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Preface

About 30 years ago, Walter Feit and John G. Thompson [8] proved the
Odd Order Theorem, which states that all finite groups of odd order

are solvable. In the words of Daniel Gorenstein [15, p. 14], "it is not pos-
sible to overemphasize the importance of the Feit-Thompson Theorem for
simple group theory." Their proof consists of a set of preliminary results
followed by three parts-local analysis, characters, and generators and rela-
tions-corresponding to Chapters IV, V, and VI of their paper (denoted by
F T here). Local analysis of a finite group G means the study of the struc-
ture of, and the interaction between, the centralizers and normalizers of
nonidentity p-subgroups of G. Here Sylow's Theorem is the first main tool.
The main purpose of this book is to present a new version of the local anal-
ysis of a minimal counterexample G to the Feit-Thompson Theorem, that
is, of Chapter IV and its preliminaries. We also include a remarkably short
and elegant revision of Chapter VI by Thomas Peterfalvi in Appendix C.

What we would ideally like to prove, but cannot, is that each maximal
subgroup M of G has a nonidentity proper normal subgroup MQ such that

(1) CMQ{O) = 1, for all elements a G M — Mo,
(2) Mo fi M0

9 = 1, for all elements g eG- M,
(3) Mo is nilpotent,
(4) M/M o is cyclic,

and such that the totality of these subgroups Mo, with M ranging over all
of the maximal subgroups of <?, forms a partition of G:

(5) each nonidentity element of G lies in exactly one of the subgroups
Mo.

Relating each step in our procedure (as well as the main results, given
in Section 16) to this hypothetical goal will help give the reader a sense
of direction and motivation: after the normal Hall subgroup Ma has been
introduced in Section 10, it can be read as MQ. (Section 16 is self-contained,
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except for notation from Section 1, and can be read as a supplement to this
introduction.)

In addition, we strongly recommend first studying a theorem of Feit,
Thompson, and Marshall Hall [7], the immediate predecessor of FT, which
proved solvability under the additional CiV-condition: the centralizer of
every nonidentity element of G is nilpotent. The local analysis part of
its proof leads to conditions (l)-(5) for a minimal counterexample G. A
guide to reading this miniature model for FT and our work is given in
Appendix D. This theorem is actually needed in FT [8, p. 983], although
not for the part covered by this book. Incidently, the conditions (l)-(5)
above clearly imply the CW-condition. Furthermore, (1) means that M is
a Frobenius group with kernel Mo, and thus implies (3) by a very special
case of a theorem of Thompson (Theorem 3.7).

The Odd Order Theorem was originally conjectured in the nineteenth
century. The first essential step toward its proof was taken by Michio Suzuki
[25] in 1957. He showed that CM-groups of odd order are solvable; here CA
means that all centralizers are abelian. In this case it is a routine matter to
derive (l)-(5), with all Mo abelian. Suzuki's contribution, a model for the
later CiV-paper, was mainly character-theoretic. Conditions (l)-(2) and
variations thereof occur in much more general situations as the end result
of local analysis, and it is therefore of fundamental importance for finite
group theory that they have strong character theoretic implications. See
[14, pp. 139-148], [17, pp. 195-205], or [26, pp. 281-294] for details.

It is the purpose of this book to make the Feit-Thompson Theorem
more accessible to a reader familiar with some standard topics in finite
group theory, such as Chapters 1-8 of Gorenstein's first book [14] (hence-
forth denoted by G). However it is possible to manage comfortably with
considerably less reading. We give information about prerequisites in Ap-
pendix A. For the convenience of the reader, strictly necessary references
to other works appear only in Chapter I, and refer only to G. Further in-
formation about the influence of the theorem and its proof, together with
a detailed description of the proof, may be found in G, pp. 450-461, and in
[15, pp. 13-39].

As stated above, our main text and Appendix C correspond to Chap-
ters IV and VI of FT and the necessary preliminaries. As to the missing
link, the necessary character theory, we must refer the reader to Chapter V
of FT or to some unpublished work of David Sibley, who has obtained very
interesting improvements [23, pp. 385-388]. Fortunately, Chapter V of the
original paper is somewhat less complicated than Chapter IV.

We hope that in the not too distant future there will be a unified revised
proof of the Feit-Thompson Theorem. In addition, we and others have some
thoughts now for further improving this work; in this spirit, we include a
few results that are not needed for Chapter V of FT or for Sibley's work.
However, in view of the considerable interest expressed in this work and the



Preface xi

improvements and corrections sent to us by readers of preliminary versions,
we have decided to publish the work now as a set of lecture notes.

In a sense, the first steps toward the writing of this book were taken
in 1962, when the second author began to study a preprint of the Odd
Order Paper, with the encouragement and assistance of his Ph. D. advisor,
R. H. Bruck. However, the actual writing of a revision started with a class
at the University of Chicago in the Winter and Spring Quarters of 1975.

We wish to thank the members of the 1975 class (particularly David
Burry, Noboru Ito, Richard Niles, David T. Price and Jeffrey D. Smith)
and of a similar class given in Winter, 1986 (particularly Curtis Bennett,
Walter Carlip, Diane Herrmann, Arunas Liulevicius, Peter Sin, and Wayne
W. Wheeler). In addition, preliminary versions of this work were read by
Paul Lescot, Thomas Peterfalvi, and David Sibley, and studied in seminars
at the University of Florida and Wayne State University, led by Laszlo
Hethelyi (of Technical University, Budapest) and by Daniel Frohardt, David
Gluck and Kay Magaard, respectively. We thank each of these individuals
and the members of these seminars for their corrections and suggestions.

For permission to include unpublished work, we thank David Sibley
(Theorem 14.4, Corollary 15.9); I. Martin Isaacs (Appendix B); Walter
Carlip and Wayne W. Wheeler (Appendix C); and especially Walter Feit
and John G. Thompson (Theorem 15.8, Corollary 15.9, Appendix E). Ap-
pendix C is based on a beautiful revision [22] of Chapter VI of FT, for
which we thank the author, Thomas Peterfalvi.

We are particularly indebted to Professors Feit and Thompson for their
help and encouragement throughout the preparation of this work.

We note with great sadness the deaths of two individuals who also played
instrumental roles: R. H. Bruck and Daniel Gorenstein. Without them this
work might never have been started nor ever have been completed.

As this book has gone through many stages and vicissitudes in twenty
years, there is a danger that we have inadvertently overlooked some indi-
viduals to whom thanks are due. To them we sincerely apologize.

During the preparation of parts of this work the second author enjoyed
the support of the Guggenheim Foundation and the National Science Foun-
dation, and the hospitality of the Mathematical Institute, Oxford; Jesus
College, Oxford; Kansas State University; and Universitat Kiel. He thanks
each of these institutions. He also thanks the members of his family for
their helpful patience, forbearance, or nagging.

An earlier, complete version of this work was prepared by the second
author with the assistance of Alexandre Turull in 1979. The present version
was prepared with the assistance of Walter Carlip. Both have made valuable
corrections and improvements in the mathematical content and the wording
of the texts, particularly Dr. Carlip, who has also worked assiduously, over
the course of many years to put preliminary drafts into T^X and to produce
the final camera-ready copy printed here. We thank both for their efforts.





CHAPTER I

Preliminary Results

Here we give general results about finite groups, mainly solvable groups
and p-groups, including some special properties of groups of odd order.

In Chapters II-IV we will apply the results of this section to a hypothetical
minimal counterexample to the Odd Order Theorem. As mentioned in the
preface, all necessary references in this chapter are taken from G.

1. Elementary Properties of Solvable Groups

Suppose G is a group. We say that a group A operates on G, or A is
an operator group on G, if there is given a homomorphism </> from A into
AutG. In this case we usually write xa instead of <ft(a)(x) for x G G and
a G A. We say that A fixes an element x of G, or that x is A-invariant,
if xa = x for every a G A. We say that A fixes a nonempty subset 5 of
G, or that S is A-invariant, if each element of A fixes S as a set. As in G,
pp. 30, 33, the set (group) of all A-invariant elements of G will be denoted
by CG(A). Similarly, if 5 is a nonempty subset of G, CA(S) will denote
the set of all elements of A that fix every element of S.

We will frequently use the fact (G, p. 18) that if H and K are subgroups
of a group G, then

By applying this fact to the semidirect product of a group G by an operator
group A, we see that [G, A] is a normal subgroup of G fixed by A. As in G,
p. 19, [G, A, A] will denote [[G, A], A}. Also, we say A stabilizes a normal
series

G = Go D Gi D • • • D Gn = 1

of G if each Gi is A-invariant and A acts trivially on each factor G;_i/Gi,
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Suppose that A is an operator group on a group G. As in FT, p. 840,
we say that A acts in a 'prime manner on G if

CG(a) = CG(A) for all a G A*.

(Note that this must occur if \A\ is prime and that we allow A = 1.) We
say that A acts regularly, or in a regular manner on G if

CG(a) = 1 for all a G A#.

(Thus, if A acts regularly, then A C Aut G and 4̂ acts in a prime manner
on G. This disagrees slightly with the definition in G, p. 39, which requires
also that A ^ 1.)

In the subsequent text we will write if « G to mean that if is a
subnormal subgroup of G. This means that if is a member of a normal
series of G (G, Exercise 1.5, p. 13). Equivalently, there exists a series

We use the property that every subgroup of a nilpotent group G is subnor-
mal in G. This follows immediately from the fact that proper subgroups
of a nilpotent group are properly contained in their normalizers (G, Theo-
rem 2.3.4, p. 22).

All groups considered in this work will be finite except when explicitly
stated otherwise.

For later use we make the following definition. Given a prime p and a
group G, we say that G has p-length one if G = Op'iPiP/(G). (This differs
slightly from the definition in G, p. 227, in that our definition includes
groups of p'-order, that is, groups that, according to the usual definition,
would have p-length zero.)

A group G is called a Z-group if all of its Sylow subgroups are cyclic.
For any subset T of G we define

<jfG(T) = {t9 \t G T and g G G } .

A nonempty subset X of G is a Tl-subset of G if X fl X9 C 1 for all
x G G — N(X). In particular, a nonidentity proper subgroup H of G is a
TI-subgroup of G if H n H9 = 1 for all g G G - N(H).

In the text that follows we will denote by £P(G) the set of all elementary
abelian p-subgroups of G; £P*(G) the set of all maximal elementary abelian
p-subgroups of G; and £P{G) the set of all elementary abelian subgroups
of order p1 in G (where i is a positive integer). We let £(G) be the union
of the sets £q(G) for all primes q. We define £*(G) and £1{G) analogously.

For a prime p, a p-group R will be called narrow if it contains no elemen-
tary abelian subgroup of order p3 or if it contains a subgroup RQ of order p
and a cyclic subgroup R± such that CR(R0) = Ro x Rlm (This definition is
not standard and is used only in this book. It corresponds to the definition
of 7T* on p. 845 of FT.)
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Lemma 1.1. Suppose that M is a minimal normal subgroup of a finite
group G. If M is solvable, then M C Z(F(G)) and is elementary abelian.

Proof. Elementary. •

Proposition 1.2 (P. Hall). Suppose that G is a solvable group and that
G* < G. Let & be the set of all chief factors U/V of G. Let ^ * be the set
of all chief factors U/V of G for which U C F(G*). Then

CG.{U/V)= ft CG*(U/V).
u/ve®*

Proof. Let

ff = f| CG*(U/V) and ff*= p | CG*(U/V).

Take E//V G 0 . Then £7/V is a minimal normal subgroup of G/V. By
Lemma 1.1,

U/V C Z(F(G/V)).

Since F(G*)F/y is nilpotent and is also normal in G/V, we know that
F{G*)V/V C F(G/V). Hence F(G*)V/y centralizes £7/y. As C//F was
taken arbitrarily, F(G*) C H.

Clearly H C ff*. To complete the proof, we assume that #* g F(G*)
and obtain a contradiction. Let X be a normal subgroup of G minimal
with respect to the property that K C H* and K g F(G*). Take a chief
series for G that includes K, and let

(1.1) K = K0DK1D'"DKn = l

be the part of the chief series from If to 1. By the choice of K, we have
K\ C F(G*). Hence, for i = 2,.. .,n, we have Ki-i/Ki G ^ * and, since
K C U*, we have [lf;_i,lf] C If̂ . Since K is solvable, K/Ki is abelian
and [lfo,lf] = [K>>K] S ^ i - Thus the series (1.1) is a central series for K.
Hence K is nilpotent. Therefore K C F(G*), a contradiction. •

Proposition 1.3 (P. Hall). Suppose that G is a solvable group. Then
CG(F(G)) C

Proof. Let G* = G in Proposition 1.2. •

Proposition 1.4. Suppose that G is a solvable group, A is a group of
automorphisms of G, and (|A|, |G|) = 1. Then A acts faithfully on F(G).
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Proof. We may assume that A is cyclic. Let X be the semidirect product
of G by A. Then X is solvable. We embed A and G in X. Let a = TT(A)
and F = F(X).

Since A is certainly a Hall cr-subgroup of X and AOa(F) is a cr-group,
A = AOa(GF) D Oa{F). As AC AutG and

we have Oa(F) = 1. Thus

F = Oa(F) x Oa,{F) = CV(F) C CV(X) = G.

Clearly F = F(G). By Proposition 1.3,

= Ar\Cx(F(X))C AnF(X)C AnG = l. D

Proposition 1.5. Suppose that G is a solvable group, A is an operator
group on G, and (|A|, |G|) = 1. Let TT be a set of primes. Then:

(a) A fixes some Hall ?r-subgroup of G;
(b) every A-invariant 7r-subgroup of G is contained in an A-invariant

Hall 7r-subgroup of G;
(c) if Hi and #2 are A-invariant Hall ?r-subgroups of G, then Hi and

Hi are conjugate by an element of Co (A);
(d) if H is any A-invariant normal subgroup of G, then CQ/H(A) is the

image of GG(A) in G/H; and
(e) if GG(A) contains a Hall Tr'-subgroup of G, then [G, A] C (^(G).

Proof. Statements (a), (c), and (d) follow from P. Hall's theorem on solv-
able groups (G, Theorem 6.4.1, p. 231) and from the proof of Theorem 6.2.2,
pp. 224-5 of G.

To prove (b) we proceed by induction on |G|. Let K be an A-invariant
7T-subgroup of G and M a minimal A-invariant normal subgroup of G. If
G itself is a ?r-group, there is nothing to prove, and so we may assume G
is not a ?r-group. Now KM/M is an A-invariant 7r-subgroup of G/M so,
by induction, there exists an A-invariant Hall 7r-subgroup H/M of G/M
that contains KM/M. Thus H is an A-invariant subgroup of G such that
K C H C G and \H\* = \G\*. If H # G, we can apply induction to H to
conclude that if is contained in an A-invariant Hall 7r-subgroup of H and
we are done. If H = G, then M is a normal Sylow p-subgroup of G for
some prime p outside TT. By (a), G has an A-invariant Hall 7r-subgroup Q
and clearly G = QM with Q n M = l. Now |QnKM\ = \K\, and hence K
and Q n KM are both A-invariant Hall 7r-subgroups of KM. By (c), there
exists an element x G CKM(A) such that if = (Q D KM)X C Q*. Clearly
<3X is an A-invariant Hall 7r-subgroup of G.

To prove (e), let H be an A-invariant Hall ?r-subgroup and let if be a
Hall Tr'-subgroup of G contained in CQ{A). Then G = KH. Therefore

[G, A] = (h^k-^h01 \keK,heH,aeA)CH.
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Since [G, A] < G, we have [G, A] C ^ ( G ) . D

Proposition 1.6. Suppose that G is a solvable group, A is an operator
group on G, and (|A|, \G\) = 1. Then:

(a) G = CG(A)[G,A] = [G,A]CG(A);
(b) [G,A,A] = [G,A];
(c) if [G, A, A] = 1, then A acts trivially on G;
(d) if G is abelian, then G = CG(A) x [G, A]; and
(e) if G is abelian and CG(A) contains every element of prime order in

G, then A acts trivially on G.

Proof. For (a), let H = [G,A] in Proposition 1.5(d). For (b) and (c),
see the proof of G, Theorem 5.3.6, p. 181. For (d), see the proof of G,
Theorem 5.2.3, p. 177. Finally, note that (e) follows from (d). •

In the following lemma we list some of the basic properties of the Frattini
subgroup of a finite group.

Lemma 1.7. Suppose that G is a group and R is a p-group for some prime
p. Then:

(a) if if is a subgroup of G and G = #$(G), then G = H;
(b) R/<&(R) is elementary abelian;
(c) $(R) = 1 if and only if R is elementary abelian; and
(d)

Proof, (a) G, Theorem 5.1.1, p. 173. (b) G, Theorem 5.1.3, p. 174. (c) G,
Theorem 5.1.3, p. 174. (d) Let S = (R',x*> \ x €  R). By (b), S C $(#).
Since R/S is elementary abelian and $(R/S) = $(R)/S, (c) yields (d). •

Theorem 1.8 (Burnside). Suppose that A is an operator group onap-
group R and (|A|, \R\) = 1. Assume that A centralizes R/$(R). Then A
centralizes R.

Proof. By Proposition 1.5(d), R = CR(A)$(R). By Lemma 1.7(a), R =
CR(A). (This is G, Theorem 5.1.4, p. 174.) •

Lemma 1.9. Suppose that TT is a set of primes, G is a finite solvable n-
group, and A is an operator group on G that stabilizes a normal series of
G. Then A/CA(G) is a 7r-group.

Proof. It suffices to show that A acts trivially on G if A is a Tr'-group. This
follows from Proposition 1.5(d) by induction on the length of the normal
series. •

Proposition 1.10. Suppose that A is an operator group on a nilpotent
group G and (|A|, \G\) = 1. Let C = CG(A). If CG(C) C C, then A acts
trivially on G.


