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Preface

Inertial microelectromechanical sensors – commonly abbreviated to inertial

MEMS – have a history of more than two decades of intense research, devel-

opment, and commercialization. Sometimes unperceived, they left the shadow

of military and space-related utilities and entered daily life hidden in products

surrounding us. Cars with airbag-release sensors and electronic stability control

have become a matter of course. Activity monitoring of pacemaker patients and

stabilization of platforms such as transport robots and cameras are now improv-

ing our quality of life. The creation of easy-to-use human–machine interfaces has

helped many people to conquer complicated equipment around us, not only com-

puter games. The penetration of inertial MEMS – often merged with other sensor

systems – into new application areas is a trend that is still gaining momentum.

The intention of this book is to reflect the interdisciplinary complexity of

inertial MEMS. It will try to give a systematic survey of the design, fabrication,

and performance evaluation of MEMS-based inertial sensors, with emphasis on

the practical problems arising from the impact of technological imperfections

and of often harsh environmental conditions. A product going to the market has

to be guaranteed to have a certain level of reliability against failure throughout

its lifetime.

The basic concepts and the theoretical background of inertial measurements

will be presented. However, the book has evolved not from academic activity but

rather from conceptual and development work within industry. It is intended

to address the symbiosis of practice and theory. Consequently, the analysis and

transformation of application requirements into design concepts plays a signif-

icant role. Considerable space is devoted to the analysis and modeling of par-

asitic effects, of shock and vibration robustness, of the stability of the main

performance parameters and so on, since this is necessary for practical work.

The book contains nine chapters. Six of them – including the introduction –

cover various aspects of MEMS, with a special focus on inertial MEMS. The

first chapter describes the most important transducers and their properties. The

second one is dedicated to non-inertial forces such as spring forces and damp-

ing forces that play a crucial role for designing inertial MEMS. The next two

chapters cover the main MEMS technologies, including packaging, while the elec-

tronic interfaces are presented in a further chapter. These six chapters may be
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interesting not only for people working with inertial MEMS but also for every-

body who is looking for a general introduction into mechanical MEMS.

The following two main chapters are devoted to the two representatives of

inertial MEMS – accelerometers and gyroscopes. Here the focus is on the basic

principles, the methods and models to describe the dynamic behavior, and a

comprehensive presentation of different approaches and architectures, including

their pros and cons. A short overview on test and calibration is added as a

separate chapter.

The book is written on an engineering level. Where possible, effects and pro-

cesses are described analytically by mathematical models in order to impart a

feeling for the order of magnitude of different effects.

The book should be useful not only for specialists developing, manufacturing,

and using inertial sensors but also for people working in the application field, for

product managers, and for sales people looking for background knowledge in their

area. The book can serve as a starting point for further academic investigations,

for instance in the area of shock-impact analysis of an entire packaged gyro,

including the effect of signal processing.

In the experience of the author, many engineers, physicists, and mathemati-

cians are thankful for an exact but comprehensible presentation of the complex

and difficult world of MEMS-based inertial sensors, where the effects and models

behind the practical problems are reflected without improper simplifications or

phenomenological descriptions. The book is a modest attempt to meet some of

these challenges. Having worked with many specialists in the production, testing,

and design of inertial sensors, the author is convinced that the book can meet

actual needs, and hopes to elicit the broad interest of practitioners and scientists

in this area. For interested people, including students, the book may also serve

as an introduction to the world of mechanical MEMS.



Acknowledgments

I would like to express my gratitude to all my colleagues at SensorDynamics AG

(Austria) and the Institut für Silizium Technologie (ISIT) of the Fraunhofer Soci-

ety (Germany) for creating an atmosphere that has helped to solve the manifold

problems of MEMS industrialization. I would like to thank the ‘Inertial Micro

Sensor Systems’ team, with whom I have had the great privilege of working even

during the childhood of the newly founded company SensorDynamics AG. This

time was most fruitful, flooding us all with new problems and insights into how

to solve them.

My thanks go to my colleagues from SensorDynamics for providing me with

such necessary illustrative material for the book as SEM photographs and

measurement plots. Gottfried Frais, Manfred Heller, Christian Rossadini, Jörg
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Notation

1. A convention employed in this book is the slightly lax usage of “s” as differ-

ential operator, s = d/dt, as argument of the Laplace transformation, and as

argument of the Fourier transformation, s = jω. The case-dependent unam-

biguous or multivalent meaning is usually clear from the context. Accordingly,

a filter function is described by f = f(s), which means that in a transfer

function this expression has to be interpreted as a Laplace or Fourier trans-

formation and within a differential equation as a rational fraction of two

polynomial differential operators. Correspondingly, a variable like x has to be

treated as a representant in the time domain if s = d/dt is supposed, or as a

Laplace/Fourier-transformed function if s is meant as the argument of such a

transformation.

2. Unless stated otherwise, coordinate systems pertain to the platform carrying

the inertial sensor. In this case the x- and y-axes lie in the plane of the plat-

form, while z is the out-of-plane axis. Out-of-plane and z-axis orientation are

used synonymously.



1 Introduction

An inertial sensor is an observer who is caught within a completely shielded case

and who is trying to determine the position changes of the case with respect to

an outer inertial reference system.

Inertial sensors exploit inertial forces acting on an object to determine its

dynamic behavior. The basic dynamic parameters are acceleration along some

axis and the angular rate. External forces acting on a body cause an acceleration

and/or a change of its orientation (angular position). The rate of change of the

angular position is the angular velocity (angular rate). A speedometer is not an

inertial sensor because it is able to measure a constant velocity of a body that

is not exposed to inertial forces. An inertial sensor is unable to do so; however,

if the initial conditions of the body are known, their evolution can be calculated

by integrating the dynamic equation on the basis of the measured acceleration

and rate signals.

In the overwhelming majority of practical applications, such as vibrational

measurements, active suspension systems, crash-detection systems, alert systems,

medical activity monitoring, safety systems in cars, and computer-game inter-

faces, the short-term dynamic changes of the object are of interest. But there

are also many applications where inertial sensors are used for determination of

the positions and orientations of a body, as in robotics, general machine con-

trol, and navigation. Owing to the necessity of integrating the corresponding

dynamic equations, the accuracy requirements in these applications are usually

higher because the measurement errors and instabilities of the sensors are accu-

mulated over the integration time. Often inertial sensors are used in conjunction

with other measurement systems, as in the case of robotics, where they are used

together with position and force/torque sensors, or in the case of the integration

of Inertial Navigation Systems (INS) with Global Positioning Systems (GPS) in

cars. The accuracy of INS measurements can be improved significantly by cor-

recting them with the GPS data using Kalman filtering procedures. The INS can

then aid navigation even when the GPS is degraded or interrupted because of

jamming or interference.

1.1 A short foray through the pre-MEMS history

The history of inertial sensors is relatively short. Despite the fundamental role

played by inertial sensors in controlling the movement of a body, very little is
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known about early applications. This is even more remarkable given that most

of the ingredients for building acceleration and angular-rate sensors, such as fine

mechanics and precise spring technologies, were available from the late Middle

Ages on and were used in the construction of, for instance, beautiful precision

clocks.

Accelerometers
One of the most likely reasons for the late appearance of acceleration sensors (or

“accelerometers” for short) was the lack of indicator technologies, or, in modern

phrasing, the lack of interfaces. This is certainly the reason why some former

applications of acceleration switches that needed only very simple mechanical

interfaces can be found. An acceleration switch initiated an action at a certain

level of acceleration, as in the activation of a detonator in some bombs during

the First World War.

The first commercial accelerometer for broader application is credited to B.

McCollum and O. S. Peters and was developed around 1920 [McCullom and

Peters 1924]. It was based on a tension–compression resistance of a Wheatstone

half-bridge where the resistances were formed by carbon rings. The next techno-

logical step was the use of strain-gauge transducers starting from around 1938,

followed by the introduction of piezoelectric and piezoresistive transducers at

the end of the 1940s. These transducers could capture the forces caused by the

displacement of an elastically mounted mass within the sensor structure. Minia-

turization and the high robustness of this type of sensor paved the way for broad

applications in industry, terrestrial transport, aerospace, military uses, seismol-

ogy, science, and so on. The piezoelectric and piezoresistive transducer principles

were also among the first to be employed at the beginning of the entry into the

world of inertial microelectromechanical systems (MEMS) – the world of the

combination of micrometer- and nanometer-scale mechanical elements, sensors,

actuators, and electronic circuits on one carrier or even on one chip. This entry

was prepared in the late 1970s, for instance with the demonstration of a batch-

fabricated silicon accelerometer with piezoresistive transducers. The silicon bulk

micromachined proof mass was bonded between two glass wafers [Roylance and

Angell 1979]. The commercialization of similar devices began around 10 years

later and was very soon based on a variety of available transducer principles such

as the sensing of capacitance changes between fixed and movable plates, the fre-

quency measurement of resonant devices, the stabilization of a tunneling current

by a closed-loop system, the sensing of thermal changes between a heater and a

movable heat sink, and the sensing of changes of the thermal distribution within

an air bubble. This broad invasion of new and old ideas in the world of micro-

electronic technologies has opened the way to inexpensive mass applications of

inertial sensors in industry, cars, medicine, consumer goods, and so on.

Everybody knows the pioneering role of MEMS-based 50g accelerometers used

in airbag ignition devices, which became the first high-volume product in the area

of inertial MEMS. It was especially encouraging that within these successful high-

volume products an example of the full monolithic integration of sensor and
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signal processing on one chip could be found. Analog Devices, supported by

strong governmental funding, developed a special BiCMOS-MEMS process com-

bining a known microelectronic process with a polysilicon deposition, etching,

and release technology. Various inertial sensors were developed on the basis of

this process, of which the first was the 50g accelerometer [Analog Devices 1993].

Gyroscopes
The stabilizing effect of rapidly rotating disks has been known for a long time and

was used in ancient times for yo-yo-like toys and for ceremonies. Real angular-

rate sensors emerged quite late but have had a remarkably long history compared

with accelerometers. This obviously is due to the much lower early requirements

on the speed of the interfaces and, of course, to the moderate values of the

signals to be measured. For instance, the Earth’s rotation is characterized by a

rate signal of 360◦/24 hours or 0.1◦/s.

The first technical realization of an angular-rate sensor took place around

1817 with the mechanical gyroscope designed by Johann Gottfried Friedrich

von Bohnenberger in Tübingen in Germany. It was not a true sensor but a

demonstrator of rotational effects.

The system was based on the spinning top and – not surprisingly – was used to

demonstrate the mechanism of the Earth’s axis’ very slow precession accelerated

in duration from a full cycle of 25 800 years to a small amount of seconds or

minutes. Similar demonstrators were built around 1830 by the American Walter

Johnson (Johnson’s Rotascope).

The principle underlying the emergence of Coriolis forces within a rotating

non-inertial coordinate system was demonstrated in 1851 by the French scientist

Leon Foucault by building a 67-m-long pendulum with a mass of 28 kg within the

Paris Pantheon (Fig. 1.1). This was the first real rotation sensor which measured

the rotation of the Earth. Incidentally, a similar experiment was first performed

in 1661 by the Italian physicist Vincenco Viviani and, after Foucault, imple-

mented in countries all over the world. Under the influence of the Earth’s rota-

tion the oscillation plane of such a pendulum changes by 360◦ sinϕ in 24 hours.

The angle ϕ is the geographic latitude of the experimental location. At the equa-

tor, the Foucault Pendulum does not show any reaction; at the poles, the rotation

would be the full 360◦/24 hours. At all other places the tip of the pendulum will

draw nice rosettes on the floor.

The Coriolis force was introduced by Gaspard-Gustave Coriolis, a French sci-

entist, who described it in 1835. The Coriolis force appears in the equation of

motion of an object in a rotating frame of reference and depends on the linear

or angular velocity of the moving object. It will be considered in more detail in

Chapter 8.

Using this principle, in 1852 Foucault built a spinning-top gyroscope (“Meri-

diankreisel”), which can be considered the basis of modern spinning-top

gyros. The term “gyroscope” was introduced at this time (“gyros” – rotation,

“skopein” – vision). However, the rise of rotation sensors was preceded by the use
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Figure 1.1 Foucault’s Pendulum, in the Pantheon, Paris.

of the stabilizing ability of spinning wheels in torpedoes and cannon ammuni-

tion. Only in 1904 was the technical principle of the fast-spinning-top gyroscope

patented by the German art historian Hermann Anschütz-Kämpfe [Schell 2005],

who developed the idea of using the gyroscope within a compass (in 1908). The

spinning wheel in a gyroscope is mounted on gimbals so that the wheel’s axis

is free to orient itself. The key element for a compass was the introduction of a

mechanism that results in an applied torque whenever the compass’ axis is not

pointing North. The precession returns the compass’ axis towards the true North

if it is disturbed towards another orientation.

Other inventors such as the American Elmer Ambrose Sperry (1910) followed

Anschütz-Kämpfe, and the acceptance of the gyro-compasses by the navy led to a

quick penetration first on large ships and later on smaller ones and on airplanes.

Inertial navigation and platform stabilization in aircraft and naval vessels

remained the domain of spinning-top gyroscopes for a very long time. Driven

by the requirements for cost reduction and miniaturization, around 1960 new

types of gyros like the vibrating-string gyro [Quick 1964], the tuning-fork gyro

[Hunt and Hobbs 1964] and the vibrating-shell resonator emerged and opened the

way to a drastic size and weight reduction, which finally ended with the transfer

of these principles into the world of MEMS. The vibrating-string principle is

based on the action of the Coriolis force on a simple oscillator such as a mass

on a string or a vibrating beam; the tuning-fork principle is based on balanced

oscillators; and the vibrating shell uses the two vibration modes of a ring or a

cylinder as in the classic wineglass effect. These principles will be presented in

Chapter 8.
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The new miniaturized vibrating gyros captured marked shares of the market

step by step. However, for high-precision applications a rival for the classical

gyros emerged around the end of the 1970s: the optical gyroscope. These gyros

based on optical ring resonators and later on fiber optics have dominated, for

instance, the aircraft navigator market since 1980.

The transition from miniaturized gyros to the MEMS gyros was smooth. In

miniaturized gyros it has become more and more difficult to realize bearings

for endlessly rotating objects. The same problem applies for the early MEMS

technologies and – with respect to specific friction, wear, and reliability – is still

present today despite all the progress in this area. Only in 2008 did the first

rotating MEMS gyro, developed by the Japanese company Tokimec, emerge on

the market. Previous MEMS gyros used not the spinning-top principle, but rather

the vibration or oscillation of masses within small linear or angular intervals as

prepared by the miniaturized mechanical constructions. These so-called Coriolis

vibratory gyroscopes (CVGs) – irrespective of whether or not they are based

on MEMS – use at least two vibration modes of the structure, in which the

Coriolis force excited by the interaction of the external rotation with the so-

called primary mode causes an energy transfer to the secondary vibration mode.

The vibrating elements are joined to hinges or anchors via springs. Such springs

can be outstandingly formed in silicon because silicon possesses not only excellent

mechanical and thermal properties in comparison with classical metals but also

outstanding machinability.

However, the full implementation of a complete gyroscope structure by using

only microelectronic or emerging MEMS technologies was not the first step

towards MEMS-based gyroscopes. Instead the designers first tried to use MEMS

technologies to create key components for miniaturized gyros, such as the quartz

tuning forks with piezoelectric actuators and piezoresitive transducers devel-

oped by Systron Donner [Soderkvist 1990] and the silicon-based rings includ-

ing the spring suspension for the vibrating-shell systems developed by British

Aerospace System and Equipment [Hopkin 1997]. Such components were then

mounted on appropriate carriers. Concurrently, typical MEMS-technology-based

devices formed and bonded on wafer level were proposed around 1986 by the

Charles Draper Laboratory [Greiff et al. 1991] and demonstrated first in 1991

with a bulk-micromachined tuning-fork gyroscope and a little bit later, in 1993,

with a silicon-on-glass tuning-fork gyroscope [Weinberg et al. 1994]. In 1998,

researchers at the University of Michigan demonstrated a polysilicon-ring gyro-

scope produced with a trench-refill technology [Ayazi and Najafi 1998]. Predeces-

sors of different batch-fabricated gyros that used more exotic technology exist,

but these designs could not prevail against products based on technologies that

were becoming mainstream MEMS technologies. One of the most interesting of

the non-mainstream products was the vibrating-ring gyroscope of the University

of Michigan produced using metal electroforming of nickel into a thick polyimide

mold on a silicon substrate, which was demonstrated in 1994 [Putty and Najafi

1994].
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There were hundreds of different demonstrators from the University of

Berkeley, from Samsung and Murata, from the Hahn-Schickard Gesellschaft–

IMIT (Germany) and many others, but only a few were commercially suc-

cessful. An excellent overview of the emerging MEMS-based inertial sensors

can be found in Yazdi et al. [1998], which can be complemented by reading

Shkel [2001].

1.2 Applications and market

The applications of the classical accelerometers are vibrometry, shock detection,

tilt measurement, dynamometry, seismology and other areas related to test and

evaluation of devices exposed to inertial forces. Some of these applications coin-

cide with the main application areas of classical gyroscopes – inertial navigation

and platform stabilization. MEMS technologies dramatically changed this rel-

atively peaceful picture. Nearly every month a new application is created and

checked for commercial attractiveness and realizability.

Some general trends
The trends of the inertial-MEMS market’s development are not significantly dif-

ferent from those of the entire MEMS market if one excludes the two leading

and very old and stable products – ink-jet heads for printers and write/read

heads for magnetic and optical memory disks. These two market segments

alone occupied around an estimated 25% of the about 10 Bn $ MEMS mar-

ket in 2010. MEMS addressed very fragmented markets that have had pre-

dominantly low-volume and only a few large to truly high-volume applica-

tions. This market is transforming more and more into a high-volume market

with steadily expanding size, and, crucially, with a growing number of different

applications.

Compound annual growth rates (CAGRs) of 5% to 20% are typical for these

different applications. At present the number of companies manufacturing

MEMS products is around 270 in addition to 150 fab-less companies. Around 90

R&D industrial facilities, which are able to develop prototypes and to perform

small-volume production, round off the picture of today’s MEMS community.

It should be borne in mind that in the 1990s three to five years were needed

to develop new MEMS designs and five to eight years from the prototypes to

volume production. In the case of safety-critical applications the time lapse was

even longer. Now the overall time from design start to volume production has

decreased by a factor of two to three and is reducing further. Consequently,

the interest in research and development is enormous and is still growing. It

will continue to grow as long as MEMS products penetrate all areas of human

activity. Today the distance which has thus far been covered on the way to

all-encompassing applications of MEMS and inertial sensors is almost negligible

in comparison with the distance still to go.
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The inertial-MEMS market
Within the MEMS market modern inertial sensors – accelerometers and gyros-

have gained a considerable share, exceeding 20% of the expected 12 Bn $ MEMS

market in 2011 (∼6 Bn $ in 2009). In 2005 nearly 80% of all applications were

related to automotive safety functions such as automatic break systems (ABSs),

airbag sensors, rollover sensors, electronic stabilization systems (ESP), and other

anti-skid systems as well as to navigation. Starting with 50g accelerometers in

airbag safety systems, the next step – the introduction of electronic stabilization

control (ESC) by Bosch and Systron Donner in 1994 – was significantly acceler-

ated by the disastrous elk test of the newly invented Mercedes-Benz A-Class in

1997. ESC had to rescue the reputation of the brand name of one of the leading

makers of high-quality cars. In ESC, yaw-rate gyroscopes and low-g sensors are

usually the decisive information sources for controlling the finely allotted brake

forces on the different wheels to avoid accidents.

Rollover protection, highly sophisticated front and side airbags combined with

safety-belt control, and suspension control, especially for trucks, and many other

applications have not only expanded the market but also forced the development

of new low-g accelerometers, of gyroscopes sensitive in different axes and with

different accuracy levels, and – importantly – the co-integration of two or more

sensors in one package or even on one chip.

Remarkably, the market shares of gyroscopes and accelerometers nearly equal-

ized around 2005. New accelerometer applications mainly in the consumer market

have shifted the relation to a stable 40% share of gyroscopes within the inertial-

MEMS market. After 2012–13 the picture may change because the killer appli-

cations in the consumer market, which with an expected 1 Bn $ contribution

will then be at least comparable in size to the other segments, have not yet been

defined and are hard to predict.

Today, large companies are fighting for their share in the market of automotive

inertial MEMS sensors. Among these, the world’s largest MEMS-sensor manufac-

turer is Bosch in Germany, which has put considerable effort into the production

of MEMS gyroscopes for automotive applications. However, British Aerospace

Equipment Silicon Sensor Systems (BAE SSS), BEI Systron Donner, Delphi-

Delco, Murata, Matsushita, and Samsung have also long been very successful

and delivered many millions of gyros to component manufacturers in the car

industry. Within the accelerometer market the Norwegian company Sensonor,

with its 50g accelerometers, and the Swedish VTI Technolgies, which was long

the leader in the low-g accelerometer market, have made surprisingly dominant

contributions to the emerging killer applications within the automotive indus-

try. However, the number of high-volume players in the inertial sensor market

is quite limited, encompassing Bosch, Analog Devices, Freescale, and almost a

dozen others.

Besides the automotive industry, the remainder of the market is dictated by

consumer applications, which in recent years have shown dramatic growth, with

CAGR 25%–30%. Accepted and growing applications are related to the use of
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inertial sensors in hand-held cameras for picture stabilization, in personal com-

puters for hard-disk protection against mechanical shocks, in pedometers for

motion sensing, and in more exotic products such as the two-wheel Human

Transporter of Segway. Probably one of the most interesting applications is the

motion sensing integrated into mobile phones, game controllers, toys and other

human–machine interfaces. The Nintendo Wii’s motion-sensing remote control

has attracted the broad interest of the public to inertial MEMS. The consumer

and information technology (IT) sector has increased from about 10% in 2005

to about a 45% share in 2009/10.

Within the consumer market the companies Analog Devices, Kionix, ST Micro-

electronics, and MEMSIC are the dominating players within the accelerometer

business, while Panasonic and Murata have long led the gyro market. However,

every year new companies are entering the market for inertial sensors, and the

established manufacturers of inertial MEMS as well as newcomers are focusing

their attention more and more on the consumer market. New systems such as

very small and cheap one-axis sensors as well as more highly integrated multi-

dimensional accelerometers and gyroscopes are now on the market. ST Micro-

electronics introduced in 2009 a three-axis high-performance gyroscope, whereas

VTI announced a three-dimensional (3D) accelerometer combined with a 1D

gyroscope [MEMSentry 2009]. Sensordynamics introduced in 2008 a combined

one-axis accelerometer and one-axis gyroscope [Micronews 2009] and announced

a three-axis accelerometer plus one-axis gyro combination. The race into the

world of multi-axis inertial sensors, including completely integrated (six-axis)

inertial measurement units (IMUs), is fully under way.

An IMU measures the accelerations and rotation rates on all three axes and, in

principle, represents the (functionally) ultimate inertial sensor. Applications are

numerous, ranging from medical 3D gesture and motion recognition via human–

machine interfaces (HMIs) for game controllers and mobile phones to personal

navigation systems.

The high-volume application of inertial MEMS in the automotive and con-

sumer markets was for a long time in some contrast with aeronautic and defense

applications. Here the high added value guaranteed a large benefit for the cus-

tomer, and, consequently, the low quantities have been to some extent compen-

sated for by good prices. Remarkably, within the last few years many inertial-

MEMS products developed for the aeronautic and defense sector have reached

commercialization. This sector has doubled within the last five years, approach-

ing now around 50% of the size of the automotive segment.

As with aeronautics and defense markets, the industrial and medical segments

of inertial MEMS’ applications are also at the stage of entry to high-volume mar-

kets. Applications such as activity monitoring in pacemakers have considerable

dissemination throughout the world. It can be expected that the inertial control

of robots and machine parts with more than one degree of freedom (DOF) will

achieve a quite broad distribution.
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1.3 The ingredients of inertial MEMS

Inertial sensors convert the inertial forces caused by the input acceleration or

rate signal into some physical changes such as deflection of masses or devia-

tions of stresses, which then are captured by a corresponding transducer and

transformed into an electrical signal. The electrical signal is subjected to some

estimation procedures such as linear or nonlinear filtering in order to derive an

estimate of the input signal. The final output represents the calibrated value of

the measured acceleration or rate. Of course, not only electrical output signals

are feasible; however, only in such exceptional cases as for instance in highly

explosive environments are other forms of the output, such as optical signals,

used. Within this book only sensors with electrical output signals are treated.

Accelerations and angular velocities are vectorial signals possessing absolute

values and orientations. If only one component of the vector should be measured

the sensor is denoted 1D or one-axis. If two or all three components of the

acceleration or the rate signal should be captured, the sensor is called a 2D or

3D accelerometer, or a rate sensor.

Today a MEMS-based accelerometer or gyroscope is understood as a complete

product that is packaged, calibrated, and tested, and has to be delivered to

the customer, who wants to integrate this component with minimal effort into

a higher-level measurement or control system. The level of accuracy required

depends on the application. The environmental conditions for the integration

of inertial MEMS at the customer site may be also quite different and usually

are divided into classes with respect to the applicable temperature range and the

exposure to humidity and aggressive chemicals as well as to vibration and shocks.

The length of the lifetime, the reliability, and the safety against failures during

operation may vary significantly, and to a large extent determine the product’s

price. Consequently, orders of magnitude may separate the complexity and the

price of an inertial MEMS for different applications even if the underlying sensor

principles are identical.

In order to make the following explanations and terminology systematic, it

is meaningful to sketch a general structure of a sensor system with emphasis

on inertial sensors. The system consists of not only the sensor itself but also

additional components such as transducers and electronics. In Fig. 1.2 a very

crude representation of the whole system is shown. The intrinsic sensor trans-

forms the input signal – acceleration or rate – into a physical objective, which

can be gathered by the transducer and transformed into an electrical signal. The

sensor and transducer are subject to interactions with the package. In inertial

MEMS the main interactions are stress and heat transfer. Environmental factors

may be transferred via the package to the sensor and transducer, changing their

behavior.

The electronic part consists of an input stage that amplifies the transformed

signal into a conveniently manageable form. The electronics also may generate
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Actuator

Sensor
Trans-
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Electronics

Input stage

Output

signal

Input

signal

Figure 1.2 The general architecture of a sensor system.

excitation and control signals that are necessary for bias setting and for oper-

ational conditioning. Actuating stimuli may be used, for instance, for feedback

control, as well as for test signals. In practice the borders between these generic

blocks are quite fuzzy. The transducer and the electronic input stage often form

an indivisible object where the input stage provides the necessary biasing and

excitation for the transducer and, vice versa, parts of the input stage may act as

components of the transducer. The transducer is often directly integrated into

the intrinsic sensor. In general, the application of a certain transducer principle

usually entails not only the choice of a certain transducer element but also the

adaption of the sensor and the electronics.

Nevertheless, the generic structure shown allows us to systematize the under-

standing of the main interactions between the components.

r Feedback control is beneficial with respect to linearity and optimization of

transfer characteristics. However, it requires actuators and, thus, additional

effort. Therefore, not all sensors have feedback components and, where possi-

ble, sensors operate in an open-loop mode.
r The system performance is to a large extent determined by noise and distur-

bances. Typical noise sources exist within inertial MEMS. So, the intrinsic

inertial sensor exhibits mechanical noise caused mainly by friction with the

usually gaseous environment. For not-too-ambitious performance targets the

dominant noise stems from the second noise source – the transducer and elec-

tronic stages, and here mainly from the electronic input stage.

In accord with the system structure illustrated, the various basic sensor princi-

ples, the transducer mechanisms, the corresponding governing models, and, last

but not least, the typical error sources and performance parameters of the overall

system will be covered by this book.

The seemingly central role of the sensor principle within inertial MEMS quickly

dissolves when one looks at the many stages of creating the final product.

r A working environment for the sensor is usually established by the so-called

zero-level packaging.
r The sensor signals must be acquired and processed.
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r In many cases, as for instance in all vibratory gyroscopes, the sensor has to

be driven in a primary movement that must be controlled to high accuracy.
r For high-performance applications, on-line-monitoring functions are inte-

grated.
r The output signals for the external communication – including, if applicable,

the results of in-build tests – and monitoring must be formed.
r The sensor and the signal-processing unit have to be packaged and bonded to

connections with the external pins or solder balls of the (first-level) package.
r The whole product must be calibrated, which requires special equipment in

order to create the necessary accelerations or rate signals with high accu-

racy. Selected representative functions are tested, usually within the entire

temperature range of application.
r Last but not least, more or less comprehensive qualification procedures must

be passed before production may be initiated.

Similarly to most other MEMS applications, the key for success within the

area of inertial MEMS is the comprehensive development and integration of

all the mentioned components necessary for these multidisciplinary products:

MEMS technologies, first- and second-level packaging, application analysis, sys-

tem design considering the specific effects of technology tolerances and forces

in a micro- to nano-scale environment, test methods for high-volume produc-

tion, and, finally, reliability and lifetime guarantees on an unprecedented scale,

especially for automotive and medical applications.

Huge investments were necessary to build up high-volume fabs and to run

a high-yield production. Partial solutions have reached some maturity. For

instance, selected surface and bulk micromachining technologies of leading man-

ufacturers and of R&D facilities have become something like standard processes

and are free to be used by the scientific community for prototype development.

However, most of the subareas are still in a phase of rapid growth and improve-

ment. Correspondingly, product cycles are changing rather quickly despite the

stringent stability requirements of the automotive industry. The third generation

of acceleration sensors and gyroscopes is now on the market, the next generation

ante portas.

References

Analog Devices (1993). ADXL50 – monolithic accelerometer with signal condi-

tioning. Data sheet, Analog Devices, Norwood, MA.

Ayazi, F. and Najafi, K. (1998). Design and fabrication of a high performance

polysilicon vibrating ring gyroscope, in Proceedings of the IEEE Micro Electro

Mechanical Systems Workshop (MEMS ’98), Heidelberg, pp. 621–626.

Greiff, P., Boxenhorn, B., King, T., and Niles, L. (1991). Silicon monolithic

micromechanical gyroscope, in Proceedings of the IEEE 1991 International



12 Introduction

Conference on Solid State Sensors and Actuators, San Francisco, pp. 966–

968.

Hopkin, I. (1997). Performance and design of a silicon micromachined gyro, in

Proceedings of the Symposium on Gyro Technology, Stuttgart, pp. 1.0–1.10.

Hunt, G. W. and Hobbs, A. E. W. (1964). Development of an accurate tuning-

fork gyroscope, in Symposium on Gyros, Proceedings of the Institute of

Mechanical Engineers (London), 1964–65, 179(3 E).

McCullom, B. and Peters, O. (1924). A new electric telemeter. Technology Papers

of the National Bureau of Standards, 17(247).

MEMSentry (2009). ST’s new 3-axis analog gyroscope. MEMSentry, December

2009, 47:5.

Micronews (2009). Inside the first combination inertial sensor. Micronews, May

2009, 80:7.

Putty, M. and Najafi, K. (1994). A micromachined vibrating ring gyroscope, in

Technical Digest Solid-State Sensor Actuator Workshop, Hilton Head Island,

SC, pp. 213–220.

Quick, W. H. (1964). Theory of the vibrating string as an angular motion sensor.

Transactions of the ASME Journal of Applied Mechanics, 523–534.

Roylance, L. M. and Angell, J. A. (1979). A batch-fabricated silicon accelerom-

eter. IEEE Trans. Electron Devices, 26:1911–1917.

Schell, B. (2005). 100 Years of Anschuetz gyro compasses – 100 years of innova-

tions in nautical technology, in Symposium Gyro Technology 2005, Stuttgart,

pp. 1–20.

Shkel, A. M. (2001). Micromachined gyroscopes: challenges, design solutions, and

opportunities. Proceedings of the SPIE, 4334:74–85.

Soderkvist, J. (1990). Design of solid-state gyroscopic sensor made of quartz.

Sensors and Actuators A, 21/23:293–296.

Weinberg, M., Bernstein, J., Cho, S. et al. (1994). A micromachined comb-drive

tuning fork gyroscope for commercial applications. Proceedings of the Sensor

Expo, Cleveland, OH, pp. 187–193.

Yazdi, N., Ayazy, F., and Najafi, K. (1998). Micromachined inertial sensors.

Proceedings of the IEEE, 86(8):1640–1659.



2 Transducers

The basic building blocks of inertial MEMS are sensing elements to acquire the

reaction of the measurement system, actuators to excite the mechanical system,

and other components of the mechanical system such as proof masses, beams,

springs, and suspensions. The properties and dimensions of all these components

are decisive for their application within a given sensor system.

Silicon, with its outstanding mechanical properties (e.g. Gad-el-Hak [2002] and

Franssila [2004]), plays a key role for building these blocks. It is as strong as steel.

It is ideally elastic, not exhibiting plastic deformations up to the yield point as

do most metals. The elastic modulus E may be as large as 190 GPa, depending

on crystal orientation, and the yield strength is about 7 GPa. With appropri-

ate doping (boron, phosphorus) concentration the resistivity can be changed by

eight orders of magnitude between 10−4 and 104 Ω cm; thus structures such as

conductive plates or comb fingers can be manufactured. The density of silicon is

2300 kg/m3 , the thermal conductivity is 1.57 W/(cmK), and the thermal expan-

sion coefficient CT = 2.33 × 10−6/K [Kovacs 1998].

Polycrystalline silicon, or “polysilicon” for short, which is made up of small

single-crystal domains of silicon (grains), has similar properties and is the most

popular building material for surface-micromachined devices (SMMs).

Monocrystalline silicon is anisotropic and exhibits pronounced orientation-

dependent properties such as piezoresistivity and piezo-Hall effects. The mechan-

ical and electrical properties of polysilicon are slightly inferior to those of

monocrystalline silicon but are very similar to those of an isotropic material;

thus, the material is much easier to handle than monocrystalline silicon.

While the main focus of this chapter is on transducers, some material prop-

erties that are relevant to both transducers and general mechanical components

of inertial MEMS will be summed up first in order to better understand the

relevant transducer mechanisms.

2.1 Anisotropic material properties, tensors, and rotations

Anisotropic material properties play a prominent role in inertial MEMS. A suit-

able mathematical description of these properties is provided by the concepts

of stress and strain. Considering the fundamental role of these terms in the
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(a) (b)

Figure 2.1 Axial and shear forces acting on a body. (a) Beam elongation under axial
force. (b) Cube deformation under shear load.

engineering literature, a short introduction to the matter is given. Readers famil-

iar with these concepts can skip this section.

2.1.1 Stress, strain, and piezoresistivity

Hooke’s law
The concept of stress and strain was developed in order to describe the inter-

relation between external forces, acting on a solid body, and the internal forces

between the volume elements of the body, which cause the deformations. Another

objective was to reflect the effects a strained condition can induce on material

properties such as resistivity.

Stress is a force distribution and strain is the distribution of deformations.

Normal stresses
The stress–strain relation is a generalization of Hooke’s law, which, when applied

to a metal bar orientated along the x-axis and with length lx0 and cross-section

Ax , can be expressed as (see Fig. 2.1(a)):

Fx = EAx
∆lx
lx0

or σx = Eεx , (2.1)

where σx is the axial stress, i.e. the applied axial force per unit area that is

normal to the surface,

σx =
Fx

Ax
, (2.2)

and εx is the (normal) strain, i.e. the dimensionless relative elongation

εx =
lx1 − lx0

lx0
=

∆lx
lx0

. (2.3)

E is the elastic modulus or Young modulus of the given material. It expresses

the material’s resistance to elastic deformations. A large elastic modulus char-

acterizes a stiff material and a small E characterizes a highly elastic object. If



2.1 Anisotropic material properties 15

the applied forces cause an elongation of the object, the resulting stress is called

tensile; in the opposite case the stress is called compressive.

For ordinary materials, the elongation of the bar is accompanied by a reduction

of its lateral dimensions (contraction of the bar), i.e. by a transverse strain

εyy = εzz =
∆ly
ly

=
∆lz
lz

. (2.4)

The ratio of the lateral to the axial strain εt/εa is Poisson’s ratio

ν = −εzz

εx
= −εyy

εx
. (2.5)

Within the elastic range of the medium, ν is constant, and for most materials

its value is between 0.2 and 0.35. An upper limit of 0.5 exists and pertains to

ideally incompressible media. For an isotropic elastic object, which is subject to

applied stresses along all three orthogonal axes, the strain in any of the three

directions is the sum of the elongation in that direction minus the contraction

caused by the stresses in the two remaining orthogonal axes, for instance

εx =
1

E
[σx − ν(σy + σz )]; σx =

E

(1 + ν)(1 − 2ν)
[(1 − ν)εx + ν(εy + εz )],

εy =
1

E
[σy − ν(σx + σz )]; σy =

E

(1 + ν)(1 − 2ν)
[(1 − ν)εy + ν(εx + εz )],

εz =
1

E
[σz − ν(σx + σy )]; σz =

E

(1 + ν)(1 − 2ν)
[(1 − ν)εz + ν(εx + εy )].

(2.6)

On the right-hand side the equation is resolved for the case in which the strains

are known.

For “non-standard” materials such as foams and synthetic compounds Pois-

son’s ratio can take negative values; however, such materials are not considered

in this book.

Shear stresses
Besides the normal stresses, which are perpendicular to the body’s surfaces,

shear stresses exist, particularly in twisted bodies. A shear force acts parallel

to a given surface as shown in Fig. 2.1(b). For instance, Fzx denotes a force in

the x-direction acting parallel to a surface whose normal vector is oriented along

the z-direction. The shear stress is the shear force per unit area. Shear forces

create shear strain, i.e. deformations along the direction of the shear force. In

Fig. 2.1(b) the shear strain εzx is the ratio between the displacement ∆lx and

the height of the cube lz . Shear stress and shear strain are related to each other

by the shear modulus G:

Fzx = GAz
∆lx
lz

or σzx = Gεzx . (2.7)
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(a) (b)

Figure 2.2 Torsion of a hollow cylinder. (a) A twisted cylinder. (b) Cross-sections of
untwisted and twisted hollow cylinders.

The basic experiment to determine the relation between shear stress and shear

strain is shown in Fig. 2.2(a). A homogeneous hollow cylinder with thin walls is

exposed to a torsional moment at both sides, and the resulting shear angle γ is

measured. This angle determines the torsion or twist angle ϕ of the front face of

the cylinder according to the obvious relation

ϕ = γ
L

R
, (2.8)

where L is the length of the cylinder, t is the thickness of the wall, and R is

the radius of the cylinder. Assuming that the stress across the cross-section of

the cylinder, σt , which is orientated in the tangential direction, is constant, the

moment created is RσtA, where A is the area of the cross-section. This moment

is balanced by the applied Mt ,

Mt = 2πR2tσt . (2.9)

By measuring Mt and the shear angle γ, the ratio σt/γ can be determined.

Within the limits of elastic deformation without warping it has been found that

σt = Gγ. (2.10)

The shear angle γ is the deformation angle of the elementary rectangles of the

cylinder as shown in Fig. 2.2(b). For the marked rectangle (in the middle of

the bottom part of the cylinder) the stress lies in the plane x = constant and is

directed along the y-axis: σt = σxy .1 The shear angle γ is exactly double the shear

strain γ = 2εxy . Using this definition and applying the results to an arbitrary

1 The natural coordinate system is here a cylindrical system in which σt = σx,ϕ .
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volume element of an isotropic body, the shear stress–strain relation can be

written in the more common notation

εxy =
σxy

2G
; εxz =

σxz

2G
; εyz =

σyz

2G
, (2.11)

which together with Eq. (2.6) represents the generalized form of Hook’s law. It is

valid for small deformations, where the superposition principle remains in force,

i.e. the resulting deformation caused by different forces can be substituted by

the sum of the deformations caused by these forces.

A deeper insight into the fundamentals of the theory of elasticity reveals that

for isotropic materials the original tension test of Hooke without any additional

torsion test is sufficient to derive not only the deformations caused by normal

stresses, but also the relation between shear forces and corresponding deforma-

tions. This leads to a well-defined interrelation between Young and shear moduli

presented below (Eq. (2.36)).

However, the torsion test is illustrative with respect to torsional components

of inertial sensors and allows us to introduce the basic ideas for the analysis of

torsional springs.

Stress and strain tensors
Usually, objects subject to external forces are not built as simply as the ones

considered so far, i.e. bars or torsional cylinders. They may have a complicated

geometry and may be exposed to a combination of normal and shear stresses.

To analyze the reaction of the body, the external forces have to be related to

the internal forces and deformations at different inner points. Consequently, the

concepts of stress and strain must be brought down to infinitesimal length scales,

where balance of force and momentum is applied on each face of such an entity.

On the basis of such a representation, partial differential equations for the rela-

tion among stress, strain, and global and local forces within the body can be

derived; as usual, they must be complemented by appropriate boundary condi-

tions. These equations can be numerically simulated or – in some exceptional

cases – solved analytically.

The stress tensor
To derive an infinitesimal description of the stress or strain distribution, infinites-

imal volume elements of the medium, pertaining to a Cartesian coordinate frame,

are considered; for such coordinates, the volume elements are cubes, as can be

seen in Fig. 2.3 [Popov 1968, 1999], The faces of the cube have areas dA. The

medium is supposed to be in a state of mechanical equilibrium; this implies that

forces and moments either originating from interaction with neighboring volume

elements or being imparted by external sources must be balanced at each face

of each volume element. At the boundary of the body, external load forces and

reaction forces of the supports have to be added.
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Figure 2.3 The stress tensor.

For convenience the x-, y-, and z-axes are often defined by the vectors ē1 , ē2 ,

and ē3 , and the corresponding coordinates are

x ⇒ x1 , y ⇒ x2 , z ⇒ x3 . (2.12)

A force or a stress component acting on the face with normal vector ēi and

oriented along direction ēj is termed ∆Fij . The stress is the limit σij =

∆Fij/dAi |dA i →0 . The cube under consideration is in mechanical equilibrium with

adjacent cubes so that the total force exerted on a face of the cube is compen-

sated for by the corresponding force of the adjacent cube. The stress at a face

σ̄i = ∆F̄i/dA is decomposed into the orthogonal components σii , σij , and σik .

The normal stress σii is caused by the force perpendicular to the face and tends

to compress or elongate the cube. Shear stresses act parallel to the face and tend

to shift the corner points of the face, thus distorting the cube into a rhomboid.

Mechanical equilibrium implies that the total force and the total torque acting

on the cube must be zero. This has two implications.

1. The normal stresses at opposite faces have the same values but opposite direc-

tions σ′
ii = −σii .

2. Zero total torque about any axis requires that the stress components must

satisfy a symmetry condition,

σij = σj i . (2.13)

Stress components at opposite faces have opposite orientations by definition.

A complete description of the state of stress at point P (x, y, z) is then given

by nine quantities σij (x, y, z), and is subject to the symmetry condition (2.13),

which reduces the number of independent quantities to six. This collection of

quantities σij (x, y, z) at P (x, y, z) defines the coordinates of the so-called stress

tensor at P (x, y, z). The stress tensor represented within the given coordinate

system can be represented by the coordinate matrix σ with nine components
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Table 2.1. Index transfer by Voigt’s notation

Matrix indices 11 22 33 23, 32 13, 31 12, 21

Vector index 1 2 3 4 5 6

dy
y

v

∂
∂

dx
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∂
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Figure 2.4 Deformation of an elementary cube.

σij ; i, j = 1, 2, 3:

σ = {σij}. (2.14)

In this book, tensor quantities are usually represented in a given coordinate

system. As a consequence, matrix algebra can be used to express tensor relations.

Since the symmetry property (2.13) reduces the number of independent stress

components from nine to six, it is convenient to express the stress status not by

a 3 × 3 stress matrix but by a stress vector σ̄ using Voigt’s notation, which is

based on the equivalence of indices (shown in Table 2.1):

σ̄T = (σ1 = σ11 , σ2 = σ22 , σ3 = σ33 , σ4 = σ23 , σ5 = σ13 , σ6 = σ12). (2.15)

The superscript T denotes the transpose of a vector or a matrix.

The strain tensor
The strain tensor can be introduced in the same way as the stress tensor. Again,

a non-deformed cube is considered at point P (x, y, z) (see Fig. 2.4). The defor-

mation of the cube is described by the displacements each of its corner points
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is undergoing. Thus, a point with coordinates (x, y, z) in the undeformed state

will take the location
(

u(x, y, z), v(x, y, z), w(x, y, z)
)

after deformation. A point

(x + ∆x, y + ∆y, z + ∆z) nearby will move to




u(x + ∆x, y + ∆y, z + ∆z)

v(x + ∆x, y + ∆y, z + ∆z)

w(x + ∆x, y + ∆y, z + ∆z)



=





u

v

w



+





∂u/∂x ∂u/∂y ∂u/∂z

∂v/∂x ∂v/∂y ∂v/∂z

∂w/∂x ∂w/∂y ∂w/∂z









∆x

∆y

∆z





=





u

v

w



+





∆u

∆v

∆w



 . (2.16)

Deformations are supposed to be small so that the principle of superposition

holds.

From Eq. (2.16) it follows that the elongation of the face at z = 0 in the x-

direction is (∂u/∂x)dx, and accordingly that in the y-direction is (∂v/∂y)dy.

The diagonal strain components are now defined as the relative elongations in

the respective directions:

εxx = ε11 =
∂u

∂x
; εyy = ε22 =

∂v

∂y
; εzz = ε33 =

∂w

∂z
. (2.17)

The shear strain characterizes the deformation of the quadratic faces into

parallelograms. It is defined as the average of the two angles β ∼= ∂u/∂y and

α ∼= ∂v/∂x of the resulting parallelogram (see Fig. 2.4), i.e. as the average of the

angular distortions of the z–x-plane and the z–y-plane:

εxy = ε12 =
1

2
(α + β) =

1

2

(

∂u

∂y
+

∂v

∂x

)

. (2.18)

Accordingly, for the other faces

εxz = ε13 =
1

2

(

∂u

∂z
+

∂w

∂x

)

, (2.19)

εyz = ε23 =
1

2

(

∂v

∂z
+

∂w

∂y

)

. (2.20)

Again, the symmetry relation

εij = εj i for i, j = 1, 2, 3 (2.21)

holds because for non-rotating solid bodies (i.e. for bodies not exposed to addi-

tional centrifugal, centripetal or Coriolis forces)

∂u

∂y
− ∂v

∂x
=

∂u

∂z
− ∂w

∂x
=

∂w

∂y
− ∂v

∂z
= 0. (2.22)

In other words, without rotation, εxy and εyx are the average deformation angles

for the same face and thus identical. Consequently, in Eq. (2.16) the mixed partial

derivatives can be substituted by the average shear stresses, e.g.

∂u

∂y
=

1

2

(

∂u

∂y
+

∂v

∂x

)

= εxy .
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Thus, the deformation equation (2.16) can be rewritten




∆u

∆v

∆w



 =





εxx εxy εxz

εxy εyy εyz

εxz εyz εzz









∆x

∆y

∆z



 =





ε1 ε6 ε5

ε6 ε2 ε4

ε5 ε4 ε3









∆x

∆y

∆z



 . (2.23)

The 3 × 3 strain matrix ε = {εij} is the representation of the strain tensor

and – owing to the symmetry relation – can be reduced to the six-dimensional

strain vector using again Voigt’s index correspondence (Table 2.1)

ε̄T = (ε1 , ε2 , ε3 , ε4 , ε5 , ε6). (2.24)

In engineering disciplines like structural mechanics the shear strain components

are defined as twice the values used in physics and correspond to the values used

in the torsion test of the section “Shear stresses”:

γxy = 2εxy = 2ε6 ; γxz = 2εxz = 2ε5 ; γyz = 2εyz = 2ε4 . (2.25)

The stress–strain relation for anisotropic materials
Assuming small deformations, the general relation between the strain and stress

vectors (2.15) and (2.24) can be described by the linear equation

σ̄ = E · ε̄ + ᾱ ∆T, (2.26)

where E = {Eij} is the elasticity matrix with 6 × 6 coefficients. The first con-

tribution to the stress derives from the strain, but in the case of temperature

differences ∆T a temperature-induced stress term ᾱ ∆T must be added. The

vector ᾱ represents the thermal expansion coefficients

ᾱT = (αxx , αyy , αzz , αyz , αxz , αxy ). (2.27)

The incremental change of the elastic energy δU of a unit cube is given by the

sum of the deformation work

2 δU = Fxx δεxx + Fyy δεyy + Fzz δεzz + Fyz δεyz + Fxz δεxz + Fxy δεxy . (2.28)

The forces are given by the stress components Fij = σij dA. Owing to the identity

of the mixed partial derivatives

2 ∂2U/∂εij ∂εkl = −∂Fij/∂εkl = −∂Fkl/∂εij (2.29)

the matrix of elastic moduli is symmetric. Moreover, it has to be noted that the

initial relation between the two 3 × 3 strain and stress tensors of second order

should be represented by a tensor of fourth order with 9 × 9 = 81 coefficients.

The symmetry relation of stress and strain has reduced this complexity to a

tensor with 36 non-zero coefficients or to the equivalent compliance matrix with

6 × 6 coefficients. The last symmetry consideration has decreased this number to

21. In the light of desired analytical expressions such a large number of entities

is still difficult to handle. Fortunately, for most of the relevant materials used in

MEMS technologies, additional symmetry relations hold, allowing us to reduce

the number of non-zero coefficients further.
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Figure 2.5 Silicon orientation on wafer.

The elasticity matrix of silicon
As is well known, silicon has a diamond structure based on a cubic crystal lat-

tice. The wafers used in microelectronics are usually cut along the (100) plane for

CMOS and bulk micromachined devices.2 As shown in Fig. 2.5 the surface of the

wafer is in the (001) plane, and the orientation flat is directed in the [110] direc-

tion. This means that a device on the wafer that is orientated perpendicularly

to the flat has an angle of 45◦ with the cube orientation axis [100].

If the different rotational and mirror symmetries of a cubic lattice are con-

sidered, the number of independent coefficients of the elasticity matrix reduces

from 21 to 3. The elasticity matrix for a material under stress, orientated along

the [100] axis, is

E =



















E11 E12 E12 0 0 0

E12 E11 E12 0 0 0

E12 E12 E11 0 0 0

0 0 0 E44 0 0

0 0 0 0 E44 0

0 0 0 0 0 E44



















(2.30)

with only 12 non-zero moduli of elasticity. This structure reflects a general

property of a parameter matrix of anisotropic materials with cubic symmetry

and holds, for instance, also for the parameters describing the piezoresistivity

effect.

For stress orientations differing from the [100] axis, the coefficients of the

rotated matrix have to be calculated. This will be done in Section 2.1.2.

The inverse relation between stress and strain can be described by the com-

pliance matrix, which is the inverse of the matrix of elastic moduli:

ε̄ = S · (σ̄ − ᾱ ∆T ). (2.31)

2 (100) Planes are perpendicular to [100] directions. The set of six equivalent directions is

denoted by 〈100〉, and the set of equivalent planes by {100}.
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S = {sij} has the same structure as the E matrix,

S =



















s11 s12 s12 0 0 0

s12 s11 s12 0 0 0

s12 s12 s11 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s44



















= E−1 , (2.32)

with the following coefficients:

s11 =
1

E
; s12 = − ν

E
; s44 =

1

2G
. (2.33)

E and ν are the Hookean Young modulus and Poisson ratio. G is the shear

modulus or modulus of rigidity, defined by the ratio

G =
σij

2εij
, i 6= j. (2.34)

For silicon, the following data, referred to the [100] crystal orientation, are usually

quoted [Gad-el-Hak 2002, Brantley 1973]:

E =
1

s11
= 131 GPa; ν = −s12

s11
= 0.28; G =

1

2s44
= 80GPa;

(2.35)
E11 = 166 GPa; E12 = 64 GPa; E44 = 80 GPa.

Despite its significantly lower yield and fracture strength, a mechanically

isotropic polysilicon layer has elastic properties similar those of to bulk sili-

con. The Young modulus is usually specified as Epoly = 160MPa, and the Pois-

son ratio νpoly = 0.23; however, the spread within materials with different grain

structures may be quite significant, and also the spread within different dies need

not be negligible.

To get a feeling for the orders of magnitude, a very simple example is consid-

ered. A silicon cube of dimensions 1 cm × 1 cm × 1 cm is loaded with 1000 kg

on the top face. The cube is then compressed by 0.07% or 7 µm, and the lateral

extension is 0.02% or 2µm.

Elasticity of isotropic materials
For isotropic materials the structure of Eqs. (2.26) and (2.31) does not change.

However, G is no longer an independent parameter, but given by the relation

[Macke 1962, Chou and Pagano 1967]

G =
E

2(1 + ν)
. (2.36)

This equation follows from the anisotropy definition

αanisotropy =
2E44

E11 − E12
, (2.37)
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which for isotropic materials (αanisotropy = 1) fixes the interrelation among

E11 , E12 , and E44 . It can also be derived from the identity of the principal stress

and strain axes in isotropic bodies.3

Elastic strain energy
If stress and strain within a material are known, it is often convenient to represent

the status by the elastic strain energy Uelastic within a given volume V . Equi-

librium states can be found by minimizing the energy, forces can be derived as

gradients of the energy, and so on. The elastic energy Uelastic is the accumulated

work for the generation of all displacements, i.e. the sum of all displacements

multiplied by the forces needed for this displacement:

Uelastic =
1

2

∑

i,j

∫ ∫ ∫

V

εijσij dx dy dz

=
1

2

∫

V

dV (σxεx + σyεy + σzεz + 2σxyεxy + 2σxzεxz + 2σyzεyz ). (2.38)

For isotropic materials the application of Hooke’s law yields

Uelastic =
1

2

∫

V

dV
{ 1

E
[σ2

x + σ2
y + σ2

z − 2ν(σxσy + σxσz + σyσz )]

+
1

G
(σ2

xy + σ2
xz + σ2

yz )
}

. (2.39)

The piezoresistance of silicon
Piezoresistors are excellent stress transducers and have found broad application

within inertial MEMS. They change their resistance depending on the applied

stress.

The material laws of Maxwell’s equation state that the electrical field Ē and

current density J̄ in an isotropic medium relate to each other as

Ē = ρJ̄ and J̄ = σĒ where σ =
1

ρ
. (2.40)

Here ρ is the resistivity and σ the conductivity of the material. In silicon or other

crystals resistivity and conductivity are anisotropic; ρ and σ become tensors of

second order, e.g.

Ē = ρJ̄ ⇒





Ex

Ey

Ez



 =





ρxx ρxy ρxz

ρxy ρyy ρyz

ρxz ρyz ρzz









Jx

Jy

Jz



 . (2.41)

Here the symmetry relations ρij = ρj i , i 6= j, were used [Smith 1958, Nye 1985].

Using again Voigt’s notation ρ1 = ρxx , ρ2 = ρyy , ρ3 = ρzz , ρ4 = ρyz , ρ5 = ρxz ,

3 The principal stress (strain) axes are defined by coordinate systems at the point P (x, y, z),

for which the shear-stress (shear-strain) components vanish.
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Table 2.2. Piezoresistivity coefficients for high-resistivity silicon in units of (100 GPa)−1

ρ0 (Ω cm) π11 π12 π44

p-Silicon 7.8 6.6 −1.12 138.1

n-Silicon 11.7 −102.2 53.4 −13.6

and ρ6 = ρxy , the resistivity can be expressed as the sum of the resistivity com-

ponent in the absence of stress plus the changes induced by the stress4



















ρ1

ρ2

ρ3

ρ4

ρ5

ρ6



















=



















ρ0

ρ0

ρ0

0

0

0



















+ ρ0



















π11 π12 π12 0 0 0

π12 π11 π12 0 0 0

π12 π12 π22 0 0 0

0 0 0 π44 0 0

0 0 0 0 π44 0

0 0 0 0 0 π44





































σ1

σ2

σ3

σ4

σ5

σ6



















. (2.42)

As before, the symmetries of a cubic crystal with its axis aligned along the

〈100〉 axis were taken into consideration. The πij are the coefficients of the

piezoresistivity tensor and are usually cited from Smith’s early work [Smith 1954],

as shown in Table 2.2. For p-Si the approximation π11 = π12 = 0 is often used,

and for n-Si π11 = −2π12 ; π44 = 0.

At high temperatures doped piezoresistor structures on bulk silicon are cor-

rupted by leakage currents to the substrate, which limits their applicability. Iso-

lated polysilicon layers eliminate this drawback and are a useful alternative to

crystalline silicon. The polysilicon layer always has a random grain distribution

in the x–y-plane. There may be preferred z-orientations of the grains. In any

case, the piezoresistivity coefficients for a planar piezoresistor with arbitrary ori-

entation have to be calculated by taking the average of the piezo-coefficients over

all grains and grain orientations. This task can be simplified considerably by con-

sidering only thin resistors with negligible height, as is the case in piezoresistive

MEMS transducers (see Section 2.2.1).

2.1.2 Rotation of coordinate systems

There are two occasions when the mathematical tools for describing the rotation

of coordinate systems are needed.

r The orientation-dependency of stress, strain, and anisotropic material proper-

ties. Here, the two coordinate systems have fixed, time-independent orienta-

tions.

4 The components of the stress tensor σi should not be confused with the notation for the

conductivity of the isotropic medium σ.
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Figure 2.6 A vector in two different coordinate systems.

r The rotation as source of virtual inertial forces, e.g. for the description of the

dynamics of gyroscopes. Here, one coordinate system rotates with respect to

another with a certain, non-zero, speed.

In this subsection the static transformation rules for vectors and tensors of second

order in rotated coordinate systems are considered. In view of dynamic effects

this subsection is formulated in a way that allows a natural extension towards

rotating coordinate systems as considered in Chapter 8.

Coordinate frames
In Fig. 2.6 the vector r̄ is represented in two different coordinate systems

Ēx , Ēy , Ēz and ēx , ēy , ēz , which have the same origin but are rotated with respect

to each other. More precisely, the two coordinate frames before – ΣE – and after –

Σe – rotation are defined by their basis vectors

ΣE : Ē
T

= [Ē1 , Ē2 , Ē3 ] and Σe : ēT = [ē1 , ē2 , ē3 ], (2.43)

which are orthonormal, e.g. ĒT
i Ēj = δij , and satisfy the right-handedness con-

dition: e.g. ĒT
1 Ē2 × Ē3 = +1. Ā · B̄ = ĀT B̄ is the scalar or dot product of two

vectors Ā = [A1 , A2 , A3 ]
T and B̄ = [B1 , B2 , B3 ]

T . Ā × B̄ is their vector prod-

uct. The superscript T denotes a vector or matrix transposition, and δij is the

Kronecker symbol. Underlined letters characterize a column arrangement of cor-

responding items, in Eq. (2.43), of the vectors ēi . The product of a matrix D

with an underlined vector, Du, is interpreted as a usual matrix multiplication

irrespective of whether the elements of u are numbers or vectors.

The orthonormality of the base yields

Ē · ĒT
= Ē

T
Ē = ē · ēT = ēT ē = I, (2.44)

where I is the unit matrix.
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Here, ĀB̄T = Ā ⊗ B̄ is interpreted as the dyadic product of the vectors Ā and

B̄. The dyadic product of ĀT = [A1 , A2 , A3 ] and B̄T = [B1 , B2 , B3 ] is defined by

Ā ⊗ B̄ =





A1B1 A1B2 A1B3

A2B1 A2B2 A2B3

A3B1 A3B2 A3B3



 . (2.45)

The dot sign between the vectors in Eq. (2.44) means that the components of

the dyadic product are connected by scalar multiplication.

The vector r̄ is seen as the same entity in both coordinate systems and remains

unchanged. Thus

r̄ =
∑

i

rE ,iĒi =
∑

i

re,i ēi . (2.46)

For convenience the column vectors rE and re are introduced:

rE = [rE ,1 , rE ,2 , rE ,3 ]
T ; re = [re,1 , re,2 , re,3 ]

T . (2.47)

They represent the vectors of coordinates of r̄ in ΣE and in Σe , respectively,

and should not be confused with the actual vector r̄ itself, which can now be

represented in a compact form:

r̄ = Ē
T
r̄E = ēT r̄e , r̄E = Ēr̄ and r̄e = ēr̄. (2.48)

The tensor concept should be briefly evoked. A tensor K of second order is an

arrangement of vectors according to the following scheme:

K = Ē
T
KE Ē =

{

∑

i

∑

j

KE
ij ĒiĒj

}

= ēTKe ē =
{

∑

i

∑

j

Ke
ij ĒiĒj

}

. (2.49)

It allows us to express vector relations independently of their representation in

different coordinate systems. The corresponding coordinate matrices KE and Ke

in two different Ē and ē are defined by the equality (2.49). On applying a tensor

to a vector r̄, say within the coordinate system Ē: r̄ = Ē
T
rE , one gets

K · r̄ = Ē
T
KE Ē · ĒT

rE = Ē
T
KE rE . (2.50)

This means that the application of a tensor to a vector within a given coor-

dinate system transforms the coordinate vector within this system by matrix

multiplication with the coordinate matrix of the tensor represented within the

same coordinate system.

The rotation tensor
The tensor of rotation represented by its coefficient matrix in Σe , namely S =

ēTSē, rotates the unit vectors of ΣE into the unit vectors of Σe . Strictly speaking,

the rotation matrix S should be labeled by the superscript E, which will be

omitted.
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The rotation is determined by

ē = SĒ or ēi =
∑

j

Ŝij Ēj . (2.51)

By means of right-hand multiplication of the first equation with Ē
T

the rotation

matrix S can be explicitly written

S = ē Ē
T
. (2.52)

Equations (2.48) and (2.52) deliver immediately

rE = STre and correspondingly re = SrE . (2.53)

The coefficients of the matrix S = {Ŝij} follow from the second equation in

(2.51) after transposition and right-hand multiplication with Ēk ,

Ŝi,j = ēT
i Ēj . (2.54)

The scalar product ēT
i Ēj is the direction cosine, i.e. the projection of ēi onto Ēj .

The inverse rotation is, by definition, S−1 = Ē ēT = (ē Ē
T
)T = ST . Thus,

S−1 = ST . (2.55)

Additionally, it is easy to show that det S = +1. Analogous equations are valid

for all tensors of rotation.

Since STS = I, where I is the unit matrix, it follows that
∑

k

Ŝk,iŜk,j = δij ⇒
∑

k

Ŝ2
k,i =

∑

k

Ŝ2
i,k = 1. (2.56)

This equation may be useful; it reduces the nine directional cosines to the three

independent values.

Separation of partial rotations – Euler angles
In order to derive the coefficients of the matrix S, the projections according

to (2.54) have to be calculated. The most convenient way to do this goes back

to Euler. Euler partitioned the whole rotation into three partial rotations, each

partial rotation taking place about a well-defined axis by a certain angle. The

fact that any rotation can be partitioned into three subsequent rotations shows

that the matrix S has only three independent parameters. There are different

ways to define the sequence of partial rotations to get a total rotation. Euler

introduced the so-called standard Euler angles φ, θ, and ψ for the following

(standard) sequence of rotations.

r First, counterclockwise rotation about the z-axis (Ē3-axis) of the initial coordi-

nate system by the angle φ, transforming the coordinates of a vector endpoint

(r1 , r2 , r3) into the new coordinates (r
{1}
1 , r

{1}
2 , r

{1}
3 = r3).

r Second, counterclockwise rotation about the new Ē
{1}
2 -axis by the angle θ. This

rotation transforms the coordinates (r
{1}
1 , r

{1}
2 , r

{1}
3 ) into (r

{2}
1 , r

{2}
2 = r

{1}
2 , r

{2}
3 ).
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Figure 2.7 z-Rotation of the x–y-coordinate system. x′ = x cos φ + y sin φ, y ′ =
−x sin φ + y cos φ, z ′ = z, and φ = θ3 .

r Third, counterclockwise rotation about the new Ē
{2}
3 -axis by the angle ψ. This

rotation transforms the coordinates (r
{2}
1 , r

{2}
2 , r

{2}
3 ) into the final coordinates

(r
{3}
1 = r′1 , r

{3}
2 = r′2 , r

{3}
3 = r

{2}
3 = r′3).

The described sequence converts the coordinate frames step by step according to

ΣE → Σ
{1}
E → Σ

{2}
E → Σ

{3}
E = Σe . The triad of vectors (Ē3 , Ē

{1}
2 , Ē

{2}
3 ) is called

the Euler basis.5

Bryan angles
Throughout this book the Bryan or Cardan angles (e.g. Wittenburg [2008])

are used. They are represented by slightly modified, non-standard Euler angles

ψ1 , ψ2 , ψ3 . Their corresponding Euler basis is

(Ē1 , Ē
{1}
2 , Ē

{2}
3 ), (2.57)

i.e. the first counterclockwise rotation is about the x-axis by ψ1 = ψx , the second

about the y-axis of the rotated frame by ψ2 = ψy , and the third about the z-axis

of the secondly rotated coordinate system by ψ3 = ψz . In a rotation sequence –

starting with rotation about the x-axis – only the third rotation differs from a

standard Euler sequence.

All coordinate transformations follow the same rules. For example, the third

rotation about the z-axis by the angle ψ3 , shown in Fig. 2.7, transforms the

coordinates of a given vector endpoint according to




x{1}

y{1}

z{1}



 =





cθ3
sθ3

0

−sθ3
cθ3

0

0 0 1









x

y

z



 = S3(ψ3). (2.58)

Throughout this text the abbreviations sα for sinα and cα for cosα shall be

used. Correspondingly, in cases of unambiguity sinψi = si and cos ψi = ci . The

5 There are different standard Euler bases. So, the sequence of rotations may start from any

of the axes. For the second rotation there are always two possibilities. The only requirement

is the identity of the first and third rotational matrices.
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following transformations can be derived by a simple cyclic permutation of the

axes of the coordinate system, i.e. for the second rotation by the permutation

z ⇒ y; y ⇒ x;x ⇒ z. The following sequence of transformations results:

r{1} = S1(ψ1)r,

r{2} = S2(ψ2)r
{1}, (2.59)

r{3} = S3(ψ3)r
{2} = r′,

where the partial transformations are defined by

S3(ψ3) =





c3 s3 0

−s3 c3 0

0 0 1



 ; S2(ψ2) =





c2 0 −s2

0 1 0

s2 0 c2



 ; S1(ψ1) =





1 0 0

0 c1 s1

0 −s1 c1



 .

(2.60)

The overall coordinate transformation can now be written as

re = r{3} = S3(ψ3)S2(ψ2)S1(ψ1)rE = SrE , (2.61)

with

S(ψ1 , ψ2 , ψ3) = {Ŝij} =





c3c2 c3s2s1 + s3c1 −c3s2c1 + s3s1

−s3c2 −s3s2s1 + c3c1 s3s2c1 + c3s1

s2 −c2s1 c2c1





=





l1 m1 n1

l2 m2 n2

l3 m3 n3



 . (2.62)

In contrast to Euler angles, the Bryan angles give one the possibility to linearize

the rotation matrix R about the zero angles, while the Euler transformation

consists of members of order ψiψj and higher with missing linear terms.

Instead of doubly subscripted coefficients Ŝi,j , it is convenient to introduce the

factors li ,mi , and ni , for the sake of visual clarity (e.g. Gad-el-Hak [2002]). The

reader should be reminded that, according to Eq. (2.56), the sum of the squares

along a column or a row is equal to one.

Transformation of tensors of second order
Up to now the transformation of vectors between rotated frames has been con-

sidered. However, the consideration of elasticity, piezoelectricity, moments of

inertia, and so on requires the description of material properties governed by

second-order tensors (or matrices) within rotated coordinate systems. Piezo-

resistivity may serve as a representative example for the transformation of mate-

rial properties from one coordinate system into another.

According to (2.40),

Ē = ρJ̄ , (2.63)



2.1 Anisotropic material properties 31

the relation between the electrical field Ē and current density J̄ within an

anisotropic material, is valid in a given coordinate frame Σ. In the case of

orientation-dependent properties such as piezoresistance this coordinate system

is inseparably linked to the material orientation, here to the (100) plane and

[100] axis of the cubic silicon crystal. If the material which possesses orientation-

dependent properties is rotated with respect to the applied field or current (or

vice versa), the impact of the material properties changes. In order to describe

these changes, Ē and J̄ have to be expressed in the rotated coordinate system.

With the fields Ē ′ = SĒ and J̄ ′ = SJ̄ in the rotated frame Σ′, Eq. (2.63) can

be rewritten using property (2.55) as

Ē ′ = SρST J̄
′
= ρ

′J̄
′
. (2.64)

Thus, the coordinate matrix of the resistivity tensor ρ
′ in the rotated coordinate

system is

ρ
′ = SρST . (2.65)

Since the new matrix {ρ′ij} is also symmetric and, thus, has only six known

independent components, Voigt’s notation can be applied, transforming ρ
′

into the vector representation ρ̄′T = [ρ′1 = ρ′xx , ρ′2 = ρ′yy , ρ′3 = ρ′zz , ρ
′
4 = ρ′yz , ρ

′
5 =

ρ′xz , ρ
′
6 = ρ′xy ]. On performing this slightly cumbersome transformation for the

matrix equation (2.65), one obtains

ρ̄′ = Γρ̄, (2.66)

where Γ is defined by

Γ =



















l21 m2
1 n2

1 2m1n1 2l1n1 2l1m1

l22 m2
2 n2

2 2m2n2 2l2n2 2l2m2

l23 m2
3 n2

3 2m3n3 2l3n3 2l3m3

l2 l3 m2m3 n2n3 m2n3 + m3n2 n2 l3 + n3 l2 m2 l3 + m3 l2
l1 l3 m1m3 n1n3 m3n1 + m1n3 n3 l1 + n1 l3 m3 l1 + m1 l3
l1 l2 m1m2 n1n2 m1n2 + m2n1 n1 l2 + n2 l1 m1 l2 + m2 l1



















. (2.67)

The matrix of piezo-coefficients in Eq. (2.42),

Π =



















π11 π12 π12 0 0 0

π12 π11 π12 0 0 0

π12 π12 π22 0 0 0

0 0 0 π44 0 0

0 0 0 0 π44 0

0 0 0 0 0 π44



















, (2.68)

represents a tensor of fourth order relating the two tensors of second order,

namely the stress tensor σ and the resistivity tensor ρ; more precisely it repre-

sents the tensor of resistivity changes ∆ρ under stress:

∆ρ =
ρ − ρ0I

ρ0
= Πσ. (2.69)
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The vector representation of the tensors of second order σ and ρ by σ̄T =

(σ1 , σ2 , σ3 , σ4 , σ5 , σ6) and ρ̄ allows us to describe the transformation of the tensor

coefficients for a rotation of the coordinate system by a simple matrix relation:

ρ̄′ = Γρ̄; ∆̄′ρ = Γ∆̄ρ; σ̄′ = Γσ̄. (2.70)

On substituting these expressions into Eq. (2.69) it follows that

∆′ρ = ΓΠΓ−1σ′. (2.71)

Consequently, the piezoresistive tensor in the rotated coordinate system is given

by the matrix

Π′ = ΓΠΓ−1 . (2.72)

Unfortunately, during the transfer of second-order tensors to vectors the nice

unitarity property of the rotation tensor S−1 = ST has not been handed over to

the corresponding matrix Γ. Γ−1 must be calculated straightforwardly:

Γ−1 =



















l21 l22 l23 2l2 l3 2l1 l3 2l1 l2
m2

1 m2
2 m2

3 2m2m3 2m1m3 2m1m2

n2
1 n2

2 n2
3 2n2n3 2n1n3 2n1m3

m1n1 m2n2 m3n3 m2n3 + m3n2 m3n1 + m1n3 m1n2 + m2n1

l1n1 l2n2 l3n3 n2 l3 + n31 l2 l1n3 + l3n1 n1 l2 + n2 l1
l1m1 l2m2 l3m3 m2 l3 + m3 l2 l1m3 + l3m1 m1 l2 + m2 l1



















.

(2.73)

In summary, the rotated matrix of piezo-coefficients Π′ no longer has only 12

non-zero components, but, rather, all 36 are now non-vanishing. The calculation

of Π′ is simplified by the block structure of Γ as well as of Π. For the most

important cases, where the coordinate system is rotated only about the axis

perpendicular to the (100) plane of silicon by the angle ψ3 , the angles are ψ2 = 0

and ψ1 = 0, so that

{π′
ij} =



















π11 − 1
2 π0 sin2(2ψ3) π11 + 1

2 π0 sin2(2ψ3) π12 0 0 − 1
2 π0 sin(4ψ3)

π11 + 1
2 π0 sin2(2ψ3) π11 − 1

2 π0 sin2(2ψ3) π12 0 0 1
2 π0 sin(4ψ3)

π12 π12 π11 0 0 0

0 0 0 π44 0 0

0 0 0 0 π44 0

− 1
4 π0 sin(4ψ3)

1
2 π0 sin(4ψ3) 0 0 0 π44 + π0 sin2(2ψ3)



















,

(2.74)

where

π0 = π11 − π12 − π44 . (2.75)


