
http://www.cambridge.org/9780521196130

This page intentionally left blank

FOUNDATIONS OF XML PROCESSING

The Tree-Automata Approach

This is the first book to provide a solid theoretical account of the foundation of the
popular data format XML.

Part I establishes basic concepts, starting with schemas, tree automata, and
pattern matching, and concluding with static typechecking for XML as a highlight
of the book. In Part II, the author turns his attention to more advanced topics,
including efficient “on-the-fly” tree automata algorithms, path- and logic-based
queries, tree transformation, and exact typechecking. Many examples of code
fragments are given, and exercises are provided to enhance understanding. Thus
the book should be very useful both for students and for XML researchers.

Haruo Hosoya is a Lecturer in the Department of Computer Science at the
University of Tokyo.

FOUNDATIONS OF XML PROCESSING

The Tree-Automata Approach

HARUO HOSOYA
University of Tokyo

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-19613-0

ISBN-13 978-0-511-90402-8

© H. Hosoya 2011

2010

Information on this title: www.cambridge.org/9780521196130

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (Adobe Reader)

Hardback

http://www.cambridge.org
http://www.cambridge.org/9780521196130

To the memory of my beloved mother

Contents

P re f a c e p age xi

1 Introduction 1
1.1 Documents, schemas, and schema languages 1
1.2 Brief history 2
1.3 Overview of the book 3

2 Preliminaries 9
2.1 Regular expressions 9
2.2 String automata 12

PART I BASIC TOPICS 17
3 Schemas 19

3.1 Data model 19
3.2 Schema model 22
3.3 Classes of schemas 27
3.4 Bibliographic notes 29

4 Tree automata 30
4.1 Definitions 30
4.2 Relationship with the schema model 36
4.3 Determinism 39
4.4 Basic set operations 43
4.5 Bibliographic notes 48

5 Pattern matching 49
5.1 From schemas to patterns 49
5.2 Ambiguity 50
5.3 Linearity 54
5.4 Formalization 56
5.5 Bibliographic notes 61

vii

viii Contents

6 Marking tree automata 63
6.1 Definitions 63
6.2 Construction 66
6.3 Sequence-marking tree automata 69
6.4 Bibliographic notes 70

7 Typechecking 71
7.1 Compact taxonomy 71
7.2 Case study: μXDuce type system 73
7.3 Type inference for patterns 82
7.4 Bibliographic notes 90

PART II ADVANCED TOPICS 91
8 On-the-fly algorithms 93

8.1 Membership algorithms 93
8.2 Marking algorithms 99
8.3 Containment algorithms 108
8.4 Bibliographic notes 116

9 Alternating tree automata 117
9.1 Definitions 117
9.2 Relationship with tree automata 120
9.3 Basic set operations 122
9.4 Bibliographic notes 126

10 Tree transducers 127
10.1 Top-down tree transducers 127
10.2 Height property 130
10.3 Macro tree transducers 131
10.4 Bibliographic notes 135

11 Exact typechecking 138
11.1 Motivation 138
11.2 Forward type inference: limitation 140
11.3 Backward type inference 141
11.4 Bibliographic notes 147

12 Path expressions and tree-walking automata 148
12.1 Path expressions 148
12.2 Tree-walking automata 152
12.3 Bibliographic notes 160

13 Logic-based queries 161
13.1 First-order logic 161
13.2 Monadic second-order logic 165

Contents ix

13.3 Regularity 168
13.4 Bibliographic notes 174

14 Ambiguity 176
14.1 Ambiguities for regular expressions 176
14.2 Ambiguity for patterns 186
14.3 Bibliographic notes 188

15 Unorderedness 190
15.1 Attributes 190
15.2 Shuffle expressions 194
15.3 Algorithmic techniques 196
15.4 Bibliographic notes 197

Appendix Solutions to selected exercises 199
References 218
Index 223

Preface

Computer science, like other mathematical fields, cannot live without a tight rela-
tionship with reality. However, such a relationship is, frankly, not very common.
This is probably why people so enthusiastically welcome a true meeting of theory
and practice. In that sense, the coming together of XML and tree automata theory
was a beautiful marriage. Thus I have written this book in the earnest hope that the
news of this marriage will be spread and celebrated all over the world!

The book is a summary of my ten years’ work. It could not have been real-
ized without my collaborators, Peter Buneman, Giuseppe Castagna, Alain Frisch,
Vladimir Gapeyev, Kazuhiro Inaba, Shinya Kawanaka, Hiromasa Kido, Michael
Y. Levin, Sebastian Maneth, Makoto Murata, Benjamin C. Pierce, Tadahiro Suda,
Jérôme Vouillon, Takeshi Yashiro, and Philip Wadler. In particular, I thank Kazuhiro
Inaba and Sebastian Maneth, who made uncountable comments on the draft and
thus contributed to a huge improvement of the book. Lastly, I thank my dear
wife, Ayako, who gave me the warmest and unceasing encouragement to finish the
book.

xi

1

Introduction

1.1 Documents, schemas, and schema languages

The data format known as extensible mark-up language (XML) describes tree
structures based on mark-up texts. The tree structures are formed by inserting,
between text fragments, open and end tags that are balanced, like parentheses. A
data set thus obtained is often called a document. On the surface, XML resembles
hypertext mark-up language (HTML), the most popular display format for the
Web. The essential difference, however, is that in XML the structure permitted to
documents, including the set of tag names and their usage conventions, is not fixed
a priori.

More precisely, XML allows users to define their own schemas; a schema deter-
mines the permitted structure of a document. In this sense, it is often said that
a schema defines a “subset of XML” and thus XML is a “format for data for-
mats.” With the support of schemas each individual application can define its own
data format, while virtually all applications can share generic software tools for
manipulating XML documents. This genericity is a prominent strength of XML in
comparison with other existing formats. Indeed, XML has been adopted with
unprecedented speed and range: an enormous number of XML schemas have been
defined and used in practice. To raise a few examples, extensible HTML (XHTML)
is the XML version of HTML, simple object access protocol (SOAP) is an XML
message format for remote procedure calls, scalable vector graphics (SVG) is a
vector graphics format in XML, and MathML is an XML format for mathematical
formulas.

One naturally asks: what constraints can schemas describe? The answer is: such
constraints are defined by a schema language. In other words, there is not one
schema language but many, each having different constraint mechanisms and thus
different expressiveness. To give only a few of the most important, document type
definition (DTD), XML Schema, as defined by the World Wide Web Consortium

1

2 Introduction

(W3C), and regular language description for XML (RELAX NG), defined by the
Organization for the Advancement of Structured Information Standards (OASIS)
and the International Standards Organization (ISO), are actively used in various
applications. This lack of a single schema language certainly confuses application
programmers, since they need to decide which schema language to choose, and
it also troubles tool implementers since they need to support multiple schema
languages. However, this situation can also be seen as a natural consequence of
XML’s strength; such genericity and usability had never been provided by any
previous format and thus it has attracted a huge number of developers, though their
requirements have turned out to be vastly different.

1.2 Brief history

The predecessor of XML was the standard generalized markup language (SGML).
It was officially defined in 1986 (by ISO) but had been used unofficially since the
1960s. The range of users had been rather limited, however, mainly because of
the complexity of its specification. Nonetheless it was in this period that several
important data formats such as HTML and DocBook (which are now revised as
XML formats) were invented for SGML.

In 1998 XML was standardized by W3C. The creators of XML made a drastic
simplification of SGML, dropping a number of features that had made the use of
SGML difficult. The tremendous success of XML was due to its simplicity, together
with its timely fit to the high demand for a standard, non-proprietary, data format.

At first DTD was adopted as a standard schema language for XML. This was
a direct adaptation of the version of DTD used for SGML, made in view of the
compatibility of XML and SGML. A number of software tools for SGML were
already available, and therefore exploiting these was highly desirable at that time.
However, the lack of certain kinds of expressiveness that were critical for some
applications had by then already been recognized.

Motivated by a new, highly expressive, schema language, the standardization
activity for XML Schema started in around 1998. However, it turned out to be an
extremely difficult task. One of the biggest difficulties was that the committee was
attempting to mix two completely different notions: regular expressions and object
orientation. Regular expressions, the most popular notation for string patterns, was
the more traditional notion and had been used in DTD since the era of SGML. The
reason for using this notion was “internal” since XML (and SGML) documents
are based on texts, using regular expressions is a very natural way to represent
constraints on such ordered data. However, the demand for object orientation was
“external.” It arose from the coincident popularity of the Java programming lan-
guage. Java had a rich library support for network programming, and therefore

1.3 Overview of the book 3

developers naturally wanted an object serialization format for the exchange of
this data between applications on the Internet. These two concepts, one based on
automata theory and the other based on a hierarchical model, cannot be integrated
in a smooth manner. The result after four years’ efforts was inevitably a com-
plex gigantic specification (finalized in 2001). Nonetheless, a number of software
programmers nowadays attempt to cope with this complexity.

In parallel with XML Schema, there were several other efforts towards the stan-
dardization of expressive schema languages. Among others, the aim with RELAX
was to yield a simple and clean schema language in the same tradition as DTD but
based on the more expressive regular tree languages rather than the more conven-
tional regular string languages. The design was so simple that the standardization
went very rapidly (it was released by ISO in 2000) and became a candidate for a
quick substitute for DTD. Later, a refinement was made and released as RELAX NG
(by OASIS and ISO in 2001). Although these schema languages are not yet widely
used in comparison with DTD or XML Schema, the number of users exhibits a
gradual increase.

Meanwhile, what has happened in the academic community? After the emer-
gence of XML, at first most academicians were skeptical since XML appeared to
be merely a trivial tree structure, which they thought they completely understood.
Soon, however, researchers began to notice that this area was full of treasures. In
particular, the notion of schemas, which looked like the ordinary types found in
traditional programming languages, in fact had a very different mathematical struc-
ture. This meant that, in order to redo what had been done for conventional types,
such as static typechecking, a completely new development was needed. Since then
a huge amount of research has been undertaken. Scientists now agree that the most
central concept relevant to XML’s schemas is tree automata. The aim of this book
is to introduce the theory and practice arising from this direction of research on the
foundations of XML processing, that is, the tree-automata approach.

1.3 Overview of the book

Here we summarize the topics covered in this book and explain how they are
organized into parts and chapters.

1.3.1 Topics

Schemas and tree automata

With regard to schemas, we first need to discuss the constraint mechanisms that
should be provided by a schema and how these can be checked algorithmically.

4 Introduction

In Chapter 3 we define an idealized schema language called the schema model
and, using this, we compare three important schema languages, namely, DTD,
XML Schema, and RELAX NG. Then, in Chapter 4, we introduce tree automata,
which provide a finite acceptor model for trees that has an exact correspondence
with schemas. Using the rich mathematical properties of tree automata, we can
not only efficiently check the validity of a given document with respect to a given
schema but also solve other important problems related to schemas, such as static
typechecking.

Chapters 3 and 4 exemplify a pattern of organization used repeatedly in this
book. That is, for each topic, we usually first define a specification language that is
helpful for the user and then give a corresponding automata formalism that is useful
for the implementer. In these two chapters, we introduce schema, primarily for
document constraints, and then tree automata for validation and other algorithms.
Specification and algorithmics are usually interrelated, since as schemas become
more expressive, the algorithmics becomes more difficult. The chapter organization
is intended to help the reader to appreciate such trade-offs.

The last paragraph might suggest that if efficiency is important then we should
restrict expressiveness. However, if there is a way to overcome inefficiency
then a design choice that allows for full expressiveness becomes sensible. In
Chapter 8 we present one such case. This chapter gives a series of effi-
cient algorithms for important problems related to tree automata, where all the
algorithms are designed in a single paradigm, the on-the-fly technique. This tech-
nique has been extremely successful in achieving efficiency without compro-
mising expressiveness. The core idea lies in the observation that we can often
obtain a final result by exploring only a small part of the entire state space of an
automaton.

We will also cover several other advanced techniques related to schemas. In
Chapter 9 we will extend schemas with intersection types and their corresponding
alternating tree automata. The latter are not only useful for algorithmics but also
enable a clear formalization of certain theoretical analyses presented in later chap-
ters. In Chapter 14 we discuss the ambiguity properties of schemas and automata.
Such notions are often valuable in practical systems designed to discover typ-
ical mistakes made by users. In Chapter 15 we turn our attention to schema
mechanisms for the description of unordered document structures. This chapter
is unique in the sense that all the prior chapters treat ordered data. Unordered-
ness arises in certain important parts of XML documents, and in certain impor-
tant kinds of application, and therefore cannot be ignored. However, treating it
is technically rather tricky since it does not fit well into the framework of tree
automata. Chapter 15 gives an overview of some recent attempts to solve the
problem.

1.3 Overview of the book 5

Subtree extraction

Once we know how to constrain documents, our next interest is in how to process
them, when the most important aim is to extract information from an input XML
tree. In Chapter 5 we introduce the notion of patterns, which are a straightforward
extension of the schema model that allows variable bindings to be associated
with subtrees. Corresponding to patterns are marking tree automata, introduced in
Chapter 6. These automata not only accept a tree but also put marks on some of its
internal nodes. In these chapters we will discuss various design choices involved
in pattern matching and marking tree automata.

As alternatives to patterns, we present path expressions and logic-based
approaches. Path expressions, discussed in Chapter 12, are a specification for
the navigation required to reach a target node and are widely used in the notation
called XPath (standardized by the World Wide Web Consortium, W3C). In the same
chapter we define a framework for the corresponding automata, called tree-walking
automata, which use finite states to navigate in a given tree. We will compare their
expressiveness with that of normal tree automata. Chapter 13 gives a logic-based
approach to subtree extraction; here we introduce first-order (predicate) logic and
its extension, monadic second-order (MSO) logic, and explain how these can be
useful for the concise specification of subtree extraction. Then, in the same chapter
we detail the relationship between MSO logic and tree automata, thus linking this
chapter to the rest of the book.

Tree transformation and typechecking

In subtree extraction we consider the analysis and decomposition of an input tree;
tree transformation combines this with the production of an output tree. In this
book we will not go into the details of complex tree transformation languages
but, rather, will present several very small transformation languages with different
expressivenesses. The reason is that our purpose is to introduce the typechecking
technique, the book’s highlight.

Typechecking is adopted by many popular programming languages in order to
statically analyze a given program and to guarantee that certain kinds of error never
occur. Since schemas for XML are just like types in such programming languages,
we might imagine that there could be a similar analysis for XML transformations.
However, vastly different techniques are needed for this since schemas are based
on regular expressions (see Section 2.1), which are not standard in the usual
programming languages. This book presents a particularly successful approach
based on tree automata.

In XML typechecking there are two very different methodologies, namely,
exact typechecking and approximate typechecking. Exact typechecking is the ideal

6 Introduction

static analyzer; it signals an error if and only if a given program is incorrect.
However, such a typechecker cannot deal with a general transformation language,
that is, one as expressive as Turing machines. This is a direct consequence of
the established notion that the behavior of a Turing machine cannot be predicted
precisely. Therefore an exact typechecker is necessarily targeted to a restricted
transformation language. Approximate typechecking, however, has no such limi-
tation since it can give a false-negative answer, that is, it may reject some correct
programs. The question is how can we design a “type system” that yields a rea-
sonable set of accepted programs while ensuring tractability? In Chapter 7, we
define a small but general transformation language called µXDuce – a subset of
XDuce, the first practical XML processing language with static typechecking –
and describe an approximate typechecking algorithm for this language. Later
in Chapter 10, we introduce a family of tree transducers, which are finite-state
machine models for tree transformations. These models are sufficiently restricted
to perform exact typechecking, and Chapter 11 describes one such algorithm.
This algorithm treats only the simplest case, that of top-down tree transducers,
but even so it includes important ideas in exact typechecking such as backward
inference.

1.3.2 Organization

Immediately following the introduction is a chapter giving the mathematical prelim-
inaries including regular expressions and string automata. The remaining chapters
are divided into two parts. Part I focuses on basic topics that need to be under-
stood by all who are interested in the tree-automata approach to XML processing.
This part starts with basic concepts, namely, schemas (Chapter 3), tree automata
(Chapter 4), patterns (Chapter 5), and marking automata (Chapter 6). After this, we
introduce the XML processing language, µXDuce, and a typechecking algorithm
for it (Chapter 7), integrating the preceding basics.

Part II features more advanced topics and collects various notions that
are often used in frontier research articles in this area. Therefore this part
would be suitable reading for researchers who need a quick introduction to
the background or starting points for new contributions. The topics presented
are on-the-fly algorithms (Chapter 8), intersection types and alternating tree
automata (Chapter 9), tree transducers (Chapter 10), exact typechecking (Chap-
ter 11), path expressions and tree-walking automata (Chapter 12), logic-based
queries (Chapter 13), ambiguity (Chapter 14), and unorderedness (Chapter 15).
Figure 1.1 depicts the logical dependencies between the chapters in the two
parts.

1.3 Overview of the book 7

3 Schemas

4 Tree automata 5 Pattern matching

6 Marking tree automata

7 Typechecking

8 On-the-fly
algorithms

10 Tree transducers

11 Exact typechecking

12 Path
expressions and

tree-walking
automata

13 Logic-based queries

14 Ambiguity

15 Unorderedness

9 Alternating
tree automata

Figure 1.1 Chapter dependencies.

In order to assist understanding, exercises are given in most chapters. Each exer-
cise is marked � (easy), �� (intermediate), or ��� (hard). The reader is encouraged
to do all the exercises. Solutions to many of them are given in an appendix at the
end of the book.

In an example or an exercise, we sometimes associate its number with concrete
instances defined there, such as trees or automata. For example, in Example 4.1.1
we define a tree t4.1.1. Such instances may be used several times in later examples,
and the reader can use the number to turn back and refer to the original definitions.

Understanding this book requires an adequate background in elementary com-
puter science, including basic set theory, algorithms, and data structures, complex-
ity theory, and formal language theory. In particular, formal language theory is the
basis of all the theories described in this book and this is why the summary in Chap-
ter 2 is provided. Readers not familiar with this area are encouraged to study an
introductory text first. For this, Introduction to Automata Theory, Languages, and
Computation (Hopcroft and Ullman, 1979), is recommended. In addition, some
background in programming language theory and in XML technologies would
help, though these topics are not prerequisites; excellent references are Types and

8 Introduction

Programming Languages (Pierce, 2002) and An Introduction to XML and Web
Technologies (Møller and Schwartzbach, 2006). Also, readers who wish to refer to
the actual specifications of various standards should look at Bray et al. (2000) for
XML and DTD, Fallside (2001) for XML Schema, Clark and Murata (2001) for
RELAX NG (Murata (2001b) for its predecessor RELAX), and Sperberg-McQueen
and Burnard (1994) for a good introduction to SGML.

2

Preliminaries

This chapter introduces some notions used throughout the book, including the basic
theory of regular expressions and finite string automata as well as the notational
conventions of grammars and inference rules. Readers already familiar with them
can skip this chapter.

2.1 Regular expressions

In this book, we often consider sequences of various kinds. For a given set S, we
write a sequence of elements from S by simply listing them (sometimes separated
with commas); in particular, we write the sequence of length 0 by ε and call it the
empty sequence. The concatenation of two sequences s and t is written st (or s, t

when commas are used as separators); when a sequence s can be written as tu, we
say that t and u are a prefix and a suffix of s, respectively. The length of a sequence
s is written as |s|.

The set of all sequences of elements from S is denoted S∗. For example, {a, b}∗
contains the sequences ε, a, aa, ab, abab, . . . When a strict total order < is defined
on S, the lexicographic order � on S∗ can be defined: s � t if either t = ss ′ for
some s ′ (i.e., s is a prefix of t) or else s = uas ′ and t = ubt ′ for some sequences
u, s ′, t ′ and some elements a, b with a < b (i.e., s and t have a common prefix u,
immediately after which t has a strictly larger element). For example, for sequences
in {1, 2}∗ (with the order 1 < 2) we have 11 � 112 and 112 � 121. Note that �
is reflexive since we always have s = ss ′ with s ′ = ε (i.e., s is a trivial prefix of s

itself).
Let us assume a finite set � of labels a, b, . . . We call a sequence from �∗ a

string. The set of regular expressions over �, ranged over by r , is defined by the

9

10 Preliminaries

following grammar:

r ::= ε

a

r1r2

r1 | r2

r∗

That is, ε and any element a of � are regular expressions; when r1 and r2 are
regular expressions, so are r1r2 and r1 | r2; when r is a regular expression, so is
r∗. For example, we have regular expressions over � = {a, b} such as (a | ε)b and
(ab)∗.

Since this is the first time we are using the grammar notation, let us explain the
general convention. A grammar of the form

A ::= f1[A1, . . . , An]
...

fk[A1, . . . , An]

(the form f [A1, . . . , An] is an expression containing metavariables A1, . . . , An as
subexpressions) inductively defines a set S, ranged over by the metavariable A,
such that, if A1, . . . , An are all in the set S then fi[A1, . . . , An] is also in the set S
for each i = 1, . . . , k. Also, we sometimes use a mutually defined grammar in the
form

A ::= f1[A1, . . . , An, B1, . . . , Bm]
...

fk[A1, . . . , An, B1, . . . , Bm]

B ::= g1[A1, . . . , An, B1, . . . , Bm]
...

gl[A1, . . . , An, B1, . . . , Bm]

which inductively defines two sets S and T , each ranged over by A and B,
such that if A1, . . . , An are all in the set S and B1, . . . , Bm are all in the
set T then each fi[A1, . . . , An, B1, . . . , Bm] is also in the set S and each
gj [A1, . . . , An, B1, . . . , Bm] is also in the set T . The notation can be generalized
to an arbitrary number of sets.

Returning to regular expressions over �, their semantics is usually defined
by interpreting a regular expression as a set of strings from �∗. Formally, the

