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Preface to the revised edition

The main change in the revised edition is the new Chapter 10 on tight
closure. This theory was created by Mel Hochster and Craig Huneke
about ten years ago and is still strongly expanding. We treat the basic
ideas, F-regular rings, and F-rational rings, including Smith's theorem by
which F-rationality implies pseudo-rationality. Among the numerous ap-
plications of tight closure we have selected the Brian9on-Skoda theorem
and the theorem of Hochster and Huneke saying that equicharacteristic
direct summands of regular rings are Cohen-Macaulay. To cover these
applications, Section 8.4, which develops the technique of reduction to
characteristic p, had to be rewritten. The title of Part III, no longer
appropriate, has been changed.

Another noteworthy addition are the theorems of Gotzmann in the
new Section 4.3. We believe that Chapter 4 now treats all the basic
theorems on Hilbert functions. Moreover, this chapter has been slightly
reorganized.

The new Section 5.5 contains a proof of Hochster's formula for the
Betti numbers of a Stanley-Reisner ring since the free resolutions of
such rings have recently received much attention. In the first edition the
formula was used without proof.

We are grateful to all the readers of the first edition who have
suggested corrections and improvements. Our special thanks go to
L. Avramov, A. Conca, S. Iyengar, R. Y. Sharp, B. Ulrich, and K.-i.
Watanabe.

Osnabriick and Essen, WINFRIED BRUNS

October 1997 JURGEN HERZOG

XI



Preface to the first edition

The notion of a Cohen-Macaulay ring marks the cross-roads of two
powerful lines of research in present-day commutative algebra. While
its main development belongs to the homological theory of commutative
rings, it finds surprising and fruitful applications in the realm of alge-
braic combinatorics. Consequently this book is an introduction to the
homological and combinatorial aspects of commutative algebra.

We have tried to keep the text self-contained. However, it has not
proved possible, and would perhaps not have been appropriate, to develop
commutative ring theory from scratch. Instead we assume the reader has
acquired some fluency in the language of rings, ideals, and modules by
working through an introductory text like Atiyah and Macdonald [15]
or Sharp [344]. Nevertheless, to ease the access for the non-expert, the
essentials of dimension theory have been collected in an appendix.

As exemplified by Matsumura's standard textbook [270], it is natural
to have the notions of grade and depth follow dimension theory, and so
Chapter 1 opens with the introduction of regular sequences on which their
definition is based. From the very beginning we stress their connection
with homological and linear algebra, and in particular with the Koszul
complex.

Chapter 2 introduces Cohen-Macaulay rings and modules, our main
subjects. Next we study regular local rings. They form the most special
class of Cohen-Macaulay rings; their theory culminates in the Auslander-
Buchsbaum-Serre and Auslander-Buchsbaum-Nagata theorems. Unlike
the Cohen-Macaulay property in general, regularity has a very clear
geometric interpretation: it is the algebraic counterpart of the notion
of a non-singular point. Similarly the third class of rings introduced in
Chapter 2, that of complete intersections, is of geometric significance.

In Chapter 3 a new homological aspect determines the development
of the theory, namely the existence of injective resolutions. It leads us to
the study of Gorenstein rings which in several respects are distinguished
by their duality properties. When a Cohen-Macaulay local ring is not
Gorenstein, then (almost always) it has at least a canonical module
which, so to speak, acts as its natural partner in duality theorems, a
decisive fact for many combinatorial applications. We then introduce
local cohomology and prove Grothendieck's vanishing and local duality
theorems.

xn



Preface to the first edition xiii

Chapter 4 contains the combinatorial theory of commutative rings
which mainly consists in the study of the Hilbert function of a graded
module and the numerical invariants derived from it. A central point is
Macaulay's theorem describing all possible Hilbert functions of homoge-
neous rings by a numerical condition. The intimate connection between
homological and combinatorial data is displayed by several theorems,
among them Stanley's characterization of Gorenstein domains. In the
second part of this chapter the method of associated rings and modules
is developed and used for assigning numerical invariants to modules over
local rings.

Chapters 1-4 form the first part of the book. We consider this
material as basic. The second part consists of Chapters 5-7 each of
which is devoted to a special class of rings.

Chapter 5 contains the theory of Stanley-Reisner rings of simplicial
complexes. Its main goal is the proof of Stanley's upper bound theorem
for simplicial spheres. The transformation of this topological notion
into an algebraic condition is through Hochster's theorem which relates
simplicial homology and local cohomology. Furthermore we study the
Gorenstein property for simplicial complexes and their canonical modules.

In Chapter 6 we investigate normal semigroup rings. The combina-
torial object represented by a normal semigroup ring is the set of lattice
points within a convex cone. According to a theorem of Hochster, nor-
mal semigroup rings are Cohen-Macaulay. Again the crucial point is
the interplay between cellular homology on the geometric side and local
cohomology on the algebraic. The fact that the ring of invariants of a
linear torus action on a polynomial ring is a normal semigroup ring leads
us naturally to the study of invariant rings, in particular those of finite
groups. The chapter closes with the Hochster-Roberts theorem by which
a ring of invariants of a linearly reductive group is Cohen-Macaulay.

Chapter 7 is devoted to determinantal rings. They are discussed in
the framework of Hodge algebras and algebras with straightening laws.
We establish the straightening laws of Hodge and of Doubilet, Rota,
and Stein, prove that determinantal rings are Cohen-Macaulay, compute
their canonical module, and determine the Gorenstein rings among them.
In view of the extensive treatment available in [61], we have restricted
this chapter to the absolutely essential.

The third part of the book is constituted by Chapters 8 and 9.
They owe their existence to the fact that a Noetherian local ring is in
general not Cohen-Macaulay. But Hochster has shown that such a ring
possesses a (not necessarily finite) Cohen-Macaulay module, at least
when it contains a field. The construction of these 'big' Cohen-Macaulay
modules in Chapter 8 is a paradigm of characteristic p methods in
commutative algebra, and we hope that it will prepare the reader for
the more recent developments in this area which are centered around the



xiv Preface to the first edition

notion of tight closure introduced by Hochster and Huneke [190].
In Chapter 9 we deduce the consequences of the existence of big

Cohen-Macaulay modules, for example the intersection theorems of
Peskine and Szpiro and Roberts, the Evans-Griffith syzygy theorem, and
bounds for the Bass numbers of a module.

Chapters 8 and 9 are completely independent of Chapters 4—7, and
the reader who is only interested in the homological theory may proceed
from the end of Section 3.5 directly to Chapter 8.

It is only to be expected that the basic notions of homological algebra
are ubiquitous in our book. But most of the time we will only use the
long exact sequences for Ext and Tor, and the behaviour of these functors
under flat extensions. Where we go beyond that, we have inserted a
reference to Rotman [318]. One may regard it as paradoxical that we
freely use the Ext functors while Chapter 3 contains a complete treatment
of injective modules. However, their theory has several peculiar aspects so
that we thought such a treatment would be welcomed by many readers.

The book contains numerous exercises. Some of them will be used
in the main text. For these we have provided hints or even references
to the literature, unless their solutions are completely straightforward. A
reference of type A.n points to a result in the appendix.

Parts of this book were planned while we were guests of the Mathema-
tisches Forschungsinstitut Oberwolfach. We thank the Forschungsinstitut
for its generous hospitality.

We are grateful to all our friends, colleagues, and students, among
them L. Avramov, C. Baejica, M. Barile, A. Conca, H.-B. Foxby,
C. Huneke, D. Popescu, P. Schenzel, and W. Vasconcelos who helped
us by providing valuable information and by pointing out mistakes in
preliminary versions. Our sincere thanks go to H. Matsumura and R.
Sharp for their support in the early stages of this project.

We are deeply indebted to our friend Udo Vetter for reading a large
part of the manuscript and for his unfailing criticism.

Vechta and Essen, WINFRIED BRUNS

February 1993 JURGEN HERZOG
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Basic concepts





1 Regular sequences and depth

After dimension, depth is the most fundamental numerical invariant of a
Noetherian local ring R or a finite ^-module M. While depth is defined in
terms of regular sequences, it can be measured by the (non-)vanishing of
certain Ext modules. This connection opens commutative algebra to the
application of homological methods. Depth is connected with projective
dimension and several notions of linear algebra over Noetherian rings.

Equally important is the description of depth (and its global relative
grade) in terms of the Koszul complex which, in a sense, holds an
intermediate position between arithmetic and homological algebra.

This introductory chapter also contains a section on graded rings and
modules. These allow a decomposition of their elements into homoge-
neous components and therefore have a more accessible structure than
rings and modules in general.

1.1 Regular sequences

Let M be a module over a ring R. We say that x e R is an M-regular
element if xz = 0 for z e M implies z = 0, in other words, if x is not
a zero-divisor on M. Regular sequences are composed of successively
regular elements:

Definition 1.1.1. A sequence x = xi , . . . ,xn of elements of R is called an
M-regular sequence or simply an M-sequence if the following conditions
are satisfied: (i) xt is an M/(x\, • • •, x,_i)M-regular element for i = 1,..., n,
and (ii) M/xM ± 0.

In this situation we shall sometimes say that M is an x-regular module.
A regular sequence is an K-sequence.

A weak M-sequence is only required to satisfy condition (i).

Very often R will be a local ring with maximal ideal m, and M =fc 0
a finite K-module. If x c m, then condition (ii) is satisfied automatically
because of Nakayama's lemma.

The classical example of a regular sequence is the sequence X\,...,Xn

of indeterminates in a polynomial ring R = S[Xi,...9Xn]. Conversely
we shall see below that an M-sequence behaves to some extent like a
sequence of indeterminates; this will be made precise in 1.1.8.

The next proposition contains a condition under which a regular
sequence stays regular when the module or the ring is extended.
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Proposition 1.1.2. Let R be a ring, M an R-module, and x a R a weak
M-sequence. Suppose <p: R—> S is a ring homomorphism, and N an R-flat
S-module. Then x a R and cp{x) a S are weak (M ®# N)-sequences. If
x(M ®R N) T̂  M <S>R N, then x and (p(x) are (M ®# N)-sequences.

PROOF. Multiplication by xt is the same operation on M ® N as multipli-
cation by (p(xt); so it suffices to consider x. The homothety x\ : M —> M
is injective, and xi ® N is injective too, because N is flat. Now xi ® N
is just multiplication by xi o n M ® JV. So xi is an (M ® JV)-regular ele-
ment. Next we have (M ® N)/x\(M ® JV) = (M/xiM) (8) AT; an inductive
argument will therefore complete the proof. •

The most important special cases of 1.1.2 are given in the following
corollary. In its part (b) we use M to denote the m-adic completion of a
module M over a local ring (R, m,/c) (by this notation we indicate that
R has maximal ideal m and residue class field k = R/m).

Corollary 1.1.3. Let R be a Noetherian ring, M a finite R-module, and x
an M-sequence.
(a) Suppose that a prime ideal p e SuppM contains x. Then x (as a
sequence in Rv) is an Mp-sequence.
(b) Suppose that R is local with maximal ideal m. Then x (as a sequence
in R) is an M-sequence.

PROOF. Both the extensions R—> Rp and R —• R are flat, (a) By hypothesis
Mp =£ 0, and Nakayama's lemma implies Mp =/= pMp. A fortiori we have
xMv ^ Mp. (b) It suffices to note that M = M ® R is a finite A-module.

•
The interplay between regular sequences and homological invariants

is a major theme of this book, and numerous arguments will be based
on the next proposition.

Proposition 1.1.4. Let R be a ring, M an R-module, and x a weak M-
sequence. Then an exact sequence

q>2 (Pi (Po

N2 —•* Ni —-> No —•> M —* 0

of R-modules induces an exact sequence
N2/xN2 —> Ni/xNi —> No/xNo —• M/xM —• 0.

PROOF. By induction it is enough to consider the case in which x consists
of a single M-regular element x. We obtain the induced sequence if we
tensor the original one by R/(x). Since tensor product is a right exact
functor, we only need to verify exactness at N{/xN\. Let ~ denote residue
classes modulo x. If cp\(y) = 0, then cp\(y) = xz for some z e No and
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xcpo(z) = 0. By hypothesis we have cpo(z) = 0; hence there is y' G N\
with z = cp\(yf). It follows that <p\(y — xy') = 0. So y — xyf G ^2(^2), and
y G cpii^i) as desired. D

If we want to preserve the exactness of a longer sequence, then we
need a stronger hypothesis.

Proposition 1.1.5. Let R be a ring and
(Pm (P0

N.: > Nm —> Nm_! —> > No — * iV_i —> 0

an exact complex of R-modules. If x is weakly Ni-regular for all i, then
N. <g> R/(x) is exact again.

PROOF. Once more one uses induction on the length of the sequence x. So
it is enough to treat the case x = x. Since x is regular on iV,, it is regular
on Im<pi+i too. Therefore we can apply 1.1.4 to each exact sequence
JVi+3 - • Ni+2 - • Nm -> Im (pf+i -> 0. D

Easy examples show that a permutation of a regular sequence need
not be a regular sequence; see 1.1.13. Nevertheless there are natural
conditions under which regular sequences can be permuted.

Let x\,X2 be an M-sequence, and denote the kernel of the multiplica-
tion by X 2 o n M b y K . Suppose that z e K. Then we must have z e x\M,
z = x\z\ and x\(x2Zf) = 0, whence X2Zf = 0 and z' G K, too. This shows
K = x\K so that K = 0 if Nakayama's lemma is applicable. Somewhat
surprisingly, xi is always regular on M/X2M; the reader may check this
easily.

Proposition 1.1.6. Let R be a Noetherian local ring, M a finite R-module,
and x = x\,...,xn an M-sequence. Then every permutation of x is an
M-sequence.

PROOF. Every permutation is a product of transpositions of adjacent
elements. Therefore it is enough to show that xi,...,Xj+i,x/,...,xn is
an M-sequence. The hypothesis of the proposition is satisfied for M =
M/(xi,...,Xj_i)M and the M-sequence X|,...,xn. So it suffices to treat
the case i = 1 and to show that X2, xi is an M-sequence. In view of the
discussion above we only need to appeal to Nakayama's lemma. •

Quasi-regular sequences. Let R be a ring, M an .R-module, and X =
Xu...9Xn be indeterminates over R. Then we write M[X] for M <g)
R[X] and call its elements polynomials with coefficients in M. If x =
xi , . . . ,x n is a sequence of elements of R, then the substitution Xt f—• x,
induces an K-algebra homomorphism R[X] —> R and also an .R-module
homomorphism M[X] —> M. We write F(x) for the image of F G M[X]
under this map. (Since the monomials form a basis of the free .R-module
R[X], we may speak of the coefficients and the degree of an element of
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Theorem 1.1.7 (Rees). Let R be a ring, M an R-module, x = x\,...,xn an
M-sequence, and I = ( x i , . . . , x n ) . Let X = X\,...,Xn be indeterminates
over R. IfF G M[X] is homogeneous of (total) degree d and F(x) G Id+lM,
then the coefficients of F are in IM.

PROOF. We use induction on n. The case n = 1 is easy. Let n > 1 and
suppose that the theorem holds for regular sequences of length at most
n — 1. We must first prove an auxiliary result which is an interesting fact
in itself: let J = (x\,...,xw_i); then xn is regular on M/JjM for all j > 1.

In fact, suppose that xny G JjM for some j > 1. Arguing by induction
we have y G Jj~{M; so y = G(xi,...,xn_i) where G e M[Xu...,Xn-\] is
homogeneous of degree j — 1 . Set G = xnG. Then the theorem applied to
G' G M[X\,...,Xn-\] yields that the coefficients of G' are in JM. Since
xn is regular modulo JM, it follows that the coefficients of G are in JM
too, and therefore y e JjM.

The proof of the theorem for sequences of length n requires induction
on d. The case d = 0 is trivial. Assume that d > 0. First we reduce to the
case in which F(x) = 0. Since F(x) e Id+lM, one has F(x) = G(x) with G
homogeneous of degree d+1. Then G = YM=\ XiGt with G, homogeneous
of degree d. Set G\ = xtG, and G = J X i GJ. So F - G is homogeneous
of degree d, and (F — G)(x) = 0. Furthermore, F — G has coefficients in
IM if and only if this holds for F.

Thus assume that F(x) = 0. Then we write F = G + Xw/f with
G G M[Xi, . . . ,Xn_i]. The auxiliary claim above implies that H(x) G
J^M c 7dM. By induction on d the coefficients of H are in /M.
On the other hand H(x) = if '(xi, . . . ,xn_i) with ifr G M[Xu...,Xn-i]
homogeneous of degree d. As

it follows by induction on n that G + xnH
f has coefficients in JM. Since

x n i / ' has its coefficients in IM, the coefficients of G must be in IM
too. •

Let / be an ideal in #. One defines the associated graded ring of R
with respect to I by

i=0

The multiplication in gr7(.R) is induced by the multiplication P xV —• Ii+j,
and gr7(^) is a graded ring with (gr7(R))o = R/I. If M is an R-module,
one similarly constructs the associated graded module

i=0
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It is straightforward to verify that gr7(M) is a graded gr/(i^)-module.
(Graded rings and modules will be discussed in Section 1.5. The
reader not familiar with the basic terminology may wish to consult
1.5.) Let / be generated by x\,...,xn. Then one has a natural surjec-
tion R[X] = R[Xi,...9Xn] -> gr7(K) which is induced by the natural
homomorphism R —• R/I and the substitution Xt i—• xt G I /I2. Similarly
there is an epimorphism xp : M[X] —> gr7(M). One first defines xp on
the homogeneous components by assigning to a homogeneous polyno-
mial F G M[X] of degree d the residue class of F(x) in IdM/Id+1M;
then xp is extended additively. As the reader may check, \p is an epi-
morphism of graded R[X]-modules. Obviously IM[X] c Kerip; via the
identification M[X]/IM[X] = (M/IM)[X], we therefore get an induced
epimorphism cp : (M/IM)[X] —• gr7(M). The kernel of \p is generated by
the homogeneous polynomials F G M[X] of degree d, d G N, such that
F(x) G Id+1M. So we obtain as a reformulation of 1.1.7

Theorem 1.1.8. Let R be a ring, M an R-module, x = x\,...,xn an
M-sequence, and I — (x). Then the map (M/IM)[Xi,...,Xn] —> gr7(M)
induced by the substitution X[ »—> x, G I /I2 is an isomorphism.

This theorem says very precisely to what extent a regular sequence
resembles a sequence of indeterminates: the residue classes xt G //I2

operate on gr7(M) exactly like indeterminates. Since a regular sequence
may lose regularity under a permutation, whereas 1.1.8 is independent
of the order in which x is given, it is not possible to reverse 1.1.8; see
however 1.1.15. Later on it will be useful to have a name for sequences
x satisfying the conclusion of 1.1.8; we call them M-quasi-regular if, in
addition, xM ^= M.

Exercises

1.1.9. Let 0 - » £ / — > M — > J V — • O b e a n exact sequence of JR-modules, and x
a sequence which is weakly 17-regular and (weakly) AT-regular. Prove that x is
(weakly) M-regular too.

1.1.10. (a) Let x1 , . . . ,x I-, . . . ,xn and x 1 , . . . ,x j , . . . ,x n be (weakly) M-regular. Show
that x 1 , . . . ,x ixj , . . . ,x n is (weakly) M-regular. (Hint: In the essential case i = 1
one finds an exact sequence as in 1.1.9 with M/xxx\M as the middle term.)
(b) Prove that x j 1 , . . . , xj;" is (weakly) M-regular for all e} > 1.

1.1.11. Prove that the converse of 1.1.2 holds if, in the situation of 1.1.2, N is
faithfully flat over R.

1.1.12. (a) Prove that if x is a weak M-sequence, then Torf (M, R/(x)) = 0.
(b) Prove that if, in addition, x is a weak K-sequence, then Torf (M, #/(*)) = 0
for all i > 1.

1.1.13. Let R = K[X9 Y,Z], k a field. Show that X, 7(1 - X), Z(l - X) is an
K-sequence, but 7(1 - X\ Z(l - X\ X is not.
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1.1.14. Prove that xi,..., xn is M-quasi-regular if and only if xi,..., xn e I /I2 is a
gr7(M)-regular sequence where / = (xi,..., xn).
1.1.15. Suppose that x is M-quasi-regular, and let / = (x i , . . . ,x n ) . Prove
(a) if Xiz €  VM for zeM, then z e r~lM9

(b) x2,..., xn is (M/xiM)-quasi-regular,
(c) if R is Noetherian local and M is finite, then x is an M-sequence.

1.2 Grade and depth

Let R be a Noetherian ring and M an ^-module. If x = xi , . . . ,x n is an
M-sequence, then the sequence (x\) a (xi,X2) <= • • • c (xi,...,xw) ascends
strictly for obvious reasons. Therefore an M-sequence can be extended
to a maximal such sequence: an M-sequence x (contained in an ideal / )
is maximal (in / ) , if x i , . . . ,x n + i is not an M-sequence for any xn+\ G R
(xn+i G / ) . We will prove that all maximal M-sequences in an ideal / with
IM 7̂  M have the same length if M is finite. This allows us to introduce
the fundamental notions of grade and depth.

In connection with regular sequences, finite modules over Noetherian
rings are distinguished for two reasons: first, every zero-divisor of M
is contained in an associated prime ideal, and, second, the number of
these prime ideals is finite. Both facts together imply the following
proposition that is 'among the most useful in the theory of commutative
rings' (Kaplansky [231], p. 56).

Proposition 1.2.1. Let R be a Noetherian ring, and M a finite R-module.
If an ideal I <= R consists of zero-divisors of M, then I cz p for some
p G Ass M.

PROOF. If / <̂  p for all p G Ass M, then there exists a e I with a £ p for
all p G AssM. This follows immediately from 1.2.2. •

The following lemma, which we have just used in its simplest form, is
the standard argument of 'prime avoidance'.

Lemma 1.2.2. Let R be a ring, p 1 ? . . . , pm prime ideals, M an R-module, and
xi , . . . ,xB eM. SetN = J2URxt. IfNPj £ PjMPj for j = l , . . . ,m, then
there exist a^,...,an G R such that x\ + Y!!i=2aixi £ VjMPj for j = 1,...,m.
PROOF. We use induction on m, and so suppose that there are af

2,..., dn G R
for which x\ = x\ + Y^l=2a'ixi & Vj^Vj for 7 = l , . . . ,m — 1. Moreover,
it is no restriction to assume that the p, are pairwise distinct and that
pm is a minimal member of p l 5 . . . , pm. So there exists r G (Pl^T/ VJ) \ Vm-
Put x\ = rxt for i = 2 , . . . , n and AT' = YM=\ Rxi- Since r £ pm we have
N'p = NPm. On the other hand, as r G p;- for j = 1,...,m — 1, it follows
that x\ + x\ £ VjMPj for i = 2 , . . . , n and j; = 1,... , m — 1. If x[ £ pmMPm,
then x\ is the element desired; otherwise x\ + xj ^ VmMVm for some
/ G {2,... , n}, and we choose x[ H- xj. •
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Note that if M = R and N = I c R, then the condition NPj ^ PjMp.
simplifies to / <fc p ; .

Suppose that an ideal / is contained in p G AssM. By definition,
there exists z e M with p = Annz. Hence the assignment 11—• z induces
a monomorphism cp': K/p —* ^> a n d t n u s a non-zero homomorphism
(/>: i^// —> M. This simple observation allows us to describe in homolog-
ical terms that a certain ideal consists of zero-divisors:

Proposition 1.2.3. Let R be a ring, and M, N R-modules. Set I — Ann N.
(a) If I contains an M-regular element, then HomR(N,M) = 0.
(b) Conversely, if R is Noetherian, and M, N are finite, HomR(N,M) = 0
implies that I contains an M-regular element.

PROOF, (a) is evident, (b) Assume that / consists of zero-divisors of M,
and apply 1.2.1 to find a p G AssM such that / c p. By hypothesis,
p G Supp Af; so Nv ®fc(p) ^ 0 by Nakayama's lemma, and since Nv ®/c(p)
is just a direct sum of copies of /c(p), one has an epimorphism Nv —• /c(p).
(By k(p) we denote the residue class field Rp/pRv of Rv.) Note that
pKp G Ass Mp. Hence the observation above yields a non-zero q>' G
HomRp(NP,MV). Since HomRp(ATp,Mp) = HomR(N,M)v, it follows that
Hom^(iV,M) ^ 0. (See [318], Theorem 3.84 for the isomorphism just
applied.) •

Lemma 1.2.4. Let R be a ring, M, N be R-modules, and x = x\,...,xn a
weak M-sequence in Ann N. Then

HomR(N,M/xM) 9* ExtJ(N,M).

PROOF. We use induction on n, starting from the vacuous case n = 0.
Let n > 1, and set xf = xi , . . . ,xn_i. Then the induction hypothesis
implies that E x t ^ H ^ M ) S H o m u ^ M / y M ) . As xB is
regular, ExtJ"1 (iV,M) = 0 by 1.2.3. Therefore the exact sequence

0 —> M ^ M —• M/x iM —• 0

yields an exact sequence

0 —> Extn^l(N,M/xM) -^ Extn
R(N,M) -^ Extn

R(N,M).

The map cp is multiplication by xi inherited from M, but multiplication
by xi on N also induces cp; see [318], Theorem 7.16. Since xi G Ann AT,
one has cp = 0. Hence tp is an isomorphism, and a second application of
the induction hypothesis yields the assertion. •

Let R be Noetherian, / an ideal, M a finite i^-module with M ^ IM9

and JC = xi, . . . ,xw a maximal M-sequence in / . From 1.2.3 and 1.2.4
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we have, since / contains an (M/(xi,...,Xj_i)M)-regular element for
i = l , . . . ,n,

Ext^iR/I,M) S Horn* (R/I,M/(xu...,x,-_i)M) = 0.

On the other hand, since IM ^ M and x is a maximal M-sequence in / ,
then / must consist of zero-divisors of M/xM9 whence

Extn
R(R/I,M) ^ UomR(R/I,M/xM) + 0.

We have therefore proved

Theorem 1.2.5 (Rees). Let R be a Noetherian ring, M a finite R-module,
and I an ideal such that IM ^ M. Then all maximal M-sequences in I
have the same length n given by

n = min{f: Ex?R(R/I, M) ^ 0}.

Definition 1.2.6. Let R b e a Noetherian ring, M a finite .R-module, and
/ an ideal such that IM ^ M. Then the common length of the maximal
M-sequences in / is called the grade of I on M, denoted by

grade(/,M).

We complement this definition by setting grade(/, M) = oo if IM = M.
This is consistent with 1.2.5:

grade(/, M) = oo <=> Ext^R/I, M) = 0 for all i.

For, if IM = M, then SuppM n Supp R/I = 0 by Nakayama's lemma,
hence

(1) Supp Ext*R(R/I, M) c Supp M n Supp R/I = 0;

conversely, if Ext?R(R/I,M) = 0 for all i, then 1.2.5 gives IM = M.
The inclusion in (1) results from the natural isomorphism

which holds if R is Noetherian, N a finite i^-module, M an arbitrary
.R-module, and p e SpecR; see [318], Theorem 9.50.

A special situation will occur so often that it merits a special notation:

Definition 1.2.7. Let (R, m, k) be a Noetherian local ring, and M a finite
.R-module. Then the grade of m on M is called the depth of M, denoted

depth M.

Because of its importance we repeat the most often used special case
of 1.2.5:
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Theorem 1.2.8. Let (R, m, k) be a Noetherian local ring, and M a finite
non-zero R-module. Then depth M = min{i: Extl

R(k,M) ^ 0}.

Some formulas for grade. We now study the behaviour of grade(/,M)
along exact sequences.

Proposition 1.2.9. Let R be a Noetherian ring, I c R an ideal, and
0—•£/—>M—»JV—>0aft exact sequence of finite R-modules. Then

grade(/,M) > min{grade(/, 17), grade(/, N)},
grade(7, U) > min{grade(J,M),grade(J, JV) + 1},
grade(/,iV) > min{grade(7,17) - l,grade(/,M)}.

PROOF. The given exact sequence induces a long exact sequence

, JV) -> Extort//, U) -> ExtR(R/I,M)

- Ext?R(R/I,N) -> Ext^K/J , 17) - • • •

One observes that ExtfR(R/I,M) = 0 if ExVR(R/I,U) and Extjj(/?//,JV)
both vanish. Therefore the first inequality follows from 1.2.5 and our
discussion of the case grade(/,_) = oo. Completely analogous arguments
show the second and the third inequality. •

The next proposition collects some formulas which are useful in the
computation of grades. (In the sequel V(I) denotes the set of prime ideals
containing /.)

Proposition 1.2.10. Let R be a Noetherian ring, I,J ideals of R, and M a
finite R-module. Then
(a) grade(/,M) = inf{depth Mv : p e V(I)},

(b) grade(/,M) = grade(Rad/,M),
(c) grade(7 n J,M) = min{grade(/,M), grade(J,M)},
(d) if x = x\,...,xn is an M-sequence in I, then grade(//(x), M/xM) =
grade(/, M/xM) = grade(7, M) - n,

(e) if N is a finite R-module with SuppiV = V(I), then

grade(7, M) = inf{i: Ext!R(N9 M) £ 0}.

PROOF, (a) It is evident from the definition that grade(7, M) < grade(p, M)
for p e V(I), and it follows from 1.1.3 that grade(p,M) < depth Mv.
Furthermore, if grade(/,M) = oo, then SuppM n V(I) = 0 so that
depth Mp = oo for all p G V(I). Thus suppose IM =£ M and choose a
maximal M-sequence x in /. By 1.2.1 there exists p G Ass(M/xM) with
lap. Since pRp G Ass(M/xM)p and (M/xM)p = Mp/xMp, the ideal
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pRp consists of zero-divisors of M P / JCM P , and x (as a sequence in Rp) is
a maximal Mp-sequence.

(b) and (c) follow easily from (a).
(d) Set R = R/(x), I = I/(x), and M = M/xM. Elementary argu-

ments show that IM = M <=> IM = M <=> IM = M. Furthermore
yi,...,yn €  1 form an M-sequence if and only if yi,..., yn e 7 form such
a sequence. This proves the first equation. The second equation results
from 1.2.5.

(e) The hypothesis entails that RadAnniV = RadJ. By (b) we may
therefore assume that / = AnniV. Now one repeats the proof of 1.2.5
(and the discussion of the case IM = M) with R/I replaced by N. •

The name 'grade' was originally used by Rees [303] for a different,
though related invariant:

Definition 1.2.11. Let R be a Noetherian ring and M ^ O a finite R-
module. Then the grade of M is given by

grade M = min{f: Ext^(M, R) =£ 0}.

For systematic reasons the grade of the zero-module is infinity.

It follows directly from 1.2.10(e) that grade M = grade(Ann M, R). It
is customary to set

grade/ = grade K/J = grade(/,#),

for an ideal / c R, and we follow this convention. (Of course, grade/
has two different meanings now, but we will never use it to denote the
grade of the module /.)

Depth and dimension. Let (R,m) be Noetherian local and M a finite R-
module. All the minimal elements of Supp M belong to Ass M. Therefore,
if x G m is an M-regular element, then x £ p for all minimal elements of
Supp M, and induction yields dim M/xM = dim M — n if x = x\,..., xn

is an M-sequence. (Note that dim M/xM > dimM — n is automatic; see
A.4.) We have proved:

Proposition 1.2.12. Let (R, m) be a Noetherian local ring and M ^ 0 a
finite R-module. Then every M-sequence is part of a system of parameters
of M. In particular depth M < dim M.

The inequality in 1.2.12 can be somewhat refined:

Proposition 1.2.13. With the notation of 1.2.12 one has depth M <
dim R/p for all p G Ass M.

PROOF. We use induction on depth M. There is nothing to prove for
depth M = 0. If depth M > 0, then there exists an M-regular x G m. For
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p G AssM we choose z e M such that Rz is maximal among the cyclic
submodules of M annihilated by p. If z G xM, then z = xy with y e M ,
and py = 0 since x is M-regular; moreover, Kz is a proper submodule
of Ry, contrary to the choice of z. Therefore p consists of zero-divisors
of M/xM, and is contained in some q G Ass(M/xM). As x ^ p, we have
p ^ Supp(M/xM), and thus p 7̂  q. Now depth(M/xM) = depth M — 1
by 1.2.10, whence, by induction,

dim # / p > dim R/q > depth(M/xM) = depth M - 1. •

A global variant of 1.2.12 says that height bounds grade.

Proposition 1.2.14. Let R be a Noetherian ring and I c R an ideal. Then
grade/ < height/.

PROOF. Since grade/ = inf{depthRp : p G V(I)} by 1.2.10, and height/ =
inf{dim^p : p G V(I)}, the assertion follows from 1.2.12. •

Depth, type, and flat extensions. Finally we investigate how depth behaves
under flat local extensions. As a by-product we obtain a result on the
behaviour of the type of a module under such extensions. This is an
invariant which refines the information given by the depth:

Definition 1.2.15. Let (R,m,k) be a Noetherian local ring, and M a finite
non-zero K-module of depth t. The number r(M) = dim/c Ext^(/c,M) is
called the type of M.

Proposition 1.2.16. Let cp\ (K,m,/c) —> (<S,n, /) be a homomorphism of
Noetherian local rings. Suppose M is a finite R-module, and N is a finite
S-module which is flat over R. Then
(a) depths M ®RN = depth^ M + depth5 N/mN,
(b) rs(M ®a N) = rR(M) • rs(N/mN).

The proof of the proposition is by reduction to the case of depth 0.
We collect the essential arguments in a lemma.

Lemma 1.2.17. Under the hypotheses of 1.2.16 the following hold:

(a) dim/ Horns(h M ® N) = dim^ Hom^(/c, M) • dim/ Horns(/, N/mN),

(b) if y is an (N/mN)-sequence in S, then y is an (M ®RN)-sequence, and
N/yN is flat over R.

PROOF, (a) Set T = S/mS. There is a natural isomorphism

(2) Horns (/, Homs(T, M ® N)) ^ Homs(J, M <g> N),

since the modules on both sides can be identified with the submodule
U = {z G M ® N: nz = 0} of M ® N. As AT is flat over R, we have a
natural isomorphism

Horns(T, M®N) = Horns(fc ®S,M®N)^ HomR(/c, M) 0 N.



14 1. Regular sequences and depth

(see [318], 3.82 and 3.83). Now HomK(/c,M) ^ ks for some s > 0, and
so Hom#(/c,M) <8> AT = (N/mN)s. In conjunction with (2), this yields the
equation asserted.

(b) One has a natural isomorphism (M®N)/J(M®N) = M®(N/JN)
for an arbitrary ideal J c S. Therefore we may use induction on the
length n of j , and only the case n = 1, y = y needs justification.

By Krull's intersection theorem one has f\(£=Qmi(M®N) = 0. Suppose
that yz = 0 for some z e M ® N. If z ^ 0, then there exists i such
that z G m'(M 0 JV) \ m l+1(M (8) N), and j ; would be a zero-divisor on
ml(M 0 JV)/mI+1(M ® JV). However, consider the embedding ralM —• M.
Since JV is flat, the induced map m'M 0 A/" —• M (8) AT is also injective, and
its image is m'(M <g) AT). The same reasoning for mI+1 and flatness again
then yield an isomorphism

va\M 0 N)/xni+\M 0 JV) = (m'M/m^^) ®N^kl ®N^ (N/mNf

for some t > 0. Since y is regular on N/miV, it must be regular on
m /(M0JV)/m I '+1(M®JV).

In order to test flatness of N/yN it suffices to consider exact sequences

0 — • M i —> M2 —> M3 —• 0

of finite ^-modules ([318], Theorem 3.53). By hypothesis

0 —>Mi®N —> M2®N —• M3®N —>0

is also exact. As has been shown previously, y is regular on M3 0 JV, and
(M3 (8) N)/y(M3 0 N) = M3 0 AT/yiV. Therefore 1.1.4 yields the exactness
of

0 —• Mi 0 N/yiV —• M2 (8) N/yN —• M3 0 N/yN —• 0. D

PROOF OF 1.2.16. Let x = x i , . . . ,xm be a maximal M-sequence, and
j = yi,...,yn a maximal (A/^/mN)-sequence. First, cp(x) = q>{x\\..., q>(xm)
is an (M 0 A/^)-sequence; see 1.1.2. Second, by 1.2.17, y is an (M (8) N)-
sequence where M = M/xM. Since M (8) N = (M (8) JV)/(p(jc)(M 0 AT), it
follows that cp(x), y is an M 0 Af-sequence.

Set JV' = N/yN. Then JV'/mAT = (iV/mAT)/j(AT/mAr), and

(M 0 N)/(<p(x), y)(M 0 AT) ^ M 0 AT.

An application of 1.2.4 therefore gives the isomorphisms

HomR(lc, M) ^ Ext^(/c, M), Homs(/, JV'/miV') s Extg(/, AT/mA )̂,

Homs(/, M (8) Nr) = Ext£+"(/, M 0 JV).

Part (a) of 1.2.17 implies that dimiExt™+n(l,M ® N) has the dimension
required for (b), and in particular is non-zero. Together with the fact that
(p(x), y is an (M 0 AT)-sequence this proves depth(M ® N) = m + n. •
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The type of a module of depth 0 is the dimension of its socle:

Definition 1.2.18. Let M be a module over a local ring (R,m,k). Then

SocM = (0 : m)M = HomR(/c,M)

is called the socle of M.

For ease of reference we formulate the following lemma which was
already verified in the proof of 1.2.16.

Lemma 1.2.19. Let (R, m, k) be a Noetherian local ring, M a finite R-
module and x a maximal M-sequence. Then r(M) = dim^ Soc(M/xM).

Exercises

1.2.20. Let k be a field and R = k\[X]\[Y]. Deduce that X, Y and 1 - XY are
maximal R-sequences. (This example shows that the condition IM ^ M in 1.2.5
is relevant.)
1.2.21. Let R be a Noetherian ring, / cz R an ideal, / = (xi,...,xn), and M a
finite R-module with IM =/= M. Set g = grade(/,M). Prove
(a) / can be generated by elements yi,...,yn such that ^,...,Vi fc form an M-
sequence for all i i , . . . , h with 1 < i\ < - • - < ih < n, h < g,
(b) if Vi,...,yn satisfies (a), then, in fact, every permutation of yix,...,yih is an
M-sequence.
Hint: It is possible to choose yt = x,- + Y^j^iajxj- Use the discussion above 1.1.6
for (b).

1.2.22. Let R be a Noetherian ring, J c R a n ideal, and M a finite R-module with
IM + M. Set£ = K/AnnM.
(a) Prove that grade(/,M) < heightIR
(b) Give an example where grade(/,M) > height/.
(c) Show that if / = (xi,...,xn), then grade(/,M) < n.
1.2.23. Let R be a Noetherian local ring, and / c R an ideal. Show grade/ >
d e p t h s - dim R/L (Hint: Use 1.2.13.)
1.2.24. Let R be a Noetherian ring, M a finite K-module, and / an ideal of R. Show
that grade(/, M) > 2 if and only if the natural homomorphism M —> Hom^/, M)
is an isomorphism.
1.2.25. Let cp : (R, m) —• (S, n) be a homomorphism of local rings, and N an
.R-flat S -module such that N/mN has finite length over S. Show that for every
finite length R-module M, fs(M ® N) = SR(M) • £s(N/mN). (The symbol /
denotes length). Hint: use induction on /(M).

1.2.26. Let cp: (^m) —• (S,n) be a homomorphism of Noetherian local rings,
and M an S-module which is finite as an K-module.
(a) Suppose p e Asss M, and let x G M with Anns x = p. Prove that cp induces an
embedding R/(p n R) ^ S/p = 5x which makes S/p a finite K/(p n R)-module.
Conclude that p n K =̂ m, if p ^ n.
(b) Show that depth^ M = depths M.
(c) Suppose in addition that (p is surjective. Prove rR(M) = rs{M).
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1.2.27. Let R be a Noetherian ring, M a, finite ̂ -module, and N an arbitrary
K-module. Deduce that AssHom/?(M,AT) = Supp M n Ass N.

1.3 Depth and projective dimension

Let R be a ring, and M an ^-module; M has an augmented projective
resolution

P.: • • • —> Pn —> Pw_! — • • • — Pi —+ Po — Af —> 0.

(By definition a projective resolution is non-augmented, i.e. M is replaced
by 0; for the most part it is clear from the context whether one uses a non-
augmented resolution or an augmented one, so that one need not mention
the attribute 'augmented' explicitly.) Set Mo = M and M, = Ker <p,-_i for
i > 1. The modules Mt depend obviously on P.. However, M determines
Mi up to projective equivalence ([318], Theorem 9.4), and therefore it is
justified to call M, the i-th syzygy of M. The projective dimension of M,
abbreviated proj dim M, is infinity if none of the modules Mt is projective.
Otherwise proj dim M is the least integer n for which Mn is projective;
replacing Pn by Mn one gets a projective resolution of M of length n:

0 —> Mn —> Pn_! —> • • • —+ Po —-> M —• 0.

For a finite module M over a Noetherian local ring (R, m, fc) there is
a very natural condition which, if satisfied by P., determines P. uniquely.
It is a consequence of Nakayama's lemma that xi , . . . ,xm e M form a
minimal system of generators of M if and only if the residue classes
xi , . . . ,x m G M/mM = M ® fc are a /c-basis of M ® /c. Therefore m =
dim/c M ® fc, and

/i(M) = dim/c M ® fc

is the minimal number of generators of M. Set /?o = /x(M). We choose a
minimal system xi , . . . , x#, of generators of M and specify an epimorphism
cpo'. RP° —• M by <j9o(̂ 0 = *i where e\,...,ep0 is the canonical basis of
^ ° . Next we set fi\ = /i(Ker(po) and define similarly an epimorphism
R@l —> Ker (po. Proceeding in this manner we construct a minimal free
resolution

It is left as an exercise for the reader to prove that F. is determined by
M up to an isomorphism of complexes. The number j8/(M) = fo is called
the i-th Betti number of M.

Proposition 1.3.1. Let (R,m,k) be a Noetherian local ring, M a finite
R-module, and

F.: --'^Fn^Fn_l-^---^Fi^F0—+0
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a free resolution of M. Then the following are equivalent:
(a) F. is minimal;
(b) (pi(Fi) c mFi_i for all i>\;
(c) rankFj = dim^ Torf (M,k)for all i > 0,
(d) rankF, = dimfc Extl

R(M,k) for all i > 0.

PROOF. The equivalence of (a) and (b) follows easily from Nakayama's
lemma. Since Torf (M,/c) = Ht(F. ® /c), (c) holds if and only if cpt ® k = 0
for all i > 0. The latter condition is evidently equivalent to (b). To relate
(b) to (d) one uses that Ext^(M,/c) = // '(Hom^V.lc). •

Corollary 1.3.2. Let (R, m, k) be a Noetherian local ring, and M a finite
R-module. Then #(M) = AimkToxf(M,k) for all i and

proj dim M = sup{/: Torf (M, k) ± 0}.

The following theorem, the 'Auslander-Buchsbaum formula', is not
only of theoretical importance, but also an effective instrument for the
computation of the depth of a module.

Theorem 1.3.3 (Auslander-Buchsbaum). Let (R, m) be a Noetherian local
ring, and M ^ 0 a finite R-module. If proj dim M < oo, then

proj dim M + depth M = depth R.

The proof is by induction on depth R. We isolate the main arguments
in two lemmas, the first of which, in view of a later application, is more
general than needed presently.

Lemma 1.3.4. Let (R,m,k) be a local ring, and cp: F —> G a homomorphism
of finite R-modules. Suppose that F is free, and let M be an R-module with
m G Ass M. Suppose that cp ® M is injective. Then
(a) cp ® k is injective;
(b) if G is a free R-module, then cp is injective, and cp(F) is a free direct
summand of G.

PROOF. Since m £ Ass M, there exists an embedding i: k -> M. As F is
a free .R-module, the map F ® i is also injective. Furthermore we have a
commutative diagram

cp®k cp<S>M

G®k • G(g)M

If cp (x> M is injective, then cp ® k is injective too. This proves (a).
For (b) one notes that its conclusion is equivalent to the injectivity of

cp ®k. This is an easy consequence of Nakayama's lemma. •
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Lemma 1.3.5. Let (R, m) be a Noetherian local ring, and M a finite R-
module. If x e m is R-regular and M-regular, then

proj dim£ M = proj dimK/(jc) M/xM.

PROOF. Choose an augmented minimal free resolution F. of M. Then
F. ® R/(x) is exact by 1.1.5, and therefore it is a minimal free resolution
of M/xM over R/(x). Now apply 1.3.2. •

PROOF OF 1.3.3. Let dep ths = 0 first. By hypothesis M has a (minimal)
free resolution

F . : 0 —> Fn - ^ FB_i —> • • • —> Fi —> Fo —> M —> 0

with n = proj dimM. Since dep ths = 0, the maximal ideal m is in
Ass JR. If n > 1, i.e. if cpn is really present, then, as shown in 1.3.4,
<pn maps Fn isomorphically onto a free direct summand of Fw_i, in
contradiction to proj dim M = n. Therefore n = 0, and furthermore
depth M = depth R = 0 since M is a free i^-module.

Let now dep ths > 0. Suppose first that depthM = 0. Then 1.2.9
yields depth Mi = 1 for a first syzygy M\ of M. Since proj dim M\ =
proj dim M — 1, it is enough to prove the desired formula for M\. Thus
we may assume depth M > 0. Then m ^ Ass# and m ^ AssM. So
m contains an element x which is both ^-regular and M-regular. The
formulas for the passage from M to M/xM in 1.2.10 and 1.3.5 yield

depthR/(x) R/(x) = depth R — 1, depth^/(x) M/xM = depth^ M — 1,

proj dinifl/(x) M/xM = proj dim M.

Therefore induction completes the proof. •

Exercises

1.3.6. Let R be a Noetherian local ring, M a finite .R-module, and x an M-sequence
of length n. Show proj dim(M/xM) = proj dim M + n.

1.3.7. Let R be a Noetherian local ring, and N an n-th syzygy of a finite K-module
in a finite free resolution. Prove that depth N > min(n, depth R).

1.4 Some linear algebra

In this section we collect several notions and results which may be
classified as 'linear algebra': torsion-free and reflexive modules, the rank
of a module, the acyclicity criterion of Buchsbaum and Eisenbud, and
perfect modules.



1.4. Some linear algebra 19

Torsion-free and reflexive modules. Let i^bea ring, and M an ^-module.
If the natural map M —• M ® Q, where Q is the total ring of fractions of
R, is injective, then M is torsion-free; it is a torsion module if M ® Q = 0.
The dwa/ o/ M is the module HomR(M,R), which we usually denote
by M*; the bidual then is M**, and analogous conventions apply to
homomorphisms. The bilinear map M x M* -+ R, (x, cp) i—• (p(x), induces
a natural homomorphism h: M -> M**. We say that M is torsionless
if /z is injective, and that M is reflexive if /i is bijective. Some relations
between the notions just introduced are given in the exercises. Here we
note a useful criterion:

Proposition 1.4.1. Let R be a Noetherian ring, and M a finite R-module.
Then:
(a) M is torsionless if and only if

(i) Mp is torsionless for all p G Ass R, and
(ii) depth Mp > 1 for p G Spec R with depth Rv > 1 ;

(b) M is reflexive if and only if
(i) Mp is reflexive for all p wff/i depth .Rp < 1, am/
(ii) depth Mp > 2 for p G SpecK wft/i depth Rp > 2.

PROOF. Consider the natural map h: M —> M** and set U = Ker/z,
C = Coker h. Note that the construction of h commutes with localization
in the situation considered. Therefore the necessity of conditions (i) in
(a) and (b) is obvious. Next Exercise 1.4.19 implies

depth M** > min(2, depth Rp)

for all p G Spec R. That (b)(ii) is necessary for reflexivity follows directly
from this inequality. If M is torsionless, then Mp is isomorphic to
a submodule of M**, and we get depth Mp > min(l, depth Rp) for all
p G Specif. So (a)(ii) is necessary for M to be torsionless.

As to the sufficiency of (a)(i) and (ii), note that Uv = 0 for all
p G AssK by (i), and, by (ii), depth Up > 1 if depth Rv > 1. It follows
that Ass U = 0, hence (7 = 0.

For the sufficiency of (b)(i) and (ii) we may now use that (a) gives us
an exact sequence 0 - • M -> M** - • C -> 0. If depth Rp < 1, then Cp = 0
by (i). If depth Kp > 2, then depth Mp > 2 by (ii), and depth M** > 2
by the inequality above. Therefore depth Cp > 1, and it follows that
Ass C = 0. •

Rank. The dimension of a finite dimensional vector space over a field
is given either by the minimal number of generators or by the max-
imal number of linearly independent elements. The second aspect of
'dimension' is generalized in the notion of 'rank':
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Definition 1.4.2. Let R be a ring, M an ^-module, and Q be the total
ring of fractions of R. Then M has rank r if M ® Q is a free Q-module
of rank r. If (p: M —• N is a homomorphism of ^-modules, then cp has
rank r if Im cp has rank r.

Proposition 1.4.3. Let R be a Noetherian ring, and M an R-module with

a finite free presentation F\ —> F$ —> M —• 0. Then the following are
equivalent:
(a) M has rank r;
(b) M has a free submodule N of rank r such that M/N is a torsion module;
(c) for all prime ideals p G AssR the Rp-module Mv is free of rank r;
(d) rank cp = rank Fo — r.

PROOF, (a) => (b): A free basis x i , . . . ,x r of M ® Q can be formed from
elements x, G M (multiply by a suitable common denominator). Now
take N = JT Rxt.

(b) => (a): This is trivial.
(a) => (c): Mv is a localization of M ® Q.
(c) => (a): Q is a semi-local ring. Its localizations with respect to its

maximal ideals are just the localizations of R with respect to the maximal
elements of Ass R. By hypothesis M is therefore a projective module over
Q, and moreover the localizations with respect to the maximal ideals of
Q have the same rank r. Such a module is free; see Lemma 1.4.4 below.

(c) <=> (d): In view of the equivalence of (a) and (c) we can replace
(d) by the condition that (Im cp)v is free and rank(Im cp)p = rank Fo — r
for all p G Ass R. Now consider the exact sequence

0 _ > (lm(p)p —> (F0)p —> Mp — 0.

If Mp is free, then (Im cp)v must be free. Since p G Ass R, the converse is
also true; see 1.3.4. •

Lemma 1.4.4. Let R be a semi-local ring, and M a finite projective R-
module. Then M is free if the localizations Mm have the same rank r for
all maximal ideals m of R.

PROOF. We use induction on r. The case r = 0 is trivial. Suppose that
r > 0. Then 1.2.2 (with N = M and p 1 ? . . . ,pm denoting the maximal
ideals of R) yields an element x e M such that x £ mMm for all maximal
ideals of M. Thus x is a member of a minimal system of generators
of Mm. Since every such system is a basis of the free module Mm, one
concludes that (M/Rx)m is free of rank r — 1. By the induction hypothesis
M/Rx is free of rank r — 1. Therefore M = Rx® M/Rx. In particular Rx
is a projective .R-module. But Rx is also free: the natural epimorphism
cp: R —• Rx yields an isomorphism cpm : Rm —> (#x)m for every maximal
ideal m. Since (Ker cp)m = Ker cpm it follows that Ker cp = 0. •
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R a n k is add i t i ve a l o n g exac t sequences .

Proposit ion 1.4.5. Let Rbe a Noetherian ring, and 0 — • l / - » M — > N — • ( )
an exact sequence of finite R-modules. If two of U, M, N have a rank, then
so does the third, and rank M = rank U + rank N.

PROOF. In view of 1.4.3 we may assume that R is local and of depth 0.
Then two of U, M, N are free. If U and N are free, then so is M. Thus
M is always free (after the reduction to depth 0), and the result follows
from the equivalence of 1.4.3(a) and (d). •

Corollary 1.4.6. Let R be a Noetherian ring, and M an R-module with
a finite free resolution F . : 0 —• Fs —> Fs_i —> • • • —• F\ —> Fo. Then
rank M = £ * = 0 ( - i y rank F,.

PROOF. Observe 1.4.5 and use induction on s. •

Corollary 1.4.7. Let R be a Noetherian ring, and I =/= 0 an ideal with a
finite free resolution. Then I contains an R-regular element.

PROOF. By 1.4.6 / has a rank, and that rank/ + rank R/1 = rankK = 1
follows immediately from 1.4.5. Since / is torsion-free and non-zero,
the only possibility is rank/ = 1, whence mnkR/I = 0. Thus R/I is
annihilated by an .R-regular element. •

Ideals of minors and Fitting invariants. Let U be an m x n matrix over R
where m, n > 0. For t = 1,... , min(m, n) we then denote by It(U) the ideal
generated by the t-minors of U (the determinants of t x t submatrices).
For systematic reasons one sets It(U) = R for t < 0 and It(U) = 0 for
t > min(m, n). If cp : F —> G is a homomorphism of finite free .R-modules,
then q> is given by a matrix U with respect to bases of F and G. It
is an elementary exercise to verify that the ideals It(U) only depend on
cp. Therefore we may put It(cp) = It(U). It is just as easy to show that
It(cp) is already determined by the submodule Im q> of G. As proved by
Fitting in 1936, these ideals are even invariants of Coker cp (when counted
properly), and therefore called the Fitting invariants of Coker cp: let

Fi - ^ Fo —> M —• 0 and Gx -^ Go —• M —> 0

be finite free presentations of the .R-module M, and n = rank Fo, p =
rank Go; then In-U(q>) = IP-u(v>) for all u > 0. (The proof is left as an
exercise for the reader.) This justifies the term u-th Fitting invariant of M
for In-U((p).

It is an important property of the ideals It(cp) that their formation
commutes with ring extensions: if S is an .R-algebra, then It(cp <g> S) =
It((p)S. (Simply consider cp as given by a matrix.)
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The ideals It{(p) determine the minimal number /*(MP) of generators
of a localization in the same way that they control the vector space
dimension of M if R is a field.

Lemma 1.4.8. Let R be a ring, M an R-module with a finite free presenta-

tion Fi —> Fo —> M —> 0, and p a prime ideal. Then the following are
equivalent:
(a) It((p) <£p;
(b) (Im(p)p contains a {free) direct summand of (Fo)p of rank t;
(c) n(Mv) < r a n k F 0 - £ .

PROOF. It is no restriction to assume that R = Rp. Nakayama's lemma
entails that fi(M) = fi(M/pM). Similarly it implies that Im cp contains a
(free) direct summand of FQ of rank t if and only if there are elements
x\,...,xt elmcp which are linearly independent modulo pFo. (Note that
every direct summand of a finite free module over a local ring is free itself
- again an application of Nakayama's lemma.) After these observations
we may replace R by the field R/p. For vector spaces over fields the
equivalence of (a), (b) and (c) is an elementary fact. •

Lemma 1.4.9. With the notation of 1.4.8, the following are equivalent:
(a) It(cp) £ p and It+i(<p)P = 0;
(b) (Imcp)p is a. free direct summand of(Fo)p of rank t;
(c) Mv is free and rank Mv = rank Fo — t.

PROOF. We may assume that R = Rv. Then each of (b) and (c) is equivalent
to the split exactness of the sequence 0 —• Im cp -» Fo —• M —• 0.

If (a) holds, then, with respect to suitable bases of F\ and Fo, the
matrix of cp has the form

'id,
0

where idt is the t x t identity matrix. This implies (b). The converse is
seen similarly. •

Let M be a finite module over a Noetherian ring R. Then M is a
projective module (of rankr) if and only if Mv is a free Rp-module (of
rankr) for all p e Specif. Combining this fact with 1.4.9 we obtain the
global version of 1.4.9:

Proposition 1.4.10. Let R be a Noetherian ring, and M a finite R-module

with a finite free presentation F\ —> Fo —• M —• 0. Then the following
are equivalent:
(a) Ir((p) = R and Ir+i(q>) = 0;
(b) M is projective and rank M = rank Fo — r.

The rank of a homomorphism cp: F —• G is determined by the ideal
It(<p), just as in elementary linear algebra:
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Proposition 1.4.11. Let R be a Noetherian ring, and let cp: F —• G be a
homomorphism of finite free R-modules. Then rank cp = r if and only if
gradeIr((p) > 1 and Ir+\((p) = 0.

The easy proof is left as an exercise for the reader.

The Buchsbaum-Eisenbud acyclicity criterion. Let R be a ring. A complex

of R-modules is called acyclic if H,(G.) = 0 for all f > 0, and sp/it acyclic
if it is acyclic and ipI+i(Gi+i) is a direct summand of G; for f > 0.

Let R be a Noetherian ring, and

F. : 0 —> Fs - ^ Fs_i —> • • • —• Fi - ^ Fo —> 0

a complex of finite free .R-modules. We want to develop a criterion for
F. to be acyclic. This criterion will involve ideals generated by certain
minors of the homomorphisms cpi. A first relation between the ideals
It((p) and the acyclicity of complexes is given in the next proposition.

Proposition 1.4.12. Let R be a ring, M an R-module,

F. : 0 —+ Fs —• Fs_! —> • • • —^ Fi —• Fo —> 0

be a complex of finite free R-modules, and p cz R be a prime ideal. Set
rt = 5Zy=I-(—I)7'"1' rank F7 /or i = 1,..., s. Then the following are equivalent:

(a) F. <g> Kp fs sp/it acyclic;

(b) /r.(^) <fcpfori=l9...9s.
Furthermore, It((pi)p = 0 for all i = l , . . . , s and t > rif if one of these
conditions holds.

Ify£ Ass M, then (a) and (b) are equivalent to
(c) F. ® Mp fs acyclic.

PROOF. We may suppose that R = Rp.
(a) => (b): If F. is split acyclic, then F. ® R/p is a (split) acyclic

complex of vector spaces over R/p; so we can refer to elementary linear
algebra.

(b) => (a): We again use induction, and may assume that Coker^2

is a free .R-module of rank r\. According to 1.4.8, Imcpi contains a free
direct summand U of Fo of rank r\. So we get an induced epimorphism
Cokercp2 —• U of free .R-modules, both of which have rank r\. Such a
map must be an isomorphism. One easily concludes that Im<pi = U.
Hence F. is split acyclic.

That It((Pi) = 0 for t > r,, follows most easily from (a) in conjunction
with 1.4.9.
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(c) => (a): Let F[ be the truncation 0 -> Fs - • • • • - > Fi -> 0. Then
F.' ® M is acyclic; arguing inductively, we may therefore suppose that
F[ is split acyclic. Then F[ = Coker<p2 is free, and the induced map
F[ ® M —• FQ ® M is injective by hypothesis. By virtue of 1.3.4, F[ is
mapped isomorphically onto a free direct summand of Fo.

(a) => (c): This is evident. •

We have completed our preparations for the following important and
extremely useful acyclicity criterion.

Theorem 1.4.13 (Buchsbaum-Eisenbud). Let R be a Noetherian ring, and

CD\(3 CD\

F.: 0 —> Fs —> Fs_! —* • • • —-> Fi —> Fo —> 0

a complex of finite free R-modules. Set rt = ]T*=.(—ly^'rankF/. TTien r/ze
following are equivalent:
(a) F. fs acyclic;
(b) grade/r.(9i) > i/or i = l , . . . , s .

Before we prove the theorem the reader should note that rt =
ranker > 0 when F. is acyclic; this is just a restatement of 1.4.6. Con-
versely, it is not necessary to require that r, > 0 for the implication
(b) => (a); if r, < 0, then ri+\ > rankFj, and /r,-+1(<Pi+i) = 0 in contradic-
tion with (b). In the situation of 1.4.13 we call r, the expected rank of
(pi.

PROOF, (a) => (b): By what has just been said and 1.4.11, we see that
grade/r.(<pj) > 1 for i = l , . . . , s . In particular there is an i^-regular
element x contained in the product of the ideals Iri((Pi)- If x is a unit, then
In((Pi) = R for all i9 and we are done. Otherwise we use induction. Let
denote residue classes modulo x. It follows immediately from 1.1.5 that
the induced complex 0 —• Fs -> Fs_i —••••—• F2 —• Fi —• 0 is acyclic.
Furthermore Iri((Pi)~ = Iri((Pi), and gradeIri((f>i) > i — 1 by induction.
Then gradeIri((Pi) > i for i = 2,. . . ,s.

The reader may have noticed that this implication follows imme-
diately from the Auslander-Buchsbaum formula 1.3.3. In view of the
generalization 9.1.6 an independent proof is useful, however.

(b) => (a): Using induction again we may assume that F[: 0 —•
Fs —> Fs_i —• • • • —• F2 —• Fi —> 0 is acyclic. We set Mt = Coker cpi+i
for i = l , . . . , s , and show by descending induction that depth(Mj)p >
min{f,depthRp} for all p e Specif and i = l , . . . , s .

As Ms = Fs, this is trivial for i = s. Let i < s and consider the exact
sequence

0 —> MM —-> Ft —•* Mi —-> 0.

If depthRp > i+ 1, then depth(MI+i)p > i + 1, and we get depth(Mj)p > i
from 1.2.9. If depthRp < U then Ir.+l((pi+i) cji p by hypothesis; on the
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other hand rankMJ+i = ra,nk(pi+\ = r,-+i, and therefore It((pi+i) = 0 for
t > r,-+i. So 1.4.9 yields that (M,)p is free, hence depth(M,)p = depth Rv.

We still have to show that the induced map cp[: M\ —> Fo is injective.
Let N = Kerq>[. In order to get N = 0, we derive that AssiV = 0.
If depthRp > 1, then depth(Mi)p > 1 as seen above; therefore p ^
Ass Mi => AssN. If depth Kp = 0, then Iri{<Pi) <£ p for f = l , . . . , s , and
F. ® Rp is even split acyclic by 1.4.12. It follows that Np = 0 since
Np^HiiF.QRp). •

Often one only needs the following consequence of 1.4.13.

Corollary 1.4.14. Let R be a Noetherian ring, and F. be a complex as in
1.4.13. If F.® Rp is acyclic for all prime ideals p with depth Rp < s, then
F. is acyclic.

PROOF. Let p be a prime ideal with depth Rp < i < s. The implication
(a) => (b) of the theorem applied to F. <g> Rv yields gradeIri((pi)p > h
which is only possible if Jr.(<pj) <£ p. This shows gradeIri((Pi) > U and the
acyclicity of F. follows from the implication (b) => (a) of the theorem.

D

Theorem 1.4.13 is the most important case of the acyclicity criterion
of Buchsbaum and Eisenbud. Its general form will be discussed in
Chapter 9.

Perfect modules. Let R be a Noetherian ring, and M a finite ^-module.
Since one can compute Ext#(M, R) from a projective resolution of M,
one obviously has grade M < proj dim M. Modules for which equality is
attained have especially good properties.

Definition 1.4.15. Let i^bea Noetherian ring. A non-zero finite /^-module
M is perfect if proj dim M = grade M. An ideal / is called perfect if R/I
is a perfect module.

Perfect modules are 'grade unmixed':

Proposition 1.4.16. Let R be a Noetherian ring, and M a perfect R-module.
For a prime ideal p G SuppM the following are equivalent:
(a) p G AssM;
(b) depth Rp = grade M.
Furthermore grade p = grade M for all prime ideals p G Ass M.

PROOF. For all finite /t-modules M and p G Supp M one has the inequal-
ities

grade M < grade Mp < proj dim Mp < proj dim M,

and moreover proj dim Mp + depth Mp = depth Rv by the Auslander-
Buchsbaum formula 1.3.3. If M is perfect, then the inequalities become
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equations, and depth Mp = 0 if and only if depth Rv = grade M. This
shows the equivalence of (a) and (b).

If p e Ass M, then p => Ann M, and so grade p > grade M. For perfect
M the converse results from (b) and the inequality grade p < depth Rp.

•
It follows easily from 1.3.6 that an ideal generated by a regular

sequence in a Noetherian ring R is perfect. Some more examples are
described in the following celebrated theorem:

Theorem 1.4.17 (Hilbert-Burch). Let R be a Noetherian ring, and I an
ideal with a free resolution

F.: 0 —• Rn -?U Rn+1 —> / —> 0.

Then there exists an R-regular element a such that I = aln((p). If I is
projective, then I = (a), and if proj dim / = 1, then In((p) is perfect of
grade 2.

Conversely, if cp\ Rn —> Rn+1 is an R-linear map with grade /„((/>) > 2,
then I = In((p) has the free resolution F0.

PROOF. First we prove the converse part. Let cp: Rn —> Rn+l be a map
with grade In((p) > 2. Then cp is given by an (n + 1) x n matrix U.
Let Si denote the i-minor of U with the i-th row deleted, and consider
the homomorphism n : Rn+l —• K which sends et to (—l)1^. Laplace
expansion shows that we have a complex

0 —> IT2 - ^ i r + 1 -!U j —> 0,

which in fact is exact by 1.4.13.
Suppose now that an ideal / with free resolution F. is given. Then

1.4.13 yields gradeIn((p) > 2, and we can apply the first part of the proof
to obtain / = Cokercp = In((p)l equivalently, there exists an injective
linear map a: In((p) —• R with / = Ima. According to 1.2.24, a is just
multiplication by some a e R. Because of 1.4.7 (or 1.4.13) a cannot be a
zero-divisor.

If / is projective, then In(q>) = R by 1.4.10, and thus / = (a). If
proj dim/ = 1, then proj dim(R/In((p)) = proj dim R/I = 2, and R/In(cp)
is perfect of grade 2. •

Exercises

1.4.18. Let R be a ring, and M a finite torsion-free module. Prove that if M has
a rank, then M is isomorphic to a submodule of a finite free K-module of the
same rank.
1.4.19. Let R be a Noetherian ring, / an ideal, and M, N finite modules. Prove
grade(/,HomK(M,N)) > min(2,grade(/, JV)).
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1.4.20. Let R b e a Noetherian ring, and M a finite R-module. Prove
(a) if M is torsionless, then it is torsion-free,
(b) M is torsionless if and only if it is a submodule of a finite free module,
(c) if M is reflexive, then it is a second syzygy, i.e. there is an exact sequence
0 - • M - • Fi - • Fo with F, finite and free.

1.4.21. Let R b e a Noetherian ring, and M a finite .R-module. Suppose q>: G —• F
is a homomorphism of finite free jR-modules with M = Cokertp. Then D(M) =
Coker cp* is the transpose of M. (It is unique up to projective equivalence.) Show
that Kerfc = Extl

R(D(M),R) and Coker/i = Ext2
R{D(M), R) where fc: M - • M** is

the natural homomorphism.

1.4.22. Let R be a Noetherian ring, and M a. finite R-module such that M* has
finite projective dimension. Prove
(a) if depth Mp > min(l, depth Rv) for all p e SpecR, then M is torsionless,
(b) if depthMp > min(2,depthRv) for all p e Specif, then M is reflexive.
Hint: proj dim M* < oo => projdimD{M) < GO.

1.4.23. Let R be a Noetherian ring, and M a finite .R-module. Show that M has
a rank if and only if M* has a rank (and both ranks coincide). Hint: It is enough
to consider the case R = jRp, depth Rp = 0. Apply 1.4.22.

1.4.24. Let R be a Noetherian local ring, and 0 —• Ls —• Ls_i —••••—> Li —>
Lo —• 0 a complex of finite K-modules. Suppose that the following hold for i > 0:
(i) depthU > i, and (ii) depthHt(L.) = 0 or Ht(L.) = 0. Show that L. is acyclic.
(This is Peskine and Szpiro's 'lemme d'acyclicite' [297].)
Hint: Set Q = Coker(L,+i —• L,), and show by descending induction that
depth Q > i and Ht(L.) = 0 for i > 0.

1.4.25. Let R be a Noetherian ring, / an ideal of finite projective dimension, and
M a finite R/I -module. Prove the following inequality of Avramov and Foxby
[29]:

grade^/; M + grade# R/I < gradeR M < gradeR// M + proj dimR R/I;

if / is perfect, then equality is attained. (Use the Auslander-Buchsbaum formula.)

1.4.26. Let R be a Noetherian ring, and M a perfect .R-module of grade n. Suppose
P. is a projective resolution of M of length n and set M' = Ext£(M, R). Prove
(a) P* is acyclic and resolves M',
(b) M' is perfect of grade rc, and M" = M,
(c) Ass M' = Ass M.

1.4.27. Let R be a Noetherian ring, x an ^-sequence of length n, and / = (JC).
Show that R/Im is perfect of grade n for all m > 1. (Theorem 1.1.8 is useful.)

1.5 Graded rings and modules

In this section we investigate rings and modules which, like a polyno-
mial ring, admit a decomposition of their elements into homogeneous
components.
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Definition 1.5.1. A graded ring is a ring R together with a decomposition
R = 0 - G 2 Rt (as a Z-module) such that RtRj a Ri+j for all i,j G TL.

A graded R-module is an ^-module M together with a decomposition
M = 0 J G Z Mi (as a Z-module) such that R[Mj c M,-+7- for all i, j G Z.
One calls M, the f-th homogeneous (or graded) component of M.

The elements x G M, are called homogeneous (of degree i); those of
Rt are also called i-forms. According to this definition the zero element is
homogeneous of arbitrary degree. The degree of x is denoted by deg x.
An arbitrary element x G M has a unique presentation x = X^x* as a
sum of homogeneous elements x, G M,. The elements x* are called the
homogeneous components of x.

Note that Ro is a ring with 1 e 4 that all summands Mt are i V
modules, and that M = 0 I € Z M* is a direct sum decomposition of M as
an i?o-module.

Definition 1.5.2. Let R be a graded ring. The category of graded R-modules,
denoted J?o(R), has as objects the graded .R-modules. A morphism
<p : M —> N in Ji^K) is an .R-module homomorphism satisfying cp(Mi) a
Nt for all f G Z. An K-module homomorphism which is a morphism in

will be called homogeneous.

Let M be a graded .R-module and N a submodule of M. iV is called
a graded submodule if it is a graded module such that the inclusion map
is a morphism in J?Q(R). This is equivalent to the condition AT; = N n M*
for all i G Z. In other words, N is a graded submodule of M if and only
if N is generated by the homogeneous elements of M which belong to N.
In particular, if x G N, then all homogeneous components of x belong to
N. Furthermore, M/N is graded in a natural way. If <p is a morphism in
<y#o W> then Ker cp and Im (p are graded.

A (not necessarily commutative) i^-algebra A is graded if, in addition
to the definition, AtAj a Ai+j.

The graded submodules of R are called graded ideals. Let / be an
arbitrary ideal of R. Then the graded ideal /* is defined to be the ideal
generated by all homogeneous elements a G / . It is clear that /* is the
largest graded ideal contained in / , and that R/I* inherits a natural
structure as a graded ring.

Examples 1.5.3. (a) Let S be a ring, and R = S[Xi,...,Xn] a polynomial
ring over S. Then for every choice of integers d\,...,dn there exists a
unique grading on R such that deg Xt = dt and deg a = 0 for all a G S:
the m-th graded component is the S -module generated by all monomials
X\{ - • • X^n such that ^2 etdi = m> If one chooses d[ = 1 for all i, then one
obtains the grading of the polynomial ring corresponding to the total
degree of a monomial. Unless indicated otherwise we will always consider
R to be graded in this way.
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(b) Every ring R has the trivial grading given by Ro = R and Rt = 0
for i =fc 0. A typical example of a graded module over R is a complex

C. . • • • > Cn • C w _ i > •• •

of i^-modules. Such a complex may be equivalently described as a graded
module C. = @(£=_o0 Q together with an i^-endomorphism d such that
d2 = 0 and 3(C,-) c C,-_i for all i. (In the terminology to be introduced
below, d is a homogeneous endomorphism of degree —1.)

The most important graded rings arise in algebraic geometry as
the coordinate rings of projective varieties. They have the form R =
k[X\,...,Xn]/I where k is a field and / is an ideal generated by homo-
geneous polynomials (in the usual sense). Then R is generated as a
/c-algebra by elements of degree 1, namely the residue classes of the
indeterminates. Graded rings R which as i^o-algebras are generated by
1-forms will be called homogeneous ^-algebras. More generally, if R is a
graded .Ro-algebra generated by elements of positive degree, then we say
that R is a positively graded JValgebra.

We want to clarify which graded rings are Noetherian. Let us first
consider positively graded rings.

Proposition 1.5.4. Let R be a positively graded Ro-algebra, and x\,...,xn

homogeneous elements of positive degree. Then the following are equivalent:
(a) x i , . . . , xn generate the ideal m = 0 ^ Rt;
(b) x i , . . . , xn generate R as an Ro-algebra.
In particular R is Noetherian if and only if Ro is Noetherian and R is a
finitely generated Ro-algebra.

PROOF. For the implication (a) => (b) it is enough to write every homoge-
neous element y e R as a polynomial in x i , . . . , xn with coefficients in Ro,
and this is very easy by induction on deg y. The rest is evident. •

The last assertion of 1.5.4 holds for graded rings in general.

Theorem 1.5.5. Let R be a graded ring. Then the following are equivalent:
(a) every graded ideal of R is finitely generated;
(b) R is a Noetherian ring;
(c) Ro is Noetherian, and R is a finitely generated Ro-algebra;
(d) #o is Noetherian, and both S{ = 0 ^ o Rt and S2 = 0*LO R-t are finitely
generated Ro-algebras.

PROOF. The implications (d) => (c) => (b) => (a) are obvious. For (a) => (d)
we first note that .Ro is a direct summand of R as an /^-module. It follows
that I Rn RQ = I for every ideal / of Ro, and thus (a) implies that Ro
is Noetherian. (Extend an ascending chain of ideals of RQ to R, and
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contract the extension back to Ro.) A similar argument shows that Rt is
a finite i^o-module for every i G Z.

Let m = ©J^i Ri- We claim that m is a finitely generated ideal of
Si. By hypothesis mR has a finite system of generators xi,...,xOT, which
may certainly be chosen to be homogeneous of positive degrees dt. Let
d be the maximum of d\,...,dm. Then a homogeneous element y G m
with degy > d can be written as a linear combination of x\,...,xm

with coefficients from Si. Thus x\,...,xm together with a finite set of
homogeneous elements spanning # i , . . . , l ^_ i over RQ generate m as an
ideal of Si. According to 1.5.4, Si is a finitely generated JRo-algebra, and
the claim for S2 follows by symmetry. •

Very often we shall derive properties of a graded ring or module from
its localizations with respect to graded prime ideals. The following lemma
is basic for such arguments.

Lemma 1.5.6. Let R be a graded ring.
(a) For every prime ideal p the ideal p* is a prime ideal.
(b) Let M be a graded R-module.

(i) Ifpe SuppM, then p* G SuppM.
(ii) Ifp G AssM, then p is graded; furthermore p is the annihilator of
a homogeneous element.

PROOF, (a) Let a,b e R such that ab G p*. We write a = J^-a,-, at G Ri,
and b = J2jbj> bj G Rj- Assume that a ^ p* and b $. p*. Then there
exist integers p,q such that ap ^ p*, but at G p* for i < p, and bq & p*,
but bj G p* for j < q. The (p + g)-th homogeneous component of ab is

T,i+j=P+q aibj- T h u s 52i+j=p+q
 aibi e P*> s i n c e P* i s g^ded. All summands

of this sum, except possibly apbq, belong to p*, and so it follows that
aPbq G p* as well. Since p* c p, and since p is a prime ideal we conclude
that ap G p or bq e p. But ap and bq are homogeneous, and so ap G p* or
bq G p*, a contradiction.

(b) For (i) assume p* ^ SuppM; then Mp» = 0. Let x G M be a
homogeneous element. Then there exists an element a G # \ p* such that
ax = 0. It follows that atx = 0 for all homogeneous components at of a.
Since a G R \ p*, there exists an integer i such that at $. p*. Since a,- is
homogeneous, we even have at $. p. Hence x/1 = 0 in Mp. This holds
true for all homogeneous elements of M. Thus we conclude that Mp = 0,
a contradiction.

For (ii) we choose an element x G M with p = Ann*. Let x =
xm + h xn be its decomposition as a sum of homogeneous elements xt

of degree i. Similarly we decompose an element a = ap + • • • + aq of p.
Since ax = 0, we have equations Yli+j=raiXJ = 0 f° r r = = m + p9---9^ + -̂
It follows that apxm = 0, and, by induction, al

pxm+i-i = 0 for all i > 1.
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Thus aj5~m+1 annihilates x. As p is a prime ideal, we have ap G p. Iterating
this procedure we see that each homogeneous component of a belongs
to p.

In order to prove the second assertion in (ii) one can now use the fact
that p is generated by homogeneous elements. It follows easily that p
annihilates all the homogeneous components of x. Set a, = Ann x,; then,
as just seen, p c a,. On the other hand fX=m <Xi c= p. Since p is a prime
ideal, there exists j with a ; c p, and therefore a7 = p. •

Let p be a prime ideal of R, and let S be the set of homogeneous
elements of R not belonging to p. The set S is multiplicatively closed,
and we put M(P) = Ms for any graded K-module M. For x/a G M(P),
x homogeneous, we set deg x/a = deg x — deg a. We further define a
grading on M(P) by setting

(M(P))f = {x/a E M(P): x homogeneous, deg x/a = i}.

It is easy to see that R(P) is a graded ring and that M(P) is a graded £(P)-
module; M(P) is called the homogeneous localization of M. The extension
ideal p*R{P) is a graded prime ideal in R^p), and the factor ring R(P)/p*R(p)
has the property that every non-zero homogeneous element is invertible.

Lemma 1.5.7. Let R be a graded ring. The following conditions are equiv-
alent:
(a) every non-zero homogeneous element is invertible;
(b) Ro = k is afield, and either R = k or R = k[t,t~l] for some homoge-
neous element t e R of positive degree which is transcendental over k.

PROOF, (a) => (b): Ro = k is a field. If R = Ro, then R is a field. Otherwise
R ^ Ro, and there exist non-zero homogeneous elements of positive
degree. Let t be an element of least positive degree, say deg t = d. As t
is invertible there exists a homomorphism cp: k[T, T~l] —• R of graded
rings where cp maps k identically to RQ and where cp(T) = t. (The grading
on /c[T, T"1] is of course defined by setting deg T = d.)

We claim that q> is an isomorphism. Let / €  Kercp, / = J2i£%aiT\

a, G k; then 0 = cp(f) = Y^iez®^' an<^ s o a^1 = ® ^or a ^ *'• ^ s f ^s

invertible, we get at = (a,^) • t"1 = 0 for all i, which implies that / = 0.
Hence <p is injective. In order to show that q> is surjective, we pick a
non-zero homogeneous element a e Rof degree i. If i = 0, then a elmcp.
Thus we may assume that i ^ 0. Write i = jd + r with 0 < r < d. The
element at~j has degree r. As J was the least positive degree, we conclude
that r = 0. Thus a = btj for some b e Ro, and hence a = cp(bTj) e Imcp.

(b) => (a) is trivial. •

The following theorem contains the dimension theory of graded rings
and modules:


