London Mathematical Society Lecture Note Series 217

Quadratic Forms with Applications to Algebraic Geometry and Topology

Albrecht Pfister

This page intentionally left blank

LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor J.W.S. Cassels, Department of Pure Mathematics and Mathematical Statistics. University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, England

The titles below are available from booksellers, or, in case of difficulty, from Cambridge University Press.

76 Spectral theory of linear differential operators and comparison algebras, H.O. CORDES
Representation theory of Lie groups, M.F. ATIYAH et al
p-adic analysis: a short course on recent work, N. KOBLITZ
Commutator calculus and groups of homotopy classes, H.J. BAUES
Applicable differential geometry, M. CRAMPIN \& F.A.E. PIRÁNI
Several complex variables and complex manifolds II, M.J. FIELD
Representation theory, I.M. GELFAND et al
Isolated singular points on complete intersections, E.J.N. LOOIJENGA
Homogeneous structures on Riemannian manifolds, F. TRICERRI \& L. VANHECKE
Topological topics, I.M. JAMES (ed)
Surveys in set theory, A.R.D. MATHIAS (ed)
FPF ring theory, C. FAITH \& S. PAGE
An F-space sampler, N.J. KALTON, N.T. PECK \& J.W. ROBERTS
Polytopes and symmetry, S.A. ROBERTSON
Representation of rings over skew fields, A.H. SCHOFIELD
Aspects of topology, I.M. JAMES \& E.H. KRONHEIMER (eds)
Representations of general linear groups, G.D. JAMES
Low-dimensional topology 1982, R.A. FENN (ed)
Diophantine equations over function fields, R.C. MASON
Varieties of constructive mathematics, D.S. BRIDGES \& F. RICHMAN
Localization in Noetherian rings, A.V. JATEGAONKAR
Methods of differential geometry in algebraic topology, M. KAROUBI \& C. LERUSTE
Stopping time techniques for analysts and probabilists, L. EGGHE
Elliptic structures on 3-manifolds, C.B. THOMAS
A local spectral theory for closed operators, I. ERDELYI \& WANG SHENGWANG
Compactification of Siegel moduli schemes, C-L. CHAI
Some topics in graph theory, H.P. YAP
Diophantine analysis, J. LOXTON \& A. VAN DER POORTEN (eds)
An introduction to surreal numbers, H. GONSHOR
Lectures on the asymptotic theory of ideals, D. REES
Lectures on Bochner-Riesz means, K.M. DAVIS \& Y-C. CHANG
An introduction to independence for analysts, H.G. DALES \& W.H. WOODIN
Representations of algebras, P.J. WEBB (ed)
Skew linear groups, M. SHIRVANI \& B. WEHRFRITZ
Triangulated categories in the representation theory of finite-dimensional algebras, D. HAPPEL
Proceedings of Groups - St Andrews 1985, E. ROBERTSON \& C. CAMPBELL (eds)
Non-classical continuum mechanics, R.J. KNOPS \& A.A. LACEY (eds)
Commutator theory for congruence modular varieties, R. FREESE \& R. MCKENZIE
Van der Corput's method of exponential sums, S.W. GRAHAM \& G. KOLESNIK
Descriptive set theory and the structure of sets of uniqueness, A.S. KECHRIS \& A. LOUVEAU
The subgroup structure of the finite classical groups, P.B. KLEIDMAN \& M.W. LIEBECK
Model theory and modules, M. PREST
Algebraic, extremal \& metric combinatorics, M-M. DEZA, P. FRANKL \& I.G. ROSENBERG (eds)
Whitehead groups of finite groups, ROBERT OLIVER
Linear algebraic monoids, MOHAN S. PUTCHA
Number theory and dynamical systems, M. DODSON \& J. VICKERS (eds)
Operator algebras and applications, 1, D. EVANS \& M. TAKESAKI (eds)
Operator algebras and applications, 2, D. EVANS \& M. TAKESAKI (eds)
Analysis at Urbana, I, E. BERKSON, T. PECK, \& J. UHL (eds)
Analysis at Urbana, II, E. BERKSON, T. PECK, \& J. UHL (eds)
Advances in homotopy theory, S. SALAMON, B. STEER \& W. SUTHERLAND (eds)
Geometric aspects of Banach spaces, E.M. PEINADOR \& A. RODES (eds)
Surveys in combinatorics 1989, J. SIEMONS (ed)
Introduction to uniform spaces, I.M. JAMES
Homological questions in local algebra, JAN R. STROOKER
Cohen-Macaulay modules over Cohen-Macaulay rings, Y. YOSHINO
Continuous and discrete modules, S.H. MOHAMED \& B.J. MÜLLER
Helices and vector bundles, A.N. RUDAKOV et al
Geometry of low-dimensional manifolds 1, S. DONALDSON \& C.B. THOMAS (eds)
Geometry of low-dimensional manifolds 2, S. DONALDSON \& C.B. THOMAS (eds)
Oligomorphic permutation groups, P. CAMERON

L-functions and arithmetic, J. COATES \& M.J. TAYLOR (eds)
Number theory and cryptography, J. LOXTON (ed
Classification theories of polarized varieties, TAKAO FUJITA
Twistors in mathematics and physics, T.N. BAILEY \& R.J. BASTON (eds)
Analytic pro-p groups, J.D. DIXON, M.P.F. DU SAUTOY, A. MANN \& D. SEGAL
Geometry of Banach spaces, P.F.X. MÜLLER \& W. SCHACHERMAYER (eds)
Groups St Andrews 1989 volume 1, C.M. CAMPBELL \& E.F. ROBERTSON (eds)
Groups St Andrews 1989 volume 2, C.M. CAMPBELL \& E.F. ROBERTSON (eds)
Lectures on block theory, BURKHARD KÜLSHAMMER
Harmonic analysis and representation theory, A. FIGA-TALAMANCA \& C. NEBBIA
Topics in varieties of group representations, S.M. VOVSI
Quasi-symmetric designs, M.S. SHRIKANDE \& S.S. SANE
Groups, combinatorics \& geometry, M.W. LIEBECK \& J. SAXL (eds)
Surveys in combinatorics, 1991, A.D. KEEDWELL (ed)
Stochastic analysis, M.T. BARLOW \& N.H. BINGHAM (eds)
Representations of algebras, H. TACHIKAWA \& S. BRENNER (eds)
Boolean function complexity, M.S. PATERSON (ed)
Manifolds with singularities and the Adams-Novikov spectral sequence, B. BOTVINNIK
Squares, A.R. RAJWADE
Algebraic varieties, GEORGE R. KEMPF
Discrete groups and geometry, W.J. HARVEY \& C. MACLACHLAN (eds)
Lectures on mechanics, J.E. MARSDEN
Adams memorial symposium on algebraic topology 1, N. RAY \& G. WALKER (eds)
Adams memorial symposium on algebraic topology 2, N. RAY \& G. WALKER (eds)
Applications of categories in computer science, M. FOURMAN, P. JOHNSTONE, \& A. PITTS (eds)
Lower K- and L-theory, A. RANICKI
Complex projective geometry, G. ELLINGSRUD et al
Lectures on ergodic theory and Pesin theory on compact manifolds, M. POLLICOTT
Geometric group theory I, G.A. NIBLO \& M.A. ROLLER (eds)
Geometric group theory II, G.A. NIBLO \& M.A. ROLLER (eds)
Shintani zeta functions, A. YUKIE
Arithmetical functions, W. SCHWARZ \& J. SPILKER
Representations of solvable groups, O. MANZ \& T.R. WOLF
Complexity: knots, colourings and counting, D.J.A. WELSH
Surveys in combinatorics, 1993, K. WALKER (ed)
Local analysis for the odd order theorem, H. BENDER \& G. GLAUBERMAN
Locally presentable and accessible categories, J. ADAMEK \& J. ROSICKY
Polynomial invariants of finite groups, D.J. BENSON
Finite geometry and combinatorics, F. DE CLERCK et al
Symplectic geometry, D. SALAMON (ed)
Computer algebra and differential equations, E. TOURNIER (ed)
Independent random variables and rearrangement invariant spaces, M. BRAVERMAN
Arithmetic of blowup algebras, WOLMER VASCONCELOS
Microlocal analysis for differential operators, A. GRIGIS \& J. SJÖSTRAND
Two-dimensional homotopy and combinatorial group theory, C. HOG-ANGELONI.
W. METZLER \& A.J. SIERADSKI (eds)

The algebraic characterization of geometric 4-manifolds, J.A. HILLMAN
Invariant potential theory in the unit ball of \mathbf{C}^{n}, MANFRED STOLL
The Grothendieck theory of dessins d'enfant, L. SCHNEPS (ed)
Singularities, JEAN-PAUL BRASSELET (ed)
The technique of pseudodifferential operators, H.O. CORDES
Hochschild cohomology of von Neumann algebras, A. SINCLAIR \& R. SMITH
Combinatorial and geometric group theory, A.J. DUNCAN, N.D. GILBERT \& J. HOWIE (eds)
Ergodic theory and its connections with harmonic analysis, K. PETERSEN \& I. SALAMA (eds)
An introduction to noncommutative differential geometry and its physical applications. J. MADORE
Groups of Lie type and their geometries, W.M. KANTOR \& L. DI MARTINO (eds)
Vector bundles in algebraic geometry, N.J. HITCHIN, P. NEWSTEAD \& W.M. OXBURY (eds)
Arithmetic of diagonal hypersurfaces over finite fields, F.Q. GOUVEA \& N. YUI
Hilbert C*-modules, E.C. LANCE
Groups 93 Galway / St Andrews I, C.M. CAMPBELL et al
Groups 93 Galway / St Andrews II, C.M. CAMPBELL et al
Generalised Euler-Jacobi inversion formula and asymptotics beyond all orders, V. KOWALENKO, N.E. FRANKEL, M.L. GLASSER \& T. TAUCHER

Number theory, S. DAVID (ed)
Stochastic partial differential equations, A. ETHERIDGE (ed)
Quadratic forms with applications to algebraic geometry and topology, A. PFISTER
Surveys in combinatorics, 1995, PETER ROWLINSON (ed)
Algebraic set theory, A. JOYAL \& I. MOERDIJK
Harmonic approximation, S.J. GARDINER
Advances in linear logic, J.-Y. GIRARD, Y. LAFONT \& L. REGNIER (eds)

Quadratic forms with applications to algebraic geometry and topology

Albrecht Pfister
Johannes Gutenberg-Universität, Mainz

Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011-42l1, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia
© Cambridge University Press 1995
First published 1995
Library of Congress cataloging in publication data
Pfister, Albrecht
Quadratic forms with applications to algebraic geometry and topology / Albrecht Pfister p. cm. -- (London Mathematical Society lecture note series; 217)

Includes bibliographical references (p. -) and index.
ISBN 0-521-46755-1 (paperback)

1. Forms, Quadratic. 2. Geometry, Algebraic. 3. Topology.
I. Title. II Series.

QA243.P45 1996
512'.74--dc20 95-13802 CIP
British Library cataloguing in publication data available

ISBN 0521467551 paperback

Transferred to digital printing 2003

Contents

Preface vii
Chapter 1. The Representation Theorems of Cassels 1

1. Preliminaries on Quadratic Forms 1
2. The Main Theorem 6
3. The Subform Theorem 10
4. Appendix: The case char $K=2$ 12
Chapter 2. Multiplicative Quadratic Forms 19
5. The Theorem of Witt 19
6. The Multiplicative Forms 25
7. Classification of Multiplicative Forms. Consequences for $W(K)$ 28
8. Appendix: The case char $K=2$ 34
Chapter 3. The Level of Fields, Rings, and Topological Spaces 40
9. The Level of Fields 40
10. The Level of Rings 43
11. The Level of Topological Spaces 46
Chapter 4. Hilbert's Homogeneous Nullstellensatz for p-fields and Applications to Topology 51
12. The Nullstellensatz 51
13. The Borsuk-Ulam and Brouwer Theorems 59
Chapter 5. Tsen-Lang Theory for C_{i}^{p}-fields 64
14. The Main Theorems 64
15. Some Related Results and Conjectures 68
Chapter 6. Hilbert's 17th Problem 75
16. Preliminaries on Ordered and Real Fields 75
17. Artin's Solution and other Qualitative Results 82
18. Quantitative Bounds for the Number of Squares 88
Chapter 7. The Pythagoras Number 94
19. Results for Fields 94
20. Results for Rings 103
Chapter 8. The u-invariant 110
21. Definitions and Examples 110
22. The Filtration of Elman and Lam 115
23. Various Further Results 120
24. Appendix: The case char $K=2$ 129
Chapter 9. Systems of Quadratic Forms 132
25. Some General Phenomena 132
26. Leep's Theorem 139
27. Systems over Real Fields 142
Chapter 10. The Level of Projective Spaces 153
28. Algebraic and Topological Preliminaries 153
29. The Level of $\mathbf{R} P^{2 m-1}$ 158
30. Estimates for the Level of Complex Projective Spaces 163
Bibliography 166
List of Symbols 176
Index 178

Preface

This book grew out of a graduate course that I gave at the University of Cambridge in the Easter Term of 1993. The idea of publishing a somewhat enlarged and polished version of my lectures came from Professor J.W.S. Cassels, who, in addition, made it possible for me to spend my sabbatical at Cambridge supported by a Research Grant of the SERC and an appointment as a "Visiting Fellow Commoner" of Trinity College. I thank these institutions for their help in making my stay in Cambridge a very pleasant one.

I should point out in this connection that a great deal of my research on quadratic forms began in the year 1963 when I attented a colloquium talk given by Cassels on "Sums of Squares of Rational Functions" at the University of Göttingen. Later, our connections intensified during the Academic Year 1966/67 when I studied and lectured in Cambridge. My early Lecture Notes [Pfister 1967_{1}] give an idea of the status of the algebraic theory of quadratic forms in those days. Thus, much of my previous work as well as the present book owe their existence to the constant encouragement and interest of Cassels over many years. For this reason, I wish to express my deep gratitude to him.

This book is not a systematic treatise on quadratic forms. Excellent books of this kind are already available, in particular the books of O^{\prime} Meara [$O^{\prime} \mathrm{M}$] on the arithmetic theory over number fields and their integer domains and the books of Lam [L] and Scharlau [S] on the algebraic theory over general fields.

The choice of material considered herein reflects my own interests and incorporates a considerable amount of my scientific work over the past 30 years. It starts with some "highlights" about quadratic forms in Chapters 1 and 2. A main theme of the text concerns the field invariants: "level" (Chapter 3), "Pythagoras number" (Chapter 7), and " u-invariant" (Chapter 8), Many people have contributed to the results presented here. Furthermore, I have emphasized the way in which quadratic forms lead to rich interconnections linking algebra, number theory, algebraic geometry, and algebraic topology. Such topics are covered in Chapters 3, 4, 5, 6 and 10. Finally, systems of quadratic forms (Chapter 9) serve as a kind of clue for relating algebraic geometry and topology to quadratic forms. The specific topics of the various sections can best be seen from the table of contents, and so there is no point in repeating them here.

The prerequisites on the part of the reader are fairly modest. Standard knowledge from introductory courses suffices for most parts of the text. In several places where I need more advanced results a precise reference is given. I have tried to make the main body of the book self-contained with full proofs. Side results or more difficult theorems which go far beyond the methods used here are given without proofs. Examples, notes and open questions have been added whenever possible. They can be used by the reader both to clarify his understanding and to extend his knowledge of the concepts.

I hope that the book will prove equally well suited for graduate students, teachers, researchers on quadratic forms, and mathematicians working in other disciplines with an interest in the topics treated here. My special thanks go to Michael Meurer for proof-reading the manuscript and to Mrs Jutta Gonska for preparing an excellent typescript.

Mainz, December 1994

Albrecht Pfister

Chapter 1

The Representation Theorems of Cassels

§1. Preliminaries on Quadratic Forms

1.1 Definition. Let K be a (commutative) field, let n be a natural number. An n-ary quadratic form over K is a homogeneous polynomial of degree 2 in n variables with coefficients from K. It has the form

$$
\varphi\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \in K\left[x_{1}, \ldots, x_{n}\right]
$$

In matrix notation this can be written as follows:
Let x be the column vector with components x_{1}, \ldots, x_{n}, let x^{\prime} be its transpose which is a row vector and let $A=\left(a_{i j}\right)$ be the (n by n)-matrix in $M_{n, n}(K)$ which is determined by the coefficients $a_{i j}$ of φ. Then

$$
\varphi(x)=x^{\prime} A x
$$

1.2 Definition. Two n-ary quadratic forms φ and ψ over K are called equivalent if there is a nonsingular linear transformation $T \in G L_{n}(K)$ such that

$$
\psi(x)=\varphi(T x)
$$

Clearly this is an equivalence relation. We write

$$
\psi \cong \varphi \quad(\text { over } K)
$$

From now on we shall suppose that the characteristic of K is different from 2. The case char $K=2$ is postponed to section 4.

For char $K \neq 2$ we can replace the coefficients $a_{i j}$ by $\frac{a_{i j}+a_{j i}}{2}$ without changing the quadratic form φ. Then $a_{i j}=a_{j i}$, i.e. A is symmetric. Under an equivalence T the symmetric matrix A is replaced by the congruent matrix

$$
B=T^{\prime} A T
$$

which is again symmetric. Furthermore, we see that the polynomial

$$
\varphi(x)=\sum_{i} a_{i i} x_{i}^{2}+\sum_{i<j}\left(a_{i j}+a_{j i}\right) x_{i} x_{j}
$$

uniquely determines the matrix A if A is symmetric since the $a_{i i}$ and $2 a_{i j}$ (for $i<j$) are exactly the coefficients of φ.
1.3 Definition. Let char $K \neq 2$, let $\varphi(x)=x^{\prime} A x$ be a quadratic form over K with $A=A^{\prime}$ and let x, y be independent indeterminate vectors. Put

$$
b_{\varphi}(x, y)=\frac{1}{2}(\varphi(x+y)-\varphi(x)-\varphi(y))=x^{\prime} A y=y^{\prime} A x
$$

b_{φ} is called "the associated symmetric bilinear form" of φ.
Conversely, any symmetric bilinear form

$$
b(x, y)=x^{\prime} A y \quad \text { with } \quad A=A^{\prime}
$$

determines a quadratic form $\varphi(x):=b(x, x)$, and these two processes are inverse to one another. Therefore the theories of quadratic forms over K and of symmetric bilinear forms over K (in finitely many variables) essentially coincide if char $K \neq 2$.

Every n-ary quadratic form φ over K induces a map Q_{φ} from the vectorspace $V=K^{n}$ of n-fold column vectors over K to the field K, namely

$$
Q_{\varphi}: V \rightarrow K, \quad Q_{\varphi}(v):=\varphi(v) \quad \text { for } v \in V
$$

Q_{φ} is a quadratic map, i.e. it has the following properties:
(1) $Q_{\varphi}(a v)=a^{2} Q_{\varphi}(v)$ for $a \in K, v \in V$.
(2) The $\operatorname{map} B_{\varphi}: V \times V \rightarrow K$ given by

$$
B_{\varphi}(v, w)=\frac{1}{2}\left(Q_{\varphi}(v+w)-Q_{\varphi}(v)-Q_{\varphi}(w)\right)
$$

is K-bilinear (and symmetric).
If $\varphi(x)=x^{\prime} A x$ is given by the symmetric matrix $A=\left(a_{i j}\right)$ and if e_{1}, \ldots, e_{n} is the standard basis of V then

$$
Q_{\varphi}\left(e_{i}\right)=a_{i i} \quad \text { and } \quad B_{\varphi}\left(e_{i}, e_{j}\right)=\frac{1}{2}\left(a_{i j}+a_{j i}\right)=a_{i j}
$$

This means that A and φ can be reconstructed from the pair (Q_{φ}, B_{φ}).
This observation leads to the following definitions and proposition.
1.4 Definition. Let V be an n-dimensional K-vector-space. A map Q : $V \rightarrow K$ is called a quadratic map and the pair (V, Q) is then called a quadratic space over K if Q satisfies the conditions:
(1) $Q(a v)=a^{2} Q(v)$ for $a \in K, v \in V$.
(2) The $\operatorname{map} B: V \times V \rightarrow K$ given by

$$
B(v, w):=\frac{1}{2}(Q(v+w)-Q(v)-Q(w))
$$

is K-bilinear.
1.5 Definition. Two n-dimensional quadratic spaces (V, Q) and $\left(V^{\prime}, Q^{\prime}\right)$ over K are called isometric if there exists a K-linear isomorphism $T: V \rightarrow V^{\prime}$ such that

$$
Q(v)=Q^{\prime}(T v) \quad \text { for all } v \in V .
$$

We write: $(V, Q) \cong\left(V^{\prime}, Q^{\prime}\right)$.
1.6 Proposition. There is a 1-1-correspondence between equivalence classes of n-ary quadratic forms over K and isometry classes of n-dimensional quadratic spaces over K.

Proof. The correspondence $\varphi \rightsquigarrow Q_{\varphi}$ constructed above for $V=K^{n}$ has the desired properties since φ can be regained from Q_{φ} and since every n dimensional K-vector-space V is isomorphic to K^{n}.

This enables us to switch from the more algebraic language of quadratic forms to the more geometric language of quadratic spaces and vice versa. The latter point of view was introduced in the fundamental paper [Witt 1937] of Witt and has been proved very useful. If there is no danger of confusion we will no longer distinguish between the form φ and the map Q_{φ}, i.e. we write φ instead of Q_{φ} and b_{φ} instead of B_{φ}.
1.7 Orthogonal Sums. Two quadratic spaces (V_{1}, φ_{1}) and (V_{2}, φ_{2}) over K of dimensions n_{1} and n_{2} respectively, give rise to a quadratic space (V, φ) of dimension $n=n_{1}+n_{2}$, namely

$$
\begin{aligned}
V & =V_{1} \oplus V_{2} \\
\varphi(v) & =\varphi\left(v_{1}\right)+\varphi\left(v_{2}\right)
\end{aligned}
$$

for $v_{1} \in V_{1}, v_{2} \in V_{2}$ and $v=v_{1}+v_{2} \in V$. This space (V, φ) is called the orthogonal sum of $\left(V_{1}, \varphi_{1}\right)$ and $\left(V_{2}, \varphi_{2}\right)$. We also write $\varphi=\varphi_{1} \oplus \varphi_{2}$. If φ_{i} is given by the symmetric matrix $A_{i}(i=1,2)$ then φ has matrix

$$
A=\left(\begin{array}{ll}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right) .
$$

Similarly, the orthogonal sum of r quadratic spaces can be defined for any $r \in \mathbf{N}$. Up to equivalence it depends only on (the equivalence classes of) the summands but not on their order.

Conversely, let (V, φ) be a quadratic space and let $V_{i}(i=1, \ldots, r)$ be subspaces of V such that $V=V_{1} \oplus \ldots \oplus V_{r}$ and $b_{\varphi}\left(v_{i}, v_{j}\right)=0$ for $v_{i} \in V_{i}, v_{j} \in$ $V_{j}, i \neq j$. Then $\varphi=\varphi_{1} \oplus \ldots \oplus \varphi_{r}$ with $\varphi_{i}=\left.\varphi\right|_{V_{i}}$, i.e. φ is the orthogonal sum of the forms φ_{i}.

We can now prove
1.8 Theorem. Let char $K \neq 2$. Then every quadratic space (V, φ) over K is isometric to an orthogonal sum of 1-dimensional spaces. In other words: Every n-ary quadratic form φ over K is equivalent to a diagonal form ψ with $\psi(x)=\sum_{1}^{n} a_{i} x_{i}^{2}, a_{i} \in K$.

Proof. We use induction on $\operatorname{dim} V=n$. If $\varphi(v)=0$ for all $v \in V$ then 1.3 shows $b_{\varphi}\left(v_{1}, v_{2}\right)=0$ for any pair $v_{1}, v_{2} \in V$. In this case any basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V is an orthogonal basis.

If $\varphi\left(v_{1}\right)=a_{1} \neq 0$ for some $v_{1} \in V$ we consider the subspace

$$
U=\left(K v_{1}\right)^{\perp}=\left\{u \in V: b_{\varphi}\left(u, v_{1}\right)=0\right\}
$$

of all vectors u which are orthogonal to v_{1} with respect to b_{φ}. The condition $b_{\varphi}\left(u, v_{1}\right)=0$ amounts to one linear equation for u. Since $\varphi\left(v_{1}\right)=b_{\varphi}\left(v_{1}, v_{1}\right) \neq 0$ we have $v_{1} \notin U$ and $\operatorname{dim} U=n-1$. This shows $V=K v_{1} \oplus U$ and $\varphi=\varphi_{1} \oplus \varphi_{2}$ with $\varphi_{1}=\left.\varphi\right|_{K v_{1}}, \varphi_{2}=\left.\varphi\right|_{U}$. The induction hypothesis for U finishes the proof.

Note. In the case $\varphi \neq 0$ the element $a_{1} \in K^{\bullet}=K \backslash\{0\}$ is any element which has the form $\varphi\left(v_{1}\right), v_{1} \in V$.

Notation. The diagonal form $\psi(x)=\sum_{1}^{n} a_{i} x_{i}^{2}$ is abbreviated by

$$
\psi=\left\langle a_{1}, \ldots, a_{n}\right\rangle=\left\langle a_{1}\right\rangle \oplus \ldots \oplus\left\langle a_{n}\right\rangle .
$$

1.9 Definition. Let $A=A^{\prime}$ be a symmetric matrix. Let (V, φ) with $\varphi(x)=$ $x^{\prime} A x$ be the corresponding quadratic space.
(1) The subspace $\operatorname{rad} V=V^{\perp}=\left\{u \in V: b_{\varphi}(u, v)=0\right.$ for all $\left.v \in V\right\}$ is called the radical of (V, φ), and is written as $\operatorname{rad} V$.
(2) (V, φ) is called regular if $\operatorname{rad} V=0$.

The following observations are immediate:
$-\operatorname{rad} V=\left\{u \in V: u^{\prime} A v=0\right.$ for all $\left.v \in V\right\}=\left\{u \in V: u^{\prime} A=0\right\}$.
$-\operatorname{rad} V=0 \Longleftrightarrow \operatorname{det} A \neq 0$.

- The terms radical and regular are invariant under isometry.
- If φ is not regular then $\varphi \cong\left\langle a_{1}, \ldots a_{n}\right\rangle$ and, say, $a_{n}=0$.

This means that φ can be transformed into a quadratic form which actually depends on at most $n-1$ variables. Since n can be any natural number in our treatment of quadratic forms we can and will henceforth assume that all forms are regular.

Note. Let φ be a quadratic form over K and let $L \supset K$ be any extension field of K. Then φ may also be considered as a quadratic form over L. This "extended" form is usually denoted by φ_{L} or $\varphi \otimes L$. We have

$$
\varphi=\varphi_{K} \text { regular } \Longleftrightarrow \varphi_{L} \text { regular. }
$$

1.10 Definition. For an n-ary quadratic form φ over K we introduce the following notions:
(1) For $a \in K$ we say that " φ represents a over K ", if there is a nonzero vector $0 \neq v \in K^{n}$ such that

$$
\varphi(v)=a .
$$

(2) $D_{K}(\varphi)=\left\{\varphi(v): 0 \neq v \in K^{n}\right\}$ is the set of all those elements of K which are represented by φ over K.
(3) $D_{K}^{\bullet}(\varphi)=D_{K}(\varphi) \backslash\{0\} \subseteq K^{\bullet}$.
(4) φ is called universal (over K) if $D_{K}(\varphi)=K^{\bullet}$.
(5) φ is called isotropic (over K) if $0 \in D_{K}(\varphi)$, otherwise φ is called anisotropic (over K).

Example. Consider the form $\varphi=\{1,1\rangle$, i.e. $\varphi(x)=x_{1}^{2}+x_{2}^{2}$ over the fields \mathbf{R} and \mathbf{C} :
Over $\mathbf{R} \varphi$ does not represent the elements -1 and 0 since $r_{1}^{2}+r_{2}^{2}>0$ for any pair $\left(r_{1}, r_{2}\right) \neq(0,0)$ of real numbers.
Over C φ does represent -1 and 0 since $-1=i^{2}, 0=1^{2}+i^{2}$. Furthermore, φ is universal over \mathbb{C}.

This shows that the notions of Definition 1.10 depend very much on the field K, not only on φ.

Clearly a 1 -dimensional regular space $\varphi=\langle a\rangle, a \in K^{\bullet}$, can never be isotropic. Let us study the 2 -dimensional regular isotropic spaces over K.
1.11 Proposition. Up to equivalence there is just one regular isotropic quadratic form φ of dimension 2 , namely $\varphi(x)=2 x_{1} x_{2}$. We have

$$
\varphi \cong\langle a,-a\rangle
$$

for an arbitrary $a \in K^{\bullet}$. In particular φ is universal.
Proof. Let $0 \neq v_{1} \in V=K^{2}$ be an isotropic vector. Since φ is regular there exists $u \in V$ such that $b_{\varphi}\left(v_{1}, u\right) \neq 0$ and by multiplying u by a suitable
element of K^{\bullet} we can arrange $b_{\varphi}\left(v_{1}, u\right)=1$. Clearly u is K-linearly independent from v_{1} since $b_{\varphi}\left(v_{1}, v_{1}\right)=\varphi\left(v_{1}\right)=0$. For any $\lambda \in K$ the vectors v_{1} and $v_{2}=u+\lambda v_{1}$ form a basis of V for which $\varphi\left(v_{1}\right)=0$ and $b_{\varphi}\left(v_{1}, v_{2}\right)=1$. Finally, $\varphi\left(v_{2}\right)=\varphi(u)+2 \lambda b_{\varphi}\left(u, v_{1}\right)+\lambda^{2} \varphi\left(v_{1}\right)=\varphi(u)+2 \lambda$. Choosing $\lambda=-\frac{\varphi(u)}{2}$ we get $\varphi\left(v_{2}\right)=0$.

For an indeterminate vector $x=x_{1} v_{1}+x_{2} v_{2}$ this gives

$$
\varphi(x)=x_{1}^{2} \varphi\left(v_{1}\right)+2 x_{1} x_{2} b_{\varphi}\left(v_{1}, v_{2}\right)+x_{2}^{2} \varphi\left(v_{2}\right)=2 x_{1} x_{2}
$$

For any $a \in K^{\bullet} \varphi$ represents a : Take e.g. $x_{1}=\frac{1}{2}, x_{2}=a$. By Theorem 1.8 we get $\varphi \cong\left\langle a, a_{2}\right\rangle$ for some $a_{2} \in K^{\bullet}$. But φ is isotropic, hence $a c_{1}^{2}+a_{2} c_{2}^{2}=$ 0 for some pair $\left(c_{1}, c_{2}\right) \neq(0,0)$ in K^{2}. Then $c_{1} c_{2} \neq 0$ and $a_{2}=-a\left(\frac{c_{1}}{c_{2}}\right)^{2}$. Therefore $\varphi \cong\langle a,-a\rangle$ because the coefficients in a diagonal matrix for φ can be multiplied by arbitrary nonzero squares from K without changing the equivalence class of φ.

Notation. The (equivalence class of a) regular isotropic quadratic form of dimension 2 over K is denoted by H. In other words: $H \cong\langle 1,-1\rangle . H$ is called the hyperbolic plane.

Proposition 1.11 can be generalized as follows:
1.12 Proposition. Let (V, φ) be a regular isotropic quadratic space over K with $\operatorname{dim} V=n \geq 2$. Then $V=U \oplus W$ with $U \cong H, \operatorname{dim} W=n-2 ; \varphi \cong$ $\langle 1,-1\rangle \oplus \psi$ with $\psi=\left.\varphi\right|_{W}$.

Proof. As in 1.11 we find vectors $v_{1}, v_{2} \in V$ such that the 2-dimensional subspace $U=K v_{1}+K v_{2}$ of V together with the quadratic form $\left.\varphi\right|_{U}$ is (isometric to) the hyperbolic plane H. Put $W=U^{\perp}=\left\{w \in V: b_{\varphi}(U, w)=0\right\}$. Clearly $\operatorname{dim} W \geq n-2$. On the other hand $U \cap U^{\perp}=\operatorname{rad} U=0$ since $\left(U,\left.\varphi\right|_{U}\right) \cong H$ is regular. Therefore $\operatorname{dim} W=n-2$ and $V=U \oplus W$ (orthogonal sum). For the form φ this means $\varphi \cong\langle 1,-1\rangle \oplus \psi$.

§2. The Main Theorem

We start with a simple observation. Let $\varphi(x)=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \in K\left[x_{1}, \ldots x_{n}\right]$ be a quadratic form over a field K. Let $L=K(t)$ be the rational function field over K in one variable t. Then we have
2.1 Lemma. φ anisotropic over $K \Rightarrow \varphi_{L}$ anisotropic over L.

Proof. Assume $\varphi(f)=0$ with $0 \neq f=\left(f_{1}, \ldots, f_{n}\right), f_{i} \in L$. Choose a common denominator g_{0} of the rational functions f_{i}. Then $f_{i}=\frac{g_{i}}{g_{0}}$ with $g_{0}, g_{1}, \ldots, g_{n} \in K[t]$ and $\varphi(g)=g_{0}^{2} \varphi(f)=0$ for $0 \neq g=\left(g_{1}, \ldots, g_{n}\right)$. Let now
$0 \neq d \in K[t]$ be the greatest common divisor of the polynomials g_{1}, \ldots, g_{n}. Then $g_{i}=d h_{i}$ with $h_{i} \in K[t]$, and h_{1}, \ldots, h_{n} are relatively prime. Put $h=$ $\left(h_{1}, \ldots, h_{n}\right)$. Then $\varphi(g)=d^{2} \varphi(h)=0$ is an identity in t. Since $K[t]$ is an integral domain and $d=d(t) \neq 0$ we get $\varphi(h)=0$. Put $c_{i}=h_{i}(0) \in K, c=$ $\left(c_{1}, \ldots, c_{n}\right)$. The elements are not all zero since otherwise the $h_{i}(t)$ would all be divisible by t. Hence $0 \neq c \in K^{n}$ and $\varphi(c)=0$ by substituting $t \rightarrow 0$ in the identity $\varphi(h)=0$ in $K[t]$. This contradicts the anisotropy of φ.
2.2 Theorem. Let $\varphi(x)=\varphi\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$ be an n-ary quadratic form over the field K, char $K \neq 2$. Let $0 \neq p(t) \in K[t]$ be a polynomial in one variable. Suppose that φ represents $p=p(t)$ over the field $L=K(t)$. Then φ represents p over the ring $K[t]$, i.e. there are polynomials $f_{i}=f_{i}(t) \in K[t]$ such that $\varphi\left(f_{1}, \ldots, f_{n}\right)=p$.

Proof.

1) If φ is not regular we may replace φ by a quadratic form in less than n variables and argue by induction on n. For $n=1, \varphi(x)=a_{11} x_{1}^{2}, a_{11} f_{1}^{2}=p$ with $f_{1} \in K(t)$, the theorem is true since $f_{1} \in K[t]$ follows automatically. (Use that $K[t]$ is a unique factorization domain.)
2) Suppose now that φ is regular but isotropic. Then $\varphi \cong H \oplus \psi$ over K by Proposition 1.12, i.e. without loss of generality

$$
\varphi(x)=2 x_{1} x_{2}+\psi\left(x_{3}, \ldots, x_{n}\right) .
$$

Put $x_{1}=p(t), x_{2}=\frac{1}{2}, x_{3}=\ldots=x_{n}=0$. This shows that φ represents p over $K[t]$.
3) From now on φ is (regular and) anisotropic. By assumption we have a representation

$$
\begin{equation*}
\varphi\left(\frac{f_{1}}{f_{0}}, \ldots, \frac{f_{n}}{f_{0}}\right)=p \tag{1}
\end{equation*}
$$

with polynomials $f_{0}, \ldots, f_{n} \in K[t]$. Without loss of generality the greatest common divisor of f_{0}, \ldots, f_{n} is 1 .

Furthermore we may suppose that under all representations of shape (1) the given one has minimal degree $d=\operatorname{deg} f_{0} \geq 0$ of the denominator f_{0}. If $d=0$ then f_{0} is a nonzero constant and we are finished.

Hypothesis: $d>0$.
Then we have to derive a contradiction. We introduce the $(n+1)$-dimensional quadratic form

$$
\begin{equation*}
\psi=\langle-p(t)\rangle \oplus \varphi_{L} \quad \text { over } \quad L=K(t) \tag{2}
\end{equation*}
$$

Explicitly: $\psi\left(x_{0}, \ldots, x_{n}\right)=-p(t) x_{0}^{2}+\varphi\left(x_{1}, \ldots, x_{n}\right)$.
(1) implies $\psi\left(f_{0}, \ldots, f_{n}\right)=0$.

Apply the euclidean algorithm (division by f_{0}) to the polynomials $f_{i}(i=$ $0, \ldots, n$). This gives

$$
\begin{equation*}
f_{i}=f_{0} g_{i}+r_{i}(i=0, \ldots, n) \text { with } g_{i}, r_{i} \in K[t], \operatorname{deg} r_{i}<d \tag{3}
\end{equation*}
$$

In particular, $g_{0}=1, r_{0}=0, \operatorname{deg} r_{0}=-\infty$. Put $f=\left(f_{0}, \ldots, f_{n}\right), g=$ $\left(g_{0}, \ldots, g_{n}\right)$. Then $\psi(f)=0$ and $\psi(g) \neq 0$ by the minimality condition on f_{0} since $0=\operatorname{deg} g_{0}<\operatorname{deg} f_{0}=d$. In particular, the nonzero vectors f and g are linearly independent over L.
(4) Define $h=\lambda f-\mu g \in L^{n+1}$ with $\lambda=\psi(g), \mu=2 b_{\psi}(f, g)$.

We have $h=\left(h_{0}, \ldots, h_{n}\right), h_{i} \in K[t] . \lambda \neq 0$ implies $h \neq 0$. On the other hand we get

$$
\begin{equation*}
\psi(h)=\lambda^{2} \psi(f)-2 \lambda \mu b_{\psi}(f, g)+\mu^{2} \psi(g)=\lambda^{2} \cdot 0-\lambda \mu^{2}+\mu^{2} \lambda=0 \tag{5}
\end{equation*}
$$

Actually we must have $h_{0} \neq 0$. Otherwise $h=\left(0, h_{1}, \ldots, h_{n}\right) \neq 0$ would give a nontrivial solution of the equation

$$
\psi(h)=\varphi\left(h_{1}, \ldots, h_{n}\right)=0 \quad \text { over the field } L=K(t)
$$

whereas φ is anisotropic over L by Lemma 2.1. It remains to estimate $\operatorname{deg} h_{0}$. We have

$$
\begin{align*}
h_{0}=\lambda f_{0}-\mu & =\psi(g) f_{0}-2 b_{\psi}(f, g)=\frac{1}{f_{0}} \psi\left(f_{0} g-f\right) \tag{6}\\
& =\frac{1}{f_{0}} \sum_{i, j=1}^{n} a_{i j}\left(f_{0} g_{i}-f_{i}\right)\left(f_{0} g_{j}-f_{j}\right)
\end{align*}
$$

This implies

$$
\operatorname{deg} \psi\left(f_{0} g-f\right) \leq 2 \max _{i=1, \ldots, n} \operatorname{deg}\left(f_{0} g_{i}-f_{i}\right)=2 \max _{i=1, \ldots, n} \operatorname{deg} r_{i} \leq 2(d-1)
$$

hence

$$
\begin{equation*}
\operatorname{deg} h_{0}=-d+\operatorname{deg} \psi\left(f_{0} g-f\right) \leq d-2 \tag{7}
\end{equation*}
$$

Thus h would give a solution of (1) which is "smaller" than f : Contradiction. The proof of 2.2 is finished.

Note. The geometric idea behind the proof of 2.2 is as follows: The equation $\psi=0$ defines a quadric (hypersurface of degree 2) Q in the projective n-space over L. The "points" f, g are different with $f \in Q, g \notin Q$. The "line" joining f and g intersects Q in a second point $h \neq f$. It turns out that the choice (3) for g leads to $\operatorname{deg} h_{0}<\operatorname{deg} f_{0}$.

Theorem 2.2 has the following partial generalization.
2.3 Generalization. Let $\varphi(x)=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$ be a quadratic form over $L=K(t)$ such that $a_{i j} \in K[t]$ and $\operatorname{deg} a_{i j} \leq 1$ for all (i, j). Suppose φ is
anisotropic over L. Let $0 \neq p(t) \in K[t]$ be a polynomial which is represented by φ over L. Then p is already represented over $K[t]$.

Proof. Part 3) of the above proof carries over verbatim to this slightly more general case. The only change is

$$
\operatorname{deg} \psi\left(f_{0} g-f\right) \leq 1+2 \max \operatorname{deg} r_{i} \leq 2 d-1
$$

hence

$$
\operatorname{deg} h_{0} \leq d-1<d
$$

This is still enough to derive the contradiction.
Note. The generalization 2.3 is no longer valid if φ is isotropic. Let $\varphi=$ $\langle t,-t\rangle, p(t)=1 . \varphi$ is clearly isotropic, hence universal over $L=K(t)$. Thus φ represents $p=1$ over L. (Derive such a representation explicitly!) But there is clearly no solution of $t f_{1}^{2}-t f_{2}^{2}=1$ with polynomials $f_{1}, f_{2} \in K[t]$.

Note. At first sight it seems that repeated application of Theorem 2.2 would give the corresponding result for a polynomial $p=p\left(t_{1}, \ldots, t_{r}\right)$ in several variables. But a closer look reveals that starting from a representation of $p\left(t_{1}, t_{2}\right)$ over the ring $K\left(t_{2}\right)\left[t_{1}\right]$ the procedure of the above proof with respect to the variable t_{2} leads to a representation over $K\left(t_{1}\right)\left[t_{2}\right]$ and not over $K\left[t_{1}\right]\left[t_{2}\right]$ since $K\left[t_{1}, t_{2}\right]$ is no longer a euclidean domain. Actually the existence of counter-examples over $\mathbf{R}\left(t_{1}, t_{2}\right)$ for $\varphi=\langle\underbrace{1, \ldots, 1}_{n}\rangle$ with suitable n goes far back to Hilbert[1888]. Nevertheless the first explicit counter-example (for $n=4, r=2$) was only found in the year 1967 by Motzkin[1967]. It reads as follows:
2.4 Example. Let $p(x, y)=1-3 x^{2} y^{2}+x^{4} y^{2}+x^{2} y^{4} \in \mathbf{R}[x, y]$. Then
(1) p is a sum of four squares in the ring $\mathbf{R}(x)[y]$, hence also in the field $\mathbf{R}(x, y)$.
(2) p is not a sum of (any finite number of) squares in the polynomial ring $\mathbf{R}[x, y]$.

Proof. 1) Check the following identities:

$$
\begin{aligned}
& p(x, y)=\frac{\left(1-x^{2} y^{2}\right)^{2}+x^{2}\left(1-y^{2}\right)^{2}+x^{2}\left(1-x^{2}\right)^{2} y^{2}}{1+x^{2}} \\
& \quad=\left(\frac{1+x^{2}-2 x^{2} y^{2}}{1+x^{2}}\right)^{2}+\left(\frac{x\left(1-x^{2}\right) y^{2}}{1+x^{2}}\right)^{2} \\
& \quad+\left(\frac{x\left(1-x^{2}\right) y}{1+x^{2}}\right)^{2}+\left(\frac{x^{2}\left(1-x^{2}\right) y}{1+x^{2}}\right)^{2}
\end{aligned}
$$

