London Mathematical Society Lecture Note Series 104

Elliptic Structures
 on 3-Manifolds

C. B. Thomas

This page intentionally left blank

LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor J.W.S. Cassels, Department of Pure Mathematics and Mathematical Statistics, 16 Mill Lane, Cambridge CB2 1SB, England

The books in the series listed below are available from booksellers, or, in case of difficulty, from Cambridge University Press.

Integration and harmonic analysis on compact groups, R.E.EDWARDS
11 New developments in topology, G.SEGAL (ed)
12 Symposium on complex analysis, J.CLUNIE \& W.K.HAYMAN (eds)
13 Combinatorics, T.P.McDONOUGH \& V.C.MAVRON (eds)
16 Topics in finite groups, T.M.GAGEN
17 Differential germs and catastrophes, Th.BROCKER \& L.LANDER
18 A geometric approach to homology theory, S.BUONCRISTIANO, C.P.ROURKE
\& B.J.SANDERSON
20 Sheaf theory, B.R.TENNISON
21 Automatic continuity of linear operators, A.M.SINCLAIR
23 Parallelisms of complete designs, P.J.CAMERON
24 The topology of Stiefel manifolds, I.M.JAMES
25 Lie groups and compact groups, J.F.PRICE
26 Transformation groups, C.KOSNIOWSKI (ed)
27 Skew field constructions, P.M.COHN
29 Pontryagin duality and the structure of LCA groups, S.A.MORRIS
30 Interaction models, N.L.BIGGS
31 Continuous crossed products and type II von Neumann algebras, A. VAN DAELE
34 Representation theory of Lie groups, M.F. ATIYAH et al.
35 Trace ideals and their applications, B.SIMON
36 Homological group theory, C.T.C.WALL (ed)
37 Partially ordered rings and semi-algebraic geometry, G.W.BRUMFIEL
38 Surveys in combinatorics, B.BOLLOBAS (ed)
39 Affine sets and affine groups, D.G.NORTHCOTT
40 Introduction to Hp spaces, P.J.KOOSIS
41 Theory and applications of Hopf bifurcation, B.D.HASSARD, N.D.KAZARINOFF \& Y-H.WAN

Topics in the theory of group presentations, D.L.JOHNSON
43 Graphs, codes and designs, P.J.CAMERON \& J.H.VAN LINT
44 Z/2-homotopy theory, M.C.CRABB
45 Recursion theory: its generalisations and applications, F.R.DRAKE \& S.S.WAINER (eds)
46 p-adic analysis: a short course on recent work, N.KOBLITZ
47 Coding the Universe, A.BELLER, R.JENSEN \& P.WELCH
48 Low-dimensional topology, R.BROWN \& T.L.THICKSTUN (eds)
49 Finite geometries and designs,P.CAMERON, J.W.P.HIRSCHFELD \& D.R.HUGHES (eds)
50 Commutator calculus and groups of homotopy classes, H.J.BAUES
51 Synthetic differential geometry, A.KOCK
52 Combinatorics, H.N.V.TEMPERLEY (ed)
54 Markov process and related problems of analysis, E.B.DYNKIN
55 Ordered permutation groups, A.M.W.GLASS
56 Journēes arithmêtiques, J.V.ARMITAGE (ed)
57 Techniques of geometric topology, R.A.FENN
58 Singularities of smooth functions and maps, J.A.MARTINET
59 Applicable differential geometry, M.CRAMPIN \& F.A.E.PIRANI
60 Integrable systems, S.P.NOVIKOV et al
61 The core model, A.DODD
62 Economics for mathematicians, J.W.S.CASSELS
63 Continuous semigroups in Banach algebras, A.M.SINCLAIR

Basic concepts of enriched category theory, G.M.KELLY
65 Several complex variables and complex manifolds I, M.J.FIELD
66 Several complex variables and complex manifolds II, M.J.FIELD
67 Classification problems in ergodic theory, W.PARRY \& S.TUNCEL
68 Complex algebraic surfaces, A.BEAUVILLE
69 Representation theory, I.M.GELFAND et al.
70 Stochastic differential equations on manifolds, K.D.ELWORTHY
71 Groups - St Andrews 1981, C.M.CAMPBELL \& E.F.ROBERTSON (eds)
72 Commutative algebra: Durham 1981, R.Y.SHARP (ed)
73 Riemann surfaces: a view towards several complex variables, A.T.HUCKLEBERRY
74 Symmetric designs: an algebraic approach, E.S.LANDER
75 New geometric splittings of classical knots, L.SIEBENMANN \& F.BONAHON
76 Linear differential operators, H.O.CORDES
77 Isolated singular points on complete intersections, E.J.N.LOOIJENGA
78 A primer on Riemann surfaces, A.F.BEARDON
79 Probability, statistics and analysis, J.F.C.KINGMAN \& G.E.H.REUTER (eds)
80 Introduction to the representation theory of compact and locally
compact groups, A.ROBERT
81 Skew fields, P.K.DRAXL
82 Surveys in combinatorics, E.K.LLOYD (ed)
83 Homogeneous structures on Riemannian manifolds, F.TRICERRI \& L.VANHECKE
84 Finite group algebras and their modules, P.LANDROCK
85 Solitons, P.G.DRAZIN
86 Topological topics, I.M.JAMES (ed)
87 Surveys in set theory, A.R.D.MATHIAS (ed)
88 FPF ring theory, C.FAITH \& S.PAGE
89 An F-space sampler, N.J.KALTON, N.T.PECK \& J.W.ROBERTS
90 Polytopes and symmetry, S.A.ROBERTSON
91 Classgroups of group rings, M.J.TAYLOR
92 Representation of rings over skew fields, A.H.SCHOFIELD
93 Aspects of topology, I.M.JAMES \& E.H.KRONHEIMER (eds)
94 Representations of general linear groups, G.D.JAMES
95 Low-dimensional topology 1982, R.A.FENN (ed)
96 Diophantine equations over function fields, R.C.MASON
97 Varieties of constructive mathematics, D.S.BRIDGES \& F.RICHMAN
98 Localization in Noetherian rings, A.V.JATEGAONKAR
99 Methods of differential geometry in algebraic topology,
M.KAROUBI \& C.LERUSTE

100 Stopping time techniques for analysts and probabilists, L.EGGHE
101 Groups and geometry, ROGER C.LYNDON
102 Topology of the automorphism group of a free group, S.M.GERSTEN
103 Surveys in combinatorics 1985, I.ANDERSEN (ed)
104 Elliptical structures on 3 -manifolds, C.B.THOMAS
105 A local spectral theory for closed operators, I.ERDELYI \& WANG SHENGWANG
106 Syzygies, E.G.EVANS \& P.GRIFFITH
107 Compactification of Siegel moduli schemes, C-L.CHAI
108 Some topics in graph theory, H.P. YAP
109 Diophantine analysis, J.LOXTON \& A.VAN DER POORTEN (eds)
110 An introduction to surreal numbers, H.GONSHOR

Elliptic Structures on 3-Manifolds

C.B. THOMAS

Department of Pure Mathematics and Mathematical Statistics University of Cambridge

CAMBRIDGE UNIVERSITY PRESS
Cambridge
London New York New Rochelle
Melbourne Sydney

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo
Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK
Published in the United States of America by Cambridge University Press, New York
www.cambridge.org
Information on this title: www.cambridge.org/9780521315760
© Cambridge University Press 1986
This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1986
Re-issued in this digitally printed version 2008
A catalogue record for this publication is available from the British Library
Library of Congress Cataloguing in Publication data

```
    Thomas, C.B. (Charles Benedict)
    Elliptic Structures on 3-Manifolds.
    (London Mathematical Society lecture note series; 104)
    Notes from lectures given at the University of Chicago in Apr & May 1983
    1. Three manifolds (Topology) I. Title. II. Title: Elliptic
    structures on three-manifolds. III. Series
    QA613.2.T47 1986 514'.223 85-12742
```

ISBN 978-0-521-31576-0 paperback

CONTENTS

Introduction 1
Seifert manifolds 3
Groups with periodic cohomology 19
Free C_{2} and C_{3} actions on certain Seifert manifolds 30
The reduction theorem 52
Tangential structure 59
$\operatorname{SL}\left(2, F_{5}\right)$ 77
Finite Poincaré complexes and homology spheres 90
Workpoints 100
Appendix: Genus 2 Heegard decompositions for elliptic manifolds 114
References 119
Index 122

INTRODUCTION

It has long been conjectured that if the finite group G acts freely on the standard sphere S^{3}, then the action is topologically conjugate to a free linear action. Equivalently the orbit space $\mathrm{S}^{3} / ;$ is homeomorphic to a manifold of constant positive curvature, and such elliptic 3-manifolds are classified in terms of the fixed point free representations of G in SO(4), see the book by J. Wolf [Wo] for example. The purpose of these notes is to collect together the evidence in favour of this conjecture at least for the class of groups G which are known to act freely and linearly in dimension three. The main result is that if G is solvable and acts freely on s^{3} in such a way that the action restricted to all cyclic subgroups of odd order is conjugate to a linear action, then the action of G is conjugate to a linear action. This reduction to cyclic groups (which is false in higher dimensions) depends on (a) the algebraic classification of the fundamental groups of elliptic manifolds and (b) geometric arguments due to R. Myers and J. Rubinstein classifying free Z/2 and Z/3-actions on certain Seifert fibre spaces. The proof is contained in Chapters I-IV; for part (a) we follow an unpublished joint manuscript with C.T.C. Wall [Th-W], and for part (b) the original papers [My] and [R2]. Besides the reduction theorem already quoted the argument implies that the original conjecture holds for groups G whose order is divisible by the primes 2 and 3 only. For the non-solvable group $\mathrm{SL}\left(2, \mathrm{~F}_{5}\right)$ the corresponding reduction theorem is weaker - a free action which is linear on each element embeds in a
free linear action on S^{7} (see Chapter VI).
The other topics which we consider are the classifying map $\mathrm{B} \phi: \mathrm{BG} \rightarrow \mathrm{BDiff}^{+} \mathrm{S}^{3}$ associated with a free smooth action by G, the homotopy classes of finite 3 -dimensional Poincaré complexes with finite fundamental group, and (in an appendix) Heegard decompositions of genus 2 for elliptic manifolds. In a "concluding unscientific postscript" we suggest various ways in which the remaining core problem of free actions by cyclic groups may be approached - but the actual results we obtain are very weak.

These notes are based on a course of lectures which I gave at the University of Chicago in the spring of 1983, and have been available in a preliminary version for some time. Among those who listened to me then I am particularly grateful to Peter May and Dick Swan for their helpful comments. I would also like to thank Terry Wall for teaching me over the years much of the mathematics on which this work is based, and for being always willing to listen to my ideas however haltingly expressed. Finally I would like to thank the Editor of the LMS Lecture Notes for agreeing to accept an expanded version of the Chicago notes for publication in the series, David Tranah of Cambridge University Press for his advice and patience, and $G w e n$ Jones for typing the manuscript.

Cambridge, May 1986.

Let M^{3} be a compact, connected 3-dimensional
manifold without boundary. Where necessary we shall assume that M^{3} has a smooth structure - there is no loss of generality in doing so, since M^{3} is triangulable and the obstructions to smoothing vanish. Consider first a smooth action by the compact group $S O(2)=s^{l}$ on M^{3}. We use the notation

$$
G \times M \rightarrow M, \quad x \longmapsto g x,
$$

subject to the conditions (i) $g_{1}\left(g_{2} x\right)=\left(g_{1} g_{2}\right) x$, (ii) $1 x=x$ and (iii) if $g x=x$ for all $x \in M$, then $g=1$. Under condition (iii) the action of G is said to be effective. The orbit $G x=\{g x: g \in G\}$ is homeomorphic to the homogeneous space G / G_{X}, where $G_{x}=\{g \in G: g x=x\}$ is the isotropy group of x. Since G is abelian, G_{x} is the isotropy group of each point of the orbit, and $\bigcap_{x \in M} G_{x}=\{1\}$ by condition (iii). The space of orbits $M^{*}=M /{ }_{G}$ is a 2-dimensional manifold with respect to the quotient topology; the discussion of isotropy below will make this plain. Since G acts on the tangent space to x via the differential there is a representation of G_{x} on
the normal space to x, which may be identified with the complement in T_{x} to the tangent space along the orbit. With respect to some equivariant Riemanian metric let V_{x} be the unit disc of this "slice" representation space. The equivariant classification theorem below for pairs (M^{3}, S^{1}) depends on two classical results from equivariant topology, see for example [J]:

THEOREM 1.1 The total space of the disc bundle $G \underset{G_{x}}{\times} V_{x}$ is equivariantly diffeomorphic to a G-invariant tubular neighbourhood of the orbit $G x$ in M, under the map $[g, v] \mapsto g v$, and the zero section G / G_{x} maps to the orbit G_{x}.

THEOREM 1.2 (stated for abelian transformation groups).
Let G act smoothly and effectively on the connected manifold M. Then there is a subgroup $H \hookrightarrow G$ such that the union of the orbits with H as isotropy subgroup forms a dense subset of M . Furthermore the orbit space of these so called principal orbits is connected.
H is called the principal isotropy subgroup; the union ${ }^{M}(H)$ of the principal orbits has the structure of a fibre bundle. The first theorem depends on the choice of an equivariant Riemannian metric on M, which gives rise to an exponential map of maximal rank near the zero section G / G_{X} of the normal bundle. Since the manifold M is compact, it is enough to prove Theorem 1.2 for the submanifold $G \underset{G_{X}}{\times} V_{x}$. Here the
principal orbits belong to the complement of the zero section, a point is moved in the direction of $G x$ by G, and in the normal direction by G_{x} (modulo the kernel of the slice representation).

For the pair $\left(M^{3}, S^{1}\right)$ we see that a closed subgroup is either $\{1\}, S^{1}$ or isomorphic to the finite cyclic group $2 / \mu$. The principal orbit type equals $\{1\}, M^{*}$ is a 2 -manifold, in general with boundary. However we shall restrict attention to the case when $M^{*}=\varnothing$, when M^{*} is characterised by the pairs $\left(O_{1}, g\right)$ or $\left(n_{1}, g\right)$. The first symbol distinguishes between orientable and non-orientable; the second is the genus. The assumption that $M^{*}=\varnothing$ eliminates discussion of (a) fixed points (isotropy subgroup equals S^{1}) and (b) $G_{x}=z / 2$ with the slice action equal to reflection about an arc. Theorem l.1 shows that the exceptional orbits map to a finite union of r distinct points in M^{*}.

Consider an exceptional orbit, $G_{x}=2 / \mu$ with $\mu>1$ and case (b) excluded. Identify a slice with the 2 -disc D^{2}, and let $\zeta=2 \pi / \mu$ act via

$$
\zeta(r, \theta)=(r, \theta+\nu \zeta) \text {, where }(\nu, \mu)=1 \& 0<\nu<\mu \text {. }
$$

The action inside a small tubular neighbourhood N of the orbit can now (following 1.l) be written as (r, θ, ψ) ($r, \theta+\nu \zeta, \phi+\mu \psi$), where ψ denotes the coordinate on S^{1}. The exceptional orbit itself corresponds to $r=\theta=0$ and has isotropy group of order μ. The action on N is completely determined by the

