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Preface

This book grew out of a graduate course that I gave at the University of
Cambridge in the Easter Term of 1993. The idea of publishing a somewhat en-
larged and polished version of my lectures came from Professor J.W.S. Cassels,
who, in addition, made it possible for me to spend my sabbatical at Cambridge
supported by a Research Grant of the SERC and an appointment as a "Visit-
ing Fellow Commoner" of Trinity College. I thank these institutions for their
help in making my stay in Cambridge a very pleasant one.

I should point out in this connection that a great deal of my research on
quadratic forms began in the year 1963 when I attented a colloquium talk
given by Cassels on "Sums of Squares of Rational Functions" at the University
of Gottingen. Later, our connections intensified during the Academic Year
1966/67 when I studied and lectured in Cambridge. My early Lecture Notes
[Pfister 1967i] give an idea of the status of the algebraic theory of quadratic
forms in those days. Thus, much of my previous work as well as the present
book owe their existence to the constant encouragement and interest of Cassels
over many years. For this reason, I wish to express my deep gratitude to him.

This book is not a systematic treatise on quadratic forms. Excellent books
of this kind are already available, in particular the books of O'Meara [O'M]
on the arithmetic theory over number fields and their integer domains and the
books of Lam [L] and Scharlau [S] on the algebraic theory over general fields.

The choice of material considered herein reflects my own interests and in-
corporates a considerable amount of my scientific work over the past 30 years.
It starts with some "highlights" about quadratic forms in Chapters 1 and
2. A main theme of the text concerns the field invariants: "level" (Chapter
3), "Pythagoras number" (Chapter 7), and "u-invariant" (Chapter 8). Many
people have contributed to the results presented here. Furthermore, I have em-
phasized the way in which quadratic forms lead to rich interconnections linking
algebra, number theory, algebraic geometry, and algebraic topology. Such top-
ics are covered in Chapters 3, 4, 5, 6 and 10. Finally, systems of quadratic
forms (Chapter 9) serve as a kind of clue for relating algebraic geometry and
topology to quadratic forms. The specific topics of the various sections can
best be seen from the table of contents, and so there is no point in repeating
them here.

The prerequisites on the part of the reader are fairly modest. Standard
knowledge from introductory courses suffices for most parts of the text. In
several places where I need more advanced results a precise reference is given.
I have tried to make the main body of the book self-contained with full proofs.
Side results or more difficult theorems which go far beyond the methods used
here are given without proofs. Examples, notes and open questions have been
added whenever possible. They can be used by the reader both to clarify his
understanding and to extend his knowledge of the concepts.



viii Preface

I hope that the book will prove equally well suited for graduate students,
teachers, researchers on quadratic forms, and mathematicians working in other
disciplines with an interest in the topics treated here. My special thanks go to
Michael Meurer for proof-reading the manuscript and to Mrs Jutta Gonska for
preparing an excellent typescript.

Mainz, December 1994 Albrecht Pfister



Chapter 1

The Representation Theorems of Cassels

§1. Preliminaries on Quadratic Forms

1.1 Definition. Let K be a (commutative) field, let n be a natural number.
An n-ary quadratic form over K is a homogeneous polynomial of degree 2 in
n variables with coefficients from K. It has the form

n

<p{xu...,xn) = ^2 aijXiXj eK[xu...,xn].

In matrix notation this can be written as follows:
Let x be the column vector with components # i , . . . , xn, let x' be its transpose
which is a row vector and let A = (a*j) be the (n by n)-matrix in Mnjn(K)
which is determined by the coefficients a^ of ip. Then

<p(x) = x1 Ax.

1.2 Definition. Two n-ary quadratic forms (p and ift over K are called
equivalent if there is a nonsingular linear transformation T 6 GLn(K) such
that

iK*) = <p(Tx).

Clearly this is an equivalence relation. We write

%l> = if (over K).

From now on we shall suppose that the characteristic of K is different from
2. The case char K — 2 is postponed to section 4.

For char K ^ 2 we can replace the coefficients a^ by °v+a>» without chang-
ing the quadratic form </?. Then a^ = a^, i.e. A is symmetric. Under an equiv-
alence T the symmetric matrix A is replaced by the congruent matrix

B = VAT

which is again symmetric. Furthermore, we see that the polynomial

+ J2(a + aji)xixl

uniquely determines the matrix A if A is symmetric since the an and 2OJJ (for
i < j) are exactly the coefficients of (p.
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1.3 Definition. Let char K ^ 2, let ip(x) — x' Ax be a quadratic form over
K with A = A1 and let x, y be independent indeterminate vectors. Put

K ( ) ^^ + ) O)
6^ is called "£/&e associated symmetric bilinear form" of y>.

Conversely, any symmetric bilinear form

b(x,y) = x'Ay with A = A'

determines a quadratic form (p(x) := 6(x,x), and these two processes are in-
verse to one another. Therefore the theories of quadratic forms over K and
of symmetric bilinear forms over K (in finitely many variables) essentially
coincide if char K ^ 2.

Every n-ary quadratic form tp over K induces a map Q^ from the vector-
space V = Kn of n-fold column vectors over K to the field if, namely

Qv'.V-*K, Qv(v):=<p(v) iovvEV.

Qp is a quadratic map, i.e. it has the following properties:

(1) Q^av) = a2Qip(v) for a E K, v e V.

(2) The map B^ : V x V -* K given by

is if-bilinear (and symmetric).

If (p(x) = x' Ax is given by the symmetric matrix A = (a4j) and if e1 ? . . . , en

is the standard basis of V then

B^e^ej) = -(dij + dji) = aiy

This means that A and </? can be reconstructed from the pair [Q^^B^).
This observation leads to the following definitions and proposition.

1.4 Definition. Let V be an n-dimensional if-vector-space. A map Q :
V —• if is called a quadratic map and the pair (V,Q) is then called a quadratic
space over K if Q satisfies the conditions:

(1) Q(av) = a2Q(v) for a G K,v G V.

(2) The map B : V x V -+K given by

is if-bilinear.
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1.5 Definition. Two n-dimensional quadratic spaces (V, Q) and (V',Q')
over K are called isometric if there exists a if-linear isomorphism T : V —•• V
such that

Q(v) = Q'(7\;) for all v E V.

We write: (V, Q) ** (V, £')•

1.6 Proposition. Thereis a 1-1 -correspondence between equivalence classes
of n-ary quadratic forms over K and isometry classes of n-dimensional quadratic
spaces over K.

PROOF. The correspondence (p ~+ Q^ constructed above for V = Kn has
the desired properties since ip can be regained from Q^ and since every n-
dimensional K-vector-space V is isomorphic to Kn.

This enables us to switch from the more algebraic language of quadratic
forms to the more geometric language of quadratic spaces and vice versa. The
latter point of view was introduced in the fundamental paper [Witt 1937] of
Witt and has been proved very useful. If there is no danger of confusion we
will no longer distinguish between the form ip and the map Q^, i.e. we write
ip instead of Q^ and b^ instead of B^.

1.7 Orthogonal Sums. Two quadratic spaces (Vi,</?i) and (V2,^2) over
K of dimensions ni and n^ respectively, give rise to a quadratic space
of dimension n = nx + n2, namely

v = Kei/2,
<p(v2),

for «i €  Vi, «2 E V2 and v = v\ + v^ E V. This space (V,<£>) is called the
orthogonal sum of (Vi,y>i) and (V2, ̂ 2)- We also write <p = tpi (& ip2- If <Pi is
given by the symmetric matrix Ai (i = 1,2) then ip has matrix

Al °
Similarly, the orthogonal sum of r quadratic spaces can be defined for any
r E N. Up to equivalence it depends only on (the equivalence classes of) the
summands but not on their order.

Conversely, let (V,<p) be a quadratic space and let VJ (i = l , . . . , r ) be
subspaces of V such that V = V\ 0 . . . © K and ^ (u , , Uj) = 0 for u,- €  VJ, v̂  E
Vj, i ^ j . Then <p = <£>i © . . . © yv with y?,- = </?|y., i.e. (/? is the orthogonal sum
of the forms tpi.

We can now prove
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1.8 Theorem. Let char K ^ 2. Then every quadratic space (V, </?) over
K is isometric to an orthogonal sum of 1-dimensional spaces. In other words:
Every rc-ary quadratic form ip over K is equivalent to a diagonal form ifi with

PROOF. We use induction on dim V = n. If y?(u) = 0 for all v E V then 1.3
shows bip(vi,V2) = 0 for any pair vi, t^ £ V. In this case any basis {t>i,..., vn}
of V is an orthogonal basis.

If <p(vi) = fli / 0 for some vi E V we consider the subspace

of all vectors w which are orthogonal to v\ with respect to b^. The condition
^ ( u , vi) = 0 amounts to one linear equation for u. Since <p(vi) = b^v^vi) ^ 0
we have v\ (fc U and dim U = n — 1. This shows V = Kv\ 0 J7 and <p = ip\ 0 (/?2
with (/?i = (/?|/<-Vl, ^2 = <p\u- The induction hypothesis for U finishes the proof.

Note. In the case <p ^ 0 the element a\ E ^ * = /^\{0} is any element
which has the form y?(ui), vi E V.

Notation. The diagonal form ip(x) = J2i aixt is abbreviated by

</>= (a i , . . . , a n > = ( a i > e . . . 0 ( a n > .

1.9 Definition. Let A = A' be a symmetric matrix. Let (V, y?) with c/?(x) =
x'Ax be the corresponding quadratic space.

(1) The subspace rad V = V1- = {u E V : 6 ,̂(1/, u) = 0 for all v E V} is
called the radical o/(V,<£>), and is written as rad V.

(2) (V, y>) is called regular if rad V = 0.

The following observations are immediate:

- rad V = {u E V : u'Av = 0 for all v E V} = {u E V : t/;A = 0}.

- rad V = 0<=> d e t A ^ O .

- The terms radical and regular are invariant under isometry.

- If if is not regular then tp = ( a i , . . . an) and, say, an — 0.

This means that <p can be transformed into a quadratic form which actually
depends on at most n — 1 variables. Since n can be any natural number in our
treatment of quadratic forms we can and will henceforth assume that all forms
are regular.
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Note. Let ip be a quadratic form over K and let L D K be any extension
field of if. Then tp may also be considered as a quadratic form over L. This
"extended" form is usually denoted by <PL or <p ® L. We have

<p = <PK regular =̂=> <PL regular.

1.10 Definition. For an ra-ary quadratic form <p over K we introduce the
following notions:

(1) For a E K we say that u<p represents a over if", if there is a nonzero
vector 0 ^ v E Kn such that

ip(v) = a.

(2) DK((p) = {<p(v) :0^v eKn}is the set of all those elements of K which
are represented by </? over A'.

(3) D'K(V) = DK{<p)\{0} C A-V

(4) y> is called universal (over if) if DK{^P) — K*.

(5) (/? is called isotropic (over if) if 0 E DK^)-, otherwise <p is called
anisotropic (over if).

Example. Consider the form ip = (1,1), i.e. y?(x) — x\-\-x\ over the fields
R and C:
Over R (p does not represent the elements — 1 and 0 since r\ + r\ > 0 for any
pair (ri,r2) 7̂  (0,0) of real numbers.
Over C (p does represent —1 and 0 since — 1 = z2, 0 = I2 + i2. Furthermore, <p
is universal over C.

This shows that the notions of Definition 1.10 depend very much on the
field K, not only on <p.

Clearly a 1-dimensional regular space <p = (a),a E if*, can never be
isotropic. Let us study the 2-dimensional regular isotropic spaces over K.

1.11 Proposition. Up to equivalence there is just one regular isotropic
quadratic form (p of dimension 2, namely <p(x) — 2zi#2. We have

¥** (a,-a)

for an arbitrary a E K%. In particular <p is universal.

PROOF. Let 0 7̂  vi E V = K2 be an isotropic vector. Since tp is regular
there exists u EV such that 6^(vi,u) 7̂  0 and by multiplying u by a suitable
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element of K* we can arrange ft^vi, u) = 1. Clearly u is lf-linearly indepen-
dent from v\ since 6^>(vi,vi) = <p(vi) = 0- For any A G K the vectors v\ and
v2 = u + Xvi form a basis of V for which y?(t>i) = 0 and 6^(vi, v2) — 1. Finally,
tp(v2) = v?(u) + 2A6(/?(t/,v1) + A2v?(vi) = <p(u) + 2A. Choosing A = -* to l we
get </?(v2) = 0.

For an indeterminate vector x = x\V\ -\- x2v2 this gives

(p(x) = xl(p(vi) + 2x1x2bip(vuv2) + xl(p(v2) = 2xxx2.

For any a G K* (p represents a: Take e.g. x\ = ^ x2 = a. By Theorem 1.8
we get if = (0,^2) f° r some 02 €  i^#. But <p is isotropic, hence ac{ + a2cl =

0 for some pair (cuc2) ^ (0,0) in K2. Then c ^ ^ 0 and a2 = -a(^)2.
Therefore (p = (a,—a) because the coefficients in a diagonal matrix for <p
can be multiplied by arbitrary nonzero squares from K without changing the
equivalence class of <p.

Notation. The (equivalence class of a) regular isotropic quadratic form of
dimension 2 over K is denoted by H. In other words: i? = (1, — I ) . i 7 i s called
the hyperbolic plane.

Proposition 1.11 can be generalized as follows:

1.12 Proposition. Let (V,</>) be a regular isotropic quadratic space over
K with dimV = n > 2. Then V = U®W with U = H, d imW = n - 2; <p £
( 1 , - 1 ) 0 V with V> = Y>\w-

PROOF. AS in 1.11 we find vectors vi,v2 G V such that the 2-dimensional
subspace U = Kvi + Kv2 of V together with the quadratic form <p\u is (iso-
metric to) the hyperbolic plane H. Put W = U1 = {w G V : b<p(U,w) = 0}.
Clearly d imW > n - 2. On the other hand U n C/x = rad U = 0 since
(f/,^!^) S if is regular. Therefore dimW = n-2 and V = U 0 VF (orthogo-
nal sum). For the form (/? this means ( / ?= ( ! ,—1)0^ .

§2. The Main Theorem

We start with a simple observation. Let ip(x) — ]C?j=i QijXiXj €K[xij..  .xn]
be a quadratic form over a field K. Let L = K(t) be the rational function field
over K in one variable t. Then we have

2.1 Lemma. <p anisotropic over K =4- <PL anisotropic over L.

PROOF. Assume </?(/) = 0 with 0 ^ / = ( / i , . . . , / n ) , /• €  i . Choose
a common denominator <7o of the rational functions /,-. Then /,• = **- with
9oi9u- -">9n G K[t] and y?(^) = g2(p(f) = 0 for 0 ^ 5f = ( ^1 , . . . ,#„). Let now
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0 ^ d E K[t] be the greatest common divisor of the polynomials <7i,..., </n-
Then #,• = dhi with /ia E K[t], and /&i,... ,/&n are relatively prime. Put /i =
(fei, . . . , hn). Then <p(g) = d2<p(h) = 0 is an identity in t. Since if[tf] is an
integral domain and d = d(t) ^ 0 we get (p(h) = 0. Put ca = Aa(0) E K, c =
(c i , . . . , c n ) . The elements are not all zero since otherwise the A,-(t) would all
be divisible by t. Hence O ^ c E Kn and (£>(c) = 0 by substituting t —* 0 in the
identity ^p(h) = 0 in if [£]. This contradicts the anisotropy of tp.

2.2 Theorem. Let ^p(x) = <p(x\,... ,x n) = ICr^ssi CLijXiXj be an n-ary
quadratic form over the field K, char /i ' ^ 2. Let 0 ^ p(t) E /^[^] be a
polynomial in one variable. Suppose that <p represents p = p(t) over the field
Z = /^(^). Then y? represents p over the ring K[t], i.e. there are polynomials
fi = /,• W 6 /^W such that y?( / i , . . . , / n ) = p.

P R O O F .

1) If (/? is not regular we may replace <p by a quadratic form in less than n
variables and argue by induction on n. For n — 1, <p(x) — a\\x\, a n / f = p
with /x E -^(0? t n e theorem is true since /1 E if [t] follows automatically. (Use
that K[t] is a unique factorization domain.)
2) Suppose now that (p is regular but isotropic. Then <p = H (& r/> over K by
Proposition 1.12, i.e. without loss of generality

<p(x) = 2xix2 + r/>(x3,..., xn).

Put x\ = p(^), ^2 = | , £3 = . . . = xn = 0. This shows that (p represents p over
K[t).
3) From now on ip is (regular and) anisotropic. By assumption we have a
representation

(1) p y , . . . , — I = p

with polynomials /o , - - - , /n E if[t]. Without loss of generality the greatest
common divisor of / o , . . . , fn is 1.

Furthermore we may suppose that under all representations of shape (1)
the given one has minimal degree d = deg/o > 0 of the denominator / 0 . If
d — 0 then / 0 is a nonzero constant and we are finished.

Hypothesis: d > 0.
Then we have to derive a contradiction. We introduce the (n + 1)-dimensional

quadratic form

(2) %l> = (~p{t)) 0 VL over L = K(t).

Explicitly: ^ ( x 0 , . . . ,x n ) = -p(*)xg + y>(xi,... , x n ) .
(1) implies 0 ( / o , . . . , / n ) = 0.
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Apply the euclidean algorithm (division by /0) to the polynomials fa (i =
0 , . . . ,n) . This gives

(3) fi = fogi + U (i = 0 , . . . ,n) with gun e K[t], degr, < d.

In particular, g0 = 1, r0 = 0, degr0 = -oo . Put / = ( / o , . . . , / n ) , # =
(<7(b • • • > <7n)« Then ?/>(/) = 0 a n d VKflO ^ 0 by the minimality condition on /o
since 0 = deg go < deg /o = d. In particular, the nonzero vectors / and g are
linearly independent over L.

(4) Define h = Xf - pg €  L n + 1 with A = </>(<?), /i = 2b^{f,g).
We have A = (ft0 , . . . , hn), hi G jRf[*]. A ^ 0 implies h £ 0. On the other

hand we get

(5) V W = A2</>(/) " 2 A / ^ ( / , <?) + ^V(flf) = A2 • 0 - A/,2 + //2A = 0.

Actually we must have IIQ ^ 0. Otherwise h = (0, fti,..., An) ^ 0 would give a
nontrivial solution of the equation

il>(h) = ip(hu..., hn) = 0 over the field I = #(*)

whereas ip is anisotropic over L by Lemma 2.1. It remains to estimate deg/io-
We have

(6) Ao = A / o - / i = rl>(g)fo2b4,{f,g) =
Jo

~ fi)(fo9j ~ fj)-

This implies

deg ip(fQg - / ) < 2 . max deg(/0# - /i) = 2 . max deg r, < 2(d - 1),
» = l , . . . , n 2 = 1, . . , ,n

hence
(7) deg Ao = ~d + deg ^(/oflf - / ) < d - 2.

Thus A would give a solution of (1) which is "smaller" than / : Contradiction.
The proof of 2.2 is finished.

Note. The geometric idea behind the proof of 2.2 is as follows: The equation
i/> = 0 defines a quadric (hypersurface of degree 2) Q in the protective n-space
over L. The "points" f,g are different with / 6 Q, g £ Q. The "line" joining
/ and g intersects Q in a second point h ^ f .It turns out that the choice (3)
for g leads to deg /i0 < deg /o.

Theorem 2.2 has the following partial generalization.
2.3 Generalization. Let p(x) — YAJ=I Uij^iXj be a quadratic form over

L = K(t) such that a^ E K[t] and dega,;- < 1 for all (i,j). Suppose ip is
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anisotropic over L. Let 0 ^ p(t) E K[t] be a polynomial which is represented
by ip over L. Then p is already represented over K[t],

PROOF. Part 3) of the above proof carries over verbatim to this slightly
more general case. The only change is

deg tft(fog — f) < 1 + 2 max deg r̂  < 2c? — 1,

hence
(7') deg h0 < d - 1 < d.
This is still enough to derive the contradiction.

Note. The generalization 2.3 is no longer valid if ip is isotropic. Let (p =
{t"> ~t)) P M = I- v? is clearly isotropic, hence universal over L = K(t). Thus (p
represents p = 1 over L. (Derive such a representation explicitly!) But there is
clearly no solution of tf2 — tf2 = 1 with polynomials / i , /2 E K\t\.

Note. At first sight it seems that repeated application of Theorem 2.2
would give the corresponding result for a polynomial p = p(ti,..., tr) in sev-
eral variables. But a closer look reveals that starting from a representation
of ^(^1,^2) over the ring K(t2)[t<i] the procedure of the above proof with re-
spect to the variable ti leads to a representation over K(ti)[t2] and not over
i ^ i l f o ] since if [̂ 1,̂ 2] ls n o longer a euclidean domain. Actually the exis-
tence of counter-examples over R(^i,^2) f° r W — (1? • • • ? 1) with suitable n goes

> v '

n

far back to Hilbert[1888]. Nevertheless the first explicit counter-example (for
n = 4, r = 2) was only found in the year 1967 by Motzkin[1967]. It reads as
follows:

2.4 Example. Let p(x,y) = 1 - 3x2y2 + x\j2 + x2y4 E R[x,y]. Then

(1) p is a sum of four squares in the ring R(x)[y], hence also in the field

R(*,y).

(2) p is not a sum of (any finite number of) squares in the polynomial ring
R[x,y].

PROOF. 1) Check the following identities:

(1 - x2v2)2 4- x2(\ - v2)2 + x2(l - x2)2v2[i x y ) -\- x [i y ) -t x yi x ) y
p(x,y) = ——„

| ( l ) y |

1 + X 2 / V 1+X-


