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Preface

An exciting and extremely active area of research investigation during the past
twenty years has been the study of Solitons and the related issue of the construction
of solutions to a wide class of nonlinear equations. Indeed there have been a few
books written which serve to review aspect of this burgeoning field. A book coau-
thored by one of us (MJA) exactly ten years ago, discussed many of the relevant
viewpoints as well as a variety of applications. Certain important and novel subareas
of research such as the the application of the Inverse Scattering Transform (I.S.T.) to
solve nonlinear wave equations on the infinite interval, in one spatial and one temporal
dimension (1 + 1), were described in detail. At that time the complete inverse scatter-
ing methodology had been carried out primarily for those nonlinear equations related
to second order scattering problems. Although it was known that certain nonlinear
evolution equations in one and two spatial dimensions were related to suitable (higher
order and two dimensional) linear scattering problems, and special techniques were
available, nevertheless it was not yet clear that a unified and effective procedure could
be applied to all of these nonlinear equations. The main purpose of this book is the
description of how the I.S.T. technique can be applied to these situations.

Our presentation begins with a "state of the art" introduction. Here we list as
many integrable systems and relevant scattering problems that we are familiar with
— though it is still possible that we have missed some interesting ones. In order to
help the interested reader and to establish our point of view, in Chapter Two we have
reviewed the I.S.T. technique as it applies to the famous Korteweg-de Vries (KdV)
equation on the infinite line. In this case the KdV equation is related to the classical
second order scalar time-independent Schrodinger scattering problem. Chapter Three
discusses the inverse scattering associated with N x N systems and higher order sys-
tems of scattering problems; the 2 x 2 case is reviewed. The I.S.T. technique is then
applied to various systems of partial differential equations. Chapter Three contains a
brief discussion of discrete problems as well. Chapter Four details the inverse trans-
form as it applies to a rather novel class of scattering problems which arise in the
solution of singular integro-differential evolution equations such as the intermediate
long wave and Benjamin-Ono equations. Chapter Five involves the inverse transform
for 2 + 1-dimensional nonlinear wave equations, and discusses the "DBAR" (d) method
of inverse scattering. Key solvable nonlinear wave equations include the Kadomtsev-
Petviashvili, Davey-Stewartson and three wave equations in 2-(-l-dimensions. Chapter
Six analyzes certain multidimensional inverse problems (generalised Schrodinger and
N x N systems) via the 5 method of inverse scattering. It is especially worth noting
that Faddeev's inverse formulation for the time-independent Schrodinger problem in
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three(or more dimensions) follows naturally from the d method in a limiting case.
There are few nonlinear wave equations in more than 2 -f 1-dimensions which are
now known to be solvable by I.S.T.. However the few that are known are discussed
with special emphasis placed on the self-dual Yang-Mills (SDYM) system. Indeed
the SDYM system plays a rather central role in integrable systems as the reader will
understand. Chapter Seven details some related questions involving the properties
and solution of certain nonlinear ordinary differential equations. Especially important
amongst these equations are the classical equations of Painleve and coworkers. Indeed
the ideas of Painleve lead naturally to the study of more general equations which pos-
sess the so called Painleve property. Moreover there is a connection between nonlinear
equations solvable by I.S.T. and such equations. Indeed recent work has shown that
such properties can be exploited to provide useful a priori tests to determine when a
given partial differential equation might be integrable. These ideas are also discussed
in Chapter Seven. Finally we conclude with some remarks and brief discussion of some
important open problems. A large and we hope reasonably complete bibliography is
included. Given the rate at which this field has developed and the numerous applica-
tions it is natural that some references will be missed or forgotten. We apologise for
such situations whenever they occur.

In this book we have not considered solutions to nonlinear wave equations with
periodic boundary conditions, or the various methods of construction of special solu-
tions (e.g., Hirota's direct method, pole expansions, dressing techniques etc.), or the
in depth functional analysis which underlies a considerable portion of the theory. Nor
have we considered the rather substantive issue of the underlying algebraic connec-
tions that serve to endow these nonlinear wave equations with considerable inherent
structure. The main reason for this approach is that doing otherwise would have en-
tailed a much larger project and hence a considerably expanded book. Since there is
so much to cover and explain even with the reduced scope of this effort we felt that it
would have been simply unwise and likely detrimental to the reader to have included
much more than we did.

These notes review many years of work, partially supported by the mathematics di-
visions of the Air Force Office of Scientific Research, the National Science Foundation
and the Office of Naval Research. Their support is gratefully appreciated. We sin-
cerely acknowledge the collaboration of our many colleagues and note especially M.D.
Kruskal, for innumerable valuable discussions and insights, A.S. Fokas who collabo-
rated on many of the projects, A. Nachman who collaborated on the multi-dimensional
inverse scattering, and J.B. McLeod for introducing one of us to this exciting field of
research. We also thank A.P. Bassom for help in proof-reading the manuscript and
A.C. Hicks and S. Hood for assistance in producing the figures. Of course we are
deeply indebted to our wives Enid and Kim who endured many hours away from their
husbands while this book was written.



Chapter One

Introduction.

1.1 Historical Remarks and Applications.

"Solitons" were first observed by J. Scott Russell in 1834 [1838, 1844] whilst riding
on horseback beside the narrow Union canal near Edinburgh, Scotland. There are a
number of discussions in the literature describing Russell's observations. Nevertheless
we feel that his point of view is so insightful and relevant that we present it here as
well. He described his observations as follows:

"I was observing the motion of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stopped — not so the mass of water in the
channel which it had put in motion; it accumulates round the prow of the vessel in a
state of violent agitation, then suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-
defined heap of water, which continued its course along the channel apparently without
change of form or diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving its original figure
some thirty feet long and a foot to a foot and a half in height. Its height gradually
diminished, and after a chase of one or two miles I lost it in the windings of the channel.
Such, in the month of August 1834, was my first chance interview with that rare and
beautiful phenomenon which I have called the Wave of Translation . . . ."

Subsequently, Russell did extensive experiments in a laboratory scale wave tank in
order to study this phenomenon more carefully. Included amongst Russell's results
are the following:

1. he observed solitary waves, which are long, shallow, water waves of permanent
form, hence he deduced that they exist; this is his most significant result;

2. the speed of propagation, c, of a solitary wave in a channel of uniform depth h
is given by c2 = g(h + 77), where r\ is the amplitude of the wave and g the force
due to gravity.

Further investigations were undertaken by Airy [1845], Stokes [1847], Boussinesq
[1871, 1872] and Rayleigh [1876] in an attempt to understand this phenomenon.
Boussinesq and Rayleigh independently obtained approximate descriptions of the soli-
tary wave; Boussinesq derived a one-dimensional nonlinear evolution equation, which
now bears his name, in order to obtain his result.

These investigations provoked much lively discussion and controversy as to whether
the inviscid equations of water waves would possess such solitary wave solutions. The
issue was finally resolved by Korteweg and de Vries [1895]. They derived a nonlinear
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evolution equation governing long one dimensional, small amplitude, surface gravity
waves propagating in a shallow channel of water

< > • > • • >

where r\ is the surface elevation of the wave above the equilibrium level /i, a an small
arbitrary constant related to the uniform motion of the liquid, g the gravitational con-
stant, T the surface tension and p the density (the terms "long" and "small" are meant
in comparison to the depth of the channel). The controversy was now resolved since
equation (1.1.1), now known as the Korteweg-de Vries (KdV) equation, has perma-
nent wave solutions, including solitary wave solutions (see §1.3 for details). Equation
(1.1.1) may be brought into nondimensional form by making the transformation

Hence, we obtain

ut + 6uux + uxxx = 0, (1.1.2)

where subscripts denote partial differentiations. Henceforth, we shall consider the
KdV equation in this form (1.1.2) (note that any constant coefficient may be placed in
front of any of the three terms by a suitable scaling of the independent and dependent
variables). (1.1.2) may be thought of as the simplest "nonclassical" partial differential
equation since it has the minimum number of independent variables, two; the lowest
order not considered classically, that is three; the fewest terms of that order, one; the
simplest such term, an unmixed derivative; the fewest number of terms containing the
other derivative, which is of first order; the simplest structure for these terms, linear;
and the simplest additional term to make the equation nonlinear, quadratic. (It might
be thought that a simpler nonlinear term would be u2, however the KdV equation has
an extra symmetry with uux (Galilean invariance) and if u is interpreted as a velocity,
then the convective derivative, which arises in continuum mechanics and is familiar to
physicists and engineers, is du/dt = ut + uux.)

As Miura [1976] points out, despite this early derivation of the KdV equation, it
was not until 1960 that any new application of the equation was discovered. Gardner
and Morikawa [1960] rediscovered the KdV equation in the study of collision-free
hydromagnetic waves. Subsequently the KdV equation has arisen in a number of
other physical contexts, stratified internal waves, ion-acoustic waves, plasma physics,
lattice dynamics, . .. (for details and further references see, for example, the articles
by Jeffrey and Kakutani [1972]; Scott, Chu and McLaughlin [1973]; Miura [1976] and
monographs by Ablowitz and Segur [1981]; Calogero and Degasperis [1982]; Dodd,
Eilbeck, Gibbon and Morris [1982]; Lamb [1980]; Novikov, Manakov, Pitaevskii and
Zakharov [1984] — for a discussion concentrating primarily on the pre-1965 history of
the KdV equation, see Miles [1980b]).
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It has been known for a long time that the KdV equation (1.1.2) possesses the
solitary wave solution

u(x,t) = 2/c2sech2 {K(X - 4*2t - x0)} , (1.1.3)

where K and XQ are constants (in fact this solution was known to Korteweg and de
Vries). Note that the velocity of this wave, 4«2, is proportional to the amplitude, 2/c2;
therefore taller waves travel faster than shorter ones. Zabusky and Kruskal [1965]
discovered that these solitary wave solutions have the remarkable property that the
interaction of two solitary wave solutions is elastic, and are called solitons (see §1.4
details).

The solitons observed by Russell were small amplitude surface waves. There have
been several investigations examining the validity of the KdV equation (1.1.2) as
a model of the evolution of small amplitude water waves as they propagate in one
direction in shallow water. These studies have compared the solutions of (1.1.2) with
experimental results (see, for example, Hammack and Segur [1974, 1978]). In physical
terms the KdV equation arises if the water waves are strictly one-dimensional, that is
one spatial dimension and time (for a derivation of the KdV equation see, for example,
Chapter 4 of Ablowitz and Segur [1981]).

In many physical situations, internal waves can arise at the interface of two layers
of fluid due the gravitational effects in a stably stratified fluid. Several theoretical
models exist which govern the evolution of long internal waves with small amplitudes
in a stably stratified fluid including the KdV equation (1.1.2), the intermediate long
wave (ILW) equation

ut + S~lux + 2uux + Tuxx = 0, (1.1.4a)

where Tu is the singular integral operator

(Tf)(x) = YS£ coth {^(y - *)} f(y)dy, (1.1.4b)

with -f^oo the Cauchy principal value integral (Joseph [1977]; Kubota, Ko and Dobbs
[1978]), and the Benjamin-Ono (BO) equation

ut + 2uux + Ruxx = 0, (1.1.5a)

where Hu is the Hilbert transform

Jl^y (LL5b)

(Benjamin [1967]; Davies and Acrivos [1967]; Ono [1975]). In the shallow water limit,
as 8 —> 0, (1.1.4) reduces to the KdV equation

ut + 2uux + \8uxxx = 0, (1.1.6)
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h2 P2

FIGURE 1.1.1 The two-layer configuration.

and in the deep-water limit as S —> oo, to the BO equation. Therefore the ILW
equation (1.1.4) may be thought of as being an equation intermediate between (1.1.5)
and (1.1.6).

Consider two incompressible, immiscible fluids, with densities and depths hi, h2

(h :— hi + h2) with the lighter fluid, of height hi, lying over a heavier fluid of height
hi, in a constant gravitational field (Figure 1.1.1). The lower fluid rests on a horizontal
impermeable bed, and the upper fluid is bounded by a free surface.

Suppose the the characteristic wave amplitude is denoted by a and the characteristic
wavelength by A = A;"1. The basic assumptions for the derivation of the KdV equation
(1.1.6), the ILW equation (1.1.4) and the BO equation (1.1.5), as models for internal
waves are (see Chapter 4 of Ablowitz and Segur [1981] for details).

Korteweg de-Vries equation:

(Al) the waves are long waves in comparison with the total depth, fc/i<l;
(A2) the amplitude of the waves is small, e = a/h <C 1;
(A3) the two effects (Al) and (A2) approximately balance, i.e., kh — O(e);
(A4) viscous effects may be neglected.

Intermediate-Long-Wave equation:

(Bl) there is a thin (upper) layer, e — hijhi <C 1;
(B2) the amplitude of the waves is small, a <C hi]
(B3) the two effects (Bl) and (B2) balance, i.e., a/hx = O(e);
(B4) the characteristic wavelength is comparable to the total depth of the fluid,

kh = 0(1);
(B5) the waves are long waves in comparison with the thin layer, kh\ <C 1 [this is

implied by (Bl) and (B4)];
(B6) viscous effects may be neglected.
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Note that in the ILW equation (1.1.4), the parameter 6 is effectively kh. For derivations
of the ILW equation (1.1.4) in which the fluid is confined between two rigid walls see
Kubota, Ko and Dobbs [1978]; Segur and Hammack [1982] (these two derivations are
slightly different).

Benjamin-Ono equation:

(Cl) there is a thin (upper) layer, h\ <C h<i;

(C2) the waves are long waves in comparison with the thin layer, kh\ <C 1;

(C3) the waves are short in comparison with the total depth of the fluid, kh ^> 1;

(C4) the amplitude of the waves is small, a <C hi;

(C5) viscous effects may be neglected.

Under these assumptions one obtains the KdV, ILW and BO equations, after a
suitable scaling. Segur and Hammack [1982] have examined the validity of the KdV
and ILW equations as models for internal waves by comparing the theoretical solutions
of the KdV and ILW equations with experimental results.

Recently there has been considerable interest in the observation of what scientists
think might be solitons in the oceans. The availability of photographs taken from
satellites and spacecraft orbiting the earth have greatly assisted in these observations.
Peculiar striations, visible on satellite photographs of the surface of the Andaman and
Sulu seas in the Far East, have been interpreted as secondary phenomena accompa-
nying the passage of "internal solitons", solitary wavelike distortions of the boundary
layer between the warm upper layer of sea water and cold lower depths. These internal
solitons are travelling ridges of warm water, extending hundreds of meters down below
the thermal boundary, and enormous energies which they carry are presumed to be
the cause of unusually strong underwater currents experienced by deep-sea drilling
rigs. In order to continue deep-sea drilling for oil in areas where these internal solitons
occur, the drilling rigs will have to be built to withstand these forces.

Osborne and Burch [1980] (see also Osborne [1990]) investigated the underwater
currents which were experienced by an oil rig in the Andaman sea, which was drilling
at a depth of 3600ft (one drilling rig was apparently spun through ninety degrees and
moved one hundred feet by the passage of a soliton below). Satellite photographs had
shown that there were 100km long striations on the Andaman sea, separated by 6
to 15km and grouped in packets of typically 4 to 8. The average time between the
arrival of these packets at the research vessel was 12 hours 26 minutes, suggesting
that this was some kind of tidal phenomenon. Osborne and Burch spent four days
measuring underwater currents and temperatures. The striations seen on satellite pho-
tographs turned out to be kilometer-wide bands of extremely choppy water, stretching
from horizon to horizon, followed by about two kilometers of water "as smooth as a
millpond". These bands of agitated water are called "tide rips", they arose in packets
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of 4 to 8, spaced about 5 to 10km apart (they reached the research vessel at approx-
imately hourly intervals) and this pattern was repeated with the regularity of tidal
phenomenon.

Osborne and Burch [1980] found that the amplitude of each succeeding soliton was
less than the previous one, which, as we shall see in §1.7 below, is precisely what is
expected for solitons (recall that the velocity of a solitary wave solution (1.1.3) of the
KdV equation increases with amplitude). Thus if a number of solitons are generated
together, then we expect them eventually to be arranged in an ordered sequence of
decreasing amplitude. From the spacing between successive waves in a packet and the
rate of separation calculated from the KdV equation, Osborne and Burch were able to
estimate the distance the packet had travelled from its source and thus identify possible
source regions. They concluded that the solitons are generated by tidal currents off
northern Sumatra or between the islands of the Nicobar chain that extends beyond it.

Underwater measurements showed a rapid circulation of water associated with the
solitary waves. The interaction of this internal circulation with ordinary surface waves
produces the tide rip and appear to explain the origin of the forces experienced by
the oil drilling rigs. Osborne and Burch [1980] conclude that, despite the irregular
geometry of the Andaman sea, their observations have good general agreement with
the predictions for internal solitons as given by the KdV equation.

Apel and Holbrook [1980] (see also Holbrook, Apel and Tsai [1980]) undertook a
detailed study of internal waves in the Sulu sea. Satellite photographs had suggested
that the source of these waves was near the southern end of the Sulu sea and their
research ship followed one wave packet for more than 250 miles over a period of two
days — an extraordinary coherent phenomenon. These internal solitons travel at
speeds of about 8 kilometers per hour (5 miles per hour), with amplitude of about 100
meters and wavelength of about 1700 meters.

Further observations and studies of solitons in oceans include the Strait of Messina
(Alpers and Salustri [1983]; Santoleri [1983]); the Strait of Gibraltar (Lacombe and
Richez [1982]); off the western side of Baja California (Apel and Gonzalez [1983]); the
Gulf of California (Fu and Holt [1984]); the Archipelago of La Maddalena (Manzella,
Bohm and Salustri [1983]) and the Georgia Strait (Hughes and Gower [1983]).

Rossby waves (Rossby [1939]) are long waves between layers of the atmosphere, cre-
ated by the rotation of the planet. As one might suspect, there is an analogy between
internal waves and Rossby waves under suitable conditions. The KdV equation has
been proposed as a model for the evolution of Rossby waves (Long [1964]; Benney
[1966]; Redekopp [1977]; Redekopp and Weidman [1978] — see also Miles [1980b] and
the references cited therein). There has been been a conjecture (Maxworthy and Re-
dekopp [1976]) that Jupiter's Great Red Spot might be a solitary Rossby wave, though
recent work seems to indicate that the red spot is a result of strong differential rotation
(cf. Meyers, Sommeria and Swinney [1989]).
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We have noted that the KdV equation (1.1.2) can describe the evolution of small
amplitude water waves as they propagate in shallow water; the evolution described
being weakly nonlinear and weakly dispersive, where these effects are of the same order.
These solitary waves are usually regarded as propagating in a uniform rectangular
channel. There have been several studies on the problem of quasi one-dimensional
solitary waves in channels of varying width, depth or shape of the channel (for a
review see Miles [1980b] and the references cited therein).

A further restriction in the application of the KdV equation as a practical model
for water waves, is that the KdV equation is strictly only one-dimensional (that is
one spatial-dimension plus time), whereas the surface is two-dimensional. A two-
dimensional generalization of the KdV equation is the Kadomtsev-Petviashvili (KP)
equation

(ut + 6uux + uxxx)x + 3cr2uyy = 0, (1.1.7)

where a2 = ±1 (Kadomtsev and Petviashvili [1970]). Whereas the KdV equation
(1.1.2) describes the evolution of long water waves of small amplitude if they are
strictly one-dimensional, the KP equation (1.1.7) describes their evolution if they are
weakly two-dimensional (in §1.2 below, we give a derivation of the KP equation as
a model for surface waves). The evolution described by the KP equation is weakly
nonlinear, weakly dispersive and weakly two-dimensional with all three effects being
of the same order; the choice of sign depends on the relevant magnitude of gravity
and surface tension (cf. §1.2). The KP equation has also been proposed as a model
for surface waves and internal waves in straits or channels of varying depth and width
(see, for example, Santini [1981]; David, Levi and Winternitz [1987a, 1989]).

The KdV equation (1.1.2), the ILW equation (1.1.4), the BO equation (1.1.5) and
the KP equation (1.1.7) have been extensively studied in recent years, primarily by
mathematicians and physicists. We have already seen that they arise in the description
of physically interesting phenomena, however much of the interest in these nonlinear
evolution equations is due to the fact that they are thought of as being completely
integrable, or exactly solvable equations. This terminology is a consequence of the
fact that the initial value problem for each of these nonlinear equations can be solved
exactly by a method employing inverse scattering, which we shall study in depth
in these notes. The inverse scattering method was discovered by Gardner, Greene,
Kruskal and Miura [1967] as a method of solving the initial value problem for the
KdV equation (on the infinite line), for initial values that decay sufficiently rapidly at
infinity. Subsequently numerous other physically interesting equations in one spatial
dimension were solved by generalizations of this technique, which is now referred to
as the Inverse Scattering Transform (I.S.T.), for example the nonlinear Schrodinger,
Sine-Gordon, three-wave interaction, Modified KdV and Boussinesq equations. The
I.S.T. scheme for the ILW (1.1.4) and the BO equation (1.1.5), which are integro-
differential equations, was derived by Kodama, Ablowitz and Satsuma [1982] and
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Fokas and Ablowitz [1983b], respectively. For the KP equation (1.1.7), the I.S.T.
scheme is dependent upon the choice of sign for a2. The scheme for the KP equation
with a2 — —1 (which is known as KPI) was derived by Manakov [1981] and Fokas and
Ablowitz [1983d]; and the scheme in the case a2 — 1 (which is known as KPII), by
Ablowitz, BarYaacov and Fokas [1983]. (As we show in Chapter 5, the I.S.T. schemes
for KPI and KPII are fundamentally different.)

The organization of these notes is as follows. In Chapter 1 we give an introduc-
tion to several of the most important and significant aspects in the development of
the I.S.T. schemes for nonlinear evolution equations. In Chapters 2 and 3 we discuss
I.S.T. schemes for one-dimensional equations; discussing the KdV equation (1.1.2) in
Chapter 2 and more general I.S.T. schemes in one dimension in Chapter 3 (includ-
ing the I.S.T. schemes for differential-difference and partial-difference equations). In
Chapter 4 we discuss the I.S.T. scheme for integro-differential equations using the ILW
equation (1.1.4) and the BO equation (1.1.5) as the prototype examples. In Chapters
5 and 6 we discuss multidimensional I.S.T. schemes; in Chapter 5 discussing inverse
scattering in two spatial dimensions respectively, using the KP equation (1.1.7) as pro-
totype example and in Chapter 6 discussing inverse scattering in higher dimensions.
In Chapter 7 we discuss several topics concerning integrability associated with the
Painleve equations, which are six second order, nonlinear ordinary differential equa-
tions; in particular, the so-called Painleve tests and inverse scattering schemes for the
Painleve equations using the second Painleve equation

± 1 = 2 y
3 + *y + a, (1.1.8)

where a is a constant, as the prototype example. Finally, in Chapter 8, we make some
concluding remarks and mention some difficult open problems.

1.2 Physical Derivation of the KP Equation.

In this section we present a physical derivation of the KP equation (1.1.7) as a model
for surface waves.

The classical problem of water waves is to find the irrotational motion of an inviscid,
incompressible, homogeneous fluid, subject to a constant gravitational force g. The
fluid rests on a horizontal and impermeable bed of infinite extent at z — — h and has
a free surface at z — r](x,y,t). Since the fluid is irrotational and incompressible, then
it has a velocity potential <j> satisfying

V2<£ = 0, -h < z <rf(x,y,t). (1.2.1a)

It is subject to the boundary conditions on the bottom z — —h

^ = 0 (1.2.1b)
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(since the bed is impermeable), and on the free surface z = rj

D77
— = rjt + <frxr\x + (f)yrjy = <t>z (1.2.1c)

(kinematic condition) and

(dynamic condition), where T is the surface tension and p is the density of the fluid.
Boundary conditions in (x,y) and initial conditions are also required. For isolated
waves, then V(/> and rj should vanish as (x2 + y2) —+ 00. (In other problems, periodic
boundary conditions in x and y may be appropriate.)

This problem, first posed by Stokes [1847], is nonlocal, highly nonlinear and not
surprisingly remains unsolved in its general form. To make further progress, we need
to impose additional assumptions on the solutions to equations (1.2.1). The first such
assumption is that the wave amplitudes should be small. If we interpret small to mean
infinitesimal, then we may linearize equation (1.2.1) about V</> = 0, rj — 0, and seek
solutions of the linearized equations proportional to exp{i(kx -f my —tut)} (see Lamb
[1932,§§228,266,267]). The result is the linearized dispersion relation

u2 = (gK -f i^T/p) tanh(/c/i), (1-2.2)

where K2 := k2 + m2. From this one computes the group velocity and shows that the
linearized problem is dispersive at most wave numbers, but not as K —» 0 (i.e., long
waves, or shallow water waves), where it is only weakly dispersive. The KdV and KP
equations arise as models of the water wave problem in this weakly dispersive limit
Kh <C 1.

We orient the horizontal coordinates so that the ^-direction is the principal direction
of wave propagation. To derive the KP equation (1.1.7) we assume that:

1. wave amplitudes are small, e — |^|max/^ "C 1;
2. the water is shallow relative to typical horizontal wavelengths, (/c/z)2 <C 1;
3. the waves are nearly one-dimensional, (m/k)2 <C 1;
4. these three effects all have comparable influence (i.e., they balance), (m/k)2 =

O((Kh)2) = O(e).

These assumptions imply a certain scaling of the original equation (see below); an
evolution equation which follows may then be found using a multiple scales method.

At leading order, the equations are linear (from 1), nondispersive (from 2) and
one-dimensional (from 3), the result being the linear wave equation

mt-ghrjxx = 0. (1.2.3)
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At this order every wave has permanent form, not because it is soliton but because
we are solving the one-dimensional, linear wave equation.

When the perturbation expansion is continued to second order, the one-dimensional,
linear wave equation has homogeneous (forcing) terms representing weak nonlinearity,
weak dispersion and weak two-dimensionality. Each of these effects contributes to a
secular term at second order. Define

£H y r = £3/
h

r = £ ^ s=e
h h h

and seek solutions of the form

rj(x, y,t; e) = \eh [u(r, (, r) + v(s, C, r)] + O(e2h). (1.2.4b)

Since we are interested in problems where the initial disturbances are localized, then
it is convenient to assume a fortiori that the physical quantities have compact support
initially. In this case it is easily shown that u and v in (1.2.4b) have compact support
as well. No secular terms arise at second order provided that U(rX,T) and /7(,S,(,T)

satisfy

[Ur + 6UUr + (1 - f )C7rrr]r 4- 3£/cc = 0, (1.2.5a)

[Vr - 6VV3 - (1 - f)Vsss]s - 3FCC = 0, (1.2.5b)

where T := T/(3pgh2) is the dimensionless surface tension. Thus the left and right
running waves each evolve according to their own KP equation, which describe how
the two sets of waves each interact with themselves over a long time scale

r = \e3'2 s/JJht = 0(1).

To make the model quite explicit, we also write the KP equation for the right-going
waves in its dimensional form for r)(x,y,t):

) ] ° - (L2-6)
For most cases of interest in water waves 1 — T > 0 (in fact usually T <C 1 and so T
may be neglected), which corresponds to a2 = 1 in equation (1.1.7) (i.e., KPII). Thus
from equation (1.2.2), the linearized phase speed is a (local) maximum at AC = 0. In
this case, equation (1.2.6) is equivalent to equation (1.1.7) with o — -f 1, i.e.

(ut + 6uux + uxxx)x + 3uyy = 0, (1-2.7)

which is usually called KPII.



Introduction 11

Obviously every solution of the KdV equation (1.1.2) is also a solution of the KPII
equation (1.2.7). More generally, Satsuma [1976] showed that the KPII equation
(1.2.7) has N line-soliton solutions, with the N line-solitons travelling in N different
directions and interacting obliquely. In particular, a one line-soliton solution is

u(x,y,t) = 2*;2sech2 {K[X + Ay - (4AC2 + 3A2)* + So]} . (1.2.8)

Essentially these are one-dimensional solutions travelling at an angle to the y-axis. A
two line-soliton (written in Hirota's notation — see §2.6.5 below) is

d2

u(x,y,t) = 2— \nF(x,y,t),

with
F(x,y,t) = 1 + exp(?7i) + exp(r/2) + exp(?7i + r]2 + A12),

where

rji = 2*t[x + A,y - (4AC2 + 3X2)t] + Sly

4 ( / C l _ K 2 )2 _ ( A l _ A 2 )2

(1.2

(1.2

(1.2

(1.2

.9a)

.9b)

.9c)

.9d)

One and two line-soliton solutions of the KPII equation are illustrated in Figures 1.2.1
and 1.2.2, respectively. Note that in Figure 1.2.2, away from the interaction region,
each wave is essentially a KdV-type soliton (as expected, there is a phase shift due to
the interaction). We remark that solutions such as (1.2.8) and (1.2.9) do not decay as
(x2 -f y2)1/2 —• oo in all directions.

For very thin sheets of water T > 1 (when surface tension dominates gravity), then
equation (1.2.6) is equivalent to equation (1.1.7) with a2 — — 1, i.e.

(ut + 6uux + uxxx)x - Zuyy = 0, (1.2.10)

which is usually called KPI. Here one-dimensional solitons are unstable (Kadomtsev
and Petviashvili [1970]). (We remark that the KP equation with T > 1 also applies
if we neglect gravity, remove the horizontal bed (and the viscous boundary layer
it creates) on which the thin sheet of water lies and restrict out attention to the
symmetric modes so that <j)z — 0 holds.) In this case, there exist "lump" solutions of
the KPI equation,

{- [x + Xy + 3(A2 - f,2)t}2 + ^{y + 6Ai)2 +
u{x,y,t)=A±- - / , (1.2.11)

\[x + Xy + 3(A2 - ii2)tf + ̂ {y + 6At)2 })2

which decay algebraically as (x2 -f y2)1/2 —> oo (cf. Manakov, Zakharov, Bordag, Its
and Matveev [1977]; Satsuma and Ablowitz [1979]).



12 Chapter One

FIGURE 1.2.1 One line-soliton solution of the KPII equation (1.2.7).

FIGURE 1.2.2 Two line-soliton solution of the KPII equation (1.2.7).
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1.3 Travelling Wave Solutions of the KdV Equation.

The first interesting property of the KdV equation is the existence of permanent
wave solutions, including solitary wave solutions.

DEFINITION 1.3.1

A solitary wave solution of a partial differential equation

where t G R, x 6 R are temporal and spatial variables and u £ R the dependent

variable, is a travelling wave solution of the form

u(x,t) = w(x - -ft) = w(z), (1.3.1)

whose transition is from one constant asymptotic state as z —> —oo to (possibly)
another constant asymptotic state as z —> oo. (Note that some definitions of solitary
waves require the constant asymptotic states to be equal — often to zero.)

To obtain travelling wave solutions of the KdV equation, we seek a solution in the
form (1.3.1) which yields a third order ordinary differential equation for w

w'" + 6 W - jw' = 0, (1.3.2)

where ' = d/dz. Integrating this twice gives

\{w'f = f(w) := -±(2w3 - -fw2 -Aw- B), (1.3.3)

with A, B constants. Since we are interested in obtaining real, bounded solutions for
the KdV equation, then we require that f{w) > 0 and so we study the zeros of f(w).

There are two cases to consider: (1) when f(w) has only one real zero and (2) when
f(w) has three real zeros (for which there are three subcases).

Case 1. If f(w) has only one real zero, a, then it is one of the two forms shown in Figure
1.3.1. If w'(0) < 0, then f(w) > 0 for all z > 0, and so w decreases monotonically to
—oo as z —> oo. If u/(0) > 0, then w increases until it reaches a, at say z\ (that is
w(z\) = a), which is a simple maximum of w. Therefore w'(z) < 0, for z > z\ and
thereafter w decreases monotonically to — oo as z —> oo. Hence there are no bounded
solutions in this case.

Case 2. If f(w) has three real zeros, a, b and c, then we may assume that a < b < c,

and so we may write

f{w) = -{w - a)(w - b){w - c), (1.3.4)
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FIGURE 1.3.1 Rough sketches of f(w) when it has one real zero.

where 7 = 2(a + b + c), A = —2(ab + 6c + ca), J5 = 2a6c. In order that a, 6 and c are
real it is necessary that

A2 := 7
2 + 6A > 0,

/ ( | ( 7 + A ) ) > 0 , and / ( | ( 7 - A)) < 0.

The possible behaviors of the function f(w) against w when it has three real zeros is
shown in Figure 1.3.2.

The general behavior of the function f(w) against w is shown in Figure 1.3.2a.
In this case all the roots are distinct and the real solution of (1.3.3) represents a
nonlinear oscillation between 6 and c. There are two special cases; one when b ~ a
(Figure 1.3.2b), which corresponds to the solitary wave solution, and the other is
when b = c (Figure 1.3.2c), which gives rise to a constant solution related to linear
sinusoidal waves. If all three roots coalesce (Figure 1.3.2d), then again we obtain a
constant solution as the only bounded solution (see below). We shall now consider the
four cases corresponding to Figures 1.3.2a, 1.3.2b, 1.3.2c and 1.3.2d.
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(a), a < b < c (b), a = b<c

\ . .

(c), a<b = c (d), a = b = c

FIGURE 1.3.2 Rough sketches of f(w) when it has three real zeros.
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Case 2a. If a, 6, c are distinct, then the solution of the KdV equation is of the form
of cnoidal waves, which may be expressed in terms of the Jacobian elliptic function
cn(z; m)

| 1/2 } (1.3.5a)

, , (1.3.5b)
c — a

where XQ is a constant and m denotes the modulus of the Jacobian elliptic function
(cf. Whittaker and Watson [1927]). These cnoidal wave solutions of the KdV equation
were originally found by Korteweg and de Vries themselves and appear their celebrated
paper [1895] (in fact they coined the term cnoidal wave).
Case 2b. a — b ^ c. If in (1.3.5) we take the limit b —> a (i.e. m —> 1), then, provided
that b ^ c, it reduces to the solitary wave solution

with

u(x,t) = b +(c- 6) en2

m = c — o

- a ) ] 1 / 2 [ , -

that is

- ( a + 6 +

0 < m

c)* +

< 1 ,

u(x,t) = a+(c-a) sech2 { [|(c - a)]1/2 [x - (2a + c)t + z0]} , (1.3.6)

since cn(z; 1) = sech(2:) (Abramowitz and Stegun [1972, p.571]). If in (1.3.6) we now
set UQ = a and K2 = ^(c — a) then we obtain the solitary wave solution

u(x, t) = u0 + 2K2 sech2 {K[X - (4K2 + 3uo)t + x0}} . (1.3.7)

From this we can easily make the following observations.

1. The speed of the wave relative to the uniform state UQ is proportional (in this
case by a factor of two) to the amplitude (that is, if UQ = 0, then the wave
speed is twice the amplitude).

2. The width of the solitary wave 2TT/K is inversely proportional to the square root
of the wave amplitude and therefore taller solitary waves are narrower in width
and travel faster than shorter ones.

3. The amplitude is independent of the uniform state uo, the limit of u(x,t) as
\t\ - 00.

[We could have derived the solitary wave solution (1.3.7) directly from (1.3.3) by
imposing the boundary conditions w —* uo, w' —> 0, w" —> 0, as \z\ —* oo; note that
these compare favorably with the observations of Russell mentioned above.]
Case 2c. If a ^ b = c, then the general solution of (1.3.4) is

= b - (b - a) sec2 { [|(6 - a)]1 / 2 (z + z0)} ,

where ZQ is a constant. Therefore the only bounded real solution of the KdV equation
is the constant solution u(x,t) = 6, which may be obtained by taking the limit c —* 6,
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that is m —> 0, in (1.3.5). Suppose m is very small, and define K2 : = -|(c — a), then
(1.3.5) becomes

u(x,t) = b + 2K;2 raen2 {K[X - (a + b + c)t + xo];m} .

Since cn(z',m) = cos(z) -+• O(?n) for small m (Abramowitz and Stegun [1972, p.573]),
it follows that m sufficiently small

u(x,t) ~ \(b + c) + K2TTICOS{2K[X - (a + b + c)t + x0]} ,

so that the case c —> 6 may be thought of as the limiting case of a sinusoidal wave
with finite period.

Case 2d. If a = 6 = c, then the general solution of (1.3.4) is

where ZQ is a constant. Therefore, as for Case 2c, the only bounded real solution of
the KdV equation is the constant solution u(x,t) — a [which may have been obtained
by taking the limit c —»• a in (1.3.6)].

For further details on travelling wave solutions of the KdV equation, see Drazin and
Johnson [1989].

1.4 The Discovery of the Soliton.

The physical model which motivated the recent discoveries associated with the KdV
equation was the Fermi-Pasta-Ulum (FPU) problem of a one-dimensional anharmonic
lattice of equal masses coupled by nonlinear strings which was studied numerically
by Fermi, Pasta and Ulum [1955]. They felt that any smooth initial state would
eventually relax into equilibrium due to the nonlinear couplings.

The model Fermi, Pasta and Ulum [1955] considered consisted of identical masses
connected by nonlinear springs with the force law F(A) = —K(A + aA2). The
equations of motion governing this lattice are

m-j^Z-= K(yn+i -2y B + y B _ , ) [ l+a (y B + i -y B _ i ) ] , (1.4.1)

for n — 1,2,..., N — 1, with yo = 0 = yw and initial condition yn(0) = sin(n7r/iV),
ynt(Q) — 0 (typically N was taken to be 32). Here yn measures the displacement of
the nth mass from equilibrium.

A great surprise was encountered. Rather than equilibrating, the energy eventually
recurred. That is, after flowing back and forth amongst the low order modes, the
energy recollected into the lowest mode to within an accuracy of one or two percent,
and from there on the process approximately repeated.
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In order to understand this phenomenon, Zabusky and Kruskal [1965] considered
a continuum model. Calling the length between springs h, t' — tot (a; = y/K/m),

x' = x/h with x = nh and expanding yn±\ in a Taylor series, equation (1.4.1) reduces
to (dropping the primes)

Vtt = Vxx + eyxyxx + ±h2yxxxx + O(eh\h4), (1.4.2)

where e = 2ah. A further reduction is possible by looking for an asymptotic solution
of the form (unidirectional waves)

y~ </>(£,T), £ = x - t , r = \et,

whereupon (1.4.2) gives

V ^h^-1) = o, (1.4.3)

where S2 = j^h2e~l and the O(h2^h4e~1) terms are small. By setting u = </>$ and
ignoring small terms, (1.4.3) reduces to the KdV equation

uT + uu^ + 62U£tf = 0 (1-4.4)

(for further details of this derivation see, for example, Kruskal [1975]).

We saw in §1.3 that the KdV equation possesses a solitary solution

u(x,t) = 2«2sech2 {K(X - 4K2t - x0)} , (1.4.5)

where K and xo are constants [set UQ — 0 in (1.3.6)]. This special solution of the KdV
equation had been well known for a long time, though it was not until Zabusky and
Kruskal [1965] did extensive numerical studies for the KdV equation (1.4.4) that the
remarkable properties of these solitary waves were discovered. Zabusky and Kruskal
considered the initial-value problem for the KdV equation (1.4.4) with the initial
condition

w(£,0) = cos(7rf), 0 < f < 2 , (1.4.6)

and w, M£, v,££ periodic on [0,2] for all t; they took S = 0.022 (the periodic problem is
more complicated than the one on the infinite line, but is better suited to numerical
computations). Zabusky and Kruskal discovered that after a short time the wave
steepens and almost produces a shock, but the dispersive term (S2uxxx) then becomes
significant and a balance between the nonlinear and dispersion terms ensues. Later the
solutions develops a train of eight well-defined waves, each like sech2 functions, with
the faster (taller) waves continually catching up and overtaking the slower (smaller)
waves. When two solitary waves of the form (1.4.5) (with different wave speeds),
are initially well separated, with the larger one to the left (the waves are travelling
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from left to right), then the faster, taller wave overlaps the slower, smaller one, and
the waves interact nonlinearly. After the interaction, the waves separate, with the
larger one on the right, having regained their initial amplitude and velocity and the
only effect of the interaction are phase shifts, that is the centers of the waves are at
different positions than where they would have been had there been no interaction.
Finally, after a long time the initial profile recurs.

At the center of these observations is the discovery that these nonlinear waves can
interact elastically and continue afterwards almost as if there had been no interaction
at all. Because of the analogy with particles, Zabusky and Kruskal named these special
waves as solitons.

DEFINITION 1.4.1

A soliton is a solitary wave which asymptotically preserves its shape and velocity
upon nonlinear interaction with other solitary waves, or more generally, with another
(arbitrary) localized disturbance.

Kruskal and Zabusky's remarkable numerical discovery demanded an analytical ex-
planation and detailed mathematical study of the KdV equation. However the KdV
equation is nonlinear and at that time no general method of solution for nonlinear
equations existed. (We remark that Lax and Levermore [1983a,b,c] and Venakides
[1985a,b] have reinvestigated (1.4.4) with 8 small.)

1.5 Fourier Transforms.

Before discussing the inverse scattering method of solution for the KdV equation

we shall discuss a general method for solving linear partial differential equations.

Consider the partial differential equation

ut = A(x,t,u(x,t)), (1.5.1)

where A(x,t,u) is a function of u(x,t) and its spatial derivatives, with t G R, and

x G R, the temporal and spatial variables, respectively. A typical problem associated

with equation (1.5.1) is to solve it subject to the given initial condition

«(*,<)) = /(*) , (1.5.2)

provided that the problem is well posed for / in some Banach space B (usually either
a space of functions vanishing sufficiently rapidly as \x\ —* oo or a space of periodic
functions). If (1.5.1) is a linear partial differential equation, then it is usually solv-
able by Fourier transform methods (on the infinite line, provided that f(x) decays
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sufficiently rapidly as |x| —• oo, for example / £ L^R)). Given the linear partial
differential equation in the form

ut = -\u{-\dx)u, (1.5.3)

where dx = d/dx (usually u is a polynomial function with constant coefficients, re-

ferred to as the dispersion relation); its solution, given the initial condition (1.5.2), is

obtained by use of the Fourier transform pair

«(*,*) = -!- / u(k,t)elkxdk, (1.5.4)

u(k,t) = f u(x,t)e-'lkxdx. (1.5.5)
J — oo

Assuming the validity of the interchange of derivative and integral, by taking the
Fourier transform of (1.5.3) we obtain a linear ordinary differential equation for u(k,t)

ff = -iw(k)u, (1.5.6)

which has general solution

u(M) = u(k,O)exp{-iu;(k)t}, (1.5.7a)

where
u(k,0) = f(k) = / f(x)e~lkxdx. (1.5.7b)

J — oo

Therefore from (1.5.4)

u(x,t) = — / f(k)exp{i[kx-u(k)t]}dL (1.5.8)

Conceptually the Fourier transform method may be viewed as follows.

1. The initial data is transformed into Fourier space by means of (1.5.7b).
2. The time evolution in Fourier space is particularly simple since it satisfies

(1.5.6).

3. u(x,t) is recovered from the inverse transform (1.5.4) and is given by (1.5.8).

Schematically this may be written as:

ti(s,0) Fourier Transform

w(k): dispersion relation

Inverse Fourier Transform
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Although (1.5.8) is a solution in quadrature form, useful information may be ob-
tained from it in the asymptotic limit t —> oo. If the system is conservative (w(k)
is real for real k) and dispersive (u"(k) ^ 0) then the initial data decays into wave
packets which move with their group velocity w'(k) and decay algebraically as t —> oo
(in general, asymptotic formulae can be given to describe this see also below). Hence
the asymptotic behavior of these linear problems is relatively simple.

EXAMPLE 1.5.1 The linearized Korteweg-de Vries equation

A simple example of the method of Fourier transforms is given by the linearized
KdV equation

ut + uxxx = 0, (1.5.9a)

with

u->0, as M->oo, u(x,0) = f(x)eL1(R). (1.5.9b)

The dispersion relation is given by u(k) = — A:3 and so the Fourier transform solution
of (1.5.9) is

u(x,t) = -!- / /(*)exp {i(kx + k3t)} dk.

Asymptotically the solution has the representation as \t\ —> 00

where z = x/(3t)1^3 and y — (—x/(3t))1^2, and Ai(z) is the Airy function given by

1 f°°
Ai(«) = 5 ~ / exP{i(^ + i5

3)}d5
Z 7 r

 J-00

(see Ablowitz and Segur [1981, p.363] for further details).

1.6 An Infinite Number of Conserved Quantities.

An important stage in the development of the general method of solution for the
KdV equation was the discovery that KdV had an infinite number of independent
conservation laws.
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DEFINITION 1.6.1

For the partial differential equation

A(x,t,u(x,t)) = 0, (1.6.1)

where t G R, x G R are temporal and spatial variables and u(x,t) G IR the dependent
variable, a conservation law is an equation of the form

D*T, + DxX t = 0, (1.6.2)

which is satisfied for all solutions of the equation (1.6.1), where Tt(x,t), the conserved
density, and Xi(x,t), the associated flux, are, in general, functions of x, t, u and the
partial derivatives of u; D* denotes the total derivative with respect to t; and Dx the
total derivative with respect to x.

If additionally, u —> 0 as \x\ —•> oc sufficiently rapidly, then

Therefore

Ti(x,t)dx = a,f
J — cwhere ĉ , constant, is the conserved density. For the KdV equation, the first three

conservation laws are

(u)t + (3u2 +uxx)x = 0,

(u2)t + (4u3 + 2uuxx - ux)x = 0,

(u3 - \ux)t + (f u* + *u2uxx - 6uu2
x - uxuxxx + \u2

xx)x = 0.

The first two conservation laws correspond to conservation of momentum and energy,
respectively. The third (and less obvious one) was discovered by Whitham [1965].

The fourth and fifth conservation laws for the KdV equation were found by Kruskal
and Zabusky [1963]. Subsequently four additional ones were discovered and it was
conjectured that there was an infinite number. Despite rumors that only nine ex-
isted, Miura worked out the tenth. After studying the conservation laws of the KdV
equation, and those associated with another partial differential equation, the Modified
Korteweg-de Vries (mKdV) equation

vt-6v2vx +vxxx = 0, (1.6.3)

Miura [1968] discovered the following transformation, now known as Miura's transfor-

mation. If v is a solution of the mKdV equation (1.6.3), then

u = -(v2 + vt), (1.6.4)
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is a solution of the KdV equation (1.1.2). This is readily seen from the relation

ut + 6uux -f uxxx = - (2v + dx) (vt - 6v2vx -f vxxx), (1.6.5)

where dx = d/dx. Note that every solution of the mKdV equation (1.6.3) leads, via
Miura's transformation (1.6.4), to a solution of the KdV equation, but the converse
is not true (that is not every solution of the KdV equation can be obtained from
a solution of the mKdV equation — see, for example, Ablowitz, Kruskal and Segur
[1979]). Miura's transformation leads to many other important results related to
the KdV equation. Initially it formed the basis of a proof that the KdV and mKdV
equations have an infinite number of conserved densities (Miura, Gardner and Kruskal
[1968]), which we outline below. However, even more significant was the motivation
given by Miura's transformation (1.6.4) in the development of the inverse scattering
method for solving the initial value problem for the KdV equation (1.1.2), which we
shall discuss in §1.7.

Early on there was an ingenious proof of the existence of an infinite number of
conservation laws (Miura, Gardner and Kruskal [1968]). Define w by the relation

u = w — ewx — e2w2, (1.6.6)

which may be thought of as generalization of Miura's transformation (1.6.4). Then

the equivalent relation to (1.6.5) is

ut + 6uux -f Uxxx — (l — tdx — 2£2w) (wt -f 6(w — e2w2)wx -f wxxx). (1.6.7)

Therefore tz, as defined by (1.6.6), is a solution of the KdV equation provided that w
is a solution of

wt + 6(w - £2w2)wx + wxxx = 0 (1.6.8)

(as with Miura's transformation, the transformation (1.6.6) is only one way). Since
the KdV equation does not contain e, then it's solution u depends only upon x and t,
however if, a solution of equation (1.6.8), depends on x, t and e. Then seek a formal
power series solution of (1.6.6), in the form

oo

w(x,t\e) = ^wn(x,t)sn. (1.6.9)
n=0

Since the equation (1.6.8) is in conservation form, then

/ w(x,t\ e) dx = constant,
J — oo

and so

wn(x,t)dx = constant,
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for each n = 0,1,2,. . . . Substituting (1.6.9) into (1.6.6) and equating coefficients of
powers of e and solving recursively gives

w0

u>i

Wo

W3

w4

— ul

= ™0,z

= W\ x

~~ ^ 2 x

= w3x

= ux,

+ ^0
+ 2w{

+ 2^i

= uxx -f u2,

QWl = uxxx +4uux

iw2 + wj = uxxxx -\- 6uuxx -h 5uJ + 2u3

(1

(1

(1

(1

(1

.6.

.6.

.6.

.6.

.6.

10a)
10b)

10c)

lOd)

lOe)

etc.. Continuing to all powers of e gives an infinite number of conserved densities. The
corresponding conservation laws may be found by substituting (1.6.9-10) into equation
(1.6.8) and equating coefficients of powers of e (odd powers of e actually give no useful
information since they are the derivative of the previous even power, however the even
powers give independent conservation laws for the KdV equation).

1.7 The Associated Linear Scattering Problem and Inverse
Scattering.

1.7.1 The Inverse Scattering Method. Many physical problems are modelled by
nonlinear partial differential equations for which, unfortunately, the Fourier transform
method fails to solve the problem. There was no unified method by which classes
of nonlinear partial differential equations could be solved, and the solutions were
often obtained by rather ad hoc methods. Therefore a most significant result was the
development by Gardner, Greene, Kruskal and Miura [1967, 1974] of a method for
the exact solution of the initial-value problem for the KdV equation (1.1.2) for initial
values which decay sufficiently rapidly, through a series of linear equations. Prior to
this work, the only known exact solutions of the KdV equation were the solitary wave
and cnoidal wave solutions described in §1.3. The aim is to solve the KdV equation
(1.1.2) for (x,t) : x G R, t > 0, subject to the initial condition

u(*,0) = /(*) , (1.7.1)

where f(x) decays sufficiently rapidly as |x| —* oo.
The basic idea is to relate the KdV equation to the time-independent Schrodinger

scattering problem
Lv := vxx + u(x,t)v = \v, (1-7.2)

which has been extensively studied by mathematicians and physicists. The motivation
for this equation came from studying the Miura transformation relating solutions of
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the KdV and mKdV equations. Recall that if U(x,t) is a solution of the mKdV
equation

Ut-6U2UX + Uxxx = 0,

then
u = -(U2 + UX), (1.7.3)

is a solution of the KdV equation

ut + 6uux -f uxxx = 0. (1-7.4)

(1.7.3) may be viewed as a Riccati equation for U in terms of w, and it is well known
that it may be linearized by the transformation U = vx/v, which yields

vxx + uv = Q. (1.7.5)

Since the KdV equation is Galilean invariant, that is invariant under the transforma-
tion

(x, t, u(x,t)) -> (x - ct, t, u(x, t) + £c) ,

where c is some constant, then it is natural to consider (1.7.2) rather than (1.7.5),
in which t plays the role of a parameter and u(x,t) the potential. For (1.7.2), the
eigenvalues and the behavior of the eigenfunctions as x determine the scattering data,
S(X,t), which depends upon the potential u(x,t). The direct scattering problem is
to map the potential into the scattering data. The inverse scattering problem is to
reconstruct the potential from the scattering data.

The time dependence of the eigenfunctions of (1.7.2) is given by

vt = (7 + ux)v - (4A + 2u)vx, (1.7.6)

where 7 is an arbitrary constant. Assuming that Xt = 0, then from (1.7.2) and (1.7.6)
we obtain

vtxx — [(7 + ux)(X — u) + uxxx -f 6uux] v — (4A -f 2u)(A — u)vx, (1.7.7a)

Vxxt = [(A - M)(7 + ux) - ut] v - (A - u)(AX + 2u)vx. (1.7.7b)

Therefore (1.7.2) and (1.7.6) are compatible (i.e., vxxt — vtxx)-> if and only if u sat-
isfies the KdV equation (1.7.4). Similarly, if (1.7.4) is satisfied, then necessarily the
eigenvalues must be time independent (i.e., dX/dt — 0).

The solution of (1.7.4), corresponding to u —> 0 as |x| —> 00, proceeds as follows:

1. Direct problem. At time t — 0, given u(x,0) we solve the direct scattering
problem. The spectrum of the Schrodinger equation (1.7.2) consists of a finite
number of discrete eigenvalues, A = /c^, n — 1,2,..., iV, for A > 0 and a
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continuum, A = —A;2, for A < 0. The eigenfunctions corresponding to these
eigenvalues may be computed and their asymptotic behavior written as: for
0 < A =

vn(x,t) ~ cn

with

X

as

as

—>> oo,

x —» oo,

x -> - c o ,

(1.7

(1.7

(1.7

(1.7

.8a)

.8b)

.9a)

.9b)

and for 0 > A = -A;2,

v(x,t) ~e~'lkx +r(A:,t)eifcx,

v(x,t)~a(k,t)e-ikx,

where r(k,t) is the reflection coefficient and a(k,t) the transmission coefficient.

Therefore we have the scattering data at time t — 0;

5(A,0) =

2. Time evolution. From equation (1.7.6) we can determine the time evolution of
the scattering data. It may be shown that

a(k,

r(k,

Kn — constant,

^) = cn(0)exp(4«^),

t) = a(k,0),

t) = r(k,0)exp(8ik3t),

n = 1

n = 1

,2,... ,iV

,2,... ,iV

(1.7.10a)

(1.7.10b)

(1.7.10c)

(1.7.10d)

so we have the scattering data at time t;

S(X,t) =

3. Inverse Problem. Given the scattering data at the initial time, it is possible to
determine its time evolution. The inverse scattering problem is to reconstruct
from knowledge of the scattering S(\,t) data, the potential u(x,t) which is
the required solution of the KdV equation. This problem was considered by
Gel'fand and Levitan [1955] (see also Faddeev [1963] — for a recent discussion
see Deift and Trubowitz [1979]; later, we shall view this techniques in a different
way — as a Riemann-Hilbert boundary value problem). The results may be
summarized as follows. First, using the scattering data (1.7.10), define the
function

J^L i f°°
Knx) + — / r(k,t)elkx dk. (1.7.11)
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Then solve the linear integral equation

K(x,z; t)F(z + y; t) dz = 0, (1.7.12)
,0

/

called the Gel'fand-Levitan-Marchenko equation. Finally the potential is recon-
structed by the relation

u{x,t) = 2—[K(x,x;t)]. (1.7.13)
ox

This method is therefore conceptually analogous in many ways to the Fourier trans-
form method for solving linear equations, except however that the final step of solving
the inverse scattering problem is highly nontrivial. Schematically this may be written

u ( a f > 0 ) direct scattering < 5 ( A ) 0 ) = ( { ^

u(k): dispersion relation

w ( x > t ) , inverse scattering S(A,0 = ({«n ,cn(t)}?= 1 , r(M),«(M))

The scattering data plays the role of the Fourier transform and the inverse scattering
problem the inverse Fourier transform.

1.7.2 Reflectionless Potentials. If the reflection coefficient is zero (i.e., r(fc,0) =
0 = r(k,t)), then we obtain the special soliton solutions. If r(k1t) = 0 in (1.7.11),
then the kernel and inhomogeneous terms in the Gel'fand-Levitan-Marchenko integral
equation are reduced to finite sums over the discrete spectrum. This is solvable by
separation of variables (cf., Kay and Moses [1956] and Gardner, Greene, Kruskal and
Miura [1974]).

If r(k,t) - 0 in (1.7.11) then

N

F{x;t) = ^C
2

n(*)exp(-/,na;), (1.7.14)

with cm(t) = cm(0) exp(4«jt) > 0 and distinct Km > 0, m = 1 ,2 , . . . , TV and so the
Gel'fand-Levitan-Marchenko equation becomes

TV

K{x, y; t) + V c2
n(t) exp{-Kn(x + y)}

n=l

(1.7.15)
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The solution of this equation now takes the form

N

K(x,y;t) = ^2cn(t)vn

then (1.7.15) becomes

N

vm(x) + V C m ( ^ n W exp{-(*m + Kn)x}vn(x) = cn(t)exp(-Kmx), (1.7.16)

for m = 1,2,... ,7V. This is a system of algebraic equations which can be written in
the form

(I + C)i> = / , (1.7.17)

where v = (vi,v2 , . . . ,ujv), / = ( / i , / 2 , . • - , / N ) with / m := cm(t)exp(-Kmx)1 m =
1,2,... , TV, I is the TV x TV identity matrix and C is a symmetric, TV x TV matrix with
entries

Cmn - — —^ e x p { - ( K m -f « n ) ^ } , 771, 71 = 1, 2, . . . , TV.

A sufficient condition for (1.7.17) to have a unique solution is that C is positive definite.
Consider the quadratic form

N N . .

= l n = l

where £ = (£i,£2, • • • >&v)> which clearly positive and equal to zero only if £ = 0, and
so C is positive definite. The unique solution to the KdV equation in this case is

u(x,t) = 2-^ {lndet(I + C)}, (1.7.18)

This is the iV-soliton solution for the KdV equation, which corresponds to N waves
which asymptotically as t —• ±00 have the form

un(x, t) ~ 2K2
U sech2 {Acn(x - 4«2t + xn)} , n = 1, 2 , . . . , JV,

where xn = lnc2(0) is a constant. There is a one-to-one relationship between the
number of discrete eigenvalues and the number of solitons which emerge asymptotically
(see below). As mentioned previously above, these waves interact in such a way as
to preserve their identities in the limit asymptotically, however by using the inverse
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scattering method to solve the KdV equation, we are able to mathematically confirm

the numerical observations of Zabusky and Kruskal.

If in (1.7.18) we set N = 1, then we obtain the one-soliton solution

u(x,t) = 2K;2 sech2 {K>I(X — 4K;2£ + xi)} ,

as derived in equation (1.3.7) above.

For N = 2, we write

A : = det(I + C)

= 1 + exp(2r7i) + exp(2rj2) + exp(2?7i -f 2772 + ^12), (1.7.19a)

with

Vn = -/cn(z-4K;2* + lnc2(0)), Amn = 21n I— J (1.7.19b)

(below we explicitly give the two-soliton solution of the KdV equation). From equation
(1.7.19) it is easily shown that the only effect of the interaction of two solitary waves
is a phase shift (see Figure 1.7.1). Consider the trajectory 771 = constant, and assume
that Ki > K2 > 0. Then

A ~ 1+exp(2?7i), as *-> -00, (1.7.20a)

A-exp(2772)+ exp(277i+2r/2 + A12), as f -^oo. (1.7.20b)

Therefore from (1.7.18) it follows that for fixed 771

~ 2K\ sech2(771 + <5jt), as t -> ±00, (1.7.21a)

with

6t = $A12, 6~=Q. (1.7.21b)

Similarly, for fixed 772

u(x,t) -2^Sech2(r72-h^2
±), as ^ -^±00, (1.7.22a)

with

6+ = 0, <52- = \AU. (1.7.22b)
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FIGURE 1.7.1 Two-soliton solution of the KdV equation.

For large negative time, the larger soliton lies to the left of the smaller soliton, and
vice-versa for large positive time (the solitons are travelling from right to left). From
(1.7.21,22) it follows that as a consequence of the interaction, the larger and smaller
solitons undergo phase shifts given by

=6+-6-= \A12= In

62=S+ -62~ = -±A12 = -]

< 0, (1.7.23a)

(1.7.23b)

respectively. Therefore, after the interaction, the larger soliton has been shifted to
the right of where it would have been had there been no interaction, and the smaller
shifted to the left by the same amount.

A similar calculation can be done in the iV-soliton case (see Gardner, Greene,
Kruskal and Miura [1974]; Zakharov [1971]; Wadati and Toda [1972]; Tanaka [1972]).
Assume that «i > /c2 > . . . > «N > 0, then for fixed rjn

(1.7.24)

(1.7.25)

Jin + °n)i a s H —* °°-

Therefore the nth soliton undergoes a phase shift given by

+ Kn
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It is clear from this expression that the total phase shift experienced by the nth soli-
ton is equivalent to the sum of phase shifts that arise from pairwise interactions with
every other soliton. The general question of the interaction of iV-soliton and contin-
uous spectra has been examined by Ablowitz and Kodama [1980]; Alonso [1985a,b,c];
Schuur [1986].

To demonstrate the relationship between the number of discrete eigenvalues and the
number of solitons, suppose that the initial condition is given by

u(x,0) = iV(iV+ l)sech2z.

In this case the scattering problem, with A = «2, is

^ + {iV(7V + l)sech2;r-K;2}*; = 0. (1.7.26)

If we make the transformation \x = tanha;, then (1.7.26) becomes

(1 _ ^ # 1 _ 2 ^ + (N(N + 1) - - ^ ) v = 0, (1.7.27)
dfiz d/i \ 1 — JJLZ )

which is the Associated Legendre equation (cf. Abramowitz and Stegun [1972, Chapter
8]). Equation (1.7.27) has N distinct eigenvalues nn = n, n = 1, 2,. . . , N and bounded
associated eigenfunctions V\(x), V2(x),.. . ,VN(X), given by

vn(x) = 7nP^(tanhx) ~ cnexp(-nx), as x —>• oo,

where P^ifJ.) is the Associated Legendre polynomial defined by

and cn(0) is determined from the normalization condition (1.7.8b), and so from equa-

tion (1.7.10b)

cn(t) = cn(0)exp(4n3t).

Therefore, from equation (1.7.11), the functions F(x;t) in the Gel'fand-Levitan-Marc-

henko equation is given by

and so, from we equation (1.7.18) we obtain the TV-solution of the KdV equation

d2

u(x,t) = 2 — {lndet(I + C)} , (1.7.28a)



32 Chapter One

where

(m + n)x}. (1.7.28b)
m + n ~v v } i v ;

In particular, the two-soliton solution of the KdV equation is [see also (1.7.19)]

u(x t) 12 [ 3 + 4 C ° s h ( 2 x ~ &t) + C0Sh{iX ~ m ) ) (17 29)
1 ' >~ \ [3 cosh(a: - 28i) + cosh(3a: - 36<)]2 / ' l '

If we introduce ^ = x — 16t and 77 = x — 4£, then the two-soliton solution can be
expressed as

I * 1 o f 3 + 4 c o s h ( 2 ^ + 24*) + cosh(4Q 1u(x,t) - I [ 3 c o s h (£ _ 12t) + cosh(3^ + m)]2 j ' U-'-JU)

and

w ( x ^ ) = 1 2 1 r o ^ u / l ° S o»!\ • !!!u/o!—^777^2 r • (1-7.31)

Expanding (1.7.30,31) as t —> ±00, keeping f and 77 fixed respectively, shows that as

t -> ±00

w(x, t) - 2 sech2 (77 ± I In 3) + 8 sech2 (2f + \ In 3) .

(The structure of the two-soliton solution of the KdV equation during the interaction
has been discussed analytically by a number of authors, e.g., Lax [1968]; Ablowitz and
Kodama [1980]; Moloney and Hodnett [1986]; LeVeque [1987]; Hodnett and Moloney
[1989].)

For a discussion of the case when the reflection coefficient is nonzero see for example
Ablowitz and Kodama [1980]; Ablowitz and Segur [1981, §1.7]; Alonso [1985a,b,c];
Schuur [1986] and the references therein.

1.8 Lax's Generalization.

Lax [1968] put the inverse scattering method for solving the KdV equation into a
more general framework which subsequently paved the way to generalizations of the
technique as a method for solving other partial differential equations. Consider two
operators L and M, where L is the operator of the spectral problem and M is the
operator governing the associated time evolution of the eigenfunctions

1v = \v, (1.8.1a)

vt = Mv. (1.8.1b)

Now take d/dt of (1.8.1a), giving

Ltv + Lvt = Xt.v + Xvt,
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hence using (1.8.1b)

Ltv + LMi; = Xtv + \Mv,

= Xtv -f M\v,

= Atv -f ML?;,

Therefore we obtain

[L,+ (LM-ML)]i; = A^,

and hence in order to solve for nontrivial eigenfunctions v(x,t)

L( + [L,M] = 0, (1.8.2)

where

[L,M] : = L M - M L ,

if and only if A< = 0. Equation (1.8.2) is called Lax's equation, and contains a nonlinear
evolution equation for suitably chosen L and M. For example if we take

L: = — + u , (1.8.3a)

M : - (7 + ux) - (4A + 2u)-|- , (1.8.3b)
ox

then L and M satisfy (1.8.2) provided that u satisfies the KdV equation

ut + 6uux + uxxx = 0. (1.8.4)

Therefore, the KdV equation may be thought of as the compatibility condition of the
two linear operators given by (1.8.3). As we shall see below, there is a general class
of equations which are associated with the Schrodinger operator (1.8.3a).

If a nonlinear partial differential equation arises as the compatibility condition of
two such operators L and M, then (1.8.2) is called the Lax representation of the partial
differential equation and L and M are the Lax pair. Lax [1968] indicates how given L,
an associated M may be constructed so that (1.8.2) is nontrivial. A major difficulty is
that for a given partial differential equations there is to date no completely systematic
method of determining whether or not it has a Lax representation and, if so, how
to determine the associated operators L and M. Work has usually relied on inspired
guesswork, either fixing the form of the operators L and M and seeing what partial
differential equations result or looking for operators of a certain form given the partial
differential equation (the so called prolongation structure method due to Wahlquist
and Estabrook [1975, 1976], which we discuss in §2.6.8 below — see also Kaup [1980c];
Dodd and Fordy [1983]).
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1.9 Linear Scattering Problems and Associated Nonlinear
Evolution Equations.

Following the development of the method of inverse scattering to solve the initial
value problem for the KdV equation by Gardner, Greene, Kruskal and Miura [1967],
it was then of considerable interest to determine whether the method would be ap-
plicable to other physically important nonlinear evolution equations. The method of
inverse scattering is highly nontrivial and was thought by some to be a fluke, a clever
transformation analogous to the Cole-Hopf transformation (Cole [1951]; Hopf [1950])
which linearizes Burgers' equation

ut + 2uux — uxx = 0.

If we make the transformation u — — 4>x/<j), then <f>(x,t) satisfies the linear heat equa-
tion <t>t — <j>xx — 0. (We remark that Forsyth [1906, plOl] first pointed out the rela-
tionship between Burgers' equation and the linear heat equation.)

However, Zakharov and Shabat [1972] proved that the method indeed was no fluke
by extending Lax's ideas in order to relate the nonlinear Schrodinger equation

\ut + uxx + KU2U* = 0, (1.9.1)

where * denotes the complex conjugate and K, is a constant to a certain linear scattering
problem. They showed that if

0 u*

with K = 2/(1 — A:2), then L and M satisfy Lax's equation

L* + [L,M] = 0, (1.9.3)

if and only if u(x,t) satisfies the nonlinear Schrodinger equation (1.9.1). Using the
operators (1.9.2), Zakharov and Shabat were able to solve (1.9.1), given initial data
u(x,0) = f(x) (provided that f(x) decays sufficiently rapidly as \x\ —» oo). Shortly
thereafter, Wadati [1972] gave the method of solution for the Modified KdV equation

ut -6u2ux + u m = 0, (1.9.4)

and Ablowitz, Kaup, Newell and Segur [1973a], motivated by several important ob-
servations by Kruskal, solved the Sine-Gordon equation

uxt = s'mu. (1.9.5)
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Ablowitz, Kaup, Newell and Segur [1973b, 1974] developed a procedure, which
showed that the initial value problem for a remarkably large class of physically inter-
esting nonlinear evolution equations could be solved by this method. Because of the
analogy between the Fourier transform method for solving the initial value problem
for linear evolution equations and the inverse scattering method for solving the initial
value problem for nonlinear evolution equations, they termed the inverse scattering
technique the Inverse Scattering Transform (I.S.T.). (Referred to briefly in §1.1, by
the I.S.T. scheme for a nonlinear evolution equation, we shall mean the inverse scat-
tering method for solving the initial value problem of the equation.)

Consider two linear equations

vx = Xv, (1.9.6a)

vt = Tv, (1.9.6b)

where v is an n-dimensional vector and X and T are nxn matrices. If we require that
(1.9.6) are compatible, that is requiring that vxt = vtx, then X and T must satisfy

X, - T X + [X,T] = 0. (1.9.7)

This equation (1.9.7) and Lax's equation (1.9.3) are similar; (1.9.6) is somewhat more
general as it allows eigenvalue dependence other than Lv = \v.

As an example, consider the 2 x 2 scattering problem [a generalization of (1.9.2a)]
given by

i?i)Z = —ikvi + q(x,t)v2<> (1.9.8a)

v2,x = ikv2 + r(z,<)ui, (1.9.8b)

and the most general linear time dependence is given by

Vlt = Avi + Bv2, (1.9.9a)

V2t = Cvi + Dv2, (1.9.9b)

where A, B, C and D are scalar functions of q(x,t), r(x,t) and k, independent of

(i>i,t>2)- Essentially, we jus t specify t h a t

in (1.9.6). Note that if there were any x-derivatives on the right-hand side of (1.9.9)
then they can be eliminated by use of (1.9.8). Furthermore, when r = —1, then (1.9.8)
reduces to the Schrodinger scattering problem

vj.« + (k2 + q)v2 = 0, (1.9.11)
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which is equivalent to (1.7.2), with k2 = —A. It is interesting to note that the most
physically interesting nonlinear evolution equations arise from this procedure when
either r = — 1 or r = q* (or r = q if q is real).

This procedure provides a simple technique which allows us the find nonlinear evolu-
tion equations expressible in the form (1.9.7). The compatibility of equations (1.9.8-9),
that is requiring that Vj}Xt = Vjjx-> for j = 1,2, and assuming that the eigenvalue k is
time-independent, that is dk/dt = 0, imposes a set of conditions which A, B, C and
D must satisfy. Therefore

= -ik(Av1 + Bv2) + qtv2 + q{Cvx + Dv2),

v\ytx = Ar^i + Av\fX + Bxv2 + Bv2yX,

— Axvi -f A(-ikvi + qv2) + Bxv2 -f B(\kv2 -f

Hence by equating the coefficients of vi and ^2, we obtain

Ax = qC -rB, (1.9.12a)

Bx + 2\kB = qt-(A- D)q, (1.9.12b)

respectively. Similarly

k + rtvi

= \k{Cv1

V2,tx = CXV1 + Cvi,x + DXV2 + I>V2,x,

= Cxvl + C(-iA;ui + (jfv2) + Dxv2 -f

and equating the coefficients of v\ and f2 we obtain

Cx - 2iA:C = rt -f (A - D)r, (1.9.13a)

(-£>)* = qC -rB. (1.9.13b)

Therefore, from (1.9.12a) and (1.9.13b), without loss of generality we may assume

D = —A, and hence it is seen that A, B and C necessarily satisfy the compatibility

conditions

Ax = qC -rB, (1.9.14a)

Bx + 2\kB = qt- 2Aq, (1.9.14b)

Cx - 2ikC = rt + 2Ar. (1.9.14c)

We now solve (1.9.14) for A,B and C (thus ensuring that (1.9.8) and (1.9.9) are
compatible). In general, this can only be done if another condition (on r and q) is
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satisfied, this condition being the evolution equation. Since k, the eigenvalue, is a
free parameter, we may find solvable evolution equations by seeking finite power series
expansions for A, B and C:

n n n

A = J2AJkJi B = YlBJkJ' C = J2°jkJ- (1.9.15)
j=0 j=0 j=0

Substituting (1.9.15) into (1.9.14) and equating coefficients of powers of A;, we obtain
3n + 5 equations. There are 3n + 3 unknowns, Ajy Bj, Cj,j = 0 , 1 , . . . , n, and so we
also obtain two nonlinear evolution equations for r and q. Now let us consider some
examples.

EXAMPLE 1.9.1 n = 2

Suppose that ^4, B and C are quadratic in &, that is

A = A2k
2 + Axk + Ao, (1.9.16a)

B = B2k
2 + B!k + B0, (1.9.16b)

C = C2k
2 + Cik 4- Co. (1.9.16c)

Substitute (1.9.16) into (1.9.14) and equate powers of k. The coefficients of k3 im-
mediately give B2 — C2 — 0. At order fc2, we obtain A2 — a, constant, B\ — \aq,
C\ = iar. At order fc1, we obtain Ai = 6, constant, for simplicity we set b — 0 (if
b ^ 0 then a more general evolution equation is obtained), then Bo = —\aqx and
Co = \arx. Finally, at order A:0, we obtain Ao — \arq + c, with c a constant (again
for simplicity we set c = 0). Therefore we obtain the following evolution equations

-\aqxx = qt-aq2r, (1.9.17a)

\arxx =rt + aqr2. (1.9.17b)

If in (1.9.17) we set r = =F#* and a — 2i, then we obtain the nonlinear Schrodinger
equation

iqt = qxx±2q2q*. (1.9.18)

In summary, given the scattering problem (1.9.8) and the associated time dependence

(1.9.9), then these are compatible provided (1.9.14) holds. In this example, setting

r = — q*, then we find that

A = 2ik2 ±iqq*, (1.9.19a)

B = 2qk + iqx, (1.9.19b)

C = T2q*k±iq*x, (1.9.19c)

satisfy (1.9.14) provided that q(x,t) satisfies the nonlinear Schrodinger equation

(1.9.18).
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EXAMPLE 1.9.2 n = 3

If we substitute the third order polynomials in k

A = a3k
3 + a2k

2 + ^(a3^r -f ai)k + ^a2tfr - ^ia3(#rx - rqx) + a0, (1.9.20a)

B = i a 3 ^ 2 + (i«2^ - |a3tfx) fc + [iaig - \a2qx + |ia3(2?2r - qxx)] , (1.9.20b)

C = ia3rk2 + (ia2r + | a 3 r x ) k + [iair + ^ 2 ^ + \\az(2r2q - rxx)] , (1.9.20c)

in (1.9.14), with a3, a2, ai and ao constants, then we find that q(x, t) and r(x, t) satisfy
the evolution equations

qt + \\az(qxxx - 6qrqx) + \a2{qxx - 2q2r) - \aiqx - 2aoq = 0, (1.9.21a)

rt + \iaz(rxxx - 6qrrx) - \a2{rxx - 2qr2) - iairx + 2aor = 0. (1.9.21b)

For special choices of the constants a3, a2, a\ and ao in (1.9.21) we find physically
interesting evolution equations. If ao = a\ = a2 — 0, a3 = —4i and r = — 1, then we
obtain the KdV equation

Qt + 6qqx + qXxx = 0.

If ao = ai = a2 = 0, a3 = —4i and r — q, then we obtain the mKdV equation

qt - 6q2qx + qXxx = o.

[Note that if ao = a\ = a3 = 0, a2 = — 2i and r = — #*, then we obtain the nonlinear
Schrodinger equation (1.9.18).]

We can also consider expansions of A, B and C in inverse powers of k.

EXAMPLE 1.9.3 n = - 1

Suppose that

( 1 . 9 . 2 2 )

then the compatibility conditions (1.9.14) are satisfied if

ax = \(qr)u qxt = -4iaq, rxt = -i'mr. (1.9.23)

Special cases of these are (i),

a = ^icosw, b = c = ^isinw, q = — r = —^wx, (1.9.24)

then u satisfies the Sine-Gordon equation

w = sin u.
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and (ii),
a=^icoshu, b = c = -jisinh w, q = r = ^ux, (1.9.25)

where u satisfies the Sinh-Gordon equation

uxt = sinh u.

These three examples only show a few of the many nonlinear evolution equations
which may be obtained by this procedure. We saw above that when r = — 1, the
scattering problem (1.9.8) reduced to the Schrodinger equation (1.9.11). In this case
we take an alternative associated time dependence

vt = Av + Bvx. (1.9.26)

By requiring that this and
vxx + {k2 + q)v = 0,

are compatible and assuming that dk/dt — 0, yields equations for A and B analogous
to equations (1.9.14), then by expanding in powers of &2, we obtain a general class of
equations.

There have been numerous applications and generalizations of this method. Early
on Ablowitz and Haberman [1975b] generalized the 2 x 2 case to the n x n system
(see §1.10 below). Other generalizations includes that of Wadati, Konno and Ichikawa
[1979a,b] (see also Shimizu and Wadati [1980]; Ishimori [1981, 1982]; Wadati and
Sogo [1983]; Konno and Jeffrey [1984]). For example, instead of (1.9.8), consider the
scattering problem

g(k)q{x,t)v2, (1.9.27a)

v2,x - f(k)v2+g(k)r(x,t)vu (1.9.27b)

where f(k) and g(k) are functions of the eigenvalue k, and the time dependence is
given (as previously) by

Vlt = Avx +Bv2, (1.9.28a)

v2,t = Cv! -Av2, (1.9.28b)

The compatibility of (1.9.27) and (1.9.28) requires that A, B and C satisfy

Ax=g(qC-rB), (1.9.29a)
Bx + 2fB = gqt-2Agq, (1.9.29b)

Cx - 2fC = grt + 2Agr. (1.9.29c)

As earlier, postulating that A, B', C, / and g have finite power series expansions in
k (where the expansions for / and g have constant coefficients), then one obtains a
variety of physically interesting evolution equations.


