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Preface

Complexity theory attempts to understand and measure the intrinsic diffi-
culty of computational tasks. The study of Boolean Function Complexity
reaches for the combinatorial origins of these difficulties. The field was pio-
neered in the 1950's by Shannon, Lupanov and others, and has developed now
into one of the most vigorous and challenging areas of theoretical computer
science.

In July 1990, the London Mathematical Society sponsored a Symposium
which brought to Durham University many of the leading researchers in the
subject for ten days of lectures and discussions. This played an important
part in stimulating new research directions since many of the participants
were meeting each other for the first time. This book contains a selection of
the work which was presented at the Symposium. The topics range broadly
over the field, representing some of the differing strands of Boolean Function
Theory.

I thank the authors for their efforts in preparing these papers, each of which
has been carefully refereed to journal standards. The referees provided in-
valuable assistance in achieving accuracy and clarity. Nearly all the referees'
names appear also in the list of authors, the others being A. Wigderson,
C. Sturtivant, A. Yao and W. McColl. While a measure of visual conformity
has been achieved (all but one of the papers is set using LffgX), no attempt
was made to achieve uniform notation or a 'house style'. I have tried to
arrange the papers so that those which provide more introductory material
may serve to prepare the reader for some more austere papers which follow.
Some background in Boolean complexity is assumed for most of the papers.
A general introduction is offered by the three books by Dunne, Savage and
Wegener which are referenced in the first paper.

The Symposium at Durham was made possible by the initiative and sponsor-
ship of the London Mathematical Society, the industry and smooth organi-
zation of the staff at Durham University, the financial support of the Science
and Engineering Research Council and by the enthusiastic participation of the
Symposium members. Finally, I thank the staff and Syndics of Cambridge
University Press for their cooperation and patience during the preparation of
this volume.

Mike Paterson

University of Warwick
Coventry, England

June, 1992
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Relationships Between Monotone
and

Non-Monotone Network Complexity

Paul E. Dunne

Abstract

Monotone networks have been the most widely studied class of restricted
Boolean networks. It is now possible to prove superlinear (in fact expo-
nential) lower bounds on the size of optimal monotone networks comput-
ing some naturally arising functions. There remains, however, the prob-
lem of obtaining similar results on the size of combinational (i.e. unre-
stricted) Boolean networks. One approach to solving this problem would
be to look for circumstances in which large lower bounds on the com-
plexity of monotone networks would provide corresponding bounds on
the size of combinational networks.

In this paper we briefly review the current state of results on
Boolean function complexity and examine the progress that has been
made in relating monotone and combinational network complexity.

1. Introduction

One of the major problems in computational complexity theory is to develop

techniques by which non-trivial lower bounds, on the amount of time needed

to solve 'explicitly defined' decision problems, could be proved. By 'non-

trivial' we mean bounds which are superlinear in the length of the input; and,

since we may concentrate on functions with a binary input alphabet, the term

'explicitly defined9 may be taken to mean functions for which the values on

all inputs of length n can be enumerated in time 2cn for some constant c.

* Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, Great Britain.



2 DUNNE: MONOTONE AND NON-MONOTONE NETWORKS

Classical computational complexity theory measures 'time' as the num-
ber of moves made by a (multi-tape) deterministic Turing machine. Thus a
decision problem, / , has time complexity, T(n) if there is a Turing machine
program that computes / and makes at most T(n) moves on any input of
length n.

The Turing machine is only one of many different models of computa-
tion. Another model, that has attracted as much attention, is the class of com-
binational Boolean networks. An n-input combinational network is a directed
acyclic graph containing two distinct types of node: input nodes, which have
no incoming edges; and gate nodes which have at most two incoming edges.
Each input node is associated with a single Boolean variable, xh from an
ordered set Xn = (xi,x2,...,xn). Each gate node is associated with some
two-input Boolean function. There is a unique gate, having no outgoing
edges, which is called the output of the network. An assignment of Boolean
values to the input variables naturally induces a Boolean value at the output
gate, the actual value appearing depends on the input assignment and the net-
work structure. The size of such a network is the number of gate nodes; its
depth is the number of gates in the longest path from an input node to the
output gate.

We shall denote by Bn the set of all n-input Boolean functions,
/ ( X n ) { 0,1 }w-» { 0,1 } with formal arguments Xn. An n-input combina-
tional network computes / e Bn if for all assignments a e {0,1 }n to Xn, the
value induced at the output gate is f(a). It should be noted that a single
combinational network only solves a decision problem for the special case
when all input strings are of length exactly n. In order to discuss the size (or
combinational complexity) of networks for decision problems in general, the
following approach is used. Let [ /„] be the infinite sequence of Boolean
functions arising by restricting a decision problem, / , to inputs of length n
(thus /„ G Bn). We say that the decision problem, / , is computed by a
sequence of n-input combinational networks, (C n ) , if, for each n, the n-input
network, Crt, computes /„ . With this definition we can introduce appropriate
complexity measures for Boolean functions computed by networks.

For a network, T, C(T) is the size of T; for a Boolean function f e Bn

C ( / ) = min{C(T) :T computes f }

Finally for a family [ fn ] we say that the combinational complexity of [ fn ]
is g(n) if, for each /„ , it holds that C ( / n ) < g ( n ) . D ( / ) will denote the
corresponding measure for depth.

If a decision problem can be computed in time T(n) then
T ( n ) l o g T ( n ) is an upper bound on the combinational complexity of the
corresponding family of Boolean functions, see, e.g. Savage (1972), Schnorr
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(1976a) or Fischer and Pippenger (1979). In this way sufficiently large lower
bounds on combinational complexity would give similar bounds on Turing
machine time. Lower bounds on Turing machine space could be obtained
from co(log2n) lower bounds on combinational depth, cf. Borodin (1977).

In fact it is known that there are Boolean functions of n-arguments with
exponential combinational complexity. Shannon (1949) proved that 'almost
all'1 feBn were such that C( / )>2 W M. Earlier, Riordan and Shannon
(1942) had proved that, for almost all feBn, D ( / ) > n - l o g l o g n . Lupanov
(1958) (for size) and Gaskov (1978) (for depth) have established that these
lower bounds are the best possible and so a lot is known about the difficulty
of computing Boolean functions, by combinational networks, in the general
case.

If we consider the case of explicitly defined Boolean functions, however,
the existing results are extremely weak. To date, no superlinear lower bound
has been proved on the combinational complexity of any specific function:
the largest lower bound proved, is only 3n-3 for a function constructed in
Blum (1984a). It has become clear that, if combinational networks are to pro-
vide a vehicle with which to derive superlinear lower bounds on Turing
machine time — let alone resolve questions such as P = ? NP — then tech-
niques that are much more sophisticated, than those developed to date, must
be constructed. In the absence of such methods, attention has been focused
on restricted types of combinational networks. There are a number of reasons
for proceeding along this path: one cannot hope to prove results on unre-
stricted networks unless one can prove results for special cases; understanding
how to prove lower bounds on restricted types of network may give some
insight into techniques that can be applied to the general case; and it may be
possible to deduce lower bounds on combinational complexity from lower
bounds on restricted networks, for example if the special class of networks
can efficiently simulate combinational networks.

In this paper we are concerned with a particular class of restricted com-
binational network: monotone Boolean networks. These are introduced in
Section 2, where a survey of lower bound results obtained for this model is
also given. The remainder of the paper deals with the issue of relating mono-
tone network complexity to combinational complexity: Section 3 describes a
framework for translating between combinational and monotone networks and,
within this, a class of functions known as slice functions may be shown to
have closely related combinational and monotone network complexity. Slice
functions and their properties are examined, in detail, in Section 4.

1) A property holds for 'almost air / e Bn if the fraction of all n-input Boolean functions not
possessing the property approaches zero as n approaches infinity.
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Conclusions are given in the final section. The reader interested in progress
on other aspects of combinational complexity or alternative restricted models
may find discussions of work in these areas in Dunne (1988), Savage (1976),
and Wegener (1987).

2. Monotone Boolean Networks

Combinational networks allow any two-input Boolean function to be used as
a gate operation. The restriction imposed in the case of monotone Boolean
networks is that the only gate operations admitted are two-input logical AND
(or conjunction) — denoted A — and two-input logical OR (or disjunction)
— denoted v. For Boolean variables JC, y: x A y equals 1 if and only if both
JC and y equal I; xvy equals 1 if and only if at least one of x or y equals
1.

There is a penalty incurred by imposing this restriction on networks: it
is no longer possible to compute every Boolean function of n arguments. In
other words, the basis (i.e. permitted set of operations) { A, v } is logically
incomplete. Post (1941) described necessary and sufficient conditions for a
basis to be logically complete. In the next section we exploit two facts about
complete bases, namely:

Fact 2.1: The basis { A,V, - •} (where -» is the unary function corresponding
to Boolean negation) is logically complete. •

Fact 2.2: If f 2 c B 2 is a complete basis then the size of an optimal Boolean
network, using only operations in £2, computing a function / e Bn is at most
cC(f) for some (small) constant c. •

A function which can be computed by a monotone Boolean network is called
a monotone Boolean function. Mn denotes the (strict) subset of Bn compris-
ing all n-input monotone Boolean functions. The study of this class of func-
tions dates back to the work of Dedekind (1897) where the problem of calcu-
lating the exact value of ys(n) = \Mn\ was first raised. This exact counting
problem is still open, although asymptotically exact estimates have been
obtained, cf. Korshunov (1981).

Monotone Boolean functions have a number of interesting properties
which have proved important in constructing lower bound arguments for
monotone network complexity. A few of these properties are summarised
below.

Before stating these we need the following concepts. Define ordering
relations < and < on Boolean functions as follows: 0 < 1 and for / , g in Bn

we say that f<g if for all a e {0,1 } \ f(a) = l => g(a) = l. That is,
whenever some assignment makes / take the value 1, the same assignment
forces g to take the value 1. We say that f<g if f<g but / and g are
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different functions. Now let / and g be functions in Bn with formal argu-

ments Xn. fxi:=e denotes the function (in Bn_x with formal arguments

X n~ { Xi}) obtained by fixing xt to the Boolean value e.

Fact 23: Let / e Bn and let Xn be the formal arguments of / . f e Mn if

and only if: Vx f, 1 <i<n it holds that / u ' : = 0 < /'*' :=1. n

Fact 2.4: If / , g are in Mn and / < g then:

i) f*g = f

ii) fvg=g. U

A conjunction of some subset of the variables Xn is called a monom. A
monom, m, is an implicant of / e Mn if m<f. A monom, ra, is a prime
implicant of / if m is an implicant of / but no monom formed from a strict
subset of the variables of m is an implicant of / . PI( / ) will denote the set
of prime implicants of / . The dual concepts, using disjunction, are clauses,
implicands, and prime clauses with PC( / ) denoting the set of prime clauses
of a function / .

Fact 2.5: Any / e Mrt, with arguments Xn, may be expressed uniquely in the
forms

/ ( X n ) = V p ; / ( X n ) = A q

The former is known as Disjunctive Normal Form (DNF); the latter as Con-
junctive Normal Form (CNF). •

C m ( / ) will denote the monotone network complexity of / e Mn and D m ( / )
the corresponding measure for monotone depth.

Early progress on the complexity of monotone Boolean networks was
similar to the case of combinational networks. Thus there are asymptotically
exact bounds for the monotone network size of almost all monotone Boolean
functions. The lower bound (of 2n/n3/2) follows from Gilbert (1954) using
Shannon's arguments; the upper bound comes from Andreev (1988) (improv-
ing the constant factor in the construction of Red'kin (1979)).

The first significant development in the theory of monotone networks
came about with the appearance of superlinear lower bounds on the size of
monotone networks computing sets of monotone Boolean functions: 'superlin-
ear' in this context means as a function of the total number of inputs and
outputs. Van Voorhis (1972) proved an asymptotically optimal lower bound
on the monotone network complexity of sorting n Boolean inputs; Pater son
(1975) and Mehlhorn and Galil (1976) independently obtained exact bounds
on the size of networks realising ( A, v )-Boolean matrix product; Weiss
(1984) and Blum (1984b) obtained lower bounds for the n-point Boolean
convolution function which is closely related to integer multiplication.
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In the case of single monotone Boolean functions, until recently, as little
progress had been made as for combinational networks. Although exact expo-
nential lower bounds had been obtained by Schnorr (1976b) and Jerrum and
Snir (1982) for monotone arithmetic networks (i.e. with only integer addition
and multiplication permitted as operations) the techniques used to prove these
results fail to work for algebraic structures in which the identities of Fact 2.4
hold. By the end of 1984 the most powerful techniques were capable of
yielding only modest linear lower bounds, e.g. Dunne (1985), Tiekenheinrich
(1984).

In 1985 the Soviet mathematician Razborov considered the following
monotone Boolean functions.

Definition 2.1: Le t X ^ = { xifj :l<i<j<n] be a set of N = n(n - 1 )/2

Boolean variables representing the adjacency matrix of an n-vertex undirected
graph G(X^). k-clique is the function in MN , with formal arguments Xj^,
such that k-clique{a) = l if the graph G(a) contains a k-clique, i.e. a set of
k vertices every pair of which is joined by an edge of G.

Let Xn n = { xtj : 1 </, j<n } be a set of n2 Boolean variables. The Logi-
cal Permanent is the function PM e Mni, with formal arguments Xn>n, defined
by

where Sn is the set of all permutations of ( 1 , 2 , . . . , n). •

For appropriate (non-constant) values, the decision problem correspond-
ing to the ^-clique function is NP-complete.

Alon and Boppana (1986), improving the combinatorial arguments given
originally in Razborov (1985a, 1985b), proved the following results concern-
ing these functions.

Theorem 2.1: V 3 < k < 0.25 (n/ log n)m

Cm(k-clique) > c I6k3'2logn

Theorem 2.2:

Cm(PM) > nclogn ( V c < l / 1 6 ) •

The lower bound of Theorem 2.1 is exponential for large enough values of k.
In addition to these results of Razborov, Alon, and Boppana, exponential
lower bounds on explicitly defined monotone Boolean functions have been
proved in Andreev (1985, 1987) and Tardos (1987).
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Theorems 2.1 and 2.2 constitute a significant advance in the theory of
Boolean network complexity since they are built on a technique which is
powerful enough to yield superlinear lower bounds on size for a non-trivial
network model. Further indications that monotone networks are a theoretically
tractable model are given by the methods of Karchmer and Wigderson (1987)
and Raz and Wigderson (1990). Their results concern the depth of monotone
networks.

Definition 2.2: The function st— conn(X^) is the monotone Boolean function
such that st-conn(a)=l if G(a) contains a path from vertex s to vertex t.

Theorem 23: (Karchmer and Wigderson, 1987)

Dm(st-conn) = £l(log2n) a

Theorem 2.4: (Raz and Wigderson, 1990)

Dm(PM) = Q(n) •

Razborov (1988) also proves superlogarithmic lower bounds on monotone
depth.

3. A Framework for Relating Combinational and
Monotone Network Complexity

The theorems stated at the conclusion of the preceding section may be
regarded as completing the first part of a programme aimed at achieving non-
trivial lower bounds on problem complexity. Thus, for the restricted case of
monotone networks, techniques powerful enough to prove large lower bounds
on size and depth are known. The question that now arises is: how relevant
are these results/techniques to combinational complexity? In other words: is it
possible to deduce non-trivial lower bounds on combinational complexity
(depth) from large enough lower bounds on monotone complexity (depth)?

The results of Razborov (1985b), Tardos (1987) and Raz and Wigderson
(1990), at first sight, offer a negative answer to the second question.

Theorem 3.1:

i) C(PM) = O( nk) for some constant k.

ii) There is function computable with polynomial size combinational networks
that requires exponential size monotone networks.

iii) There is a function computable inO(logn) depth using combinational net-
works that requires Q( V^O depth monotone networks.

Proof: (i) follows by observing that the Logical Permanent is equivalent to
determining whether a given bipartite graph contains a perfect matching.
Hopcroft and Karp (1973) give a polynomial time algorithm for this problem
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and thus the upper bound on combinational complexity is immediate, (ii) is
proved in Tardos (1988) and (iii) by Raz and Wigderson (1990). D

The second and third parts of Theorem 3.1 (which are both proved using
explicitly defined functions) show that there are exponential gaps between
monotone network size (depth) and combinational network size (depth). As a
consequence it will not always be possible to derive lower bounds on combi-
national complexity using lower bounds on monotone complexity. Neverthe-
less the theorem does not exclude the possibility of doing this for some
monotone Boolean functions.

Recall from Facts 2.1 and 2.2 that the basis { A , V , - I } is logically com-
plete and that an optimal Boolean network built from any complete basis of
two-input Boolean operations is at most a constant factor larger than an
equivalent optimal combinational network. It follows that, since we are inter-
ested in superlinear lower bounds, we may without loss of generality consider
the problem of relating monotone networks to networks which only permit
the operations { A, V, -•} to be used.

{ A, v,->} -networks only differ from monotone networks in permitting
the use of negation. The result below demonstrates that we can make such
networks more closely resemble monotone networks by permitting the use of
negation only on input nodes. We shall use C(AV _,)(/) to denote the number
of gates in the smallest { A, v,-i }-network realising / e Bn.

Definition 3.1: A standard network is a Boolean network whose permitted
gate operations are { A, v } and with 2n-input nodes:

/ r r -ir -i r \

SC( / ) will denote the number of gate nodes in the smallest standard net-
work realising f e Bn. •

Theorem 3.1: V / e Bn it holds that SC( / ) < 2 C{ A,v^} ( / ) .

Proof: (Outline) The following identities (known as De Morgan's Laws) can
be easily proved:

Let T be an optimal { A, V,-I }-network realising some feBn. Let g be a
'last' gate in T such that an edge directed out of g enters a negation gate.
Here 'last' means that no gate on a path from g to the output gate has the
property that an edge directed out of it enters a negation gate. Now since we
include instances of negation in measuring size and we have assumed that T
is optimal it follows that there is exactly one wire leaving g and entering a
negation gate, h say. Let hi,...,hr be the gates which have h as an input
Let gi and g2 be the gates supplying the inputs of g. We change T as fol-
lows: add a new gate g' whose inputs are -*gi and -^gil remove the negation
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gate h and replace each edge (h,hi) by an edge {g',hi)\ finally if g is an
A-gate then make g' an v-gate and vice versa. From De Morgan's Laws it
follows that the new network, T\ still computes / .

Applying the process of the preceding paragraph repeatedly, we eventu-
ally reach the situation where only input nodes enter a negation gate. Since
we add only one new (A or v) gate at each stage it follows that the final net-
work is a standard network computing / and containing at most twice the
number of gates in T. •

Now consider an optimal combinational network, T, computing some
/ G Mn. This may be transformed to a standard network, S, that also com-
putes / , and is only a constant factor larger than T. The only way in which
S differs from a monotone network is by the presence of the n extra input
nodes <"•*!,. . . , -»*„).

Suppose that we, temporarily, ignore the fact that the n additional inputs
are the negation of the n function arguments and regard them as n new
Boolean variables yx,..., yn. Then it is clear that:

i) S computes a monotone Boolean function of the inputs
(xl,...9xn9ylJ...,yn).

ii) If, for each f, we substitute —• jcf- for the input yt then S computes the
original function / e Mn.

One of the most important techniques applied in proving lower bounds on
monotone network complexity is the concept of replacement rules. These pre-
scribe 'circumstances' in which a node of a monotone network computing
some function h (X n ) may be replaced by a node computing some different
function h'(Xn) without altering the func-
tion, / , computed by the network. The 'circumstances' depend solely on h, ti

and / and not on the topology of the network.2

Returning to the standard network S in which -• JC/ is regarded as a new in-
put yi we can attempt to use the concept of replacement rules to yield a mono-
tone network with inputs Xn which computes / . Thus, if the following two con-
ditions can be satisfied, for all standard networks computing / , we may deduce
that Cm( / ) is 'not much larger' than C( / ) .

Cl) There is a set (hi,...,hn) of monotone Boolean functions having for-
mal arguments Xn such that replacing any subset of the y-t inputs by the

2) The power of this technique arises from the fact that one may identify functions which can be
replaced by the Boolean constants 0 or 1 and thus cannot be computed as partial results in opti-
mal monotone networks. An example of the technique in practice may be found in Paterson
(1975). A full characterisation of applicable replacements is given in Dunne (1984,1988), see al-
so Beynon's paper in this volume.



10 DUNNE: MONOTONE AND NON-MONOTONE NETWORKS

corresponding ht functions and the remaining yj inputs by the corre-
sponding -i Xj inputs, results in a network computing / .

C2) The set of n monotone Boolean functions (hi,...,hn) can be computed
by a monotone network of size at most enC

m(f) (for some en< 1).

Theorem 3.3: If / e Mn for which conditions (Cl) and (C2) hold, then

where c is the constant of Fact 2.2.

Proof: If both (Cl) and (C2) hold then it follows that
C m ( / ) < S C ( / ) + £ w C m ( / ) . The theorem now follows from Fact 2.2 and
Theorem 3.2. •

For / G Mrt, a set {h\,...yhn) of monotone functions satisfying condi-
tion (Cl) for / , is called a pseudo-complement vector for f ht is called a
pseudo-complement for xt when computing / . Informally a pseudo-
complement for Xi can replace the node —• JC£- in any standard network com-
puting / .

Given the relation in Theorem 3.3, it is clearly desirable to identify
classes of monotone Boolean functions for which both conditions (Cl) and
(C2) hold. In fact it turns out that (Cl) holds for all f e Mn.

Theorem 3.4: heMn_x with formal arguments X n - { j t , } is a pseudo-
complement for Xi when computing / G Mn (with arguments Xn) if and only
if

Proof: The result was originally proved in Dunne (1984). This proof is repro-
duced in Dunne (1988) pp. 242-243. •

Corollary 3.1: V / G Mn condition (Cl) holds.

Proof: From Fact 2.3, / eMn if and only if / u ' : = 0 < / u ' : = 1 for each xt. It
follows that the interval of Theorem 3.4 is always well-defined. •

Theorem 3.4 does not, however, allow functions for which condition
(C2) holds to be identified directly. An 'obvious' choice of pseudo-
complement vector, such as the n subfunctions of / obtained by fixing JC, to
0, will not give an efficient transformation from standard networks to mono-
tone networks. Theorem 3.4 is mainly of use in permitting simple proofs of
the correctness of specific pseudo-complements.

Rather than attempt to identify, explicitly, those / G Mn for which (C2)
holds, i.e. for which efficiently computable pseudo-complement vectors exist,
we proceed in the 'reverse direction5. Thus:


