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INTRODUCTION

It has long been conjectured that if the finite group G

acts freely on the standard sphere S , then the action is

topologically conjugate to a free linear action. Equivalently

the orbit space S /* is homeomorphic to a manifold of constant

positive curvature, and such elliptic 3-manifolds are

classified in terms of the fixed point free representations of

3 in SO(4), see the book by J. Wolf [Wo] for example. The

purpose of these notes is to collect together the evidence in

favour of this conjecture at least for the class of groups G

which are known to act freely and linearly in dimension three.

The main result is that if G is solvable and acts freely on

S in such a way that the action restricted to all cyclic

subgroups of odd order is conjugate to a linear action, then

the action of G is conjugate to a linear action. This

reduction to cyclic groups (which is false in higher

dimensions) depends on (a) the algebraic classification of the

fundamental groups of elliptic manifolds and (b) geometric

arguments due to R. Myers and J. Rubinstein classifying free

Z/2 and Z/3-actions on certain Seifert fibre spaces. The proof

is contained in Chapters I-IV; for part (a) we follow an

unpublished joint manuscript with C.T.C. Wall [Th-W], and for

part (b) the original papers [My] and [R2]. Besides the

reduction theorem already quoted the argument implies that the

original conjecture holds for groups G whose order is

divisible by the primes 2 and 3 only. For the non-solvable

group SL(2,F5) the corresponding reduction theorem is weaker

- a free action which is linear on each element embeds in a



free linear action on S (see Chapter VI).

The other topics which we consider are the classifying

map B(}> : B3 -»• BDif f S associated with a free smooth action

by G, the homotopy classes of finite 3-dimensional Poincare

complexes with finite fundamental group, and (in an appendix)

Heegard decompositions of genus 2 for elliptic manifolds.

In a "concluding unscientific postscript" we suggest various

ways in which the remaining core problem of free actions by

cyclic groups may be approached - but the actual results we

obtain are very weak.

These notes are based on a course of lectures which I

gave at the University of Chicago in the spring of 1983, and

have been available in a preliminary version for some time.

Among those who listened to me then I am particularly grateful

to Peter May and Dick Swan for their helpful comments. I

would also like to thank Terry Wall for teaching me over the

years much of the mathematics on which this work is based,

and for being always willing to listen to my ideas however

haltingly expressed. Finally I would like to thank the

Editor of the IMS Lecture Notes for agreeing to accept an

expanded version of the Chicago notes for publication in the

series, David Tranah of Cambridge University Press for his

advice and patience, and Gwen Jones for typing the manuscript.

Cambridge, May 1986.



CHAPTER I: SEIFERT MANIFOLDS.

Let M be a compact, connected 3-dimensional

manifold without boundary. Where necessary we shall assume

that M has a smooth structure - there is no loss of

generality in doing so, since M is triangulable and the

obstructions to smoothing vanish. Consider first a smooth

action by the compact group SO (2) = S on M . We use the

notation

G x M -> M, x I—> gx,

subject to the conditions (i) g (g~x) = (g,g )x,

(ii) lx = x and (iii) if gx = x for all x £ M, then g = 1.

Under condition (iii) the action of G is said to be effective.

The orbit Gx = {gx: g e G} is homeomorphic to the homogeneous

space G/G , where G = { g £ G : g x = x } i s the isotropy group

of x. Since G is abelian, G is the isotropy group of each
x

point of the orbit, and O G = {1} by condition (iii).

x e M X

The space of orbits M* = M/ is a 2-dimensional manifold with

respect to the quotient topology; the discussion of isotropy

below will make this plain. Since G acts on the tangent space

to x via the differential there is a representation of G on
x



the normal space to x, which may be identified with the

complement in T to the tangent space along the orbit. Withx

respect to some equivariant Riemanian metric let V be the

unit disc of this "slice" representation space. The

equivariant classification theorem below for pairs (M , S )

depends on two classical results from equivariant topology,

see for example [J]:

THEOREM 1.1 The total space of the disc bundle G X V is
G x X

equivariantly diffeomorphic to a G-invariant tubular

neighbourhood of the orbit Gx _in M, under the map [gfv]&-->gv,

and the zero section G/_ maps to the orbit Gx .
Gx

THEOREM 1.2 (stated for abelian transformation groups).

Let G act smoothly and effectively on the connected manifold

M. Then there is a subgroup H<i_̂ G such that the union of the

orbits with H as isotropy subgroup forms a dense subset of M.

Furthermore the orbit space of these so called principal

orbits is connected.

H is called the principal isotropy subgroup; the union M. .

of the principal orbits has the structure of a fibre bundle.

The first theorem depends on the choice of an equivariant

Riemannian metric on M, which gives rise to an exponential

map of maximal rank near the zero section G/ of the normal
x

bundle. Since the manifold M is compact, it is enough to

prove Theorem 1.2 for the submanifold G >< V . Here the
Gx X



principal orbits belong to the complement of the zero section,

a point is moved in the direction of Gx by G, and in the

normal direction by G (modulo the kernel of the slice
x

representation).

For the pair (M ,S ) we see that a closed subgroup

is either {l}, S or isomorphic to the finite cyclic group

Z/ . The principal orbit type equals {l), M* is a 2-manifold,

in general with boundary. However we shall restrict attention

to the case when M* = 0, when M* is characterised by the

pairs (©wg) or (n, ,g) . The first symbol distinguishes

between orientable and non-orientable; the second is the genus.

The assumption that M* = 0 eliminates discussion of (a) fixed

points (isotropy subgroup equals S ) and (b) Gx = Z/ with the

slice action equal to reflection about an arc. Theorem 1.1

shows that the exceptional orbits map to a finite union of r

distinct points in M*.

Consider an exceptional orbit, G = Z/ with

y > 1 and case (b) excluded. Identify a slice with the 2-disc
2

D , a n d l e t £ = 2 T T / a c t v i a

= ( r , 6 + v £ ) , w h e r e ( v , y ) = 1 & 0 < v < y .

The action inside a small tubular neighbourhood N of the orbit

can now (following 1.1) be written as (r,9,i|/) (r,0 + vc,<|

where \p denotes the coordinate on S . The exceptional orbit

itself corresponds to r = 9 = 0 and has isotropy group of

order y. The action on N is completely determined by the


