,
both discussed in the next section.

1.5.2 Temperature: Maxwellian and Planck
functions

The concept of ‘temperature’, which gives a measure
of hot and cold in general sense, needs a more precise
description in astronomy. For a given system of particles,
say photons or electrons, the temperature has a meaning if
and only if it corresponds to a distinct radiation (photon)
or particle (electron) energy distribution. In the ordinary
sense, the ‘temperature’ of a photon or an electron, or even
a photon or electron beam, is meaningless. But the root-
mean-square (rms) particle energy may be simply related
to the kinetic temperature according to

E = hν ∼ kT, and E = 1/2 mv2. (1.2)

With three-dimensional compoments of the velocity,

4 A simple and elegant ‘proof’ is given in the classic textbook by E. U.

Condon and G. H. Shortley [3].

1

2
mv2 = 3

2
kT, k = 8.6171× 10−5 eV K−1

= 1.380 62× 10−16 erg K−1 (1.3)

where k is the Boltzmann constant. Consider a star ioniz-
ing a molecular cloud into a gaseous nebula. Nebulae are
a class of so-called H II regions where the principal ionic
species is ionized hydrogen (protons). The two distinct
objects, the star and the nebula, have different tempera-
tures; one refers to the energy of the radiation emitted by
the star, and the other to the energy of electrons in the
surrounding ionized gas heated by the star.

1.5.2.1 Black-body radiation and the Sun
The total energy emitted by an object per unit area per unit
time is related to its temperature by the Stefan–Boltzmann
Law

E = σT 4, where σ = 5.67× 10−8 W (m−2 K−4)

(1.4)

is known as the Stefan constant. The Stefan–Boltzmann
relation holds for a body in thermal equilibrium. The term
black body expresses black colour or rather the lack of any
preferred colour, absorbing radiation most efficiently at all
wavelengths. Kirchhoff’s law states that the emissivity of
a black body is related to its absorptivity; a black body is
also the most efficient radiator (emitter) at all wavelengths
(discussed further in Chapter 10). At any temperature, a
black body emits energy in the form of electromagnetic
radiation at all wavelengths or frequencies. However, the
distribution of emitted radiation changes with tempera-
ture such that the peak value and form of the distribution
function defines a unique temperature for the object (black
body), as discussed in the next section. The total luminos-
ity L of a spherical black body of radius R, such as a star,
integrated over all frequencies, is called the bolometric
luminosity,

L = 4πR2σT 4. (1.5)

The radiation field of a star, considered to be a black
body, is given by the Planck distribution function,5 which
defines the energy–frequency relationship at a given tem-
perature:

Bν(T∗) = 2hν3

c2

1

exp(hν/kT∗)− 1
, (1.6)

where T∗ is the radiation temperature of the star and ν is
the frequency of the photons. In terms of wavelengths it
reads

5 This is the underlying radiation field, which is attenuated by spectral

features, such as lines and bands particular to the star.
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FIGURE 1.4 Planck distributions of photon
intensity vs. wavelength at radiation temperatures
T∗ of various stars. Light from the Sun
corresponds to T∗ = 5770 K, which peaks at
wavelengths around yellow; stars with
higher(lower) temperature are bluer (redder).
The Planck function Bλ is discussed in the text.

500 750 1000
Wavelength (nm)

1250 1500 1750 2000 2250 2500250
0

0.5

S
pe

ct
ra

l i
rr

ad
ia

nc
e 

(W
/m

2 /
nm

)

1

1.5

2

UV Visible Infrared

Sunlight at top of the atmosphere

Solar radiation spectrum

5250 °C black-body spectrum

Radiation at sea level

O2

O3 H2O

H2O

H2O

H2O
H2O

Absorption bands
CO2

2.5
FIGURE 1.5 Sunlight as received at the
top of the atmosphere and at sea level
after attenuation by atmospheric
constituents, primarily ozone, oxygen,
water and carbon dioxide. (Courtesy
Robert A. Rhode,
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Image:Solar_Spectrum.png).

Bλ(T∗) = 2hc2

λ5

1

exp(hc/λkT∗)− 1
. (1.7)

A surface temperature of T∗ = 5770 K corresponds to the
peak emission of a black body in the characteristic colour
of the Sun – yellow – around 5500 Å. Hotter stars radiate
more in the blue or ultraviolet and are ‘bluer’; cooler stars
radiate a greater fraction in the infrared and are ‘redder’
than the Sun. Figure 1.4 shows the black-body curves for
several temperatures T∗ representative of stars. Wien’s law
states that the black body distribution Bλ(T ) peaks at

λp = 2.8978× 107 Å

T/K
, (1.8)

thus peaking at
2.898× 103 Å

T/10 000 K
or 2900 Å at 10 000 K.

We have already noted the historical relevance of the
spectrum of the Sun. But, of course, the Sun is of great

importance otherwise. It is therefore instructive to intro-
duce a few salient features of solar spectra, some of which
we shall deal with in later chapters.

Figure 1.5 illustrates several aspects of ‘sunlight’ as
received on the Earth. First, following the discussion
above about black-body curves associated with the radi-
ation of stars, Fig. 1.5 is fitted to a black body at a slightly
lower temperature, 5250 K, than at the surface of the Sun.
The best fitting Planck function corresponds to a some-
what lower temperature than the actual spectrum observed
above the atmosphere (light grey). The spectrum at sea
level (dark grey) is seen to be significantly attenuated
by absorption by the constituents of the atmosphere, pri-
marily molecular bands due to water, oxygen and ozone.
Figure 1.5 also shows that, although the peak of Sun’s
radiation is in the visible, there is a long tail indicat-
ing significant flux in the infrared. Water vapour in the
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atmosphere absorbs much of the longer wavelength (λ >
1000 nm = 10 000 Å = 1 μm) IR radiation via molecular
transitions in H2O.6 But water also allows a consider-
able amount of solar radiation to be transmitted through
the atmosphere through what are referred to as ‘windows’
in certain wavelength bands where H2O has inefficient
absorption (weak molecular transitions). Three of these
windows are of particular importance, since they enable
astronomical observations to be made from ground level
in these IR bands, referred to as the J, H and K bands7

centred around 1.2 μm, 1.6 μm and 2.2 μm, respectively.
Another interesting feature of Fig. 1.5 is the differ-

ence in radiation above and below the atmosphere on the
UV side where, unlike the IR, the solar UV flux drops
off rapidly. This is the ozone effect, as O3 prevents the
harmful UV radiation from reaching the Earth and thereby
makes life as we know it possible.

1.5.2.2 Maxwellian particle distribution

Using old quantum theory (before the invention of wave
mechanics), Einstein proposed an explanation of the pho-
toelectric effect that relates Planck’s quantum of energy
hν to absorption by an atom with the ejection of an elec-
tron. For instance, if the atom is surrounded by other
atoms as in a metal, then a certain amount of energy
is needed for the electron to escape. Hence the kinetic
energy of the photoelectron is obtained as

1

2
mv2 = hν − W, (1.9)

where W is called a work function. In the process of pho-
toionization, where an atom or ion is ionized by absorbing
a photon, W may be thought of as the ionization energy EI
of a bound electron.

The charged particles in the plasma ionized by a star
in an H II region have an electron temperature Te associ-
ated with the mean kinetic energy of the electrons given
by Eq. 1.2. But it makes little sense to refer to the tem-
perature of a single particle. Hence an averaged kinetic
energy over a specified distribution of particle velocities is

6 The basic composition of the Earth’s atmospheric gases by volume at

sea level is N2 ∼78%, O2 ∼21%. Note that these two gases alone

comprise ∼99% of the dry atmosphere. But there are variations,

allowing for H2O < 4% and CO2 ∼ 0.036%, and some other trace

gases. Both H2O and CO2 are greenhouse gases that regulate the

greenhouse effect on Earth. Although the CO2 concentration is usually

only about one hundredth of that of H2O, it can be pivotal in global

warming, since it is directly affected by life on Earth and carbon-based

fossil fuels.
7 Not to be confused with the H and K lines of ionized calcium.
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FIGURE 1.6 Maxwellian distributions, f(E,Te) of free electron
energies at three bulk plasma kinetic temperatures Te.

defined. In most astrophysical sources the fractional prob-
ability of electrons as a function of velocity or energy is
characterized by a Maxwellian distribution of electrons at
temperature Te as

f (v) = 4√
π

( m

2kT

)3/2
v2 exp

(
−mv2

2kT

)
. (1.10)

Figure 1.6 shows the general form of the Maxwellian
distribution functions at a few characteristic tempera-
tures Te. An example of the distinction, as well as the
physical connection, between the Planck function and
the Maxwellian function is found in H II regions. They
are ionized by the hottest stars with black-body tem-
peratures of T∗ ≈ 30 000–40 000 K. The resulting ioniza-
tion of hydrogen in a molecular cloud (see Chapter 12)
creates a plasma with electron kinetic energies that can be
described by a Maxwellian distribution at Te ≈ 10 000–
20 000 K. Since 1 eV≡ 11 600 K

(
see Eq. 1.3

)
, the elec-

tron temperature is of the order of 1 eV in H II

regions.
Plasmas need not always have a Maxwellian distribu-

tion; electron velocity (energy) distributions may not be
given by Eq. 1.10. For example, in the expanding ejecta
of supernovae, solar flares or laboratory fusion devices,
some electrons may be accelerated to very high veloc-
ities. Such non-Maxwellian components or high-energy
‘tails’ may co-exist in a source otherwise characterized by
a Maxwellian plasma that defines the bulk kinetic temper-
ature. Another example is that of mono-energetic beams
used in laboratory experiments; the beam widths may be
described by the well-known Gaussian distribution cen-
tred around a given energy. It should be noted that often
the subscripts on temperature T are omitted, and it is
the context that determines whether the reference is to
radiation or the electron temperature, T∗ or Te. The kinetic
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temperature of other particle constituents in a plasma,
such as protons or other ions (Tp, Ti), is also character-
ized in terms of a Maxwellian. However, it may happen
that Te �= Tp or Ti, if there are bulk motions or processes
that separate electrons from protons or ions.

1.6 Quantum statistics

Free particles, such as fermions and bosons, usually obey
the Maxwellian or Planckian distributions associated with
a temperature. When particles congregate to form struc-
tures like atoms, molecules, etc., they do so in accordance
with laws of quantum mechanics described by energy
levels quantized in energy and other variables such as
momentum. The statistical mechanics of quantum distri-
bution of particles among those levels is quantum statis-
tics. There are three statistical distributions that relate to
plasma sources. Once again, temperature is the crucial
variable that determines the energies of particles and the
levels they can occupy, subject to the principle of indistin-
guishability (and hence their fundamental classification as
fermions or bosons) and quantum mechanical rules, such
as the Pauli exclusion principle.

1.6.1 Maxwell–Boltzmann statistics

In thermal equilibrium, temperature determines the energy
available for particles to be excited to higher levels, and
the population distribution among them. Assuming a tem-
perature T and a given excited energy level Ei , the
distribution of the number of particles in level i relative
to the total is

Ni

N
= gi e−Ei /kT∑

j g j e−E j /kT
. (1.11)

Here, gi is the statistical weight for level i or its maximum
possible occupancy number. The Maxwell–Boltzmann
distribution is the one most frequently used to evaluate the
number of electrons in excited levels of an atom or ion.
The denominator in Eq. 1.11 is referred to as the partition
function,

U =
∑

i

gi e−Ei /kT . (1.12)

It is related to what is known as the equation-of-state for
a plasma and is discussed in detail in Chapter 10.

1.6.2 Fermi–Dirac statistics

What happens as T→0? In that limit, the distribution
of particles depends on their basic nature; fermions or

bosons. Since fermions are particles with half-integral
spin they must occupy discrete states in accordance with
the Pauli exclusion principle, which states that no two
fermions can occupy the same quantum mechanical state.
This basic fact leads to atomic structure, corresponding to
the states of the atom defined by the couplings of angular
and spin momenta of all electrons (Chapter 2). As the tem-
perature approaches absolute zero, the electrons have no
energy to be excited into higher levels. But not all atomic
electrons can occupy the same quantum mechanical state,
in particular the ground state, since that would violate
the exclusion principle. So they occupy the next available
higher levels, until a highest level, called the Fermi level,
with energy EF. The Fermi–Dirac probability distribution
is given by

f (Ei , T ) = 1

exp[(Ei − EF)/kT ] + 1
. (1.13)

At T = 0, we have probabilities f (E, T ) = 1 if E ≤
EF and f (E, T ) = 0 otherwise. We may visualize the sit-
uation as in Fig. 1.7. All levels up to the Fermi level are
filled at absolute temperature zero, constituting an ensem-
ble of fermions called the Fermi sea. As T increases,
particles get excited to higher levels, out of the Fermi sea.
Eventually, for sufficiently high temperature and kT � E ,
the Fermi–Dirac distribution approaches the Maxwell–
Boltzmann distribution characterized by the exponentially
decaying probability as exp(−E/kT ) in Eq. 1.11. The
probability

(
Eq. 1.13

)
is related to the actual number of

particles in an energy level i as

Ni (FD) = gi

exp[(Ei − EF)/kT ] + 1
. (1.14)

Thus far we have considered only the temperature as
the primary physical quantity. But in fact the density of
the plasma plays an equally important role. Intuitively
one can see that for sufficiently high densities, at any
temperature, particles may be forced together so that the
exclusion principle applies. In such a situation one can
think of a ‘quantum degeneracy pressure’ owing to the
fact that no two electrons with all the same quantum num-
bers can be forced into the same state. When that happens,
all accessible levels would again be occupied at the given
temperature and density. The foremost example of Fermi–
Dirac distribution in astrophysics is that of white dwarfs
Chapter 10). These are stellar remnants of ordinary stars,
like the Sun, but at the end of stellar evolution after the
nuclear fuel (fusion of H, He, etc.) that powers the star
runs out. The white dwarfs have extremely high densi-
ties, about a million times that of the Sun. The electrons
in white dwarfs experience degeneracy pressure, which
in fact prevents their gravitational collapse by forcing the
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electrons to remain apart (up to a certain limit, as we shall
see in Chapter 10).

1.6.3 Bose–Einstein statistics

Zero-spin or integral-spin particles are unaffected by the
Pauli exclusion principle and any number may occupy any
energy level. They follow the Bose–Einstein probability
distribution for the number of particles

Ni (B E) = gi

exp Ei/kT − 1
. (1.15)

All bosons at absolute zero tend to congregate in the same
quantum mechanical state, in what must be the ground
state. The Bose–Einstein distribution also approaches the
Maxwell–Boltzmann distribution for kT � Ei.

Bosons might be not only single particles, such as
photons (spin 0), but also a system of atomic particles
with the total spin of all electrons, protons and neutrons
adding up to an integral value or zero in each atom.
Atoms of alkali elements, such as rubidium, are exam-
ples of bosons, which have been experimentally shown to
undergo condensation into the same structure-less state.
As an alkali, rubidium atoms have an unpaired electron
and an odd-atomic numbered nucleus, both of which have
a spin quantum number of 1/2 that, in the lowest state,
corresponds to a total spin of 0. The so-called Bose–
Einstein condensation (BEC) is achieved by lowering the
kinetic temperature to practically zero by slowing down
the atomic velocities through laser impact (laser cool-
ing). Recall the simple kinetic theory expression (Eq. 1.2),
which relates velocity to temperature; bringing the atoms
in a gas to a virtual standstill occurs in the μK range.
At such a temperature the atoms coalesce into a Bose–
Einstein condensate. There is very little hard scientific
evidence on any astrophysical entity that would be a boson
condensate. But the hypothesis of a ‘boson star’, perhaps

following gravitational collapse, has been contemplated.
That, if observed, would be complementary to known
objects, such as neutron stars, made of fermions.

1.7 Spectroscopy and photometry

Spectroscopy and imaging of astrophysical sources, i.e.,
spectra and ‘pictures’, complement each other in astro-
physical studies. In between the two lies photometry,
or the calibrated measurement of brightness in a given
wavelength band (or ‘colour’). The division between spec-
troscopy and photometry rests essentially on the study of
energy at a given wavelength of spectroscopy or in a given
wavelength region of photometry. Finer divisions between
the two rest on resolution, techniques and instruments.

1.7.1 Photometry and imaging

Photometry involves measurement and calibration of
brightness in certain wavelength ranges or bands, e.g. in
the optical. As already mentioned, the general division
between spectroscopy and photometry is that, while the
former refers to the study of energy emitted in the contin-
uum and lines, the latter concerns total emission across a
region in the electromagnetic spectrum. However, the dif-
ference may be thought of simply in terms of resolution:
photometry measures spectral energy with low resolution,
and spectroscopy determines the division of energy with
high resolution at specific wavelengths (usually associated
with atomic and molecular transitions).

Photometric observations correspond to integrated
energy (brightness) in a wavelength band weighted by the
response function of the filter or the detector. Around
the visible region of the spectrum, transmitted through
the atmosphere and observable from the ground, the main
wavelength bands are denoted as ultraviolet, violet, blue,
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green, red and infrared regions. There are a number of
systems in observational use for the exact division of
wavelengths. One of the more common schemes is as fol-
lows. The approximate peak wavelengths are, in Å: 3650
(ultraviolet), 4800 (blue), 5500 (green), 7000 (red), and
8800 (infrared). In addition the near-IR bands are divided
into three parts, corresponding to atmospheric transmis-
sion windows (Figs 1.2 and 1.5): 12000 (J), 16000 (H)
and 22000 (K). Astronomical photometry forms the basis
of ‘colour-magnitude’ diagrams of stars and galaxies that
relate the bulk energy emitted to temperature, luminos-
ity and other physical properties. Thus photometry is
useful for information on a macroscopic scale, such as
size, location or surroundings of an astronomical object,
whereas spectroscopy yields more detailed information on
microscopic physical processes.

1.7.2 Spectroscopy

The formation of the spectrum from an astrophysical
plasma depends on atomic processes that emit or absorb
radiation. The astrophysical plasma constituents are in
general electrons, protons and trace elements in various
ionization stages. Also, there is often an external radiation
field, for example, from another star or galactic nucleus,
interacting with the plasma. The radiative and collisional
interactions, in turn, depend on the prevailing density,
temperature and radiation source. A variety of atomic
interactions, mainly between the electrons and ions, deter-
mine the observed spectral features that are divided into
the primary components of a typical spectrum: (i) a con-
tinuum defining the background radiation, if present, and
(ii) a superposition of lines that add or subtract energy
to or from the continuum, characterized by emission or
absorption, respectively. The relative magnitudes of inten-
sities of the continuum and the lines is a function of the
densities, temperatures, radiation field and abundances of
elements in the source. Atomic astrophysics seeks to study
the qualitative and quantitative nature of the microscopic
atomic interactions and the observed spectra.

Among the first quantities to be obtained from spec-
troscopy is the temperature, which generally determines
the wavelength range of the resulting spectra, as well as a
measure of the total energy output of the source (such as a
star). Another useful parameter derived from spectroscopy
of an astronomical object is its gross composition in terms
of the amount of ‘metals’ present or its metallicity. But
the metallicity is generally measured not with respect to
all the metals in the source but to iron, which is one of
the most abundant elements. Iron often provides hundreds,

if not thousands, of observable spectral lines. Metallicity
is therefore the ratio of iron to hydrogen, Fe/H, and is
denoted relative to the same ratio in the Sun (defined in
Chapter 10). In practice the Fe/H ratio is determined from
a few lines of neutral or singly ionized iron.

Sometimes it is difficult to carry out spectroscopic
studies, especially in the case of faint objects that may
be far away (at high redshift for instance). In other
cases a broad classification involving the total emission
in two or more wavelength ranges is sufficient. Therefore,
astronomers avail themselves of whatever energy they can
collect and measure, as described in the next section.

1.7.3 Spectrophotometry

Spectroscopy and photometry may be combined as spec-
trophotometry, which refers to calibrated spectral energy
distribution. It is also useful to carry out narrow-band or
single-line imaging of a given source, say at a specific
wavelength, e.g., the well-known 5007 green line from
O III (Chapter 9). The advantage of such a combination of
observations is that one can ascertain the spatial distribu-
tion, as well as the emission, from plasma in an extended
source such as a nebula. For instance, the λ 5007 line
may indicate the temperature distribution in the source,
e.g., a supernova remnant in a late phase that resembles a
gaseous nebula.

An example of measurements that lie in between pho-
tometry and spectroscopy is that of photometric redshifts
of distant objects, now being derived observationally.
The redshift of a spectral line, usually the strongest line
Lyα, indicates the distance of the source at the present
epoch due to the cosmological expansion of the Uni-
verse (Chapter 14). A similar redshift also occurs in the
entire wavelength region, since all photons from the reced-
ing source undergo the same redshift. If spectroscopic
observations are not possible or difficult owing to the
large distance of an object, photometric redshifts may
be derived from the much larger photon flux that can be
detected in a wavelength region as opposed to a single
wavelength.

1.8 Spectroscopic notation

A Roman numeral or a numerical superscript after the
chemical symbol of the element denotes its ionization
state: I or 0 for neutral, II or + for singly ionized, and
so on; e.g., Li I or Li0, Li II or Li+, and Li III or Li2+.
The last ionization state, the fully stripped bare ion, has
a numeral equal to Z , the atomic (proton) number in
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the nucleus. These are the common notations in atomic
physics and spectroscopy. However, the astronomy usage
can vary according to context in a sometimes confus-
ing manner. While the spectroscopic notation with the
numeral refers to an ionization state, the superscript nota-
tion may refer to the abundance of an element. For exam-
ple, Fe II refers to singly ionized iron, but Fe+ refers to its
abundance when written as, e.g., O+/Fe+, which means
the abundance by number of O II ions relative to Fe II.

1.9 Units and dimensions

Until one turns to routine calculations, in particular to
computers, which have no concept of physical quantities
and, apart from logical and bookkeeping operations, are
good only for number crunching, one stays with phys-
ical equations. Being invariant to choice and change of
‘yardsticks’, the outcome of Eq. 1.7, for instance, remains
unaltered if one measures the wavelength λ in units of Å,
km or, if one prefers, units bigger than parsecs or smaller
than fm (femtometres, 10−15 metres).8 The electric and
magnetic interactions are controlled by the dimensionless
electromagnetic coupling parameter

α = e2

� c
= 1 / 137.0360 , (1.16)

often referred to as the fine-structure constant. In the
atomic shell environment, energies are most naturally
measured in units of

1 Ry = α2

2
mc2 = 13.6 eV , (1.17)

the ionization energy of a hydrogen atom out of its ground
state.

Strict observance of phase invariance for canonical
pairs of observables fixes the unit of time:

τ0 = �/Ry = 4.8378× 10−17 s , (1.18)

the ‘Rydberg’ time of around 50 as (attosecond, 10−18s,
lasts as long as it takes a hydrogen electron in its ground
state with velocity c · α to traverse the diameter of the

8 Physical quantities are the product of a ‘quality’ (a yardstick) and an

‘intensitiy’ (the measure taken with it), and as one factor in the product

increases, the other decreases (e.g., in Eq. 2.40). Turning from scale

invariance to calculations involving the atomic shell, ‘qualities’ that

keep the intensities within a convenient range are as described herein.

atom, whose radius a0 of about 0.5 Å we pick as the unit
of length:

a0 = �

mc

/
α = λC/(2π α) = 0.529177× 10−8 cm.

(1.19)

Again it is a ‘mechanical’ property of the electron, now
its Compton wavelength, that leads to the Bohr radius a0;
momentum mc rather than λC = h/(mc). This fixes the
unit of linear momentum p = �k or wavenumber k, such
that

k → k · a0 (1.20)

secures an invariant phase (kr) if r → r/a0.
The third canonical pair of observables in atomic

physics is a familiar affair, which in a sense started atomic
physics and spectroscopy; the uncertainty relation for
angular momentum d ,


d ·
ϕ = h , (1.21)

yields h/(2π) = � as the natural unit of angular momen-
tum, because the angle ϕ is uncertain by 2π in a closed
orbit.

For convenience, one uses less natural units, such
as for energy the Hartree (H) and Rydberg units (also
referred to as atomic units (au)

1 H = 2 Ry = 27.21 eV, (1.22)

which implies τH = τ0/2 ,
The atomic units are arrived at technically on dropping the
quantities �, m and e (or equivalently setting them equal
to unity), while the physical units are derived from the
equation of motion. This is akin to saying that in the MKS
(metre–kilogram–second) system a day lasts 86 400 MKS
or the equator spans 4 × 107 MKS. We rather focus on
(conjugate pairs of) observables. Notably the elementary
electric charge e is not an observable: it enters atomic
structure by way of coupling with an external electro-
magnetic field.9 The assignments in Eqs 1.17 and 1.19
conceptually define its role via

e2 = 2 a0 Ry . (1.23)

9 As W. Eissner points out, only via approaches such as Millikan’s

experiment, followed by the long [hi]story of QED. Historically,

Sommerfeld named α the fine-structure constant before its primary role

in QED could be appreciated. The square e2 does appear in the

equations of motion, but only as the electromagnetic coupling

parameter α with the two other universal structure constants (Eq. 1.16).

In Chapter 14, we address the issue of variation of fundamental natural

constants, which of course would alter phase space and physical

relations such as the Heisenberg uncertainty principle and, in fact, lead

to a different Universe or an evolution thereof.
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Rydberg’s constant began in spectroscopy as

R∞ = Ry

� c
= 109 737.32 cm−1, (1.24)

or rather in a form corrected along

1RM = M

M + me
R∞ (1.25)

for the finite mass M ≈ 1820 me of the hydrogen nucleus:

RH = 109, 677.576 / cm . (1.26)

The wavenumber R readily translates into the (vacuum)
wave length λ of a photon needed to ionize the ground
state 1s 2S:

λPI
H = 1/R = 911.76 Å . (1.27)

The equivalent temperature of 1 Ry follows from Eqs 1.17

and 1.3 as

1 Ry ≡ 157 885 K . (1.28)

It is interesting that atomic sizes of all elements are
remarkably similar. Given the Bohr radius (Eq. 1.19) of
the electron orbit in the hydrogen atom the size (diame-
ter) of the H atom is ∼1 Å. One might think that heavier

atoms would increase in size according to atomic number
along the periodic table (see Appendix A). But this is not
so when one examines the calculated radii of atoms of var-
ious elements. All atoms lie in the narrow range ∼1–3 Å.
This is because the inner electrons are pulled in closer to
the nucleus as Z increases. Nonetheless, it is remarkable
that atomic size is constant to within a factor of three for
all elements, though Z varies by nearly a factor of 100. Of
course, the size of atomic ions varies significantly from
these values since for ions the size depends on both Z and
the number of electrons N in the ion, i.e., the ion charge
z ≡ Z − N + 1.

A table of physical constants useful in atomic physics
and astronomy is given in Appendix A.

Exercise 1.2 Write a program to compute and plot the
Maxwellian and Planck functions corresponding to a
range of Te and T∗, respectively.

Exercise 1.3 Plot the black-body function (a) at the
effective temperature of the Sun, T∗ = 5700 K, and
(b) at T∗ = 2.73 K, the microwave background tem-
perature of the Universe; compare the latter with data
obtained by space satellites, such as the Cosmic Back-
ground Explorer (COBE). The Universe would be a per-
fect black body, provided one ignored all the matter
in it!
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As mentioned in the first chapter, astrophysical applica-
tions played a crucial role in the development of atomic
physics. In their 1925 paper, Russell and Saunders [2]
derived the rules for spectroscopic designations of vari-
ous atomic states based on the coupling of orbital angular
momenta of all electrons into a total L , and the coupling
of all spin momenta into a total S, called the L S coupling
scheme. Each atomic state is thus labelled according to the
total L and S.

Atomic structure refers to the organization of electrons
in various shells and subshells. Theoretically it means
the determinations of electron energies and wavefunc-
tions of bound (and quasi-bound) states of all electrons
in the atom, ion or atomic system (such as electron–ion).
As fermions, unlike bosons, electrons form structured
arrangements bound by the attractive potential of the
nucleus. Different atomic states arise from quantization of
motion, orbital and spin angular momenta of all electrons.
Transitions among those states involve photons, and are
seen as lines in observed spectra.

This chapter first describes the quantization of individ-
ual electron orbital and spin angular momenta as quantum
numbers l and s, and the principal quantum number n,
related to the total energy E of the hydrogen atom. The
dynamic state of an atom or ion is described by the
Schrödinger equation. For hydrogen, the total energy is
the sum of electron kinetic energy and the potential energy
in the electric field of the proton.

For multi-electron atoms the combination of indi-
vidual l and s follows strict coupling rules for the
total angular momenta, which define the symmetry of
atomic levels. In a given atom or ion, the rules consti-
tute the angular algebra for all possible atomic states to
be determined independently of dynamical variables in
any effective atomic potential. The orbital spin and the
dynamical parts are separately quantized and therefore
separable in the Hamiltonian. With a given spin-orbital
nl, the dynamical quantities determine the stationary

states and expectation values, such as the mean radius
of each orbital 〈rnl 〉. These concepts are introduced here
through the simplest atomic system, hydrogen. It is the
most abundant element in the Universe (90% by num-
ber and 70% by mass). The series of spectral lines due
to absorption or emission of photons by hydrogen lie
in the ultraviolet (UV), optical and infrared (IR) wave-
length ranges in the spectra of nearly all astrophysical
objects.

Subsequent sections discuss the atomic structure
for multi-electron atoms, beginning with the two elec-
trons atom, helium. For a multi-electron atomic system,
electron–electron correlation interactions are to be added,
introducing complexity in determining the energies and
wavefunctions. An approximate treatment of a multi-
electron atom, in analogy with the central potential field
in an H-atom, comprises the central-field approximation.
The most common and complete treatment is the general-
ization of the Schrödinger equation into the Hartree–Fock
equations.

In addition, if the velocity of the electrons in the atom
is significant compared with c, such as in heavy ele-
ments or highly charged ions, relativistic effects come
into play. The primary effect is the explicit consid-
eration of fine structure, in addition to the total L S
scheme, and consequent splitting of L S states or terms
into fine-structure levels J . The atomic levels are then
designated as L S J . The fully relativistic version of
the equation of motion of an electron is described by
the Dirac equation. However, relativistic effects may
be incorporated in successively complex approxima-
tions, depending on the nuclear charge or atomic num-
ber Z , to varying extent, that are intermediate between
the non-relativistic Schrödinger equation and the Dirac
equation. The intermediate methods form a class of
Breit–Pauli approximations appropriate for most atomic
systems of astrophysical importance up to the iron group
elements.
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Finally, the behaviour of energy levels along isoelec-
tronic sequences, that is, ions with the same number of
electrons but different number Z of protons in the nucleus,
illustrates a number of practical useful features of atomic
spectroscopy.

2.1 The hydrogen atom

The study of the hydrogen atom underpins the basic
concepts of atomic spectroscopy. Therefore the quantum
mechanical treatment for this atom is discussed in some
detail, leading up to the Rydberg series of levels that
define the series of spectral lines.

The classical equation of motion of an electron with
mass m moving in the central field of a heavy nucleus with
electric charge number Z is

p2

2m
− Ze2

r
= p2

r + p2⊥
2m

− Ze2

r
= E, (2.1)

with p split as indicated by subscripts. The quantum
mechanical analogue is obtained on replacing the mome-
tum and energy differential operators p →−i�∇ and
E → i�∂/∂t to obtain the Schrödinger form,[
− �

2

2m

(
∇2

)
+ V (r)

]
Ψ = E Ψ (2.2)

[
− �

2

2m

(
∇2

r + ∇2⊥
)
+ V (r)

]
Ψ = E Ψ, (2.3)

specifically V (r) = − Ze2

r
= − 2Z

r/a0
Ry. (2.4)

In standard notation for spherical coordinates we have

∇2
r =

1

r2

∂

∂r

(
r2 ∂

∂r

)
(2.5)

∇2⊥ =
1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)

+ 1

r2 sin2 ϑ

∂2

∂ϕ2
(2.6)

�(r, ϑ, ϕ) = R(r) Y(ϑ, ϕ),

as the wavefunction factorizes accordingly. Substitution
into the Schrödinger equation gives

1

R

d

dr

(
r2 dR

dr

)
+ 2mr2

�2
[E − V (r)] (2.7)

= − 1

Y

[
1

sinϑ

∂

∂ϑ

(
sinϑ

∂Y

∂ϑ

)
+ 1

sin2 ϑ

∂2Y

∂φ2

]
. (2.8)

Since the left-hand side depends only on r and the right
only on the two spherical angles, both sides must equal
some constant λ. Dealing with the angular equation first

conveniently leads to the radial problem, as in the follow-
ing subsections.

2.1.1 Angular equation

The expression 2.8 leads to the angular equation

1

sinϑ

∂

∂ϑ

(
sinϑ

∂Y

∂ϑ

)
+ 1

sin2 ϑ

∂2Y

∂φ2
+ λY = 0, (2.9)

with solutions Y(ϑ, ϕ), known as spherical harmonics.1

The equation can be expressed in the convenient form

L2Y(ϑ, ϕ) = λY(ϑ, ϕ), (2.10)

with an angular momentum operator L . Writing the solu-
tion as

Y(ϑ, ϕ) = �(ϑ) �(ϕ) (2.11)

and substituting in Eq. 2.9, the equation separates to the
form

d2Φ

dϕ2
+ νΦ = 0, (2.12)

1

sinϑ

d

dϑ

(
sinϑ

dΘ

dϑ

)
+

(
λ− ν

sin2 ϑ

)
Θ = 0, (2.13)

where ν is another constant. If ν is the square of an integer,
i.e., ν = m2, Φ and its derivative dΦ/dϕ are finite and
continuous in the domain 0 to 2π :

Φ(ϕ) = (2π)−1/2eimϕ ; (2.14)

m is called the magnetic angular quantum number and
equals 0,±1, ±2, . . . On replacing ϑ by w = cosϑ the
equation for Θ reads

d

dw

[
(1− w2)

dΘ

dw

]
+

[
λ− m2

1− w2

]
Θ(w) = 0. (2.15)

A finite solution Θ requires

λ = l(l + 1), (2.16)

with positive integers l = 0, 1, 2. . . The solutions are
associated Legendre polynomials of order l and m,

Pm
l (w) = (1− w2)|m|/2 d|m|

dw|m| Pl (w), (2.17)

1 Like sin, exp and other standard mathematical functions, Y is set in

roman type since it is taken for a filter or operator that creates a value

from arguments or variables, which appear in italic type in scientific

notation. In this sense, non-standard functions are taken for variables as

a whole. Thus the Legendre polynomials P(cosϑ) appear in roman

type, so there is no notation clash with radial functions P(r) in the next

sections.
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where m = l, l−1, . . . ,−l. For m = 0 the function Pl (w)

is a Legendre polynomial of order l. The angular solution
of normalized spherical harmonic is (e.g. [4])

Ylm(ϑ, ϕ) = Nlm Pm
l (cosϑ) eimϕ, (2.18)

where

Nlm = ε
[

2l + 1

4π

(l − |m|)!
(l + |m|)!

]1/2
, (2.19)

with ε = (−1)m for m > 0 and ε = 1 for m ≤ 0. Spherical
harmonics satisfy the orthogonality condition,

∫ 2π

ϕ=0

∫ π

ϑ=0
Y∗l1m1

(ϑ, ϕ)Yl2m2(ϑ, ϕ) sinϑ dϑ dϕ

= δl1,l2 δm1,m2 . (2.20)

The equation with angular momentum operator can now
be written as

L2Ym
l (ϑ, ϕ) = l(l + 1) �

2 Ym
l (ϑ, ϕ) (2.21)

and

m = l, l − 1, . . . ,−l. (2.22)

With angular momentum L = mvr = mwr2 the angular
frequency w = L/mr2, the centripetal force is mw2r =
L2/mr3 and the corresponding potential energy is

1

2
mw2r2 = L2

2mr2
. (2.23)

This is similar to the second potential term of hydrogen,
provided

L2 = l(l + 1)�2. (2.24)

2.1.2 Radial equation

We now turn to the radial coordinate representing the
dynamical motion of the electron in the atom. Equa-
tion 2.7 leads to the radial equation

[
1

r2

d

dr

(
r2 d

dr

)
+ 2m

�2
(E − V (r))− λ

r2

]
R(r) = 0,

(2.25)

λ being established in Eq. 2.24. It simplifies on substitut-
ing R(r) = P(r)/r :[

�
2

2m

d2

dr2
− V (r)− l(l + 1)�2

2mr2
+ E

]
P(r) = 0. (2.26)

Using atomic units we write (e = me = a0 = � = 1)2[
d2

dr2
− V (r)− l(l + 1)

r2
+ E

]
P(r) = 0, (2.27)

2.1.3 Rydberg states and hydrogenic energy
levels

It may appear that it is easier to express the radial equa-
tion than its angular counterpart, but its solution is not
only more difficult: it is always approximate, with the
outstanding exception of the single electron. The angular
algebra embodied in the angular equation can be evaluated
exactly for an atomic transition matrix element, but the
solution of the radial equation entails the use of an effec-
tive potential, constructed in various approximations, as
described in Chapter 4. For hydrogenic systems this is the
well-known Coulomb potential Ze2/r, as discussed below.

Equation 2.27 can be solved on specifying boundary
conditions. The bound electron moves in the attrac-
tive potential of the nucleus, which behaves as
limr→∞ V (r) = 0. Let us look for solutions at two lim-
iting cases of the electron motion: (i) r at infinity and (ii)
r near r = 0.

For case (i) with r→∞ the radial number equation
reduces to[

d2

dr2
+ E

]
P(r) = 0, (2.28)

which has solutions

P(r) = e±ar , a = √−E . (2.29)

Taking E < 0, implying bound states, a runaway solu-
tion ear → ∞ for r→∞ is not acceptable. On the other
hand, limr→∞ e−ar = 0 is a possible solution, and is also
valid for E > 0 when a becomes imaginary, implying free
spherical waves. We concentrate on E < 0.

2 The radial motion displayed in this equation is reminiscent of the

one-dimensional motion of a particle in a potential, namely

V (r)+ l(l + 1)�2

2mr2
,

where the last term is a centrifugal potential. Moving away from

physics for a moment to computers, which know nothing about physics

but can deal superbly with mere numbers, we divide Eq. 2.26 with V (r)

from Eq. (1.23) by 1 Ry as expressed in Eq. 1.17:

[
d2

d(r/a0)
2
+ 2Z

r/a0
− l(l + 1)

(r/a0)
2
+ E/Ry

]
P(r) = 0

This is a pure number equation, having exploited a0 from Eq. 1.19.
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The asymptotic behaviour suggests that the solution
P(r) should have the form

P(r) = e−ar f (r) (2.30)

subject to the condition limr→0 f (r) = 0. On substitu-
tion, the radial number Eq. 2.27 leads to

d2 f

dr2
− 2a

d f

dr
+

[
2Z

r
− l(l + 1)

r2

]
f (r) = 0 (2.31)

for a hydrogen-like ion with one electron and a positively
charged nucleus with Z protons. If r � 1, the solution
f (r) may be expressed as a power series

f (r) = rs [A0 + A1r + A2r2 + . . . ]. (2.32)

For f to be finite as r→0, consistent with the behaviour
of an orbital nl ‘bound’ at the nucleus, requires s > 0 for
the exponent.

Exercise 2.1 Use a power series expansion in the radial
equation to show that

s = l + 1 > 0, (2.33)

i.e., limr→0 P(r) ∼ rl+1. Prove that the coefficients A
obey the recursion relation

Ak

Ak−1
= 2[(l + k)a − Z ]

k2 + (2l + 1)k
, (2.34)

lim
r→∞

Ak

Ak−1
= 2a

k
. (2.35)

We note that the exponential e2ar has the following
expansion:

e2ar = 1+ 2ar + (2ar)2

2! + · · · + (2ar)k

k! + · · · , (2.36)

(2a)k/k!
(2a)k−1/(k − 1)! =

2a

k
. (2.37)

Equation 2.32 indicates that the radial solution f behaves
as rse2ar for large k. Therefore,

P(r) = f (r)e−ar ≈ rl+1ear (2.38)

at large distances r .
The above solution diverges at infinity, i.e.,

P(r)→∞ for r→∞ unless the series terminates at some
finite values of k. Eq. 2.34, along with a from Eq. 2.29,
shows that the coefficient Ak vanishes if the following
condition is met:

(l + k)
√−E − Z = 0 (2.39)

or, reverting E to energies from shorthand for numbers
E /Ry,

E = − Z2

n2
× Ry; (2.40)

One may also replace Ry with ‘Hartrees/2’ or ‘au/2’ in
atomic units. The boundary conditions on the radial wave-
functions have forced the bound states to be discrete with
integer n. The equation gives an infinite number of dis-
crete energy levels −Z2/n2 asymptotically approaching
zero for any finite charge number Z . It also shows that
the energy is degenerate with respect to l and m. Degen-
eracy in energy or state is defined as the number of
eigenfunctions associated with a particular energy.

2.1.4 Hydrogenic wavefunctions

The full series solution for the hydrogen radial function
P(r) may be expressed in terms of Laguerre polynomials
(e.g., [4])

L2l+1
n+l (r) =C0 + C1r + C2r2 + · · ·

+ Cn−l−1 Eq.rn−l−1, (2.41)

where

Cn−l−1 = (−1)n−l (n + l)!
(n − l − 1)! . (2.42)

For Cn−l−1 to remain finite, n − l − 1 must be zero or
a positive integer (note that 0 ! = 1 and n! = ±∞ for a
negative integer value of n). Hence

n = l + 1, l + 2, . . . (2.43)

The radial function then becomes

Pnl (r) =
√
(n − l − 1)!Z

n2[(n + l)!]3a0

[
2Zr

na0

]l+1

× e−Zr/na0 L2l+1
n+l

(
2Zr

na0

)
, (2.44)

where the Laguerre polynomial is given by

L2l+1
n+l (ρ) =

n−l−1∑
k=0

(−1)k+2l+1

× [(n + l)!]2ρk

(n − l − 1− k)!(2l + 1+ k)!k! . (2.45)

The orthogonality condition of the radial function is∫ ∞
0

Pnl (r) Pn′l (r) dr = δnn′ , (2.46)
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√
1/a0 of Eq. 2.44 securing scale invariance. In bra-ket

notation, the complete solution for the bound states of
hydrogen may now be written as

〈r|nlm〉 ≡ ψnlm(r, ϑ, ϕ) = Rnl (r)Ylm(ϑ, ϕ)

= 1

r
Pnl (r)Ylm(ϑ, ϕ), (2.47)

which satisfies the orthogonality condition

〈nlm|n′l ′m′〉 =
∫
ψ∗nlm(r, ϑ, ϕ) ψn′l ′m′(r, ϑ, ϕ) dτ

= δnn′ δll ′ δmm′ . (2.48)

where dτ = r2dr sinϑdϑ dϕ.

2.1.5 Charge density and expectation values

R2
nl (r) is the radial charge density describing the distri-

bution of electrons of different symmetries (� values) at a
distance r from the nucleus. One can compute the charge
density, that is the probability of finding an electron in
volume element dτ as

ψ∗ψ dτ = 1

r2
P2

nl (r) Y∗lm(ϑ, ϕ) Ylm(ϑ, ϕ) dτ. (2.49)

One may obtain the expectation values 〈nl|rk |nl〉 to
moments of order k:

〈rk〉 =
∫ ∞

0
P2

nl (r) rkdr =
∫ ∞

0
R2

nl rk+2 dr, (2.50)

for example

〈r〉 = a0

2Z
[3n2 − l(l + 1)],

〈r2〉 = a2
0

Z2

n2

2
[5n2 + 1− 3l(l + 1)],〈

1

r

〉
nl
= Z

n2a0
, (2.51)

〈
1

r2

〉
nl
= Z2

n2
(

l + 1
2

)
a2

0

,

〈
1

r3

〉
nl
= Z3

n3l
(

l + 1
2

)
(l + 1)a3

0

.

These relations are useful in atomic structure calcula-
tions of matrix elements comprising radial integrals over
wavefunctions.

States with E > 0, in contrast to E < 0, form a con-
tinuum instead of a discrete spectrum, because their orbits
are not closed and thus not quantized. A continuum state
is a free state, except that it is designated with an angular
momentum (and either box or flux normalization).

Exercise 2.2 Obtain from the full expression for Pnl (r)
in terms of Laguerre polynomials, the radial functions for
the 1s and the 2p orbitals.

2.2 Quantum numbers and parity

Atomic structure depends on quantization of continu-
ous variables (r, E), ϑ , and ϕ. They are associated with
discrete quantum numbers as

r, E → n (principal quantum number)
= 1, 2, 3, . . .∞

ϑ→ l (orbital quantum number)
= 0, 1, 2, . . . (n − 1)

ϕ→m� (magnetic quantum number)
= 0, ±1, ±2, . . .± l,

(2.52)

where n represents a shell consisting of � number of sub-
shells, or n� orbitals, which further subdivide into m�
suborbitals.

The shells with n = 1, 2, 3, 4, 5, 6, . . . are referred to
as K, L, M, N, O, P, . . . — as values set in roman type.
Each shell can accommodate a maximum number of 2n2

electrons. A shell is closed when full, i.e., all n�m orbitals
are fully occupied, and open when there are vacancies. By
long-standing convention, angular momenta l are repre-
sented by alphabetic characters s, p, d, f, g, h, i, k, . . . for
l = 0, 1, 2, 3, 4, 5, 6, 7, . . . (note that there is no value
j; scientific notation aims to avoid confusion with vari-
ables like spin momentum s, linear momentum p, angular
momentum l or oscillator strength f ). Thus, an electron
in an orbital of nl = 1s is in the first or K-shell (n = 1)
and in an orbit with l = 0 (s orbital). The total angular
momentum L for more than one electron follows the same
alphabetic character notation, but in the upper case. For
example, L = 0 is denoted as S, and the higher values
are L = 1, 2, 3, 4, 5, 6, 7, etc., are P, D, F, G, H, I, K,
etc. (note again the absence of ‘J’). The orbital magnetic
quantum number m depends on l and is written as ml .
For ions with more than one electron, the total orbital
magnetic angular momentum can be obtained as ML =∑

i mli where L is the total orbital angular momentum.
There are 2L + 1 possible values of Ml for the same
L and this is called the angular momentum multiplicity
of L .

These quantum numbers reflect the shape and symme-
try of the density distribution through the angular func-
tion Pm

l (ϑ, ϕ) and the radial function Rnl (r). The latter
exhibits nodes (intersecting zeros along the radius vec-
tor), the former exhibits nodes at well-defined angles. The
higher the value of n, the looser the binding and the greater
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the number of nodes in Rnl for a given value of l. There
are n − l − 1 nodes in the wavefunction of an electron
labelled nl, counting the sloping one far out and the one at
the (pointlike) nucleus as one. Hence for a 2s orbital, the
number of nodes is 2 − 0 − 1 = 1; for a 3d orbital, it is
3− 2− 1 = 0, etc.

The intrinsic angular momentum s of the electron man-
ifests itself via the associated magnetic Bohr moment
μB: as orbitals l > 0 create a magnetic field, this
moment aligns in quantized positions of s, which leads
to term splitting and Pauli’s ad-hoc theory. It was over-
taken by the Dirac equation, where both s and μB rather
miraculously appear (it took a while to see why). The
spin is separately quantized in non-relativistic quantum
mechanics. The associated spin quantum number S is
defined such that S2 commutes with all dynamical vari-
ables and, similar to L2, the eigenvalue S2 is S(S+ 1)�2,
that is,

S2ψs = �
2S(S + 1)ψs . (2.53)

However, spin s can be an integer or half an odd integer.
For a single electron, s = 1/2. While s refers to spin angu-
lar momentum of a single electron, S refers to the total or
net spin angular momentum. As m is related to l, the spin
magnetic quantum number ms is related to S such that its
values vary from −S to +S, differing by unity. Hence for
a particle with S = 1/2, ms has two values, −1/2, 1/2,
describing spin down and spin up. The spin multiplicity
of an L S state is given by 2S + 1, and is labelled singlet,
doublet, triplet, quartet, quintet, sextet, septet, octet, etc.,
for 2S + 1 = 1, 2, 3, 4, 5, 6, 7, 8, etc.

We noted that non-relativistic hydrogenic energies
depend only on the principal quantum number n and are
degenerate with respect to both l and m�. For a given n
the value of l can vary from 0 to n − 1, and for each
l, m� between −l to l, the eigenfunctions are (2� +1)
degenerate in energy. The total degeneracy of the energy
level En is

n−1∑
l=0

(2l + 1) = n2. (2.54)

This degeneracy for a one-electron atom is said to be
‘accidental’, and is a consequence of the form Z/r of
the Coulomb potential. Because it depends only on radial
distance, the hydrogenic Hamiltonian is not affected by
angular factors, rendering it invariant under rotations.
Including the two-spin states that nature distinguishes
along some axis, the total number of degenerate levels for
a given n is 2n2.

Finally, we define the parity π of an atomic state. It
refers to the symmetry of the state in spatial coordinates. It
expresses the phase factor that describes the behaviour of
the wavefunction, either positive or negative, with respect
to its mirror image or flipping of the distance coordinate.
Considering the sum of the integer values l, one speaks of
‘even’ parity π is +1, of ‘odd’ parity otherwise:

π = (−1)
∑

i li =
{
+1, even
−1, odd,

(2.55)

where i is the index of (valence) electrons. Typically
odd parity is expressed as superscript ‘o’ (in roman
type since a value or label, not a variable), while
even parity is either not marked or denoted by a
superscript ‘e’. Parity change is a crucial criterion for
dipole allowed transitions between two atomic states
(Chapter 9).

2.3 Spectral lines and the Rydberg
formula

Photons are emitted or absorbed as electrons jump down
or up between two energy levels and produce spectral
lines. The energy difference between two levels is also
expressed in terms of frequencies or wavelengths of the
spectral lines. For a hydrogen atom, the wavenumber of
the spectral line is given by


En,n′ = RH

[
1

n′2 −
1

n2

]
(n′ > n), (2.56)

where RH is the Rydberg constant of Eq. 1.26; finite
atomic masses of elements often introduce very small but
spectroscopically significant corrections in wavenumbers
and lengths.

The Rydberg formula (Eq. 2.56) yields series of spec-
tral lines, each corresponding to a fixed initial n and
final n < n′ ≤ ∞, as seen in Fig. 2.1. The first five
series are

(i) 
En,n′ =RH

[
1− 1

n′2
]
, n′ = 2, 3, 4, . . . Lyman

(Ly),

(ii) 
En,n′ =RH

[
1

22
− 1

n′2
]
, n′ = 3, 4, 5, . . . Balmer

(Ba),

(iii) 
En,n′ =RH

[
1

32
− 1

n′2
]
, n′ = 4, 5, 6, . . . Paschen

(Pa),

(iv) 
En,n′ =RH

[
1

42
− 1

n′2
]
, n′ = 5, 6, 7, . . . Brackett

(Br),



2.4 Spectroscopic designation 21

(v) 
En,n′ =RH

[
1

52
− 1

n′2
]
, n′ = 6, 7, 8, . . . Pfund

(Pf).

The computer delivers numbers for energies, typically in
Rydberg units, whereas an observer measures (Fabry–
Perot) wavenumbers E = E/(� c), in particular Eq. 1.26
for ionizing hydrogen out of its ground state, i.e.,

RH = 109, 677.576 cm−1 = 1

911.76 Å
,

or its inverse, namely wavelengths in angstroms:

λ = 911.76 Å


E/Ry
. (2.57)

The Lyman, Balmer, Paschen, and other series of
H-lines are found to lie in distinct bands of the electro-
magnetic spectrum, as shown in Fig. 2.1. In particular, the
Lyman series from 1215–912 Å lies in the far ultraviolet
(FUV), the Balmer series from 6564–3646 Å in the optical
and near ultraviolet regions, and the Paschen series from
18 751–8204 Å in the infrared (IR). The sequence of tran-
sitions in each series is denoted as α, β, γ , δ, etc., such
that the first transition (
n = 1) is α, the second (
n =
2) is β, and so on. The wavelengths in the Lyman series
are (Fig. 2.1): Ly α (1215.67 Å), Ly β (1025.72 Å), Ly γ
(972.537 Å), . . . , Ly∞ (911.76 Å). The Lyα line is the res-
onance line in hydrogen, i.e., it corresponds to a (2p–1s)
transition, that is, from the first excited level to the ground
level. Historically, the Balmer series in the visible (opti-
cal) range, readily accessible to ground-based telescopes,
has been associated explicitly with hydrogen, and labelled
as Hα (6562.8 Å), Hβ (4861.33 Å), Hγ (4340.48 Å), Hδ
(4101.73 Å), and so on, towards shorter wavelengths.

Spectral lines of H and other elements had been iden-
tified in astronomical objects long before their quantum
mechanical interpretation, such as the Fraunhofer absorp-
tion lines from the Sun, which have been observed since
1814.

Exercise 2.3 (a) Use the formulae above to show for
which series the hydrogen spectral lines overlap. (b) Cal-
culate the Ly α transitions in H-like ions of all elements
from C to Fe. [Hint: all wavelengths should lie in the X-
ray range λ < 40 Å.] (c) Give examples of transitions in
H-like ions that may lie in the extreme ultraviolet (EUV)
wavelength range 100 Å< λ < 600 Å.

2.4 Spectroscopic designation

Before we describe the details of atomic calculations to
determine the energy levels of a multi-electron atom, it

is useful to describe its angular momenta as a guide to
multi-electron structures.

A multi-electron system is described by its configu-
ration and a defined spectroscopic state. The electronic
configuration of an atomic system describes the arrange-
ment of electrons in shells and orbitals, and is expressed as
nlq . In the case of a helium atom, the ground configuration
is 1s2, where the superscript gives the occupancy number
or the number of electrons in orbital 1s. For carbon with
six electrons the configuration is 1s22s22p2, that is, two
electrons in the 1s shell, two in 2s and two in 2p orbitals
(when both s shells are full). The angular momenta of an
atom depend on its electronic configuration.

The spectroscopic state of the atom is described by the
total orbital angular momentum L , which is the vector
sum of the individual angular momenta of all electrons.
Likewise, the total spin angular momentum S is the vector
sum over spin quantum numbers of all electrons. How-
ever, the state is not unique, and depends on physical
factors, such as the number of electrons in the atom and its
nuclear charge. The spectroscopic identification is based
on the coupling of angular and spin quantum numbers
of all electrons in the atom. The basic scheme is known
as L S coupling or Russell–Saunders coupling, mentioned
earlier. The main point is that in L S coupling the orbital
motion of the electron is not strongly coupled to the spin
momentum. Therefore, the orbital momenta of all elec-
trons can be added together separately to yield a total L
for the whole atom, and the spin momenta can likewise be
added together to give total S. More precisely, both L and
S are treated as separate constants of motion. The Hamil-
tonian is then diagonal in L2 and S2 operators, as both
angular quantities commute with H :

[H, L2] = 0 = [H, S2]. (2.58)

This secures simultaneous eigenfunctions |L SML MS〉 of
the operators L2 and S2, and of the component Lz and Sz .

Vector addition of angular momenta means that the
total is a set of all possible positive numbers with a dif-
ference of unity ranging from the simple addition and
subtraction of the component momenta. Hence, vector
addition of L1 and L2 is the set of positive values from
|L2 − L1|, |L2 − L1 + 1|, . . . , |L2 + L1|. Similar addi-
tion holds for spin S. These can be added for the total
angular momentum, J = L + S. These sums, along with
the Bohr atomic model and the Pauli exclusion principle,
which states that no two electrons in an atom can be in the
same level, determine the total final number of possible
states of the atomic system.

The total symmetry of an atomic state is specified
by L , S and the parity. The L S coupling designation of
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FIGURE 2.1 The hydrogen spectrum and energy levels. The Lyman series lies in the UV, the Balmer series in the optical, the
Paschen series in the near IR, and the Brackett series in the far IR.

an atomic state is conventionally expressed as (2S+1)Lπ

and is called L S term. For a single-electron system, i.e.,
hydrogen, total L = � and total S = s = 1/2. Since the
spin multiplicity (2S + 1) = 2, the 1s ground state term
with L = 0 and even parity is designated as 2S. Similarly
the excited state of 2p electron with its odd parity [(−1)1]
is 2Po, of 3d is 2D, and so on. Thus, all L S terms of hydro-
gen have doublet spin multiplicity and are denoted 2Lπ .

Now consider two electrons with l1 = 1 and l2 = 2. Vec-
tor addition of these two gives three total L; 1, 2, 3, from
|l2 − l1| to l1 + l2. The spin quantum number s is always
1/2. So the vector addition gives two possible total spin
S; s1 − s2 = 0 and s1 + s2 = 1. Therefore, all two-
electron states, such as of helium, are either singlets or
triplets since (2S + 1) = 1 and 3, respectively. Generally,
the L S coupling designation of an atomic state is referred
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to as an L S term. To emphasize: L S coupling is appli-
cable when relativistic effects are not important enough
to couple individual orbital and spin angular momenta
together (this is discussed later).

2.5 The ground state of multi-electron
systems

As mentioned above, the Bohr atomic model and the Pauli
exclusion principle play crucial roles in structuring elec-
trons in multi-electron systems. The n = 1 or K-shell has
two levels, since ml = 0 (l = 0) and ms = ±1/2 (spin
up and down). Hence, with occupancy number 2 of the
K-shell, we can write

K-shell : n = 1, � = 0 m� = 0, ms = ±1

2
.

The ground configuration of the two electrons in helium
is 1s2 with opposite spins, that is total sum S = 0, and
the spin multiplicity is (2S + 1) = 1. Since both are
s-electrons with � = 0, therefore L = 0 and parity is even.
Hence, the helium ground state is 1S. With both L = 0 = S
for the filled K-shell 1s2 (1S), the helium ‘core’ will not
add to the total L and S of the electronic configurations of
elements with more than two electrons.

The situation gets a bit complicated with the next
L-shell for which

L-shell : n = 2, � = 0, 1, m� = 0,±1, ms = ±1

2
.

(2.59)

The electrons can fill up the orbitals, giving electronic
configurations of various elements as

[� = 0, m� = 0] → 1s22s1 (Li), 1s22s2 (Be),
[� = 1, m� = 0,±1]→ (1s22s2) +2p1 (B),

+2p2 (C), +2p3 (N),
+2p4 (O), +2p5 (F),
+2p6 (Ne).

The lithium ground state L S depends only on the single
2s-electron, i.e., in analogy with hydrogen, the Li ground
terms must be 1s22s (2S). With core 1s2 all other excited
terms of helium must be of the form 2L , where L = �, the
orbital angular momentum of the outer valence electron.
The beryllium ground state is 1s22s2 (1S) since the 2s sub-
shell is also filled (paired spins and orbital momenta), in
analogy with helium.

Moving on to the � = 1 open subshell, the ground
L S term for boron is simple: 1s22s22p1 (2Po); again, the
analogy with hydrogen may be invoked since the closed
Be-like electronic core 1s22s2 does not contribute to total
L or S. But the L S assignment by inspection breaks down

for carbon, and all other open L-shell elements, since we
now have more than one electron in the p-shell and it is no
longer obvious how the exclusion principle allows the L S
designation of possible atomic states. Furthermore, if we
consider not just the ground configuration but also excited
configurations then we have (with the exception of hydro-
gen) a myriad of couplings of spin and orbital angular
momenta of two or more electrons.

The general question then is: what are the spectro-
scopic L S terms for a given electronic configuration with
open-shell non-equivalent electrons (single electron in
outer orbit), e.g., n � n′ �′ (n �= n′), and equivalent elec-
trons n�q with the same n and � in a configuration with
occupancy number q? We need not consider the closed
shells or subshells, since their total L = 0 = S, do not affect
the L S states of open-shells.

The exclusion principle states that no two electrons
in an atom may have the same four quantum numbers
(n, �, m�i , msi ). At first sight, it appears straightforward
to apply this rule to construct a list of allowed L S terms.
However, it turns out to be rather involved in terms of
bookkeeping, related to combinations of total ML , MS ,
consistent with the four quantum numbers of all electrons
in a configuration. They are illustrated next.

2.5.1 Non-equivalent electron states

The L S coupling is simple for non-equivalent electrons
since the n are different and the exclusion principle is not
invoked; that is, terms of all possible L and S values are
allowed. The possible values are simply vectorial sums
of the individual � and s values. The easiest example is
that of two s-electrons, i.e., ns n′s of an excited configura-
tion of helium. The total L = 0, since both electrons have
� = 0. But the spins± 1

2 can now add up to S = 1 or 0, i.e.,
the multiplicity (2S+1) can be 3 or 1, respectively. There-
fore, we have two ns n′s (1S, 3S) L S terms, e.g., the first
two excited terms in helium; similarly the next two higher
terms are 1s2p (3P, 1P). We ignore the parity for the time
being, since it is easy to determine even or odd parity from
summed l (Eq. 2.55). For more than two electrons we can
couple L and S in a straightforward manner; say for three
electrons,

ns n′p (1P) n′′d→ 2P, 2D, 2F,
ns n′p (3P) n′′d→ (2,4)(P, D, F).

The couplings are the same for any three electrons spd.
The first two electrons s and p give sp (1P, 3P) terms,
which couple to the d electron as above. The singlet 1P
parent term (S = 0) yields only the doublet (S=1/2) terms,
but the triplet 3P term (S = 1) gives both doublets (S=1/2)
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TABLE 2.1 Six possible combinations for a p-electron.

ml ms 1 1/2 0 1/2 −1 1/2 1 − 1/2 0 − 1/2 −1 − 1/2
Notation 1+ 0+ −1+ 1− 0− −1−

TABLE 2.2 Twenty possible distributions for the np3-electrons.

ML 2 1 0 −1 −2
MS

3/2 1+ 0+ − 1+
1/2 1+ 0+1− 1+ 0+ 0− 1+ 0+ − 1− 1+ − 1+ − 1− 0+ − 1+ − 1−
1/2 1+ − 1+ 1− 1+ − 1+ 0− 0+ − 1+ 0−
1/2 0+ − 1+1−
−1/2 1+ 1− 0− 1+ − 1− 1− 1+ − 1− 0− 0+ 0− − 1− −1+ 0− − 1−
−1/2 0+ 1− 0− 0+ 1− − 1− −1+ 1− − 1−
−1/2 −1+ 1−0−
−3/2 1− 0− − 1−

and quartets (S=3/2) when coupled to the third d-electron.
It is clear that one obtains the same coupled L S terms
regardless of the order in which the terms are coupled,
i.e., same for pds, dsp, etc.

Similarly, for three non-equivalent p-electrons we can
write down the L S terms as follows. Dropping the n pre-
fix, assuming that n �= n′ �= n′′, we have pp′ (1S, 1P, 1D,
3S, 3P, 3D) as the parent terms, which yield

(1S) p′′ → 2P,
(1P) p′′ → 2(S, P, D),
(1D) p′′ → 2(P, D, F),
(3S) p′′ → (2,4)P,
(3P) p′′ → (2,4)(S, P, D),
(3D) p′′ → (2,4)(P, D, F).

2.5.2 Equivalent electron states

For equivalent electron configurations nlq , both the vector
addition of angular and spin momenta and the Pauli exclu-
sion principle are to be considered. The exclusion princi-
ple disallows certain L S terms, and requires an explicit
evaluation of all possible combinations of (mli ,msi ) for
the q equivalent electrons to form the allowed values of
total (ML ,MS).

Consider the equivalent electron configuration np3. As
seen above for non-equivalent electrons not subject to the
exclusion principle, the six possible L S states are: 2,4S,
2,4P, 2,4D and 2,4F. But many of these states are elim-
inated by the exclusion principle. To wit: no L = 3 or
F terms can be allowed since two of the three electrons

will have the same (mli ,msi ). But we must do the book-
keeping systematically as follows. The p subshell can
have

ml = 1, 0, −1; ms = 1/2,−1/2, (2.60)

Hence, with common values of n and l(=1) but differing
in ml and ms , there are six possible combinations of ml
and ms , or cells, as given in Table 2.1.

Now the combination of three 2p electrons can
be expressed as all possible distributions of the type
(1+0+1+), (1+1−1+), etc. (Do we detect a problem
with these combinations?) A distribution in the cell
(1+ 0+ 1−) is associated with values ML = 2 and
MS = 1

2 . Since electrons are indistinguishable, they may
be permuted without affecting the distribution; thus
(1+ 0+ 1−), (0+ 1+ 1−) are the same. These electrons
are grouped according to their respective values of ML
and MS . Since

ML =
∑

i

ml ; MS =
∑

i

ms , (2.61)

each L S term must have a cell with the highest ML = L
or MS = S. The rule is that the highest ML or MS
must have a cell with ML − 1, ML − 2, . . . , −ML and
MS − 1,MS − 2, . . . , −MS . The number of indepen-
dent distributions of three indistinguishable electrons in
six orbitals is (6× 5× 4)/3! = 20. The combined elec-
tronic cells are now grouped according to ML and MS
in Table 2.2. A distribution of (1+ 0+ 1−) has the values
ML = 2 and MS = 1/2. Table 2.2 shows all 20 possible dis-
tributions of (ml , ms ), following the exclusion principle.


