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Université de Lille I

CHRIS PETERS
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Preface

These proceedings contain a selection of papers from the EAGER conference
“Algebraic Cycles and Motives” that was held at the Lorentz Center in
Leiden on the occasion of the 75th birthday of Professor J.P. Murre (Aug 30–
Sept 3, 2004). The conference attracted many of the leading experts in the
field as well as a number of young researchers. As the papers in this volume
cover the main research topics and some interesting new developments, they
should give a good indication of the present state of the subject. This volume
contains sixteen research papers and six survey papers.

The theory of algebraic cycles deals with the study of subvarieties of a
given projective algebraic variety X, starting with the free group Zp(X)
on irreducible subvarieties of X of codimension p. In order to make this
very large group manageable, one puts a suitable equivalence relation on it,
usually rational equivalence. The resulting Chow group CHp(X) in general
might still be very big. If X is a smooth variety, the intersection product
makes the direct sum of all the Chow groups into a ring, the Chow ring
CH∗(X). Hitherto mysterious ring can be studied through its relation to
cohomology, the first example of which is the cycle class map: every algebraic
cycle defines a class in singular, de Rham, or �-adic cohomology. Ultimately
this cohomological approach leads to the theory of motives and motivic
cohomology developed by A. Grothendieck, M. Levine, M. Nori, V. Suslin
and A. Voevodsky, just to mention a few main actors.

There were about 60 participants at the conference, coming from Europe,
the United States, India and Japan. During the conference there were 22
one hour lectures. On the last day there were three special lectures devoted
to the scientific work of Murre, in honour of his 75th birthday. The lec-
tures covered a wide range of topics, such as the study of algebraic cycles
using Abel–Jacobi/regulator maps and normal functions, motives (Voevod-
sky’s triangulated category of mixed motives, finite-dimensional motives),

ix



x Preface

the conjectures of Bloch–Beilinson and Murre on filtrations on Chow groups
and Bloch’s conjecture, and results of a more arithmetic flavour for varieties
defined over number fields or local fields.

Let us start by discussing the survey papers. The first, a paper by J.
Ayoub is devoted to the construction of a motivic version of the vanishing
cycle formalism. It is followed by a paper by L.Barbieri Viale who presents
an overview of the main results of the theory of mixed motives of level at
most one. In a series of recent papers, M. De Cataldo and L. Migliorini have
made a detailed study of the topological properties of algebraic maps using
the theory of perverse sheaves. Their survey provides an introduction to this
work, illustrated by a number of low-dimensional examples. Déglise’s paper
contains a careful exposition of Voevodsky’s theory of sheaves with transfers
over a regular base scheme, with detailed proofs. The paper of M. Green
and P. Griffiths contains an outline of an ambitious research program that
centers around the extension of normal functions over a higher-dimensional
base, and its applications to the Hodge conjecture. (The case where the base
space is a curve is known by work of F. El Zein and S. Zucker.) A. Krishna
and V. Srinivas discuss the theory of zero-cycles on singular varieties and
its applications to algebra. The paper of D. Ramakrishnan is a brief survey
of results concerning algebraic cycles on Hilbert modular varieties.

In discussing the research papers we have grouped according to the main
research themes, although in the proceedings they are listed alphabetically
according to the name of the authors.

One of the leading themes in the theory of algebraic cycles is the study of
the conjectural Bloch–Beilinson filtration on Chow groups. In the course of
his work on motives, J. Murre found an equivalent and more explicit version
of this conjecture, which states that the motive of a smooth projective alge-
braic variety should admit a Chow–Künneth decomposition with a number
of specific properties. The paper of B. Kahn, J. Murre and C. Pedrini con-
tains a detailed exposition of these matters with emphasis on the study of
the transcendental part of the motive of a surface. The paper of S. Bloch
and H. Esnault is devoted to the construction of an algebraic cycle that
induces the Künneth projector onto H1(U) for a quasi-projective variety U ,
and the paper of Miller et al. shows the existence of certain Chow–Künneth
projectors for compactified families of abelian threefolds over a certain Pi-
card modular surface studied by Holzapfel. Beauville studies the splitting
of the Bloch–Beilinson filtration for certain symplectic projective manifolds.
The notion of “finite–dimensionality” of motives, which recently attracted
a lot of attention, is studied in the papers of S.-I. Kimura and U. Jannsen.



Preface xi

The latter paper uses this notion to verify Murre’s conjectures in a number
of examples.

Another important theme is the study of algebraic cycles using Hodge theory.
The paper of C. Peters and J. Steenbrink deals with the motivic nearby fiber
and its relation to the limit mixed Hodge structure of a family of projective
varieties. Morihiko Saito constructs the total infinitesimal invariant of a
higher Chow cycle, an object that lives in the direct sum of the cohompology
of filtered logarithhmic complexes with coefficients. In the papers of M.
Asakura, S. Saito and J. Nagel, infitesimal methods are used to study the
regulator map on higher Chow groups. M. Asakura and S. Saito use these
techniques to verify a conjecture of Beilinson (“Beilinson’s Hodge conjecture
with coefficients”) in certain cases. J. Lewis defines a twisted version of
Milnor K-theory and a corresponding twisted version of the regulator, which
is shown to have a nontrivial image in certain examples.

The remaining papers deal with a variety of topics. The papers of C.
Deninger and A. Werner and S. Brivio and A. Verra deal with vector bundles.
C. Deninger and A. Werner study the category of degree zero vector bundles
with “potentially strongly semistable reduction” on a p-adic curve. S. Brivio
and A. Verra investigate the properties of the theta map defined on the
moduli space of semistable vector bundles over a curve. T. Shioda studies
the structure of the Mordell–Weil lattice of certain elliptic K3 surfaces, and
the paper of J. Stienstra studies a potential link between the theory of
motives and string theory using diffraction patterns.

The conference has been financed by the Lorentz Center, EAGER (Euro-
pean Algebraic Geometry Research Training Network), the KNAW (Royal
Netherlands Academy of Arts and Sciences), and the Thomas Stieltjes In-
stituut. We heartily thank these institutions for their financial support.

It is a pleasure to dedicate this volume to Jacob Murre. The study of
algebraic cycles and motives has been his life-long passion, and he has made
a number of important contributions to the subject.

Chris Peters and Jan Nagel, May 2006.
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Program

Day Hour Speaker Title

10:00–11:00 P. Griffiths Algebraic cycles and singularities
of normal functions

Monday 11:15–12:15 A. Beauville When does the Bloch–Beilinson
filtration split?

Aug 30 13:30–14:30 S. Müller-Stach Higher Abel–Jacobi maps
14:30–15:30 F. Déglise Cycle modules and triangulated

mixed motives
16:00–17:00 O. Tommasi Rational cohomology of the

moduli space of genus 4 curves

09:30–10:30 H. Esnault Deligne’s integrality theorem in
unequal characteristic and
rational points over finite fields

Tuesday 11:15–12:15 U. Jannsen Some remarks on finite
dimensional motives

13:30–14:30 L. Barbieri Viale Motivic Albanese
August 31 14:45–15:45 B. van Geemen Some remarks on Brauer groups

of elliptic fibrations on K3
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16:15–17:15 L. Migliorini Hodge theory of projective maps
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September 1 13:30–14:30 C. Deninger Vector bundles on p-adic curves

and parallel transport

09:30–10:30 S. Saito Finiteness results for motivic
cohomology

11:15–12:15 T. Shioda Finding cycles on certain K3
surfaces

Thursday 13:30–14:30 D. Ramakrishnan Cycles on Hilbert modular
fourfolds

14:45–15:45 A. Verra Moduli of vector bundles on
curves and correspondences: the
genus two case
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10:00–11:00 A. Conte 25 years of joint work with Jaap
Murre
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scientific work of Jaap Murre, II
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Déglise, F. Inst. Galilée, Villetaneuse, France

Del Angel, P. CIMAT, Guanajuato, Mexico

Deninger, C. Univ. Münster, Germany

Edixhoven, B. Univ. of Leiden, Netherlands

Eriksson, D. E.N.S. Paris, France

Esnault, H. Univ. of Essen, Germany

Faber, C. KTH, Stockholm, Sweden

Gordon, B. Univ. Maryland, Washington, United States

Griffiths, P. IAS, Princeton, United States

Grooten, M. Univ. of Nijmegen, Netherlands

Guletskii, V. Belar. St. Ar. Univ., Minsk, Belarus

Haran, S. Technuion, Haifa, Israel

Höring, A. Univ. of Bayreuth, Germany

Jannsen, U. Univ. of Regensburg, Germany

Kahn, B. Univ. of Paris VI, Paris, France

Kimura, S. Hiroshima Univ., Japan

Kimura, K. Tsukuba Univ., Japan

Kloosterman, R. RUG, Groningen, Netherlands
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1

The Motivic Vanishing Cycles and the
Conservation Conjecture

Joseph Ayoub
Université Paris VI,

175, rue du Chevaleret 75013 Paris
ayoub@math.jussieu.fr

To Jacob Murre for his 75th birthday

1.1 Introduction

Let X be a noetherian scheme. Following Morel and Voevodsky (see [24],
[25], [28], [33] and [37]), one can associate to X the motivic stable homotopy
category SH(X). Objects of SH(X) are T -spectra of simplicial sheaves on
the smooth Nisnevich site (Sm /X)Nis, where T is the pointed quotient sheaf
A1

X/GmX . As in topology, SH(X) is triangulated in a natural way. There
is also a tensor product −⊗X − and an “internal hom”: HomX on SH(X)
(see [20] and [33]). Given a morphism f : X �� Y of noetherian schemes,
there is a pair of adjoint functors (f∗, f∗) between SH(X) and SH(Y ).
When f is quasi-projective, one can extend the pair (f∗, f∗) to a quadruple
(f∗, f∗, f!, f

!) (see [3] and [8]). In particular we have for SH(−) the full
package of the Grothendieck six operators. It is then natural to ask if we
have also the seventh one, that is, if we have a vanishing cycle formalism
(analogous to the one in the étale case, developed in [9] and [10]).

In the third chapter of our PhD thesis [3], we have constructed a vanishing
cycles formalism for motives. The goal of this paper is to give a detailed ac-
count of that construction, to put it in a historical perspective and to discuss
some applications and conjectures. In some sense, it is complementary to [3]
as it gives a quick introduction to the theory with emphasis on motivations
rather than a systematic treatment. The reader will not find all the details
here: some proofs will be omitted or quickly sketched, some results will be
stated with some additional assumptions (indeed we will be mainly inter-
ested in motives with rational coefficients over characteristic zero schemes).

3
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For the full details of the theory, one should consult [3]. Let us mention also
that M. Spitzweck has a theory of limiting motives which is closely related
to our motivic vanishing cycles formalism. For more information, see [35].

The paper is organized as follows. First we recall the classical pictures:
the étale and the Hodge cases. Although this is not achieved here, these
classical constructions should be in a precise sense realizations of our mo-
tivic construction. In section 1.3 we introduce the notion of a specialization
system which encodes some formal properties of the family of nearby cycles
functors. We state without proofs some important theorems about special-
ization systems obtained in [3]. In section 1.4, we give our main construc-
tion and prove motivic analogues of some well-known classical results about
nearby cycles functors: constructibility, commutation with tensor product
and duality, etc. We also construct a monodromy operator on the unipo-
tent part of the nearby cycles which is shown to be nilpotent. Finally, we
propose a conservation conjecture which is weaker than the conservation of
the classical realizations but strong enough to imply the Schur finiteness of
constructible motives‡.

In the literature, the functors Ψf have two names: they are called “nearby
cycles functors” or “vanishing cycles functors”. Here we choose to call them
the nearby cycles functors. The properties of these functors form what we
call the vanishing cycles formalism (as in [9] and [10]).

1.2 The classical pictures

We briefly recall the construction of the nearby cycles functors RΨf in étale
cohomology. We then explain a construction of Rapoport and Zink which
was the starting point of our definition of Ψf in the motivic context. After
that we shall recall some facts about limits of variations of Hodge structures.
A very nice exposition of these matters can be found in [15].

1.2.1 The vanishing cycles formalism in étale cohomology

Let us fix a prime number � and a finite commutative ring Λ such that
�ν .Λ = 0 for ν large enough. When dealing with étale cohomology, we shall
always assume that � is invertible on our schemes. For a reasonable scheme
V , we denote by D+(V, Λ) the derived category of bounded below complexes
of étale sheaves on V with values in Λ-modules.

‡ Constructible motives means geometric motives of [40]. They are also the compact objects in
the sense Neeman [30] (see remark 1.3.3).
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Let S be the spectrum of a strictly henselian DVR (discrete valuation
ring). We denote by η the generic point of S and by s the closed point:

η
j �� S s.i��

We also fix a separable closure η̄ of the point η. From the point of view of
étale cohomology, the scheme S plays the role of a small disk so that η is a
punctured small disk and η̄ is a universal cover of that punctured disk. We
will also need the normalization S̄ of S in η̄:

η̄
j̄ �� S̄ s.ī��

Now let f : X �� S be a finite type S-scheme. We consider the commuta-
tive diagram with cartesian squares

Xη
j ��

fη

��

X

f

��

Xs.
i��

fs

��
η

j �� S si��

Following Grothendieck (see [10]), we look also at the diagram

Xη̄
j̄ ��

fη̄

��

X̄

f̄
��

Xs
ī��

fs

��
η̄

j̄ �� S̄ sī��

obtained in the same way by base-changing the morphism f . (This is what
we will call the “Grothendieck trick”). We define then the triangulated
functor:

RΨf : D+(Xη, Λ) �� D+(Xs, Λ)

by the formula: RΨf (A) = ī∗Rj̄∗(AXη̄ ) for A ∈ D+(Xη, Λ). By construction,
the functor RΨf comes with an action of the Galois group of η̄/η, but we will
not explicitly use this here. The basic properties of these functors concern
the relation between RΨg and RΨg◦h (see [9]):

Proposition 1.2.1. Let g : Y �� S be an S-scheme and suppose given an
S-morphism h : X �� Y such that f = g ◦ h. We form the commutative
diagram

Xη
j ��

hη

��

X

h

��

Xs

hs

��

i��

Yη
j �� Y Ys.

i��



6 J. Ayoub

There exist natural transformations of functors

• αh : h∗
sRΨg �� RΨfh∗

η,

• βh : RΨgRhη∗ �� Rhs∗RΨf .

Furthermore, αh is an isomorphism when h is smooth and βh is an isomor-
phism when h is proper.

The most important case, is maybe when g = idS and f = h. Using the
easy fact that RΨidS

Λ = Λ, we get that:

• RΨfΛ = Λ if f is smooth,
• RΨidS

Rfη∗Λ = Rfs∗RΨfΛ if f is proper.

The last formula can be rewritten in the following more expressive way:
H∗

ét(Xη̄, Λ) = H∗
ét(Xs, RΨfΛ). In concrete terms, this means that for a

proper S-scheme X, the étale cohomology of the constant sheaf on the
generic geometric fiber Xη̄ is isomorphic to the étale cohomology of the
special fiber Xs with value in the complex of nearby cycles RΨfΛ. This is a
very useful fact, because usually the scheme Xs is simpler than Xη̄ and the
complex RΨfΛ can often be computed using local methods.

1.2.2 The Rapoport-Zink construction

We keep the notations of the previous paragraph. We now suppose that X

is a semi-stable S-scheme i.e. locally for the étale topology X is isomorphic
to the standard scheme S[t1, . . . , tn]/(t1 . . . tr − π) where π is a uniformizer
of S and r ≤ n are positive integers. In [32], Rapoport and Zink constructed
an important model of the complex RΨf (Λ). Their construction is based on
the following two facts:

• There exists a canonical arrow θ : Λη �� Λη(1)[1] in D+(η,Λ) called the
fundamental class with the property that the composition θ ◦ θ is zero,

• The morphism θ : i∗Rj∗Λ �� i∗Rj∗Λ(1)[1] in D+(Xs, Λ) has a repre-

sentative on the level of complexes θ : M• �� M•(1)[1] such that the
composition

M• �� M•(1)[1] �� M•(2)[2]

is zero as a map of complexes.

Therefore we obtain a double complex

RZ•,• = [· · · → 0 → M•(1)[1] → M•(2)[2] → M•(3)[3]

→ · · · → M•(n)[n] → . . . ]
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where the complex M•(1)[1] is placed in degree zero. Furthermore, following
Rapoport and Zink, we get a map RΨfΛ �� Tot(RZ•,•) which is an iso-
morphism in D+(Xs, Λ) (see [32] for more details). Here Tot(−) means the
simple complex associated to a double complex. In particular, Rapoport and
Zink’s result says that the nearby cycles complex RΨfΛ can be constructed
using two ingredients:

• The complex i∗Rj∗Λ,
• The fundamental class θ.

Our construction of the nearby cycles functor in the motivic context is
inspired by this fact. Indeed, the above ingredients are motivic (see 1.4.1
for a definition of the motivic fundamental class). We will construct in
paragraph 1.4.2 a motivic analogue of RZ•,• based on these two motivic
ingredients and then define the (unipotent) “motivic nearby cycles” to be
the associated total motive. In fact, for technical reasons, we preferred to
use a motivic analogue of the dual version of RZ•,•. By the dual of the
Rapoport-Zink complex, we mean the bicomplex

Q•,• = [· · · → M•(−n)[−n] → · · · → M•(−1)[−1] → M• → 0 → . . . ]

where the complex M• is placed in degree zero. It is true that by passing to
the total complex, the double complex Q•,• gives in the same way as RZ•,•

the nearby cycles complex.

1.2.3 The limit of a variation of Hodge structures

Let D be a small analytic disk, 0 a point of D and D� = D − 0. Let
f : X� �� D� be an analytic family of smooth projective varieties. For
t ∈ D�, we denote by Xt the fiber f−1(t) of f . For any integer q, the lo-
cal system Rqf∗C = (Rqf∗Z) ⊗ C on D� with fibers (Rqf∗C)t = Hq(Xt, C)
is the sheaf of horizontal sections of the Gauss-Manin connection ∇ on
Rqf∗Ω

.
X�/D� . The decreasing filtration F k on the de Rham complex Ω

.
X�/D�

given by

F kΩ
.
X�/D� = [0 → . . . 0 → Ωk

X�/D� → · · · → Ωn
X�/D� ]

induces a filtration F kRqf∗Ω
.
X�/D� by locally free OD� -submodules on

Rqf∗Ω
.
X�/D� .

For any t ∈ D�, we get by applying the tensor product − ⊗OD� C(t) a
filtration F k on Hq(Xt, C) which is the Hodge filtration. The data:
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• The local system Rqf∗Z,
• The OD� -module (Rqf∗Z)⊗OD� = Rqf∗Ω

.
X�/D� together with the Gauss-

Manin connexion,
• The filtration F k on (Rqf∗Z) ⊗ OD�

satisfy the Griffiths transversality condition and are called a Variation of
(pure) Hodge Structures.

Let us suppose for simplicity that f extends to a semi-stable proper an-
alytic morphism: X �� D. We denote by ω.

X/D the relative de Rham
complex with logarithmic poles on Y = X −X�, that is,

ω1
X/D = Ω1

X(log (Y ))/Ω1
D(log (0)).

We fix a uniformizer t : D → C, a universal cover D̄� → D� and a
logarithm log t on D̄�. In [36], Steenbrink constructed an isomorphism
(ω.

X/D)|Y �� RΨfC depending on these choices. From this, he deduced a
mixed Hodge structure on Hq(Y, (ω.

X/D)|Y ) which is by definition the limit
of the above Variation of Hodge Structures.

1.2.4 The analogy between the situations in étale cohomology

and Hodge theory

Let V be a smooth projective variety defined over a field k of characteristic
zero. Suppose also given an algebraic closure k̄/k with Galois group Gk and
an embedding σ : k ⊂ C. In the étale case, the �-adic cohomology of Vk̄ is
equipped with a structure of a continuous Gk-module. In the complex ana-
lytic case, the Betti cohomology of V (C) is equipped with a Hodge structure.

Now let f : X �� C be a flat and proper family of smooth varieties
over k parametrized by an open k-curve C. Then for any k̄-point t of
C, we have a continuous Galois module‡ Hq(Xt, Q�). These continuous
Galois modules can be thought of as a “Variation of Galois Representations”
parametrized by C which is the étale analogue of the Variation of Hodge
structures (Hq(Xt(C), Q), F k) that we discussed in the above paragraph.

Now let s be a point of the boundary of C and choose a uniformizer near s.
As in the Hodge–theoretic case, the variation of Galois modules above has a
“limit” on s which is a “mixed” Galois module given by the following data:

• A monodromy operator N which is nilpotent. This operator induces the
monodromy filtration which turns out to be compatible with the weight

‡ In general only an open subgroup of Gk acts on the cohomology, unless t factors trough a
k-rational point.
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filtration of Steenbrink’s mixed Hodge structure on the limit cohomology
(see [15]),

• The grading associated to the monodromy filtration is a continuous Galois
module of “pure” type.

As in the analytic case, this limit is defined via the nearby cycles complex.
Indeed, choose an extension of f to a projective scheme X ′ over C ′ = C∪{s}.
Let Y be the special fiber of X ′. The choice of a uniformizer gives us a
complex RΨX′/C′Q� on Y . Then the “limit” of our “Variation of Galois
representations” is given by Hq(Y,RΨX′/C′Q�). The monodromy operator
N is induced from the representation on RΨX′/C′Q� of the étale fundamental
group of the punctured henselian neighbourhood of s in C.

1.3 Specialization systems

The goal of this section is to axiomatize some formal properties of the nearby
cycles functors that we expect to hold in the motivic context. The result will
be the notion of specialization systems. We then state some consequences
of these axioms which play an important role in the theory. Before doing
that we recall briefly the motivic categories we use.

1.3.1 The motivic categories

Let X be a noetherian scheme. In this paper we will use two triangulated
categories associated to X:

(i) The motivic stable homotopy category SH(X) of Morel and Voevod-
sky,

(ii) The stable category of mixed motives DM(X) of Voevodsky.

These categories are respectively obtained by taking the homotopy category
(in the sense of Quillen [31]) associated to the two model categories of T =
(A1

X/GmX)-spectra:

(i) The category SpectT
s (X) of T -spectra of simplicial sheaves on the

smooth Nisnevich site (Sm /X)Nis,
(ii) The category SpectT

tr(X) of T -spectra of complexes of sheaves with
transfers on the smooth Nisnevich site (Sm /X)Nis.

Recall that a T -spectrum E is a sequence of objects (En)n∈N connected by
maps of the form En

�� Hom(T, En+1). We sometimes denote by
SpectT (X) one of the two categories SpectT

s (X) or SpectT
tr(X). We do not
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intend to give the detailed construction of these model categories as this has
already been done in several places (cf. [5], [20], [24], [25], [28], [33], [37]).
For the reader’s convenience, we however give some indications. We focus
mainly on the class of weak equivalences; indeed this is enough to define
the homotopy category which is obtained by formally inverting the arrows
in this class. The weak equivalences in these two categories of T -spectra are
called the stable A1-weak equivalences and are defined in the three steps.
We restrict ourself to the case of simplicial sheaves; the case of complexes
of sheaves with transfers is completely analogous.

Step 1. We first define simplicial weak equivalences for simplicial sheaves.
A map A• �� B• of simplicial sheaves on (Sm /X)Nis is a simplicial weak
equivalence if for any smooth X-scheme U and any point u ∈ U , the map of
simplicial sets‡ A•(Spec(Oh

U,u)) �� B•(Spec(Oh
U,u)) is a weak equivalence

(i.e. induces isomorphisms on the set of connected components and on the
homotopy groups).

Step 2. Next we perform a Bousfield localization of the simplicial model
structure on simplicial sheaves in order to invert the projections A1

U
�� U

for smooth X-schemes U (see [13] for a general existence theorem on local-
izations and [28] for this particular case). The model structure thus obtained
is the A1-model structure on simplicial sheaves over (Sm /X)Nis. We denote
HoA1(X) the associated homotopy category.

Step 3. If A is a pointed simplicial sheaf and E = (En)n is a T -spectrum of
simplicial sheaves we define the stable cohomology groups of A with values
in E to be the colimit: Colimn homHoA1 (X)(T∧n ∧A, En). We then say that

a morphism of spectra (En)n
�� (E′

n)n is a stable A1-weak equivalence if
it induces isomorphisms on cohomology groups for every simplicial sheaf A.

By inverting stable A1-weak equivalences in SpectT
s (X) and SpectT

tr(X)
we get respectively the categories SH(X) and DM(X). Let U be a smooth
X-scheme. We can associate to U the pointed simplicial sheaf U+ which
is simplicially constant, represented by U

∐
X and pointed by the trivial

map X �� U
∐

X. Then, we can associate to U+ its infinite T -suspension
Σ∞

T (U+) given in level n by T∧n ∧ U+. This provides a covariant functor
M : Sm /X �� SH(X) which associates to U its motive M(U). Similarly
we can associate to U the complex Ztr(U), concentrated in degree zero, and
then take its infinite suspension given in level n by Ztr(An×U)/Ztr((An−0)×

‡ This map of simplicial sets is the stalk of A• �� B• at the point u ∈ U with respect to the

Nisnevich topology.
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U) 
 T
L
⊗n

L
⊗U . This also gives a covariant functor M : Sm /X �� DM(X).

The images in SH(X) and DM(X) of the identity X-scheme are respectively
denoted by IX and ZX . When there is no confusion we will drop the index X.

Remark 1.3.1. Sometimes it is useful to stop in the middle of the above
construction and consider the homotopy category HoA1(X) of step 2. The
abelian version with transfers of HoA1(X) is the category DMeff(X) which is
used at the end of the paper. This is the category of effective motives whose
objects are complexes of Nisnevich sheaves with transfers and morphisms
obtained by inverting A1-weak equivalences.

Remark 1.3.2. One can also consider the categories SHQ(X) and DMQ(X)
obtained from SH(X) and DM(X) by killing torsion objects (using a Verdier
localization) or equivalently by repeating the above three steps using sim-
plicial sheaves and complexes of sheaves with transfers of Q-vector spaces
(instead of sets and abelian groups). It is important to note that the cat-
egories SHQ(X) and DMQ(X) are essentially the same at least for X a
field. Indeed, an unpublished result of Morel (see however the announce-
ment [27]) claims that SHQ(k) decomposes into DMQ(k)⊕?(k) with ?(k)
a “small part” equivalent to the zero category unless the field k is formally
real (i.e., if (−1) is not a sum of squares in k).

Remark 1.3.3. The triangulated categories SH(X) and DM(X) have in-
finite direct sums. It is then possible to speak about compact motives. A
motive M is compact if the functor hom(M,−) commutes with infinite di-
rect sums (see [30]). If U is a smooth X-scheme, then its motive M(U) (in
SH(X) or DM(X)) is known to be compact (see for example [33]). There-
fore, the triangulated categories with infinite sums SH(X) and DM(X) are
compactly generated in the sense of [30]. We shall denote SHct(X) and
DMct(X) the triangulated subcategories of SH(X) and DM(X) whose ob-
jects are the compact ones. The letters ct stand for constructible and we
shall call them the categories of constructible motives (by analogy with the
notion of constructible sheaves in étale cohomology considered in [2]).

The elementary functorial operators f∗, f∗ and f# of the categories SH(−)
and DM(−) are defined by deriving the usual operators f∗, f∗ and f# on
the level of sheaves. For HoA1(−), the details can be found in [28]. It is
possible to extend these operators to spectra (see [34]). For DM(−) one
can follow the same construction. Details will appear in [6]. The tensor
product is obtained by using the category of symmetric spectra. The details
for SH(−) can be found in [20]. For DM(−) this will be included in [6].
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Using the elementary functorial operators: f∗, f#, f∗ and ⊗, it is possi-
ble to fully develop the Grothendieck formalism of the six operators (see
chapters I and II of [3]). For example, assuming resolution of singularities
one can prove that all the Grothendieck operators preserve constructible
motives.

Except for the monodromy triangle, the formalism of motivic vanishing
cycles can be developed equally using the categories SH(−) or DM(−). In
fact, one can more generally work in the context of a stable homotopical
2-functor. See [3] for a definition of this notion and for the construction of
the functors Ψ in this abstract setting.

1.3.2 Definitions and examples

Let B be a base scheme. We fix a diagram

η
j �� B si��

with j (resp. i) an open (resp. closed) immersion. We do not suppose that
B is the spectrum of a DVR or that s is the complement of η. Every time
we are given a B-scheme f : X �� B, we form the commutative diagram
with cartesian squares

Xη
j ��

fη

��

X

f

��

Xs
i��

fs

��
η

j �� B s.i��

.

We recall the following definition from [3], chapter III:

Definition 1.3.4. A specialization system sp over (B, j, i) is given by the
following data:

(1) For a B-scheme f : X �� B, a triangulated functor:

spf : SH(Xη) �� SH(Xs)

(2) For a morphism g : Y �� X a natural transformation of functors:

αg : g∗sspf �� spf◦gg∗η.

These data should satisfy the following three axioms:

• The natural transformations α? are compatible with the composition of
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morphisms. More precisely, given a third morphism h : Z �� Y, the
diagram

(g ◦ h)∗sspf
��

∼
��

spfgh(g ◦ h)∗η

∼
��

h∗
sg

∗
sspf �� h∗

sspfgg
∗
η

�� spfghh∗
ηg

∗
η

is commutative,
• The natural transformation αg is an isomorphism when g is smooth,
• If we define the natural transformation βg : spfgη∗ �� gs∗spf◦g by the

composition

spfgη∗ �� gs∗g∗sspfgη∗
αg �� gs∗spfgg

∗
ηgη∗ �� gs∗spfg

then βg is an isomorphism when g is projective.

Remark 1.3.5. A morphism sp �� sp′ of specialization systems is a col-

lection of natural transformations spf �� sp′f , one for every B-scheme f ,
commuting with the αg, i.e., such that the squares

g∗sspf ��

��

spfgg
∗
η

��
gssp

′
f

�� sp′fgf
∗
η

are commutative.

Remark 1.3.6. Let us keep the notations of the Definition 1.3.4. It is
possible to construct from α? two natural transformations (see chapter III
of [3])

spf◦gg!
η

�� g!
sspf and gs!spf◦g �� spfgη!.

These natural transformations are important for the study of the action of
the duality operators on the motivic nearby cycles functors in paragraph
1.4.5. However, we will not need them for the rest of the paper.

Remark 1.3.7. The above definition makes sense for any stable homotopi-
cal 2-functor from the category of schemes to the 2-category of triangulated
categories (see chapter I of [3]). In particular, one can speak about spe-
cialization systems in DM(−), SHQ(−) and of course in D+(−,Λ). For
example, the family of nearby cycles functors Ψ = (Ψf )f∈Fl(Sch) of the para-
graph 1.2.1 is in a natural way a specialization system in D+(−,Λ) with
base (S, j, i).
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Example 1.3.8. It is easy to produce examples of specialization systems.
The most simple (but still very interesting) example is what we call in
chapter III of [3] the canonical specialization system χ. It is defined by
χf (A) = i∗j∗(A).

Example 1.3.9. Given a specialization system sp and an object E ∈ SH(η),
we can define a new specialization system by the formula: sp′f (−) = spf (−⊗
f∗

η E). In the same way, given an object F of SH(s), we define a third spe-
cialization system by the formula: sp′′f (−) = spf (−) ⊗ f∗

s F .

1.3.3 The basic results

We state here some (non-trivial) results that follow from the axioms of
Definition 1.3.4. For the proofs (which are too long to be included here)
the reader can consult chapter III of [3]. For simplicity, we shall stick to the
case where B is an affine, smooth and geometrically irreducible curve over a
field k of characteristic zero, s a closed point of B and η a non-empty open
subscheme of B − s or the generic point of B.

We fix a section π ∈ Γ(B,OB) which we suppose to have a zero of order
one on s and to be invertible on η. We then define for n ∈ N, two simple
B-schemes:

• Bn = B[t]/(tn − π) and en : Bn
�� B the obvious morphism,

• B′
n = B[t, u, u−1]/(tn − u.π) and e′n : B′

n
�� B the obvious morphism.

Recall that the unit objects of SH(X) and DM(X) were respectively de-
noted by I = IX and Z = ZX . We shall also denote by Q = QX the unit
object of DMQ(X). The proofs of the following three theorems are in [3],
chapter III.

Theorem 1.3.10. 1- Let sp be a specialization system over (B, j, i) for SH
(resp. for DM). Suppose that for all n ∈ N, the objects:

• spen (I) ∈ Ob(SH((Bn)s)) (resp. spen (Z) ∈ Ob(DM((Bn)s))),
• spe′

n
(I) ∈ Ob(SH((B′

n)s)) (resp. spe′
n
(Z) ∈ Ob(SH((B′

n)s))),

are constructible (see remark 1.3.3). Then for any B-scheme f : X �� B,

and any constructible object A of SH(Xη) (resp. DM(Xη)), the object
spf (A) is constructible.

2- Let sp be a specialization system over (B, j, i) for DMQ(−). Suppose
that for all n ∈ N, the objects spen (Q) ∈ DMQ(s) are constructible. Then for
any B-scheme f : X �� B, and any constructible object A ∈ DMQ(Xη),
the object spf (A) is constructible.
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The following result will play an important role:

Theorem 1.3.11. 1) Let sp �� sp′ be a morphism between two spe-
cialization systems over (B, j, i) for SH (resp. DM). Suppose that
for every n ∈ N, the induced morphisms:

• spen (I) �� sp′en
(I) (resp. spen (Z) �� sp′en

(Z)),

• spe′
n
(I) �� sp′e′

n
(I) (resp. spe′

n
(Z) �� sp′e′

n
(Z)),

are isomorphisms.
Then for any B-scheme f : X �� B, and any constructible

object A of SH(Xη) (resp. of DM(Xη)) the morphism

spf (A) �� sp′f (A)

is an isomorphism. When spf and sp′f both commute with infinite
sums, the constructibility condition on A can be dropped.

2) If we are working in DMQ(−) the same conclusions hold under the
following weaker condition: For every n ∈ N the morphisms
spen (Q) �� sp′en

(Q) are isomorphisms.

Remark 1.3.12. In part 2 of Theorems 1.3.10 and 1.3.11, we cannot re-
place DMQ by SHQ. Indeed, we use in an essential way the fact that
the stable homotopical 2-functor DMQ is separated (like “separated” for
presheaves)
(see chapter II of [3]), that is, the functor e∗ is conservative for a finite
surjective morphism e. This property for DMQ is easily proved by reducing
to a finite field extension and using transfers. It fails for SHQ already for
the morphism Spec(C) �� Spec(R). However, using Morel’s result [27],
one sees that SHQ is separated when restricted to the category of schemes
on which (−1) is a sum of squares.

The previous two theorems are deduced using resolution of singularities
from the following result:

Theorem 1.3.13. Let sp be a specialization system over B. Let f :X �� B
be a B-scheme. Suppose that X is regular, Xs is a reduced normal cross-
ing divisor in X and fix a smooth branch D ⊂ Xs. We denote by D0 the
smooth locus of f contained in D, i.e., D0 is the complement in Xs of the
union of all the branches that meet D properly. Let us denote by u the closed
immersion D ⊂ Xs and v the open immersion D0 ⊂ D. The obvious mor-
phism id �� v∗v∗ induces an isomorphism: [u∗spff∗

η ] �� v∗v∗[u∗spff∗
η ].

Furthermore, if p is the projection of D0 over s then v∗[u∗spff∗
η ] 
 p∗spidB

.


