




This book provides a solid foundation and an extensive study for an important
class of constrained optimization problems known as Mathematical Programs
with Equilibrium Constraints (MPEC), which are extensions of bilevel opti-
mization problems. The book begins with the description of many source
problems arising from engineering and economics that are amenable to treat-
ment by the MPEC methodology. Error bounds and parametric analysis are
the main tools to establish a theory of exact penalization, a set of MPEC con-
straint qualifications and the first- and second-order optimality conditions.
The book also describes several iterative algorithms such as a penalty-based
interior point algorithm, an implicit programming algorithm and a piecewise
sequential quadratic programming algorithm for MPECs. Results in the book
will have significant impacts in such disciplines as engineering design, eco-
nomics and game equilibria, and transportation planning, within all of which
MPEC has a central role to play in the modeling of many practical problems.

A useful resource for applied mathematicians in general, this book will
be a particularly valuable tool for operations researchers, transportation, in-
dustrial, and mechanical engineers, and mathematical programmers.
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Numbering System

The six chapters of the book are numbered from 1 to 6, the sections are
denoted by decimal numbers of the type 2.3 (meaning Section 3 of Chapter
2). Many sections are further divided into subsections, some subsections are
numbered, others are not. The numbered subsections are by decimal num-
bers following the section numbers; e.g., Subsection 1.3.1 means Chapter
1, Section 3, Subsection 1.

All definitions, results, and miscellaneous items are numbered consecu-
tively within each section in the form 1.3.5, 1.3.6, meaning Items 5 and 6
in Section 3 of Chapter 1. All items are also identified by their types (e.g.,
1.4.1 Proposition., 1.4.2 Remark.). When an item is referred to in the
text, it is called out as Algorithm 5.2.1, Theorem 4.1.7, etc.

Equations are numbered consecutively in each section by (1), (2), etc.
Any reference to an equation in the same section is by this number only,
whereas equations in another section are identified by chapter, section, and
equation. Thus (3.1.4) means Equation (4) in Section 1 of Chapter 3.
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the strict ordering: Xi > yi, i = 1,. . . , n
the vector whose i-th. component is mm(xi,yi)
the vector whose i-th component is
the Hadamard product of x and y
x and y are perpendicular
the nonnegative part of a vector z
the nonpositive part of a vector z

xv



XVI Glossary of Notation

Matrices

detA
A-1

AT

Aa

Aa.
I
h
diag(a)

Functions

f : x> - > • 11

f°9
V /

V6>

f-1

o(t)

Mf(x)
sup f(x)
dist(:r, W)
Fc

the determinant of a matrix A
the inverse of a matrix A
the Euclidean norm of a matrix A
the transpose of a matrix A
the columns of A indexed by a
the rows of A indexed by a
the identity matrix of appropriate order
the identity matrix of order k
the diagonal matrix with diagonal elements
equal to the components of the vector a

a mapping with domain V and range 1Z
composition of two functions / and g

dxj), the m x n Jacobian of a mapping
Km (m > 2)

xj){^, a submatrix of V/
) , the gradient of a function 6 : Kn -> 5R

the partial Jacobian matrix of g with respect to 2/
Hessian matrix of the scalar-valued function 0
directional derivative of the mapping /
the inverse of /
any function such that lim^o ^~ = 0
the Euclidean projection of x on the set K
the infimum of the function /
the supremum of the function /
distance function from vector x to set W
normal map associated with function F and set C



Glossary of Notation xvn

Sets

G

0
C

C
U, fl, x
[] Si
Si \ S2
\S\
OS
cl S
S*

Gr(*4)
dom(.A)
IB(x, S)
argmin;r/(x)

argmaxx/(x)

supp(x)
T(x; S)
C(x; S)

J\f(x; S)
[a, b]

(a, b)

x1-

Problems

AVI (g, M, K)
LCP (q, M)
SOL(F, K)
SOL(<?, M, K)
VI (F, K)

element membership
not an element of
the empty set
set inclusion
proper set inclusion
union, intersection, Cartesian product
Cartesian product of sets Si
the difference of sets Si and 52
the cardinality of a finite set S
the (topological) boundary of a set S
the (topological) closure of a set S
the dual cone of S
the cone of recession directions of S
the graph of a multifunction A
the domain of a multifunction A
the closed ball with center at x with radius 5
the set of x attaining the minimum of the
real-valued function f(x)
the set of x attaining the maximum of the
real-valued function /(x)
the support of vector x
tangent cone of set S at point x £ S
critical cone of set S at point x G S relative to
an objective function
normal cone of set S at point x G S
a closed interval in !ft
an open interval in 5R
the orthogonal complement of vector x

AVI defined by vector g, matrix M and set K
LCP defined by vector q and matrix M
solution set of the VI (F, K)
solution set of the AVI (q, M, K)
VI defined by mapping F and set K



xviii Glossary of Notation

MPEC symbols

v = (£, 7T, 7]) MPEC multipliers

w = (x, y, X) variable of MPEC in KKT form, A G M(x, y)
y(x) implicit solution function of lower-level VI

z = (x,y) original MPEC variable

B(x) SCOC family of active index sets that define

the C1 pieces of y(x) at x

C(z; T) critical cone of MPEC at z G T relative to

the objective function /

- UAGM(Z) C(ZI A ) u n d e r f u l 1 MPEC CQ
C(z, A) a piece of C(z; T) corresponding to A G M(z)

= T(z]Z) H Gr(£S{z,X)) H V/^)1-
T MPEC's feasible region given by Z n Gr(5)
FKKT feasible region of MPEC in KKT form

l(x, y) set of active indices at (x, y) G Gr(<S)

lo(x, y, A) degenerate index set at (x, y, A) G FKKT

= {i:Xi = gi{x,y) = 0 }

X+(:r, ?/, A) nondegenerate index set at (x, y, A) G ^ r K K T

= {z : A* > 9i{x,y) = 0}

/C(z, A) lifted critical cone at (z, A) G

/C(z, A; dx) directional critical set at (z, A) G

along direction dx

L(x, y, A) Lagrangean function for lower-level VI

M P E C l i n e a r i z e d c o n e a t z G f

= T M n ( ( J A 6 M ( 2 ) GT(£S{Z,X)))

MPEC Lagrangean function

linearized solution map at (z,X) G J:KKT for

lower-level VI; CS(Zj\)(dx) is defined as

SOL(VxL(z, A)cfa, VyL{z, A), /C(z, A, da:))

set of KKT pairs (dy, dA) of the

AVI (V,L(z, \)dx, VyL(z, A), /C(z, A; dx))



Glossary of Notation xix

MPEC symbols
(continued)

M(x,y)

Mc(z;dx)

Me(x,y)
S(x)

Z

set of KKT multipliers of VI (F(x, •), C(x))
at solution y
set of critical multipliers at z e J°
along direction dx
= {A G M(z) : /C(z,A;dz)/0}
set of extreme points of M(x, y)
set of rational reactions of lower-level VI
= SOL(F(x,.),C(*))
upper-level feasible region of (x, y)





Preface

This monograph deals with a class of constrained optimization problems
which we call Mathematical Programs with Equilibrium Constraints, or
simply, MPECs. Briefly, an MPEC is an optimization problem in which the
essential constraints are defined by a parametric variational inequality or
complementarity system. The terminology, MPEC, is believed to have been
coined in [108]; the word "equilibrium" is adopted because the variational
inequality constraints of the MPEC typically model certain equilibrium
phenomena that arise from engineering and economic applications. The
class of MPECs is an extension of the class of bilevel programs, also known
as mathematical programs with optimization constraints, which was intro-
duced in the operations research literature in the early 1970s by Bracken
and McGill in a series of papers [34, 36, 37]. The MPEC is closely related
to the economic problem of Stackelberg game [265] the origin of which
predates the work of Bracken and McGill.

Our motivation for writing this monograph on MPEC stems from the
practical significance of this class of mathematical programs and the lack
of a solid basis for the treatment of these problems. Although there is
a substantial amount of previous research on special cases of MPEC, no
existing work provides such generality, depth, and rigor as the present
study. Our intention in this monograph is to establish a sound foundation
for MPEC that we hope will inspire further applications and research on
this important problem.

This monograph consists of six chapters. Chapter 1 defines the MPEC,
gives a brief description of several source problems, and presents various
equivalent formulations of the equilibrium constraints in MPEC; the chap-
ter concludes with some results of existence of optimal solutions. Chap-
ter 2 presents an extensive theory of exact penalty functions for MPEC,

xxi



xxii Preface

using the theory of error bounds for inequality systems. This chapter ends
with a brief discussion of how some exact penalty functions formulations
of MPEC can be employed to obtain first-order optimality conditions; the
latter topic and its extensions are treated in full in the next three chap-
ters. Specifically, Chapter 3 presents the fundamental first-order optimal-
ity (i.e., stationarity) conditions of MPEC; Chapter 4 verifies in detail the
hypotheses needed for the first-order conditions; Chapter 5 contains re-
sults on second-order optimality conditions. The sixth and last chapter
presents several algorithms for solving MPECs including an interior point
algorithm for MPECs with "monotone" inner problems, a conceptual iter-
ative descent algorithm based on an implicit programming approach, and
a locally superlinearly convergent Newton type (sequential quadratic pro-
gramming) method based on a piecewise programming approach. Some
preliminary computational results are reported. The monograph ends with
an extensive list of references.

Due to the intrinsic complexity of the MPEC, a comprehensive study
of this problem would inevitably require extensive tools from diverse dis-
ciplines. Besides a general knowledge of smooth (nonlinear) programming
and multivariate analysis, which we assume as prerequisites for this work,
such subjects as error bound theory for inequality systems, sensitivity and
stability theory for parametric variational inequalities, piecewise smooth
analysis, nonsmooth equations, the family of interior point methods, and
some basic iterative descent methods for nonlinear programs are all impor-
tant tools that will be used in this monograph. Since it is not possible for
us to review in detail all the background material and keep the monograph
within a reasonable length, we have chosen not to organize the prelimi-
nary results separately. Instead, we have included only the most useful
background results relevant to the topics of discussion.

Throughout the monograph, we have taken several different points of
view toward the MPEC, each of which is interesting by itself. Many results
obtained herein are new and have not appeared in the literature before.
For related approaches and results, we refer to [201, 214, 291, 292, 295];
see also the references in [5, 278].

The general MPEC is a highly nonconvex, nondifferentiable optimiza-
tion problem that encompasses certain combinatorial features in its con-
straints. As such, it is computationally very difficult to solve, especially
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if one wishes to compute a globally optimal solution. Partly due to this
pessimistic view, we have not attempted in this monograph to deal with
the issue of finding a globally optimal solution to the general problem itself
or to its special cases. The algorithms discussed in Chapter 6 are iterative
schemes for computing a stationary point of the MPEC (and under mild
conditions, a strict local minimum). We refer to [278] for references that
discuss some global optimization approaches to solving bilevel programs.

Due to the broad applications of MPEC, this monograph is of interest
to readers from diverse disciplines. In particular, operations researchers,
economists, design and systems engineers, and applied mathematicians will
likely find the subject matter interesting and challenging. We have written
the monograph with these individuals in mind.
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Introduction

This chapter introduces the main topic of this monograph, that is, the
mathematical program with equilibrium constraints. Source problems from
engineering and economics are described to justify the need for a thorough
study of this important class of optimization problems. The rest of the
chapter gives several useful formulations of the equilibrium constraints and
presents sufficient conditions for the existence of optimal solutions to these
problems.

1.1 Problem Formulation

A Mathematical Program with Equilibrium Constraints (MPEC) is an
optimization problem with two sets of variables, x E f and y €  5ftm, in
which some or all of its constraints are defined by a parametric variational
inequality or complementarity system with y as its primary variables and x
the parameter vector. More specifically, this problem is defined as follows.
Suppose that / : 5ftn+m -^ » and F : K n + m -> 5Rm are given functions,
Z C 5?n + m is a nonempty closed set, and C : 5Rn -> 5Rm is a set-valued map
with (possibly empty) closed convex values; i.e., for each x G 5Rn, C(x) is a
(possibly empty) closed convex subset of 5Rm. The set of all vectors x G 5Rn

1



2 Chapter 1. Introduction

for which C(x) / 0 is the domain of C and denoted dom(C). Let X be the
projection of Z onto 5Rn; i.e.,

I = { x G F : ( i , t / ) G Z for some y G 3?m}.

The function / is the overall objective function to be minimized; F is the
equilibrium function of the inner problem, Z is a joint upper-level feasible
region of the pair (x,y), and C(x) defines the restriction of the variable
y for each given x G X. We shall make the blanket assumption that
X C dom(C). With this setup, the MPEC is:

minimize f(x,y)

subject to (x,y) G Z, and (1)

where for each x G X, S{x) is the solution set of the variational inequality
(VI) defined by the pair (F(x1 •), C{x))\ i.e., y G S(x) if and only if y is in
C(x) and satisfies the inequality:

(v - y)TF(x, y) > 0, for all v G C(x).

In general, the graph of a set-valued map A : 5Rn -> !ftm will be denoted
Gr(^l); thus

G ( ^ ) {(*,2/)G3T+™ : j/ G *4(z)}.

By considering the solution map S as a set-valued map from 5Rn into 5Rm,
we may write the problem (1) in the compact form:

minimize f(x,y)

subject to (x, y) G Z D Gr(5).

Let

f E Z H Gr(5) (2)

denote the feasible region of (1). Throughout this monograph, we shall
make the blanket assumption that this region is nonempty. We refer the
reader to [220] for a comprehensive review of the VI and related problems
and to [7] for the fundamental theory of set-valued maps.
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The term "equilibrium constraints" in MPEC refers to the variational
inequality constraint y G S(x). Our usage of the word "equilibrium" re-
flects the fact that we are particularly interested in the case of MPEC where
its constraints represent certain equilibrium applications in engineering and
economics that are modeled by variational inequalities.

The formulation (1) of MPEC is very broad and encompasses a large
number of interesting special cases. Foremost among these is the case
where the mapping F(x, •) is the partial gradient map (with respect to
the second argument) of a real-valued C1 function 0 : 5ftn+m -» 5ft; i.e.,
F(x, y) = Vy6(x, y) for all (x, y) G Gr(C) where V^ denotes the partial
F(rechet^differentiation with respect to the variable y. In this case, the VI
(F(x, •), C(x)) is, for each fixed x G X, the set of stationarity conditions of
the following optimization problem in the variable y:

minimize 8(x, y)
(3)

subject to y G C(x).

This special case of the MPEC has traditionally been known as the bilevel
program with (3) called its inner program or lower-level program for an
obvious reason. In general, we shall use "argmin" to denote the opti-
mal solution set of a minimization problem. Thus for a given vector x,
argmin{0(£, y) : y G C(x)} denotes the optimal solution set of (3). For a
convex set C(x), we have

argmin{0(a;, y) : y G C(x)} C S(x),

where S(x) is the solution set of the VI (Vy8(x, y), C(x))\ moreover, equal-
ity holds if in addition 0(x, •) is convex in the second argument.

The MPEC (1) is a generalization of a bilevel program in which the
inner problems are Vis. A bilevel program is in turn a special case of a hi-
erarchical mathematical program which consists of multiple (possibly more
than two) levels of optimization. Such multi-level mathematical programs
have proven very useful in the modeling of hierarchical decision making
processes and in the optimization of engineering designs.

A simple example of a two-level decision making process is as follows.
Consider an economic planning process which involves several interact-
ing agents (or individuals). Some agents, collectively called a leader or a
principal, act as superiors who issue directives to the remaining agents,
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collectively called a follower or simply an agent, who act as subordinates
to the leader. The leader's directives are described by the variable x and
the follower's decision variables are contained in the vector y. The varia-
tional inequality constraint y G S(x) stipulates that for each of the leader's
directives x, the follower will choose a response vector y which is a solution
of a decision making problem modeled by the VI (F(x,-),C(x)) that de-
pends on x. Based on such rational responses from the subordinates, the
overall economic planning problem is to determine an optimal vector of the
leader's directives xopt along with an equilibrium vector of the follower's
responses yequ G S(xopt) in order to minimize an economic performance
function modeled by f(x,y) subject to the additional joint feasibility con-
dition (x, y) G Z. With this economic interpretation, the solution set S(x)
for the inner problem is sometimes called the set of rational reactions cor-
responding to x, the solution map S is called the reaction map, and the
graph Gr(<S) is called the rational set. The objective function f(x,y) and
the joint feasible region Z can be used to model additional anticipation of
the principal toward the (subordinate) agent's behavior. We will discuss
this modeling issue further in the context of the Stackelberg game; see
Section 1.2.

Separately, in the modeling of many engineering design problems as
an MPEC, the first-level vector x typically contains the design variables
of an engineering process and the second-level vector y contains the state
variables of the system; each inner VI (F(x, •), C(x)) corresponds to either
an optimization or equilibrium problem for a given admissible design x. The
overall optimization problem (1) is to determine an optimal pair of design
and state variables that will minimize the cost function f(x,y) subject to
the joint feasibility condition (x, y) G Z and the design constraint y G S(x).
Several design problems of this type will be presented in Section 1.2.

An important special case of the MPEC (1) is where C(x) is a convex
cone in !Rm for all x G X. In this case, it is known from the theory of
variational inequalities [109] that the VI (F(x, -),C(x)) is equivalent to a
generalized complementarity problem over the cone C(x):

yeC{x), F(x,y)£C(x)*, yTF(x,y)=0, (4)

where for an arbitrary subset S in an Euclidean space $lN,

5* = {zt$lN : zTv > 0 for all v G 5} (5)
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is the dual cone of S. The case C(x) — 5Rmi x Jft™2 for some nonnegative
integers vrt\ and 7722 such that m\ + rri2 = m is particularly interesting. In
this case, the vectors y and F(x, y) can be partitioned into

y=

where yu F^x.y) G 5Rmi and y2, F2(x,y) G 5ftm2, and the problem (4)
becomes

F1(x,y) = 0,

(j/2, F2(z, ?/)) > 0, (y2)TF2(x, y) - 0,

which is a mixed, nonlinear complementarity problem. When mi = 0, the
latter problem is a standard nonlinear complementarity problem (NCP).

The LCP (linear complementarity problem) constrained MP (mathe-
matical program) is a special case of the NCP constrained MP in which
the function F is linear. The following mathematical program:

minimize dT x + eTu + fTv

subject to Ax + Bu + Cv > g, (6)

(u,v)>0, uTv = 0,

whose constraints are in the form of a (nonstandard) linear complementar-
ity problem, parametrized by x, has been called a (linear) complementary
program in [118] and an LPEC in [187]. In turn, this complementary
program is a special instance of a disjunctive program [14] which is an op-
timization problem with disjunctive (i.e., "or") constraints. To see that
(6) is a disjunctive program, we note that the nonnegativity and comple-
mentarity constraint of this problem, (u,v) > 0, uTv = 0, is equivalent
to

(u,v) > 0, Vi (m = 0 or v% = 0),

which involves the disjunction "or". In essence, the NCP constrained MP,
and more generally, the general MPEC (1) where the inner Vis are formu-
lated in terms of their Karush-Kuhn-Tucker (KKT) conditions (see Sub-
section 1.3.2), are special instances of a nonlinear, disjunctive program.

A special case of the linear complementary program is a linear (mixed)
integer program in {0,1} variables. Due to this connection, the early study
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of the former program is closely tied to integer programming; in particular,
cutting plane methods [121] and facial techniques [14] have been proposed
for solving this problem.

The complexity of MPEC

The computational complexity of a (linear) disjunctive program is well
known in the integer programming literature [14]. In essence, this complex-
ity is caused by the disjunctive constraints which lead to some challenging
combinatorial issues that typically are the main concern in the design of ef-
ficient solution algorithms. As these disjunctive constraints are also present
implicitly in a general MPEC, the latter problem can be expected to be
quite difficult.

Indeed, the general MPEC (1) is an extremely difficult optimization
problem. Besides the intrinsic combinatorial curse of the constraints, the
difficulty arises from several other sources that are more akin to this prob-
lem considered as a nonlinear program. One such source is the potential
lack of convexity and/or closedness of the feasible region T. The special
case of the MPEC in which the inner problems are linear programs can be
used to elucidate the lack of these useful properties. The following simple
numerical example illustrates the possible nonconvexity of T.

1.1.1 Example. Consider the bilevel program in !R2:

minimize f{x,y)

subject to x > 0,

and y €  argmin{y : y e C(x)},
where

C(x) = {y e 3?+ : x + 2y > 10, x - 2y < 6,

2x - y < 21, x + 2y < 38, -x + 2y < 18}.

For x > 0, we have C(x) / 0 if and only if x < 16. Since each inner
problem is a linear program, we can solve for the optimal y for each given
x e [0,16], obtaining

5 - x/2 ifxe [0,8]

S(x) = { - 3 + x/2 if x e [8,12]

-21 + 2* if xe [12,16].
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The feasible region T', which is equal to

{(*, 5 - x/2) : z E [0,8]} U {(*, - 3 + z/2) : x G [8,12]} U

{(a;,-21 +2a;) : *G [12,16]}

is the union of three noncollinear line segments in the plane 5ft2. Thus T is
nonconvex.

In the above example, the set S(x) is a singleton for each x. However,
this solution function also illustrates another difficulty with the MPEC in
general: namely, the function S(x) (in the single-valued case) is in general
not Frechet differentiable. Thus nonsmoothness is also an intrinsic feature
of an MPEC.

Though not convex, the region T in Example 1.1.1 is at least a closed

connected set. Next we give an example to show that this set T could be

disconnected and not closed.

1.1.2 Example. Consider the bilevel program in 5ft2:

minimize /(*,?/)

subject to \x\ < 1,

and y G argmin{y : \y\ < 1, xy < 0}.

In the notation of the MPEC (1), we have F(x,y) = 1,

Z = {(x,y)e?R2 : |*| <1},

and
C{x) = {y e 5R : \y\ < 1, xy < 0}

is convex for each fixed x. It is not difficult to verify that

f {-1} i f*G[0 , l ]
S(x) = <

{ {0} if* G [-1,0).

Thus we have

T = {{x,-l) : xe [0,1]} U {(*,0) : xe [-1,0)}.

Clearly T is not closed.
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The lack of closedness of T renders the MPEC more or less intractable.
Subsequently, we shall impose some mild assumptions on the inner Vis
that will allow us to circumvent this difficulty and focus on the case where
T is indeed closed. Under these assumptions (that are satisfied by Exam-
ple 1.1.1 but not by 1.1.2), the feasible region T can be shown to be the
union of finitely many closed sets. This structure of T brings out a com-
binatorial nature of the MPEC that adds to the difficulty of this problem.
Indeed, the number of sets that constitute T could in general be large; they
are the result of a complementarity condition implicit within the Vis.

Another difficulty with the MPEC is the multi-valued nature of the
solution function S(x). This is illustrated by the following example.

1.1.3 Example. Consider the VI (F(x, •), C(ar)), where for all (x, y) G S2,

F(x,y) = -y, C(x) = {ye^: \y\ < 1 } .

It can be verified that for all x G 3J, S(x) — {1, -1} which is a discrete set.

A bilevel linear program is a special case of the MPEC in which / is a
linear function in (x,y), Z is a polyhedron, F is a constant, and C(x) is a
polyhedron of special type:

minimize cTx + dTy

subject to A\x + A2y > a, (7)

and y G &rgmin{qTy : Bxx + B2y > b},

where the vectors a,b,c,d and matrices Ai,A2,Bi,B2 are of appropriate
dimensions. In the notation of (1.1.1), we have

f(x, y) = cTx + dTy, Z = {(x, y) G ftn+™ : Axx + A2y > a},

F(x, y) = q, C(x) = {y G 5Rm : Bxx + B2y > b}.

It has been shown [122, 106] that the bilevel linear program belongs to the
class of strongly NP-hard problems. (See [92] for an introduction to the the-
ory of computational complexity and the definitions for various complexity
classes of problems, such as that of P, NP, and strong NP.) This implies
that there can be no fully polynomial approximation scheme for solving (7)
unless the classes P and NP are equal. (Roughly speaking, a fully polyno-
mial approximation scheme is an algorithm for computing an "^-optimal"
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solution to a given problem with running time which is a polynomial in
terms of the problem size and 1/e.) In spite of its hardness, the bilevel
linear program has been well researched and there are many algorithms of
the enumerative, branch-and-bound, exact-penalty, decomposition type for
solving this problem [23, 24, 25, 106, 129, 279, 284].

The intrinsic difficulties of MPEC are unfortunate since this optimiza-
tion problem has a wide range of applications in engineering and economics
(the next section outlines several of these applications). Partly due to these
difficulties, many studies of bilevel programs in the past have not been
based on very sound principles and are full of loose arguments and heuris-
tic approaches. Added to the complication is the fact that some of the
early results reported in the literature are in fact incorrect. To illustrate,
the reference [50] gave a counterexample to demonstrate that the neces-
sary optimality conditions for the bilevel programming problem obtained
in [18] were not correct; the reference [20] gave examples to show that sev-
eral known methods claimed by their authors to always yield a globally
optimal solution of a bilevel linear program were flawed. MPEC, being
defined formally only recently [108], deserves to be given a comprehensive
investigation and put on a solid, rigorous ground. The present monograph
is written with this as its main objective.

1.2 Source Problems

Although the origin of the MPEC can be traced to the economic notion
of a Stackelberg game [265], in the operations research literature mathe-
matical programming problems with optimization constraints, i.e., bilevel
programs, were introduced in a series of papers by Bracken and McGill
[34, 36, 37, 35, 38]. Applications of these programs to military defense and
production and marketing decision making in a competitive environment
were also discussed in these references. As we shall see, the Bracken-McGill
bilevel programs are considerably easier than the general MPEC. In the
Ph.D. thesis [61], de Silva discussed the application of "an implicitly defined
optimization model" to U.S. crude oil production. These and other early
applications of MPEC are mostly concerned with bilevel programs where
the inner problems are optimization problems. Along with the advance of
the theory and methods for variational inequalities and complementarity



10 Chapter 1. Introduction

problems [109] comes the gradual broadening of MPEC's applications to
equilibrium modeling. The term "mathematical programs with equilibrium
constraints" was coined in [108].

The volume [4] contains a number of interesting articles describing the
diverse applications of hierarchical optimization in engineering and eco-
nomics. In the next few subsections, we discuss some selective applications
of the MPEC.

The Bracken-McGill bilevel programs

For historical reasons, we begin our discussion of the applications of
MPEC with the earliest models proposed by Bracken and McGill. Their
first few papers addressed bilevel programming models of minimum-cost
weapon mix and other defense problems; in what follows, we present their
optimal production and marketing decision making model published in [38].

Consider a firm which produces several products labeled i = 1,... ,ra
using a number of different resources labeled j = 1,. . . , n. The firm wishes
to maximize profit subject to resource and market share constraints. The
products are manufactured within resource availabilities, and certain min-
imum market shares must be maintained in the face of competition from
other firms.

We introduce some notation. Let Xi and yi denote, respectively, the
firm's production and marketing level of the i-th product; let x = (x{) and
y = (yi) be the n-vectors of production and marketing levels respectively.
The real-valued function g^x, y, u, v) expresses the firm's market share for
product i given the values oix,y,u and v, where u and v are vectors denot-
ing the competitors' production and marketing levels of all the products.
The resource utilization function hj(x,y) specifies the amount of resource
j that is required for production level x and marketing level y. The min-
imum fraction of market share for product i that is required by the firm
is denoted â , and the total amount of resource j available to the firm is
denoted bj. Finally, let W denote the set of all feasible production and
marketing levels for the competitors.

For a given level (x, y) of production and marketing, the firm's minimum
market share function for the z-th product in the face of competition is given
by

<?i{x,y) = min{gi(x,y,u,v) : (u,v) €  W}.
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This function G{ is in general not Frechet differentiable, regardless of how
smooth gi is. The firm's optimal production and marketing strategy can
be obtained by solving the following optimization problem in the variables

fay)'
maximize f{x,y)

subject to hj(x,y) < fy, j = 1,... , n, (1)

and (Ji(x,y) > ai: z = l , . . . , ra .

In other words, the firm chooses a strategy (x,y) to maximize its total
profit, subject to the minimum specified level of market share a* for each
product z, and to the resource limitations. In this formulation, the firm
behaves in a rather conservative manner: it takes into account the worst-
case scenario on the part of the competitors in order to ensure its desired
market share. This approach is related to the weak Stackelberg game which
will be described shortly.

The above problem can be put into the form of a bilevel program in
the variables x,y, and {{ul,vl)}7^l, where the new (lower-level) variables
(u\vl) are minimizers of the function ai(x,y). More precisely, the problem
(1) is equivalent to

maximize f(x,y)

subject to hj(x,y) < bj, j = 1,. . . , n,
(2)

Qi{x,y,u\vl) > cti, 2 = 1,...,m;

and {u1^1) G argmin{^(x,2/,u,^) : (u,v) G W}.

Notice that the lower-level variables {(ul,vl)}7jrL1 do not appear in the
upper-level objective function / . Moreover, under the assumption that
gi(x,y,ul,vl) is concave in (x,y) for fixed {ul,vl) and W is a convex set,
the function ai(x,y) is concave in (x,y); if in addition f(x,y) and hj are
concave in (x,y), then (1) is a concave maximization program. Thus the
bilevel program (2) is considerably easier than the general MPEC (1.1.1)
which is not expected to possess much convexity or concavity property.

Stackelberg game

The MPEC is intimately related to the so-called leader-follower (or

Stackelberg) game [265, 13]. This game problem has been studied ex-
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tensively by economists and has found wide application in such areas as
oligopolistic market analysis [210, 263], optimal product design [48], quality
control in services [6], and pricing of electric transmission [114]. The usage
of the terms "leader" and "follower" in our introduction of the MPEC was
derived from this Stackelberg game problem; see Section 1.1.

The Stackelberg game can be considered an extension of the renowned
Nash game [207]. In the Nash game, there are a number of (say, M) players
each of whom has a strategy set Yi C 5Rmi. The objective of player % is
to minimize its economic cost Oi(yi,y^Jen) by selecting a strategy yi G Yi
given that the other players have chosen their strategies y^Jen, where y^Jen

denotes the vector (yfven : j / i). In other words, each player observes the
actions of the remaining players and then reacts optimally, assuming that
the other players' strategies remain unchanged. A strategy combination
V* £ rij=i Yj is called a Nash equilibrium if no player has an incentive to
deviate from his strategy y* in the sense that

y[ G argmin{0i(^,^) : y{ G Y{}, Vi.

It should be noted that the players in the Nash game are in a sense homo-
geneous since each of them has access to the same information regarding
the other players' strategies and the strategy chosen is only dependent on
this information.

In contrast, the Stackelberg game has a distinctive player (called the
leader) who can anticipate the (re)actions of the remaining players (called
followers) and use this knowledge in selecting his optimal strategy (see
[242]). Specifically, the leader chooses a strategy from the strategy set
I C P , while each follower (say i) has, corresponding to each of the
leader's strategies x G X, a strategy set Yi(x) C 5Rmi that is closed and
convex and a cost function 9i(x, •) : Ylj=i ̂ mj ~~̂  >̂ where M is the number
of followers in the Stackelberg game. Note that each follower's strategy is
dependent on the particular strategy x of the leader and this follower's cost
function is dependent on both the leader's and all followers' strategies. Let
p = ^2i=1 Trii. We assume that for any fixed but arbitrary xglven G X and
4 r = (yfen : j * t), the function

eiixP^yuy^T) (3)

is convex and continuous differentiate in the variable yi G Y^(:rglven).
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Collectively, the followers behave according to the Nash noncooperative
principle described above. That is to say, they will choose, for each x £ X,
a joint response vector

M

yopt =

such that for each i = 1 , . . . , M

T , ^ , ^ ) : Vi e Yi(x)}. (4)

By the convexity of the payoff functions (3) and the sets Yi(x), it is easy

to show that (4) holds for all i = 1 , . . . , M if and only if the vector yopt is

in SOL(F(ar,.),C(x)) where for y e W?,F(x,y) = (Fifay))^ with

and
M

y^yx) = i I ii\X).

i=l

Let / : !ftn+p —» 5ft be the leader's cost function which depends on both
his own and the followers' strategies. The Stackelberg game problem is to
determine a vector (x, y) G 5ftn+p in order to

minimize /(#,?/)

subject to x G X, (5)

and y G S(x).

This is an MPEC.
As we can see, in the Stackelberg game the leader is more "powerful"

than the followers in the sense that the leader is allowed to anticipate the
reactions of the followers and select his strategy accordingly. Thus, the
players of a Stackelberg game are no longer homogeneous as in the case of
the Nash game. Recall that in the Nash game there is no distinction among
the players since they can only observe but not anticipate the (re)actions of
the other players. If the leader loses the advantage of anticipating the other
players' reactions then the Stackelberg game reduces to the standard Nash
game. The loss of leader's privilege will usually result in an increase in the
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leader's optimal cost and a decrease in the followers' optimal costs; see [94]
for an example. Similarly, if the leader's ability of anticipation does not
affect his objective function value (e.g., f(x,y) = 0), then the Stackelberg
game also reduces to a Nash game.

Refinements and variations of the above Stackelberg model have been
proposed and studied extensively by Jacqueline Morgan and her collabora-
tors; see [157, 158, 165, 179]. In the terminology used in these references,
our model is a strong or optimistic Stackelberg game. To understand this
terminology, note that the problem (5) is equivalent to

minimize /strong(z) = m-fyeS(x)f(x,y)
(6)

subject to x G X.

Thus the leader is optimistic in the sense that he assumes that the followers
will act most favorably to his well-being by choosing, for each of his an-
nounced strategies x G X, a reaction y G S(x) among the rational reactions
that will contribute to the minimization of the cost function / . This situ-
ation is to be contrasted with the weak or pessimistic Stackelberg game in
which the leader assumes that the followers will choose their reactions from
the rational set that will be least favorable to him; thus the leader will act
conservatively to guard against the worst outcome. Mathematically, the
leader will solve the following MPEC:

minimize /weak(^) = supyeS{x) f(x,y)

subject to x G X.

When the reaction set S(x) is a singleton for each x G X, there is no
distinction between the above two situations. Nevertheless for Stackelberg
games with a multivalued reaction map, the weak and strong versions are
not necessarily equivalent. In [294], the terminology of "cooperative" and
"noncooperative" has been used to mean "strong" and "weak" respectively.
However, the former is confusing because a cooperative game normally has
a somewhat different (and well established) meaning in game theory [216].

An application of the Stackelberg game model (5) in conjunction with
the Cournot production model was discussed in [210, 263, 275]. The pa-
per [48] proposes a Stackelberg game model for new product pricing and
positioning in the face of price competition. Other studies on Stackelberg
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problems from an optimization point of view are [2, 5, 212, 213]. A numer-
ical approach for computing a Stackelberg-Cournot-Nash equilibrium via
nondifferentiable optimization is proposed in [215]. Incidentally, the bilevel
programs introduced by Bracken and McGill, including the one discussed
in the previous subsection, were developed to model a competitive environ-
ment similar to the leader-follower game discussed above. The difference is
that in the Bracken-McGill model, there was no specification of the follow-
ers' (the competitors') behavior; also the way the leader (the firm) handled
the followers' responses was different in the two approaches.

Misclassification minimization

Given two point sets A and B and a hyperplane H in an n-dimensional
real Euclidean space, we nominate one side of H (a closed halfspace) as
the A-side and the other as the B-side. We say that H (linearly) separates
the two sets if the A-side can be chosen to contain all the points in A and
the B-side all the points in B. Such a separation is strict if no points of
A U B lie on H. When the two sets A and B are not linearly separated by
a hyperplane H, then for any nomination of the A-side and B-side, there
is some point in A U B that lies in the wrong side of H (and not on H).
Each of these misplaced points is called a misclassification. The problem
of finding a hyperplane which separates A and B with a minimum number
of misclassifications is of fundamental importance to the area of machine
learning, pattern recognition, and artificial intelligence.

Mangasarian [187] has formulated the above misclassification problem
as a bilevel linear program. Below is a brief description of this formulation.
Suppose that the two sets of points A, B are represented by the rows of
two matrices A (m x n) and B (k x n) respectively, and suppose that the
hyperplane H is given by

wTx = 0,

where w G 5Rn is the normal vector of the hyperplane and 6 is a scalar; w
and 6 are to be determined. Clearly, the plane H separates the two sets A
and B strictly if and only if

Aw > eQ, and Bw < eQ,

where e is a vector of ones of appropriate dimensions. By rescaling, the


