London Mathematical Society Lecture Note Series 169

Boolean Function Complexity

Edited by
M. S. Paterson

CAMBRIDGE UNIVERSITY PRESS

This page intentionally left blank

LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor J.W.S. Cassels, Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, England

The books in the series listed below are available from booksellers, or, in case of difficulty, from Cambridge University Press.

Representation theory of Lie groups, M.F. ATIYAH et al
Homological group theory, C.T.C. WALL (ed)
Affine sets and affine groups, D.G. NORTHCOTT
Introduction to H_{p} spaces, P.J. KOOSIS
p-adic analysis: a short course on recent work, N. KOBLITZ
Finite geometries and designs, P. CAMERON, J.W.P. HIRSCHFELD \& D.R. HUGHES (eds)
Commutator calculus and groups of homotopy classes, H.J. BAUES
Techniques of geometric topology, R.A. FENN
Applicable differential geometry, M. CRAMPIN \& F.A.E. PIRANI
Several complex variables and complex manifolds II, M.J. FIELD
Representation theory, I.M. GELFAND et al
Symmetric designs: an algebraic approach, E.S. LANDER
Spectral theory of linear differential operators and comparison algebras, H.O. CORDES
Isolated singular points on complete intersections, E.J.N. LOOIJENGA
Probability, statistics and analysis, J.F.C. KINGMAN \& G.E.H. REUTER (eds)
Introduction to the representation theory of compact and locally compact groups, A. ROBERT
Skew fields, P.K. DRAXL
Surveys in combinatorics, E.K. LLOYD (ed)
Homogeneous structures on Riemannian manifolds, F. TRICERRI \& L. VANHECKE
Topological topics, I.M. JAMES (ed)
Surveys in set theory, A.R.D. MATHIAS (ed)
FPF ring theory, C. FAITH \& S. PAGE
An F-space sampler, N.J. KALTON, N.T. PECK \& J.W. ROBERTS
Polytopes and symmetry, S.A. ROBERTSON
Classgroups of group rings, M.J. TAYLOR
Representation of rings over skew fields, A.H. SCHOFIELD
Aspects of topology, I.M. JAMES \& E.H. KRONHEIMER (eds)
Representations of general linear groups, G.D. JAMES
Low-dimensional topology 1982, R.A. FENN (ed)
Diophantine equations over function fields, R.C. MASON
Varieties of constructive mathematics, D.S. BRIDGES \& F. RICHMAN
Localization in Noetherian rings, A.V. JATEGAONKAR
Methods of differential geometry in algebraic topology, M. KAROUBI \& C. LERUSTE
Stopping time techniques for analysts and probabilists, L. EGGHE
Groups and geometry, ROGER C. LYNDON
Surveys in combinatorics 1985, I. ANDERSON (ed)
Elliptic structures on 3-manifolds, C.B. THOMAS
A local spectral theory for closed operators, I. ERDELYI \& WANG SHENGWANG Syzygies, E.G. EVANS \& P. GRIFFITH
Compactification of Siegel moduli schemes, C-L. CHAI
Some topics in graph theory, H.P. YAP
Diophantine analysis, J. LOXTON \& A. VAN DER POORTEN (eds)
An introduction to surreal numbers, H. GONSHOR
Analytical and geometric aspects of hyperbolic space, D.B.A. EPSTEIN (ed)
Lectures on the asymptotic theory of ideals, D. REES
Lectures on Bochner-Riesz means, K.M. DAVIS \& Y-C. CHANG
An introduction to independence for analysts, H.G. DALES \& W.H. WOODIN
Representations of algebras, P.J. WEBB (ed)
Homotopy theory, E. REES \& J.D.S. JONES (eds)
Skew linear groups, M. SHIRVANI \& B. WEHRFRITZ

Boolean Function Complexity

Edited by

M.S. Paterson

Department of Computer Science
University of Warwick

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo
Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK
Published in the United States of America by Cambridge University Press, New York
www.cambridge.org
Information on this title: www.cambridge.org/9780521408264
(C) Cambridge University Press 1992

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1992
A catalogue record for this publication is available from the British Library
ISBN-13 978-0-521-40826-4 paperback
ISBN-10 0-521-40826-1 paperback
Transferred to digital printing 2006

Contents

Preface vii
List of Participants ix
Paul E. Dunne
Relationships Between Monotone and Non-Monotone Network Complexity 1
Ilan Newman
On Read-Once Boolean Functions 25
W. Meurig Beynon
Boolean Function Complexity: a Lattice-Theoretic Perspective 35
Michelangelo Grigni and Michael Sipser Monotone Complexity 57
A.A. Razborov
On Submodular Complexity Measures 76
Leslie G. Valiant
Why is Boolean Complexity Theory so Difficult? 84
Roland Mirwald and Claus P. Schnorr
The Multiplicative Complexity of Boolean Quadratic Forms, a Survey 95
David A. Mix Barrington
Some Problems Involving Razborov-Smolensky Polynomials 109
Ingo Wegener, Norbert Wurm and Sang-Zin Yi
Symmetry Functions in $A C^{0}$ can be Computed in Constant Depth with Very Small Size 129
Miklós Ajtai
Boolean Complexity and Probabilistic Constructions 140
Dietmar Uhlig
Networks Computing Boolean Functions for Multiple Input Values 165
Michael S. Paterson, Nicholas Pippenger and Uri Zwick Optimal Carry Save Networks 174

Preface

Complexity theory attempts to understand and measure the intrinsic diffculty of computational tasks. The study of Boolean Function Complexity reaches for the combinatorial origins of these difficulties. The field was pioneered in the 1950's by Shannon, Lupanov and others, and has developed now into one of the most vigorous and challenging areas of theoretical computer science.

In July 1990, the London Mathematical Society sponsored a Symposium which brought to Durham University many of the leading researchers in the subject for ten days of lectures and discussions. This played an important part in stimulating new research directions since many of the participants were meeting each other for the first time. This book contains a selection of the work which was presented at the Symposium. The topics range broadly over the field, representing some of the differing strands of Boolean Function Theory.

I thank the authors for their efforts in preparing these papers, each of which has been carefully refereed to journal standards. The referees provided invaluable assistance in achieving accuracy and clarity. Nearly all the referees' names appear also in the list of authors, the others being A. Wigderson, C. Sturtivant, A. Yao and W. McColl. While a measure of visual conformity has been achieved (all but one of the papers is set using LAT $\mathrm{E}_{\mathrm{E}} \mathrm{X}$), no attempt was made to achieve uniform notation or a 'house style'. I have tried to arrange the papers so that those which provide more introductory material may serve to prepare the reader for some more austere papers which follow. Some background in Boolean complexity is assumed for most of the papers. A general introduction is offered by the three books by Dunne, Savage and Wegener which are referenced in the first paper.

The Symposium at Durham was made possible by the initiative and sponsorship of the London Mathematical Society, the industry and smooth organization of the staff at Durham University, the financial support of the Science and Engineering Research Council and by the enthusiastic participation of the Symposium members. Finally, I thank the staff and Syndics of Cambridge University Press for their cooperation and patience during the preparation of this volume.

Mike Paterson
University of Warwick
Coventry, England
June, 1992

Participants listed from left to right.
Top row: R. Raz, K. Edwards, N. Nisan, L. Valiant, A. Macintyre, K. Kalorkoti, W. Beynon, R. Smolensky, I. Newman, D. Uhlig, A. Chin, I. Leader, U. Zwick, C. Sturtivant, G. Brightwell.

Middle row: M. Jerrum, A. Cohen, A. Sinclair, A. Borodin, C. Schnorr, A. Wilkie, A. Andreev, N. Biggs, P. d'Aquino, M. Dyer, P. Dunne, A. Thomason.

Bottom row: I. Wegener, A. Stibbard, N. Pippenger, M. Klawe, J. Savage, M. Furst, A. Widgerson, W. McColl, M. Paterson, A. Yao, A. Razborov, M. Sipser, L. Henderson, C. McDiarmid, J. Shawe-Taylor, D. Barrington, R. Mirwald.

Participants in the
 LMS symposium on Boolean Function Complexity, Durham University, July 1990.

Miklos Ajtai	Mark Jerrum	John Savage
Alexander Andreev	Kyriakos Kalorkoti	Claus Schnorr
David Mix Barrington	Maria Klawe	John Shawe-Taylor
Alessandro Berarducci	Imre Leader	Alistair Sinclair
Meurig Beynon	Angus Macintyre	Mike Sipser
Norman Biggs	William McColl	Roman Smolensky
Béla Bollobás	Colin McDiarmid	Alyson Stibbard
Allan Borodin	Roland Mirwald	Carl Sturtivant
Graham Brightwell	Ilan Newman	Andrew Thomason
Andrew Chin	Noam Nisan	Dietmar Uhlig
Aviad Cohen	Margarita Otero	Leslie Valiant
Paola d'Aquino	Mike Paterson	Ingo Wegener
Paul Dunne	Nicholas Pippenger	Avi Wigderson
Martin Dyer	Franco Preparata	Alex Wilkie
Keith Edwards	Ran Raz	Andrew Yao
Merrick Furst	Alexander Razborov	Uri Zwick
Leslie Henderson		

Relationships Between Monotone and
 Non-Monotone Network Complexity

Paul E. Dunne *

Abstract

Monotone networks have been the most widely studied class of restricted Boolean networks. It is now possible to prove superlinear (in fact exponential) lower bounds on the size of optimal monotone networks computing some naturally arising functions. There remains, however, the problem of obtaining similar results on the size of combinational (i.e. unrestricted) Boolean networks. One approach to solving this problem would be to look for circumstances in which large lower bounds on the complexity of monotone networks would provide corresponding bounds on the size of combinational networks.

In this paper we briefly review the current state of results on Boolean function complexity and examine the progress that has been made in relating monotone and combinational network complexity.

1. Introduction

One of the major problems in computational complexity theory is to develop techniques by which non-trivial lower bounds, on the amount of time needed to solve 'explicitly defined' decision problems, could be proved. By 'nontrivial' we mean bounds which are superlinear in the length of the input; and, since we may concentrate on functions with a binary input alphabet, the term 'explicitly defined' may be taken to mean functions for which the values on all inputs of length n can be enumerated in time $2^{c n}$ for some constant c.

[^0]Classical computational complexity theory measures 'time' as the number of moves made by a (multi-tape) deterministic Turing machine. Thus a decision problem, f, has time complexity, $T(n)$ if there is a Turing machine program that computes f and makes at most $T(n)$ moves on any input of length n.

The Turing machine is only one of many different models of computation. Another model, that has attracted as much attention, is the class of combinational Boolean networks. An n-input combinational network is a directed acyclic graph containing two distinct types of node: input nodes, which have no incoming edges; and gate nodes which have at most two incoming edges. Each input node is associated with a single Boolean variable, x_{i}, from an ordered set $\mathbf{X}_{\mathbf{n}}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$. Each gate node is associated with some two-input Boolean function. There is a unique gate, having no outgoing edges, which is called the output of the network. An assignment of Boolean values to the input variables naturally induces a Boolean value at the output gate, the actual value appearing depends on the input assignment and the network structure. The size of such a network is the number of gate nodes; its depth is the number of gates in the longest path from an input node to the output gate.

We shall denote by B_{n} the set of all n-input Boolean functions, $f\left(\mathbf{X}_{\mathbf{n}}\right)\{0,1\}^{n} \rightarrow\{0,1\}$ with formal arguments $\mathbf{X}_{\mathbf{n}}$. An n-input combinational network computes $f \in B_{n}$ if for all assignments $\alpha \in\{0,1\}^{n}$ to $\mathbf{X}_{\mathbf{n}}$, the value induced at the output gate is $f(\alpha)$. It should be noted that a single combinational network only solves a decision problem for the special case when all input strings are of length exactly n. In order to discuss the size (or combinational complexity) of networks for decision problems in general, the following approach is used. Let $\left[f_{n}\right]$ be the infinite sequence of Boolean functions arising by restricting a decision problem, f, to inputs of length n (thus $f_{n} \in B_{n}$). We say that the decision problern, f, is computed by a sequence of n-input combinational networks, $\left\langle C_{n}\right\rangle$, if, for each n, the n-input network, C_{n}, computes f_{n}. With this definition we can introduce appropriate complexity measures for Boolean functions computed by networks.

For a network, $T, \mathbf{C}(T)$ is the size of T; for a Boolean function $f \in B_{n}$

$$
\mathbf{C}(f)=\min \{\mathbf{C}(T): T \text { computes } f\}
$$

Finally for a family [f_{n}] we say that the combinational complexity of $\left[f_{n}\right.$] is $g(n)$ if, for each f_{n}, it holds that $\mathbf{C}\left(f_{n}\right) \leq g(n) . \mathbf{D}(f)$ will denote the corresponding measure for depth.

If a decision problem can be computed in time $T(n)$ then $T(n) \log T(n)$ is an upper bound on the combinational complexity of the corresponding family of Boolean functions, see, e.g. Savage (1972), Schnorr
(1976a) or Fischer and Pippenger (1979). In this way sufficiently large lower bounds on combinational complexity would give similar bounds on Turing machine time. Lower bounds on Turing machine space could be obtained from $\omega\left(\log ^{2} n\right)$ lower bounds on combinational depth, cf. Borodin (1977).

In fact it is known that there are Boolean functions of n-arguments with exponential combinational complexity. Shannon (1949) proved that 'almost all ${ }^{1} f \in B_{n}$ were such that $C(f) \geq 2^{n} / n$. Earlier, Riordan and Shannon (1942) had proved that, for almost all $f \in B_{n}, \mathbf{D}(f) \geq n-\log \log n$. Lupanov (1958) (for size) and Gaskov (1978) (for depth) have established that these lower bounds are the best possible and so a lot is known about the difficulty of computing Boolean functions, by combinational networks, in the general case.

If we consider the case of explicitly defined Boolean functions, however, the existing results are extremely weak. To date, no superlinear lower bound has been proved on the combinational complexity of any specific function: the largest lower bound proved, is only $3 n-3$ for a function constructed in Blum (1984a). It has become clear that, if combinational networks are to provide a vehicle with which to derive superlinear lower bounds on Turing machine time - let alone resolve questions such as $P=$? NP - then techniques that are much more sophisticated, than those developed to date, must be constructed. In the absence of such methods, attention has been focused on restricted types of combinational networks. There are a number of reasons for proceeding along this path: one cannot hope to prove results on unrestricted networks unless one can prove results for special cases; understanding how to prove lower bounds on restricted types of network may give some insight into techniques that can be applied to the general case; and it may be possible to deduce lower bounds on combinational complexity from lower bounds on restricted networks, for example if the special class of networks can efficiently simulate combinational networks.

In this paper we are concerned with a particular class of restricted combinational network: monotone Boolean networks. These are introduced in Section 2, where a survey of lower bound results obtained for this model is also given. The remainder of the paper deals with the issue of relating monotone network complexity to combinational complexity: Section 3 describes a framework for translating between combinational and monotone networks and, within this, a class of functions known as slice functions may be shown to have closely related combinational and monotone network complexity. Slice functions and their properties are examined, in detail, in Section 4.

[^1]Conclusions are given in the final section. The reader interested in progress on other aspects of combinational complexity or alternative restricted models may find discussions of work in these areas in Dunne (1988), Savage (1976), and Wegener (1987).

2. Monotone Boolean Networks

Combinational networks allow any two-input Boolean function to be used as a gate operation. The restriction imposed in the case of monotone Boolean networks is that the only gate operations admitted are two-input logical AND (or conjunction) — denoted \wedge — and two-input logical OR (or disjunction) - denoted \vee. For Boolean variables $x, y: x \wedge y$ equals 1 if and only if both x and y equal $1 ; x \vee y$ equals 1 if and only if at least one of x or y equals 1.

There is a penalty incurred by imposing this restriction on networks: it is no longer possible to compute every Boolean function of n arguments. In other words, the basis (i.e. permitted set of operations) $\{\wedge, \vee\}$ is logically incomplete. Post (1941) described necessary and sufficient conditions for a basis to be logically complete. In the next section we exploit two facts about complete bases, namely:
Fact 2.1: The basis $\{\wedge, \vee, \neg\}$ (where \neg is the unary function corresponding to Boolean negation) is logically complete.
Fact 2.2: If $\Omega \subseteq B_{2}$ is a complete basis then the size of an optimal Boolean network, using only operations in Ω, computing a function $f \in B_{n}$ is at most $c \mathbf{C}(f)$ for some (small) constant c. \square
A function which can be computed by a monotone Boolean network is called a monotone Boolean function. M_{n} denotes the (strict) subset of B_{n} comprising all n-input monotone Boolean functions. The study of this class of functions dates back to the work of Dedekind (1897) where the problem of calculating the exact value of $\psi(n)=\left|M_{n}\right|$ was first raised. This exact counting problem is still open, although asymptotically exact estimates have been obtained, cf. Korshunov (1981).

Monotone Boolean functions have a number of interesting properties which have proved important in constructing lower bound arguments for monotone network complexity. A few of these properties are summarised below.

Before stating these we need the following concepts. Define ordering relations \leq and $<$ on Boolean functions as follows: $0<1$ and for f, g in B_{n} we say that $f \leq g$ if for all $\alpha \in\{0,1\}^{n}, f(\alpha)=1 \Rightarrow g(\alpha)=1$. That is, whenever some assignment makes f take the value 1 , the same assignment forces g to take the value 1 . We say that $f<g$ if $f \leq g$ but f and g are
different functions. Now let f and g be functions in B_{n} with formal arguments $\mathbf{X}_{\mathbf{n}} . f^{\mid x_{i}:=\varepsilon}$ denotes the function (in B_{n-1} with formal arguments $\mathbf{X}_{\mathbf{n}}-\left\{x_{i}\right\}$) obtained by fixing x_{i} to the Boolean value ε.
Fact 2.3: Let $f \in B_{n}$ and let $\mathbf{X}_{\mathbf{n}}$ be the formal arguments of $f . f \in M_{n}$ if and only if: $\forall x_{i}, 1 \leq i \leq n$ it holds that $f^{\mid x_{i}:=0} \leq f^{\mid x_{i}=1}$.
Fact 2.4: If f, g are in M_{n} and $f \leq g$ then:
i) $f \wedge g=f$
ii) $f \vee g=g$.

A conjunction of some subset of the variables $\mathbf{X}_{\mathbf{n}}$ is called a monom. A monom, m, is an implicant of $f \in M_{n}$ if $m \leq f$. A monom, m, is a prime implicant of f if m is an implicant of f but no monom formed from a strict subset of the variables of m is an implicant of f. $\mathbf{P I}(f)$ will denote the set of prime implicants of f. The dual concepts, using disjunction, are clauses, implicands, and prime clauses with $\mathbf{P C}(f)$ denoting the set of prime clauses of a function f.
Fact 2.5: Any $f \in M_{n}$, with arguments $\mathbf{X}_{\mathbf{n}}$, may be expressed uniquely in the forms

$$
f\left(\mathbf{X}_{\mathbf{n}}\right)=\widehat{p \in \operatorname{PI}(f)} p ; f\left(\mathbf{X}_{\mathbf{n}}\right)=\widehat{\mathrm{PC}(f)} q
$$

The former is known as Disjunctive Normal Form (DNF); the latter as Conjunctive Normal Form (CNF).
$\mathbf{C}^{\mathbf{m}}(f)$ will denote the monotone network complexity of $f \in M_{n}$ and $\mathbf{D}^{\mathbf{m}}(f)$ the corresponding measure for monotone depth.

Early progress on the complexity of monotone Boolean networks was similar to the case of combinational networks. Thus there are asymptotically exact bounds for the monotone network size of almost all monotone Boolean functions. The lower bound (of $2^{n} / n^{3 / 2}$) follows from Gilbert (1954) using Shannon's arguments; the upper bound comes from Andreev (1988) (improving the constant factor in the construction of Red'kin (1979)).

The first significant development in the theory of monotone networks came about with the appearance of superlinear lower bounds on the size of monotone networks computing sets of monotone Boolean functions: 'superlinear' in this context means as a function of the total number of inputs and outputs. Van Voorhis (1972) proved an asymptotically optimal lower bound on the monotone network complexity of sorting n Boolean inputs; Paterson (1975) and Mehlhorn and Galil (1976) independently obtained exact bounds on the size of networks realising (\wedge, \vee)-Boolean matrix product; Weiss (1984) and Blum (1984b) obtained lower bounds for the n-point Boolean convolution function which is closely related to integer multiplication.

In the case of single monotone Boolean functions, until recently, as little progress had been made as for combinational networks. Although exact exponential lower bounds had been obtained by Schnorr (1976b) and Jerrum and Snir (1982) for monotone arithmetic networks (i.e. with only integer addition and multiplication permitted as operations) the techniques used to prove these results fail to work for algebraic structures in which the identities of Fact 2.4 hold. By the end of 1984 the most powerful techniques were capable of yielding only modest linear lower bounds, e.g. Dunne (1985), Tiekenheinrich (1984).

In 1985 the Soviet mathematician Razborov considered the following monotone Boolean functions.
Definition 2.1: Let $\mathbf{X}_{\mathbf{n}}^{\mathbf{U}}=\left\{x_{i, j}: 1 \leq i<j \leq n\right\}$ be a set of $N=n(n-1) / 2$ Boolean variables representing the adjacency matrix of an n-vertex undirected graph $G\left(\mathbf{X}_{\mathbf{n}}^{\mathbf{U}}\right) . k$-clique is the function in M_{N}, with formal arguments $\mathbf{X}_{\mathbf{n}}^{\mathbf{U}}$, such that k-clique $(\alpha)=1$ if the graph $G(\alpha)$ contains a k-clique, i.e. a set of k vertices every pair of which is joined by an edge of G.

Let $\mathbf{X}_{\mathrm{n}, \mathrm{n}}=\left\{x_{i, j}: 1 \leq i, j \leq n\right\}$ be a set of n^{2} Boolean variables. The Logical Permanent is the function $P M \in M_{n^{2}}$, with formal arguments $\mathbf{X}_{\mathrm{n}, \mathrm{n}}$, defined by

$$
P M\left(\mathbf{X}_{\mathbf{n}, \mathbf{n}}\right)=\bigvee_{\sigma \in S_{n}} \bigwedge_{i=1}^{n} x_{i, \sigma(i)}
$$

where S_{n} is the set of all permutations of $\langle 1,2, \ldots, n\rangle$.
For appropriate (non-constant) values, the decision problem corresponding to the k-clique function is $N P$-complete.

Alon and Boppana (1986), improving the combinatorial arguments given originally in Razborov (1985a, 1985b), proved the following results concerning these functions.
Theorem 2.1: $\forall 3 \leq k<0.25(n / \log n)^{2 / 3}$

$$
\mathbf{C}^{\mathbf{m}}(k-\text { clique }) \geq c\left(\frac{n}{16 k^{3 / 2} \log n}\right)^{\sqrt{k}}
$$

Theorem 2.2:

$$
\mathbf{C}^{\mathbf{m}}(P M) \geq n^{c \log n} \quad(\forall c<1 / 16)
$$

The lower bound of Theorem 2.1 is exponential for large enough values of k. In addition to these results of Razborov, Alon, and Boppana, exponential lower bounds on explicitly defined monotone Boolean functions have been proved in Andreev (1985, 1987) and Tardos (1987).

Theorems 2.1 and 2.2 constitute a significant advance in the theory of Boolean network complexity since they are built on a technique which is powerful enough to yield superlinear lower bounds on size for a non-trivial network model. Further indications that monotone networks are a theoretically tractable model are given by the methods of Karchmer and Wigderson (1987) and Raz and Wigderson (1990). Their results concern the depth of monotone networks.
Definition 2.2: The function $\operatorname{st}-\operatorname{conn}\left(\mathbf{X}_{\mathbf{n}}^{\mathrm{U}}\right)$ is the monotone Boolean function such that $s t$-conn $(\alpha)=1$ if $G(\alpha)$ contains a path from vertex s to vertex t.
Theorem 2.3: (Karchmer and Wigderson, 1987)

$$
\mathbf{D}^{\mathbf{m}}(s t-c o n n)=\Omega\left(\log ^{2} n\right)
$$

Theorem 2.4: (Raz and Wigderson, 1990)

$$
\mathbf{D}^{\mathbf{m}}(P M)=\Omega(n)
$$

Razborov (1988) also proves superlogarithmic lower bounds on monotone depth.

3. A Framework for Relating Combinational and Monotone Network Complexity

The theorems stated at the conclusion of the preceding section may be regarded as completing the first part of a programme aimed at achieving nontrivial lower bounds on problem complexity. Thus, for the restricted case of monotone networks, techniques powerful enough to prove large lower bounds on size and depth are known. The question that now arises is: how relevant are these results/techniques to combinational complexity? In other words: is it possible to deduce non-trivial lower bounds on combinational complexity (depth) from large enough lower bounds on monotone complexity (depth)?

The results of Razborov (1985b), Tardos (1987) and Raz and Wigderson (1990), at first sight, offer a negative answer to the second question.

Theorem 3.1:
i) $\quad \mathbf{C}(P M)=O\left(n^{k}\right)$ for some constant k.
ii) There is function computable with polynomial size combinational networks that requires exponential size monotone networks.
iii) There is a function computable in $O(\log n)$ depth using combinational networks that requires $\Omega(\sqrt{n})$ depth monotone networks.
Proof: (i) follows by observing that the Logical Permanent is equivalent to determining whether a given bipartite graph contains a perfect matching. Hopcroft and Karp (1973) give a polynomial time algorithm for this problem
and thus the upper bound on combinational complexity is immediate. (ii) is proved in Tardos (1988) and (iii) by Raz and Wigderson (1990).
The second and third parts of Theorem 3.1 (which are both proved using explicitly defined functions) show that there are exponential gaps between monotone network size (depth) and combinational network size (depth). As a consequence it will not always be possible to derive lower bounds on combinational complexity using lower bounds on monotone complexity. Nevertheless the theorem does not exclude the possibility of doing this for some monotone Boolean functions.

Recall from Facts 2.1 and 2.2 that the basis $\{\wedge, \vee, \neg\}$ is logically complete and that an optimal Boolean network built from any complete basis of two-input Boolean operations is at most a constant factor larger than an equivalent optimal combinational network. It follows that, since we are interested in superlinear lower bounds, we may without loss of generality consider the problem of relating monotone networks to networks which only permit the operations $\{\wedge, \vee, \neg\}$ to be used.
$\{\wedge, \vee, \neg\}$-networks only differ from monotone networks in permitting the use of negation. The result below demonstrates that we can make such networks more closely resemble monotone networks by permitting the use of negation only on input nodes. We shall use $\mathrm{C}_{(\wedge, v,)}(f)$ to denote the number of gates in the smallest $\{\wedge, \vee, \neg\}$-network realising $f \in B_{n}$.
Definition 3.1: A standard network is a Boolean network whose permitted gate operations are $\{\wedge, \vee\}$ and with $2 n$-input nodes:

$$
\left\langle x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}\right\rangle
$$

$\mathrm{SC}(f)$ will denote the number of gate nodes in the smallest standard network realising $f \in B_{n}$.
Theorem 3.1: $\forall f \in B_{n}$ it holds that $\mathbf{S C}(f) \leq 2 \mathbf{C}_{(\Lambda, v, r)}(f)$.
Proof: (Outline) The following identities (known as De Morgan's Laws) can be easily proved:

$$
\neg(x \wedge y)=(\neg x) \vee(\neg y) ; \neg(x \vee y)=(\neg x) \wedge(\neg y)
$$

Let T be an optimal $\{\wedge, \vee, \neg\}$-network realising some $f \in B_{n}$. Let g be a 'last' gate in T such that an edge directed out of g enters a negation gate. Here 'last' means that no gate on a path from g to the output gate has the property that an edge directed out of it enters a negation gate. Now since we include instances of negation in measuring size and we have assumed that T is optimal it follows that there is exactly one wire leaving g and entering a negation gate, h say. Let h_{1}, \ldots, h_{r} be the gates which have h as an input. Let g_{1} and g_{2} be the gates supplying the inputs of g. We change T as follows: add a new gate g^{\prime} whose inputs are $\neg g_{1}$ and $\neg g_{2}$; remove the negation
gate h and replace each edge $\left\langle h, h_{i}\right\rangle$ by an edge $\left\langle g^{\prime}, h_{i}\right\rangle$; finally if g is an \wedge-gate then make g^{\prime} an \vee-gate and vice versa. From De Morgan's Laws it follows that the new network, T^{\prime}, still computes f.

Applying the process of the preceding paragraph repeatedly, we eventually reach the situation where only input nodes enter a negation gate. Since we add only one new (\wedge or \vee) gate at each stage it follows that the final network is a standard network computing f and containing at most twice the number of gates in T.

Now consider an optimal combinational network, T, computing some $f \in M_{n}$. This may be transformed to a standard network, S, that also computes f, and is only a constant factor larger than T. The only way in which S differs from a monotone network is by the presence of the n extra input nodes $\left\langle\neg x_{1}, \ldots, \neg x_{n}\right\rangle$.

Suppose that we, temporarily, ignore the fact that the n additional inputs are the negation of the n function arguments and regard them as n new Boolean variables y_{1}, \ldots, y_{n}. Then it is clear that:
i) S computes a monotone Boolean function of the inputs $\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\rangle$.
ii) If, for each i, we substitute $\neg x_{i}$ for the input y_{i} then S computes the original function $f \in M_{n}$.
One of the most important techniques applied in proving lower bounds on monotone network complexity is the concept of replacement rules. These prescribe 'circumstances' in which a node of a monotone network computing some function $h\left(\mathbf{X}_{\mathbf{n}}\right)$ may be replaced by a node computing some different function $h^{\prime}\left(\mathbf{X}_{\mathbf{n}}\right)$ without altering the function, f, computed by the network. The 'circumstances' depend solely on h, h ' and f and not on the topology of the network. ${ }^{2}$

Returning to the standard network S in which $\neg x_{i}$ is regarded as a new input y_{i} we can attempt to use the concept of replacement rules to yield a monotone network with inputs $\mathbf{X}_{\mathbf{n}}$ which computes f. Thus, if the following two conditions can be satisfied, for all standard networks computing f, we may deduce that $\mathbf{C}^{\mathbf{m}}(f)$ is 'not much larger' than $\mathbf{C}(f)$.
C1) There is a set $\left\langle h_{1}, \ldots, h_{n}\right\rangle$ of monotone Boolean functions having formal arguments $\mathbf{X}_{\mathbf{n}}$ such that replacing any subset of the y_{i} inputs by the
2) The power of this technique arises from the fact that one may identify functions which can be replaced by the Boolean constants 0 or 1 and thus cannot be computed as partial results in optimal monotone networks. An example of the technique in practice may be found in Paterson (1975). A full characterisation of applicable replacements is given in Dunne (1984, 1988), see also Beynon's paper in this volume.
corresponding h_{i} functions and the remaining y_{j} inputs by the corresponding $\neg x_{j}$ inputs, results in a network computing f.
C 2) The set of n monotone Boolean functions $\left\langle h_{1}, \ldots, h_{n}\right\rangle$ can be computed by a monotone network of size at most $\varepsilon_{n} \mathbf{C}^{\mathbf{m}}(f)$ (for some $\varepsilon_{n}<1$).
Theorem 3.3: If $f \in M_{n}$ for which conditions (C1) and (C2) hold, then

$$
\mathbf{C}(f) \geq \frac{1-\varepsilon_{n}}{2 c} \mathbf{C}^{\mathbf{m}}(f)
$$

where c is the constant of Fact 2.2.
Proof: If both (C1) and (C2) hold then it follows that $\mathbf{C}^{\mathbf{m}}(f) \leq \mathbf{S C}(f)+\varepsilon_{n} \mathbf{C}^{\mathbf{m}}(f)$. The theorem now follows from Fact 2.2 and Theorem 3.2.

For $f \in M_{n}$, a set $\left\langle h_{1}, \ldots, h_{n}\right\rangle$ of monotone functions satisfying condition (Cl) for f, is called a pseudo-complement vector for $f . h_{i}$ is called a pseudo-complement for x_{i} when computing f. Informally a pseudocomplement for x_{i} can replace the node $\neg x_{i}$ in any standard network computing f.

Given the relation in Theorem 3.3, it is clearly desirable to identify classes of monotone Boolean functions for which both conditions (C1) and (C2) hold. In fact it turns out that (C1) holds for all $f \in M_{n}$.
Theorem 3.4: $h \in M_{n-1}$ with formal arguments $\mathbf{X}_{\mathbf{n}}-\left\{x_{i}\right\}$ is a pseudocomplement for x_{i} when computing $f \in M_{n}$ (with arguments \mathbf{X}_{n}) if and only if

$$
f^{\mid x_{i}:=0} \leq h \leq f^{\mid x_{i}:=1}
$$

Proof: The result was originally proved in Dunne (1984). This proof is reproduced in Dunne (1988) pp. 242-243.
Corollary 3.I: $\forall f \in M_{n}$ condition (Cl) holds.
Proof: From Fact 2.3, $f \in M_{n}$ if and only if $f^{\mid x_{i}:=0} \leq f^{\mid x_{i}:=1}$ for each x_{i}. It follows that the interval of Theorem 3.4 is always well-defined.

Theorem 3.4 does not, however, allow functions for which condition (C2) holds to be identified directly. An 'obvious' choice of pseudocomplement vector, such as the n subfunctions of f obtained by fixing x_{i} to 0 , will not give an efficient transformation from standard networks to monotone networks. Theorem 3.4 is mainly of use in permitting simple proofs of the correctness of specific pseudo-complements.

Rather than attempt to identify, explicitly, those $f \in M_{n}$ for which (C2) holds, i.e. for which efficiently computable pseudo-complement vectors exist, we proceed in the 'reverse direction'. Thus:

[^0]: * Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, Great Britain.

[^1]: 1) A property holds for 'almost all' $f \in B_{n}$ if the fraction of all n-input Boolean functions not possessing the property approaches zero as n approaches infinity.
