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P R E F A C E

It is generally well known that the Fourier-Laplace trans-

form converts a linear constant coefficient PDE P(D)u=f on &n to

an equation P(§)u~ (̂ )=f~ (^), for the transforms u~ , f~ of u and f,

so that solving P(D)u=f just amounts to division by the polynomial

P(§). The practical application was suspect, and ill understood,

however, until theory of distributions provided a basis for a log-

ically consistent theory. Thereafter it became the Fourier-Laplace

method for solving initial-boundary problems for standard PDE. We

recall these facts in some detail in see's 1-4 of ch.O.

The technique of pseudodifferential operator extends the

Fourier-Laplace method to cover PDE with variable coefficients,

and to apply to more general compact and noncompact domains or

manifolds with boundary. Concepts remain simple, but, as a rule,

integrals are divergent and infinite sums do not converge, forcing

lengthy, often endlessly repetitive, discussions of 'finite parts'

(a type of divergent oscillatory integral existing as distribution

integral) and asymptotic sums (modulo order -o°).

Of course, pseudodifferential operators (abbreviated i|xio's)

are (generate) abstract linear operators between Hilbert or Banach

spaces, and our results amount to 'well-posedness' (or normal sol-

vability) of certain such abstract linear operators. Accordingly

both, the Fourier-Laplace method and theory of ipdo's, must be seen

in the context of modern operator theory.

To this author it always was most fascinating that the same

type of results (as offered by elliptic theory of \lJdo;'s) may be

obtained by studying certain examples of Banach algebras of linear

operators. The symbol of a \pdo has its abstract meaning as Gelfand

function of the coset modulo compact operators of the abstract ope-

rator in the algebra.

On the other hand, hyperbolic theory, generally dealing with

a group exp(Kt) (or an evolution operator U(t)) also has its mani-

festation with respect to such operator algebras: conjugation with
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exp(Kt) amounts to an automorphism of the operator algebra, and

of the quotient algebra. It generates a flow in the symbol space

essentially the characteristic flow of singularities. In [ Ci ] ,

[ C2 ] we were going into details discussing this abstract approach.

We believe to have demonstrated that ijxio's are not necessary

to understand these fact. But the technique of ipdo's, in spite of

its endless formalisms (as a rule integrals are always 'distribut-

ion integrals', and infinite series are asymptotically convergent,

not convergent), still provides a strongly simplifying principle,

once the technique is mastered. Thus our present discussion of

this technique may be justified.

On the other hand, our hyperbolic discussions focus on in-

variance of \\X3LO-algebras under conjugation with evolution opera-

tors, and do not touch the type of oscillatory integral and fur-

ther discussions needed to reveal the structure of such evolution

operators as Fourier integral operators. In terms of Quantum mecha-

nics we prefer the Heisenberg representation, not the Schroedinger

representation.

In particular this leads us into a discussion of the Dirac

equation and its invariant algebra, in chapter X. We propose it as

algebra of observables.

The basis for this volume is (i) a set of notes of lectures

given at Berkeley in 1974-80 (chapters I-IV) published as preprint

at U. of Bonn, and (ii) a set of notes on a seminar given in 1984

also at Berkeley (chapters VI-IX). The first covers elliptic (and

parabolic) theory, the second hyperbolic theory. One might say

that we have tried an old fashiened PDE lecture in modern style.

In our experience a newcomer will have to reinvent the theo-

ry before he can feel at home with it. Accordingly, we did not try

to push generality to its limits. Rather, we tend to focus on the

simplest nontrivial case, leaving generalizations to the reader.

In that respect, perhaps we should mention the problems (partly of

research level) in chapters I-IV, pointing to manifolds with coni-

cal tips or cylindrical ends, where the 'Fredholm-significant sym-

bol' becomes operator-valued.

The material has been with the author for a long time, and

was subject of many discussions with students and collaborators.

Especially we are indebted to R. McOwen, A.Erkip, H. Sohrab, E.

Schrohe, in chronological order. We are grateful to Cambridge Uni-

versity Press for its patience, waiting for the manuscript.

Berkeley, November 1993 Heinz 0. Cordes



Chapter 0. INTRODUCTORY DISCUSSIONS.

In the present introductory chapter we give comprehensive

discussions of a variety of nonrelated topics. All of these bear

on the concept of pseudo-differential operator, at least in the

author's mind. Some are only there to make studying ipdo's appear

a natural thing, reflecting the author's inhibitions to think

along these lines.

In sec.1 we discuss the elementary facts of the Fourier

transform, in see's 2 and 3 we develop Fourier-Laplace trans-

forms of temperate and nontemperate distributions. In sec.4 we

discuss the Fourier-Laplace method of solving initial-value pro-

blems and free space problems of constant coefficient partial

differential equations. Sec.5 discusses another problem in PDE,

showing how the solving of an abstract operator equation together

with results on hypo-ellipticity and "boundary-hypo-ellipticity"

can lead to existence proofs for classical solutions of initial-

boundary problems. Sec.6 is concerned with the operator e , for

a first order differential expression L . See's 7 and 8 deal with

the concept of characteristics of a linear differential expression

and learning how to solve a first order PDE. Sec.9 gives a mini-

introduction to Lie groups, focusing on the mutual relationship

between Lie groups and Lie algebras. (Note the relation to ijjdo's

discussed in ch.8).

We should expect the reader to glance over ch.O and use it

to have certain prerequisites handy, or to get oriented in the

serious reading of later chapters.

0. Some special notations.

The following notations, abbreviations, and conventions will

be used throughout this book.

(a) Kn= (2Jt)~n/ , £x = Kndx1dx2. . .dxn =
 K

n
d x •

(b) (x) = (l+|x|2)1/2 , (|> = ( l + m 2 ) 1 / 2 , etc.
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(c) Derivatives are written in various ways, at convenience:

For u=u(x)=u(x1,... ,xn) we write u*
a'»d£u=a£l d^2 .. .u =

=dai /axai ...d n/dx nu. Or, u, =d u, u, to denote the n-vector
j j

with components Ui , v u for the k-dimensional array with compo-
I xj x

nents u. v . For a function of (x,g)=(xf,..,x .£t,..,§„)X • X • • • • I 1 1 1 II1 ll 12

it is often convenient to write U[Rj=d?d£u.
(d) A multi-index is an n-tuple of integers a=(a^,...,an) .

We write |a| = |aj | + .. - + |a I , a^a^.-.a ! , («) = (« )"*(ft )'

xa= x{
 1-..xn

 n , etc., In={all multi-indices} .

(e) Some standard spaces: fcn = n-dimensional Euclidean space

Bidirectional compactification of l n (one infinite point oox added

in every direction (of a unit vector x ) .

(f) Spaces of continuous or differentiable complex-valued

functions over a domain or differentiable manifold X (or sometimes

only X=l n): C(X) = continuous functions on X ; CB(X)= bounded con-

tinuous functions on X; CO(X)= continuous functions on X vanishing

at oo ; cs(X) = continuous functions with directional limits; CQ(X)

= continuous functions with compact support; C (X)= functions with

derivatives in C, to order k, (incl. k=oo). CB°°(X)="all derivatives

exist and are bounded". The Laurent-Schwartz notations D(X)=CQ(X),

E(X)=C°°(X) are used. Also 5= S(£n)= "rapidly decreasing functions"

(All derivatives decay stronger as any power of x ) . Also, distri-

bution spaces D 1, E* , S'.

(g) L -spaces: For a measure space X with measure d\x we wri-

te Lp(X)=Lp(X,dn)={measurable functions u(x) with |u|p integrable}

for l^p<oo; L (X)={essentially bounded functions}.

(h) Maps between general spaces: C(X,Y) denotes the conti-

nuous maps X-»Y . Similar for the other symbols under (f), i.e.,

CB(X,Y) ,

(i) Classes of linear operators (X= Banach space) : L(X)

(K(X))= continuous (compact) operators; GL(X) (U(H)) = invertible

(unitary) operators of L(X) (of L(H), H=Hilbert space); U^U (ffin).

For operators X-* Y, again, L(X,Y), etc.

(j) The convolution product: For u,v E L (Rn) we write w(x)

=(u*v)(x)=KnJdyu(x-y)v(y) (Note the factor Kn=(2rc)~
n/2).

(k) Special notation: " X CC Y " means that X is contained

in a compact subset of Y .



0.1. The Fourier transform

(1) For technical reason we may write ^ ^ g^ 0

(m) Abbreviations used: ODE (PDE) = ordinary (partial) diff-

erential equation (or "expression"). FOLPDE (or folpde)= first or-

der linear partial differential equation (or "expression"); ipdo=

pseudodifferential operator.

(n) Integrals need not be existing (proper or improper) Rie-

mann or Lebesgue integrals, unless explicitly stated, but may be

distribution integrals By this term we mean that either (i) the in-

tegral may be interpreted as value of a distribution at a testing

function-the integrand may be a distribution, or (ii) the limit of

Riemann sums exists in the sense of weak convergence of a sequence

of (temperate) distributions, or (iii) the limit defining an impro-

per Riemann integral exists in the sense of weak convergence, as

above, or (iv) the integral may be a 'finite part1 (cf. 1,4).

(o) Adjoints: For a linear operator A we use 'distribution

adjoint1 A" and 'Hilbert space adjoint1 A , corresponding to trans-

pose A and adjoint A =A , in case of a matrix A=((a.. )), respecti-
* + JK

vely. For a symbols a(x,^), a (or a ) may denote the symbol of

the adjoint ipdo of a(x,D) , as specified in each section.

(p) supp u (sing supp u (or s.s.u)) denotes the (singular)

support of the distribution u.

1. The Fourier transform; elementary facts.

Let u E L (lfcn) be a complex-valued integrable function.

Then we define the Fourier transform uA = Fu of u by the integral

(1.1) uMx) = J "ix? n

with x§=x.§=2^=1x .£ ., an existing Lebesgue integral. Clearly,

(1.2) |uA (X) I =£ || U || -
Ll "R14

Note that uA is uniformly continuous over l n : We get

(1.3) U (X)"U (Y) * 2 ^

s N|x-y|||u|| j
L 1

where the right hand side is <e if N is chosen for J|ti > N <e/4,
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a n d t h e n | x - y | < e / ( 2 N | | u | | f ) . M o r e o v e r , we g e t u A E C 0 ( l ) , i . e . ,
L1

lim. I uA (x)=0, a fact, known as the Riemann-Lebescrue lemma.
oo n

To prove the latter, we reduce it to the case of u G C J i ):

The space CQ is known to be dense in L . By (1.1) we get

( 1 . 4 ) |uA (x)-vA ( x ) | * l|u-v|| { < e /2 , as v G c £ , ||u-v|| ^ e / 2 .
L L

H e n c e lim. i vA (x)=0 i m p l i e s |uA I ^ |u A-v A | + |vA | < e w h e n e v e rI x i -*00

x is chosen according to |vA | < e/2 .

But for v E C^ the Fourier integral extends over a ball |§|

£ N only, since v=0 outside. We may integrate by parts for

(1.5) |x|2uA(x) =-jAt(e~ x^)v(^)^ =-J^e""L^(Av)(5) =-(Av)A (x) ,

with the Laplace differential operator A<_ = ^_id1. . Clearly we

00 t

have Av E CQ C L as well, whence (1.1) applies to Av , for

(1.6) |vA (x)| <; ||Av|| ,/|x|2 + 0 , as |x| -* oo ,

L

completing the proof.

The above partial integration describes a general method to

be applied frequently in the sequel. (1.6) may be derived under

the weaker assumptions that vE C , and that all derivatives v^a*,

|a|<;2 , are in L (cf. pbm.5). On the other hand, there are simple

examples of u£ L such that uA does not decay as rapidly as (1.6)

indicates. In particular, uE L1 exists with u A£ L1 (cf.pbm.4).

This matter becomes important if we think of inverting the

linear operator F:L -> CO defined by (1.1), because formally an

inverse seems to be given by almost the same integral. Indeed,

define the (complex) conjugate Fourier transform F:L •* CO by

Fu = (Fu) , or, uv = Fu , where

(1.7) uv (x) =

Then, in essence, it will be seen that F is the inverse of

the operator F. More precisely we will have to restrict F to a

(dense) subspace of L , for this result. Or else, the definition

of the operator F must be extended to certain non-integrable func-

tions, for which existence of the Lebesgue integral (1.7) cannot

be expected. Both things will be done, eventually.
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It turns out that F induces a unitary operator of the Hil-

bert space L (l n): We have Parseval's relation:

(1.8) J dx|uA (x)|2 = J dx|u(x)|2 , for all u G L1(Rn)nL2(ln) .
R (Rn

Formula (1.8) is easier to prove as the Fourier inversion

formula, asserting uA v =uv A =u for certain u: We may write

(1.9)

assuming that u,vG L (fcn) , with the 'cube1 QN={|x . |^N,j=l,..,N} ,

some integer N>0. Indeed, the interchange of integrals leading to

(1.9) is legal, since the integrand is L1 (QMxl
nxln) .

Note that

-N

evaluation of the inner integrals at right of (1.9). With

, and T] = § - £/N , #rj = N*"n$; , (1.9) assumes the form

J ^ (x)V (x) = J^jiriu(?)v(r1)rf)_1 J e ^ ^ 3 ^ ,
yN -1"1 - N J

J(1.10)

N

where cp(t) = (2/jt) / S 1 " , t^O, continuously extended into t=0.

For vE C(R n), as N̂ oo , the function v(g-?/N) will converge

to v(£), independent of t, . Thus one expects the inner integral at

right of (1.10) to converge to v(£ )/nn=1(p(£ . )$*£ . = v(§ ) , since
Too

(1.11) J sin t dt/t = n/2 .

0

Legalization of this argument will confirm Parseval's rela-

tion, since the right hand converges to the right hand side of

(1.8), as N-»oo. with uG L1 and vG C^ (setting cpn(£)=rip(£ .)) write
t t i n g cpn(£)=rip(£ .)

) = L j2xuAvA - J(1.12) J^u(^)J^cp (S) (v(^-^/N)-v(^)) = Jo #xu
A vA - J plxuv .

To show that the inner integral at left goes to 0 as N-*oo it is

more skilful to use the integration variable 9=£/N, d£=Nnd9. For

f r r
n=l , Jsin N9 (v(§-9)-v(§) )d9/9 = J 191^5 + J 101^6 = Io + Ioo •

Here we get (with w(9) = (v(?-9)-v(^))/9 )

|IOI 6̂II V|| oo, Ioo4(( w ( 6 ) c o s ( N e )l9=-6 + J|0|^6co s ( N e ) w|9( e ) d e )-
The latter gives 1^ <L ~^( ||v|| ^ ||v'|| ^ , with a constant c, only

L L

depending on the volume of supp v, i.e., it is fixed after fixing

v . The estimates imply the inner integral to go to 0, uniformly
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as xE ln. For uE L1 the Lebesgue theorem then implies the left

hand side of (1.12) to tend to 0, as N-*» , for each fixed vE CQ .

For general n the proof is a bit less transparent, but remains

the same: Split the inner integral into a sum of integrals over a

small neighbourhood of 0 and its complement. In the first term use

differentiability of v; in the second an integration by parts.

We now have a 'polarized' Parseval relation, in the form

I - ( - i(1.13) J £xuA vA = J #xuv , for u E L , v E Cn .
Rn Rn u

For u E L HL pick a sequence u.SCQ with ||u-u.|| ,-> 0, ||u-u.|| + 0,

as is possible. Then, since u .-U..E C™ C L , (1.13) with u=v=u .-v.

implies ||u .A-u A || =||u.-u,|| o-> 0, j,l •* oo. in other words, u. and
3 -1 IT J L IT 3

u .A both converge in L . Clearly, u .A •» uA . Indeed, initially we

showed uniform convergence over Rn, while the L2-limit z=lim u.A

satisfies (uA ,cp)=J zcpdx for all cpE Ĉ 5. This yields J (uA-z)cpdx=0 for

all such cp, hence u =z (almost everywhere), since CQ is dense in

L2 . Substituting u=v=u. in (1.13), letting j-*», it follows that

(1.8) is valid for all u E L PL , confirming Parsevalfs relation.

Clearly (1.13) also holds for all u,vE L1 HL2 . We use it to

prove the Fourier inversion Let n=l. For vE L1 HL2 , u=Xr0 Xo 1 '
 s o m e

xo>0 apply (1.13). Confirm by calculation of the integral that

(1.14) (2JT)1/2UA (x) = (e~ixXo- l)/(-ix) = hXo (x) , x ^ 0 ,

hence

J(1.15) J v(x)dx = J^xvA(x)hY (x)dx
o Xo

The Fourier inversion formula is a matter of differentiating

(1.15) for xo under the integral sign, assuming that this is legal

Consider the difference quotient:

.+6I"
Xo -6Assuming only that v , vA both are in L , it follows indeed that

(1.17) lim6^0(26)"
nJQ v(x)dx =JjZxvA (x)eixXo= (vA)v(xo), Xo E *n.

(Actually, our proof works for n=l , xo > 0 only , but can easily

be extended to all xo , and general n . One must replace the deri-

vative d/dxo by a mixed derivative dn/(dxo ̂ ...dxon). ) Indeed,
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letting 6-»0 in (1.17) we obtain (1.15), using that sin(6x) /(Sx)

-> 1 uniformly on compact sets, and boundedly on 1 , as 6-»0 .

If v is continuous at xQ then clearly the left hand side

of (1.17) equals v(xo ) , giving the Fourier inversion formula, as

it is well known. For n=l, if v has a jump at xo then the left

hand side of (1.17) equals the mean value (v(xo+O)+v(xo-0))/2 .

Again for n=l a limit of (1.16), as 6->0 exists, if only

f
(1.18) l i i rW> J v* (x)j!x .

-a

the principal value, exists (cf. pbm.6), without requiring vAE L1 .

We summarize our results thus far:
Proposition 1.1. The Fourier transform uA of (1.1) and its com-

__ 4 _

plex conjugate uv =(uA ) are defined for all u E L (1 ) , and we

have uA , uv e CO(£n) . For u 6 L1(ln)HL2(ln) we have Parseval's

relation (1.8) . If both u £ L^l11) and uA £ L1**11) hold, then we

have uAV (x) = uvA (x) = u(x) for almost all x £ £n .

It is known that the Banach space L (ln) is a commutative

Banach algebra under the convolution product

= J£yu(x-y)w(y) = j

(1.20) ||w|| rJ|w(x)|dx * KJdxjdy|u(x-y)
L

(1.19) u*v = w , w(x) = J£yu(x-y)w(y) = j£yv(x-y)u(y)

Indeed,

r j | | | = K ||U|| {\\V\\ { .

L L L

Prop.1.2, below, clarifies the role of the Fourier transform F for

this Banach-algebra: F provides the Gelfand homomorphism.

Proposition 1.2. For u,v EL 1 let w = u*v . Then we have

(1.21) wA (5) = uA (̂ )vA (?) , § E * n .

Proof. We have

The substitution x-y=z , dy=dz thus confirms (1.21), q.e.d.

The importance of the Fourier transform for PDEfs hinges on

Proposition 1.3. If u ( ^ E L 1 for all P* a then

(1.22) U ( Q ) A(£) = ilal§V(£) , § E ln .
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Proof.Partial integration gives Jdxe~lx^u(ct)(?)=(-l)'a'

(with vanishing boundary integrals), implying (1.21), q.e.d.

Given a linear partial differential equation

(1.23) P(D)u = f , P(D) = J *J% ,

where fe L 1 ^ 1 1 ) , D =-id , one might attempt to find solutions byx. x.

taking the Fourier transform. With proper assumptions (1.21) gives

(1.24) P(?)u* (?) = f* (?) .

Assuming that e = (•=-;—r)v exists, (1.24) will assume the form

(1.25) u* (?) = e* (?)f* (?) ,

which by prop.1.2 (and Fourier inversion) is equivalent to

(1.26) u(x) = Jjaye(x-y)f(y) .

Presently, (1.26) can only have a formal meaning, since nor-

mally (1/P)^ L1 , or f ^ L1 , or u£ L* , in practical applications.

However, as to be discussed in the sections below, the Four-

ier transform may be extended to more general classes of functions

and to generalized functions. Then (1.26) yields a powerful tool

for solving problems in constant coefficient PDE's (cf. sec.4).

Problems. 1) For n=l obtain the Fourier transforms of the

functions a) (a +x )~ , a>0; b) (sin2ax)/x2, a>0; c) 1/cosh x .

-ax2

2) For general n obtain the Fourier transform of e , o>0 .

3) Obtain the Fourier transform of f(x) = (l+|x|2)"v, where v>n/2

(Hint: A knowledge of Bessel functions is required for this pro-
1 1 .

q p
blem). 4) Construct a function f(x) E L 1 ^ 1 1 ) such that fA £ L1

5)The Riemann-Lebesgue lemma states that fA E CO whenever f E L

Is it true that even f* (x) = O((x)~E) for each f E L1 with some

£>0 ? 6) Combining some facts, derived above, show that, for n=l,

every piecewise smooth function f(x) E L (R) has a Fourier trans-

form satisfying f(x) = O(l/x) , as |x| is large, and satisfying

(1.27) (f(x+0)+f(x-0))/2 -liaaHKX) J plye-^f* (y) , x £ 1

Here •piecewise smooth1 means, that 1 may be divided into finitely

many closed subintervals in each of whj

changing its value at boundary points.

many closed subintervals in each of which f is C , possibly after
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2. Fourier analysis for temperate distributions on R .

We assume that the reader is familiar with the concept of

distribution, as a continuous linear functional on the space

D(£ n) = C^(£ n) . A linear functional f :D -> «D is said to be conti-

nuous if (f,cp.)-»O whenever cp.-K) in D. The latter means that (i) f .

E D, j=l,2,..., (ii) supp (p .G KCC l n , K independent of j , (iii)

sup{ |qr '(x) | : x E R n} •» 0, as j-*00, for every a. The space of dist-

ributions on fcn is called D'=D'(fcn). The space L 1 ^ ^ * 1 1 ) of local-

ly integrable functions is naturally imbedded in D1 by defining

(2.1) <f,cp> = Jf(x)cp(x)dx , for fe L 1 ^ .

The derivatives f(a)=a^f of a distribution f E D« are defined by

( 2 . 2 ) < f < a > , c p > = ( - l ) l a l < f , < p < a > > , cp ED ,

the product of a distribution f E D1 and a C°°(Rn) function g by

(2.3) <gf,cp) = <f,gq>> , cp E D .

Thus Lf is defined for any distribution f6D'(Rn) and linear dif-

ferential operator L=^a d" with coefficients a (x) E C°°(£n) .
CX X CX

While the value f(x) of a distribution at a point x is a

meaningless concept, one may talk about the restriction f|ft of fE

D'(R n) to an open subset a , and its properties: First of all, the

space D'(fi) of distributions over ft consists of the continuous lin-

ear functionals on D(a)=C?(n), with continuity defined as for £ n .

For f E D ' ( f c n ) , the restriction f\D(n) defines a distribution of

D'(ft), denoted by f|ft. Thus, for example, it is meaningful to say

that f E D ' ( l n ) is a function (a Ck(ft)-function, etc.) in an open

set ftC l n - it means that f|ft has this property. For a distribut-

ion f E D1(ft) on an open set the derivatives and product with g E

C (ft) is defined as in (2.2) , (2.3) . The support supp f (singu-

lar support sing supp f) of f E D 1 is defined as the smallest clo-

sed set E (intersection of all closed sets E) such that f=0 (such

that f is C ) in the complement of E .

The concept of Fourier transform can be generalized to distri-

butions on £ n , with multiple benefit: Some non-L1 -functions will

get distributions as Fourier transforms. Certain distributions

will get functions as Fourier transforms. The Fourier inversion

formula and many assumptions (limit interchanges) will simplify.
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We used the Fourier integral of (1.1) only for ueL'(l n).

It is practical to introduce a growth restriction for u£D'(l n) if

we want uA to be a distribution again. Later on (sec.3) we also

define uA for general uE D% (fcn) , but it no longer will be a dist-

ribution in D»(fcn). We follow [SchWj] here, but [GS] in sec.3.

The growth restriction is imposed by requesting that uE D1

allows an extension to a larger space of testing functions called

5. Here 5 - the space of rapidly decreasing functions- consists of

all (pE C°°(fcn) such that for all multi-indices a and k-1,2,...,

(2.4) q>(C°(x) = 0((x)'k) .

- the derivatives of cp decay faster than every power (x) ~

Note that, equivalently, we could have prescribed that for eve-

ry a one (and the same) of the following conditions be satisfied:

(x) ku ( a )(x) (for every k=l,2,..), or x^u(a^(x) (for every (3),

(2.5) or (xl\i(x))(a) (for every P), is 0(1) , or is o(l) , or is

CB , or CO , or L , or L p (for some l^p^oo) .

Indeed, for a given a one of these conditions may be weaker

or stronger than the other. However for all a simultaneously all

conditions are equally strong. One must use Leibniz1 formula to

handle interchanges of d^ and multiplications (cf. lemma 2.8).

The above at once gives the following:

Theorem 2.1. We have SC L1 (T5Ln), so that u* of (1.1) (and uv ) are

defined on 5. Moreover, for uE 5, we have uA , uv E S, and

(2.6) (uA y (x) = (uv )A (x) = u(x) , x E Rn .

The Fourier transform and its conjugate therefore define bijec-

tive linear maps S +*S , inverting each other.

Proof. Using repeated partial integration and xae~ix^=ilald?e~lx%,

kS get

•x^u(x) , hence

(2.7) ( x u )A (<|) = 1

In fact, we get x'u^a' E L , for every a,p , by the equivalence
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(2.5) , for u E S . Therefore the right hand side is in CO , for

every a,p , so that u AE S , again by the equivalence (2.5). Thus

we get uA E S for all u E S . Similarly for l|v " . Also, the Fou-

rier inversion formula holds for u E S , and the left hand side of

(1.17) equals v(x). This implies (2.5), also by taking complex

conjugates. The bijectivity then follows at once, q.e.d.

Following Schwartz we introduce distributions with controlled

growth at infinity - so called temperate distributions - over ft=!n

as continuous linear functionals over 5. The space of all tempera-

te distributions is denoted by 5'. Clearly, 5 DD , so that a func-

tional u over S induces a functional over D - its restriction u|D.

Definition 2.2. A sequence of functions cp. E S is said to converge

to 0 (in S) if for every multi-index a and k = 0,1,2,... the

sequence (x) (p. a'(x) converges to zero uniformly for all x G I

Definition 2.3. A linear functional u over S is said to be conti-

nuous if cp.E S , cp .-> 0 in 5 implies (u,cp.) -> 0 .

Temperate distributions are distributions. More precisely

speaking: For uE 5' the restriction u|D determines u uniquely, and

u|DED'(E n). To confirm this we must prove:

Lemma 2.4. a) If cp .E D, cp .-> 0 in D, then we also have cp .-* 0 in 5.

b) For cpE S there exists a sequence cp .E D such that cp-cp .->0 in S .

From lemma 2.4 it follows that for uE 5' the restriction v=

u\D is continuous over D : If cp ,->0 in D , then cp.->0 in 5 (by (a)),

hence (v,cp.) =(u,cp.) ->0. Hence vE D1 . Furthermore, if u, w G S 1 have

u|D=w|D=vE D1 , then for cpE 5 let cp . be a sequence of (b) above.

Get u-wE S* , (u-w, cp-cp.) ->0. Hence 0=( u-w,cp .) =( v-v,cp .)-»(u-w,cp) , im-

plying that (u,cp) =( v,cp) for all cpE S, or u=v, so that indeed uE S1

is uniquely determined by its restriction v=u|DE D1 .

Proof of lemma 2.4. (a): If cp.E D, cp.-»O in D then supp cpS0^ C KCC

lfcn, while the functions (x) are bounded in K. Thus the uniform

convergence (x) cp. a^(x)-»0 in Rn follows from the uniform conver-

gence cp.^a^(x)-*O in l n , and we have cp.-» 0 in 5, proving (a).

To prove (b), let %(x)E C^(ln) satisfy x ( x ) = 1 near 0. For a

cpE 5 define cp . (x)=cp(x)x(x/j), j=l,2,... , so that cp .E D. Setting

co. (x) = l-x(x/j), get xp .=cp-cp .=cpco.=0 in |x|<;l for large j. Note,

(x)kipja) is a linear combination of 6. .=( x) kcp(|3)co.(Y ), p+y=a ,

where sup{ | 6p ' ̂ (x) | :x 6!n} =s sup{ |CO.(Y ) \ }sup{( x) kcp(P): |x|^l} .

Since cpE S the second sup at right goes to 0 as l-*o° (i.e., as j-*00).

Also, sup{ |co.^ ̂  |}=j"'Y 'sup{co(x) :xE !n}<s c. Thus \[>.->0 in 5, q.e.d.
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Note that polynomials, and delta functions 6'a'(x-a) are ex-

amples of temperate distribution. However, e x £5(1) (pbms.2,3).

To generalize F we still require the following.

Corollary 2.5. The transforms F and F both have the property that

cp .E 5 , cp .-» 0 in 5 implies Fcp .-> 0 Fcp .-> 0 in 5 .

It is sufficient to prove this for F. Again we need an equi-

valence like (2.2), now for the property fcp.-»O in 5' :

Proposition 2.6. Let cp .E 5 , j=l, Then *cp .-> 0 in 5 f is

equivalent to each of the following conditions:

<x)Vj ( a ) * 0 , or x(V.(a) - 0 , or (xV.) ( a ) * 0

(2.8) for all multi-indices a , (3 , or k=0,l,2,..., in one (and

the same) of the norms of CB(ln) or Lp(ln) , l^p^oo .

For the proof cf. lemma 2.8.

Using prop.2.6, lemma 2.5 is a matter of (1.2), and (2.7).

Indeed, if cp.-» 0 in 5 , we have ||x̂ cp.̂ a'|| f-» 0 , j -> <» , hence
3 J L

|| (xacp .A ) ̂ ' IICB"* ° ' i mP l vi n9 <P-jA "* ° ' q.e.d.

For a given u E 51 , observe that uA , defined by

(2.9) (uA ,cp) = (u,cpA) , cp E 5 ,

defines a functional in 51 , since cp.-> 0 in 5 implies cp .A -> 0 in 5

(by cor.2.5) , hence (u,cpA) -> 0 . If u E L^l11) then it follows

that u E 51 (cf. pbm.3). In that case we have

(2.10) (u,cpA) = j£xu(x)J^cp(§)e~ ix^ = (J^e" ix^u(§),cp) , cp E S ,

by Fubini's theorem, since the integrand is L1 (1 ). Thus, for uE

L1 , (2.10) implies that the functional (2.9) coincides with that

of the Fourier transform uA of (1.1). Accordingly, for a general u

E S 1 we define the Fourier transform uA as the functional of (2.9)

and the conjugate Fourier transform uv by

(2.11) <uv ,cp) = (u,cpv> , cp E 5 .

It is clear at once that we have

Theorem 2.7. The (conjugate) Fourier transform coincides with the
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(conjugate) Fourier transform previously defined for L -functions

(cf.(l.l), and (1.7)) . We have the Fourier inversion formula

(2.12) (uA )v - (uv )* - u , for all u e S1 .

Also, for u G S1 we have x ° u ^ G S1 , and (2.7) holds as well.

Prop.2.6 and (2.2) follow from the (evident) lemma, below.

Lemma 2.8. a) We have (using Leibniz1 formula and its adjoint)

with finite sums and constants c n , d «

b) We have

(2.14) |xa|s(x) lal , and (x)k<;c. Y |xa| with a constant c, .
k |af** k

c) We have

(2.15) ||u|| p s | |(x>"k | | p | | (x>ku| | ^ , Up<oo , k>n/p .

d) We have
| | | | ^ | | M I ^ | | ( | | ) M I ^ 2 I

(2.16) L L1 L |a|<m+l

2 l l (u ( a ) )MI oo^ c 2 H u ( a ) |
| | l | | l

Problems: 1) Show that the following functionals define distribu-

tions in D'(fcn): a) (f ,cp> =cp(a) (x° ), for given multiindex a and x°

6 1 ; b) (f,cp)= J (p(x)dS, dS=surface measure ; c) (p«v.—,(p) =
I x ] 1

lim J cp(x)|^ (for n=l). 2) Obtain the first partials of the

distributions of pbm. 1. 3) Show that distributions f±GD'(fc) are

Too
defined by < f±,(p) =lim£^0 £ > Q J cp(x)x|fi . Relate f± with p.v.l of

— 00

pbm.1. 4) The distribution derivative satisfies Leibniz1 formula

and its adjoint (cf. [Ci ],1,(1.23)). 5) Show that a distribution f

GD«(^) with f(ct)GC(ft), |a|*k is a function in Ck(ft). 6) Let L^

be the class of all uG L 1^^* 1 1) with (x)"kuG L1 (ln) for some k=

k(u). Show that L1
 X C 5'. 7) Show that p(x)= 2 a ax

a G L^ol

^ | a \\«sm "
1 1

5».
| \

Also that CB(ln)C L 1
Q 1 , and L

P(ln)C L 1 ^ , Up^oo. 8) Show that e a X
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e D'(fc), but e a x£ S», as Re a ^0. 9) Let T be the class of all

C°°(ln) with a*a' (x)=0(( x) a)

that differentiation and multiplication by ae T x leaves S1 inva-

n ( a )

riant. That is, for u6 5' , aG T lt ctE z" we have auE S1, u E

5' . 10) Obtain the Fourier transform of the following distribu-

tions (If necessary, show, they are in S 1 ) : a) xa, a E 2^; b)

aE C°°(ln) with a*a' (x)=0(( x) a ) , for some k QE 1, for every a. Show

x</ + a G *n- U ) o b t a i n (P-v.l)A
 f for the dis-

tribution of pbm.l. 12) Define a distribution P* v- Si n n x
 E 5 > '

using the same kind of 'principal-value integral1 as in pbm 1.

Calculate (p.v. • « )A . 13) Obtain the Fourier transform of a
sinn x

2Jt-periodic C (1)- function a(x). Hint: Use that a(x) has a uni-

formly convergent Fourier series a(x)=2 ™a e , a =«-. I ae dx
-oo m m 2* Q

14) Let f(x)=|sin x| . Show that fE S» and evaluate f* .

3. The Paley-Wiener theorem; Fourier transform of a general u G D 1 ,

The support of a distribution uE D1 was defined as smallest

closed set Q with u=0 in £i\Q. We now consider u with supp uCC ft.

A simple but important remark is that a compactly supported

distribution uE D'(ft), as linear functional over D(ft), admits a

natural extension to the larger space E=C°°(ft). (The notation was

introduced by Schwartz again.) Indeed, for a given x ( x ) ^ c^(^)

with x(x)=l near supp u, define the extension of (u,.) to E by

(3.1) (u,cp> = (u,xcp) , for all cp E E(a) - C°°(ft) .

This defines an extension: if cpED(ft), then (l-x)cpE D(a), and

supp (l-x)cpC supp (1-x) is disjoint from supp u, hence (u,(l-x)(p) =

0, or, (u,cp) =(u,xcp) . The extension is independent of the choice

of x- I f 6E D(ft) has the property of % then x-x=0 near supp u, =>

(3.2) (u,9cp) = (u,xcp) , for all cp E E(n) .

The class of all distributions uGD'(ft) with compact support

is commonly denoted by Ef(ft). We have seen that E'(ft) is naturally

identified with a class of linear functionals on the space E(ft).

Proposition 3.1. The set E1(ft) of all (above extensions of) com-

pactly supported uED'(ft) coincides with the set of continuous lin-
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ear functionals over E(a) (i.e., the functionals u over E(si) such

that ip.GE, cp ,-K) in E implies (u,cp.)-»O). Here cp.-»() in E means that
(a) J J J J

<p_! (x) •* 0 uniformly on compact sets of ft, for all a .

Clearly the extension (3.1) to E of uE D' with supp u CO Si

is a continuous linear functional over E, in the above sense: If

cp.G E, cp.-» 0 in E , then x̂ -;"* ° i-n D> a s a consequence of Leibniz1

formula. Vice versa, for a continuous linear functional u over E

the restriction v=u|D is a distribution in D1 , since (p.GD, cp.->0

in D trivially implies cp.-» 0 in E. Prop.3.1 follows if we can

show that supp v CEft. Suppose not, then a sequence of balls B .

may be constructed such that u*0 in B., while every set KCC Si isj' jdisjoint from all but finitely many of the BJ. Construct cp.E D ,

supp cp.C B. with (u,cp.)=l . Observe that cp .-* 0 in E while (u,cp.)

=1 does not tend to zero, a contradiction. Q.E.D.

For a compactly supported distribution on Rn we always have

a Fourier transform in the sense of sec.2, i.e.,we get E'(ln)C S1:

Theorem 3.2. All compactly supported distributions over l n are

temperate. Moreover, for u G E ' C S 1 , uA is a C°°-function given by

(3.3) u* (x) = J^e"ix^u(?) = (u,ex) , ex(§) = e"
ix§ ,

with a distribution integral, given by the third expression (3.3).

In fact, the function uA (x) is entire analytic, in the n

complex variables x., in the sense that v(z)=(u,ez), ez(x)=e"
lzx,

is meaningful for all zE ffin, (not only l n ) , and defines an exten-

sion of uA of (3.3) to ffin having continuous partial derivatives in

the complex sense with respect to each of the variables Zj,...,z .

Note that formula (3.3) is meaningful only by virtue of

our extension (3.1) of u £ E ' to all of E .

Proof. For uE D f(l n), supp u CC ln, the natural extension to E may

be restricted to 5 again to provide a continuous linear functional

on S, since "cp.-* 0 in S " implies "cp.-»O in £". Hence uE 5f . The

function v(z) indeed is meaningful for all zE ffin. Existence of

dv/dz . is a matter of the continuity of the functional u over E\

For a fixed z , h E ffin, form the difference quotient

(3.4) wg = (v(z+Eh)-v(z))/e = (u'

For the directional derivative V he z of e z at z , we get

(3.5) % = (e z + s h- ez)/6 - V he z * 0 in E ,

Indeed, this only means that d̂ ipe-* 0 uniformly on KOI l
n, as rea-

X c



16 0. Introductory discussions

dily verified for e (^). Continuity of u then implies

(3.6)

confirming that v(z) is analytic for all z. Formally we then get

(3.7) <uA,cp> = ( u j

with v(x) as defined, where the interchange of limit leading to

the second equality remains to be confirmed. Clearly (3.7) implies

uA =v, i.e., (3.3) and thm.3.2 follows. For the interchange of

limit show existence of the improper Riemann integral J*$;efcCp(§)

in the sense of convergence in E: For KCC l n we must show that

)-Sk->0 in E, as k-><». Here S^ is any sequence of Riemann

sums, with maximum partition diameter tending to 0 as k->°°. Also,

that J ^et<P(^)-*O, as K runs through a sequence K. with LK.=l
n,

Rn\K * ^ D

again, with convergence in E. Again, convergence in E just means

local uniform convergence with all derivatives. One confirms easi-

ly the local uniform convergence in the parameter x , since the

function e^(x) = e""lx^ is continuous. Similarly for the x-deriva-

tives, again continuous in x and § . This, and the fact that the

x-derivatives of the Riemann sums are Riemann sums again, indeed

allows to confirm the desired convergences. Q.E.D.

As examples for Fourier transforms of compactly supported

distributions we mention those of the delta-function and its

derivatives. As seen in 2,pbm.5 we get 6Q'
a'A = i'a'Knx

a . In fact,

this is an immediate consequence of (3.3), above.

We observe that the entire analytic function uA (z) of (3.3),

as a function of complex arguments z , has a growth property which

characterizes the Fourier transforms of compactly supported distri-

butions. The result is called the Paley-Wiener theorem.

Theorem 3.3. An entire analytic function v(z) over ffin is the Fou-

rier transform of a compactly supported distribution uGD'(l n) if

and only if there exists an integer k > 0 and a real Y\>0 such that

(3.8) v(z) = O ^ z ) 3 ^ ! 1 * 1 z |) for all z e ffin , ( z) = ( 1+21 z .. | 2 ) 1 / 2 .

Moreover, the constant r| may be chosen as the radius of the

smallest ball |x|=sr containing supp u . Furthermore, uE D(ln) if

and only if (3.8) holds for all k with ri=max{ | x | : xE supp u} .
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Proof . For u E E' we must have

( 3 . 9 ) |(u,cp) | * c s u p { | ( p ( a ) ( x ) | : x E K , | a | * k } .

for some c, k, and some compact K D supp u and all (pE E, Otherwise

for every c=k=j and |x|<;j there exists (p=cp .E E with (u,cp.)=l , and

">" holds in (3.9). Or, |cp^a)(x)|<s i f or all | ot | =s j , |xf^j , j=l,

2,... , implying uniform convergence cpjj (x)-> 0 ,j->°° , a contra-

diction, since l=(u,(p.) does not tend to 0.

We get uA (z)=(u,xzez) ^ XZ=X( I z I ( |x|-r|)) where x^ C°°(t) ,

X(t)=l , t<j , =0, t>l , x decreasing. It follows that supp x z ^

{|x|^Yi+r~r} so that (Xzez)
(a)(x)= Ofe*1'Imz' + 1( z) k ) . Combining this

with (3.9) we get (3.8) with the proper constant r) .

Next assume uE C^(ft). We trivially get (3.9) with k=0 and K=

supp u CC ft, since uE L . Similarly for u^a' . Accordingly, for all

a we get | zauA (z) | = |(u,e(a)) | =O(er] IIm z I ), hence (3.8) for all k.
z

Vice versa, (3.8) for all k implies xav|ln6 L'C S 1. Then vv

is given by the conjugate Fourier integral. We have u=(v|ln)vE CO,

and even u ( c t )GC0, i.e., u6C°°(In). To show that supp U C H Rn write

(3.10) u(x) =

If 6 E 3fcn is given arbitrary then we also may write (3.10) as

(3.11) u(x) =

Indeed, this is a matter of Cauchy's integral theorem, applied for

a rectangle in the complex t, .-plane with sides Re t, .=±A, Im £ . =0

or 8.. In such a rectangle the integrand elx^v(£) is holomorphic

as a function of £ . for constant other variables, so that the com-

plex integral over the boundary vanishes. For A-><» the integrals

over Re £.=±A, 0<Im £-;<0-w tend to zero, in view of (3.8) for k=-2

for example. The integration pathes have length 9. and the inte-

grand is 0((A)~2e(ri"x) '9I ). The integral (3.10) may be written as

n-fold iterated integral over 1. The above proceedure allows the

transfer of the integration from 1 to the line {§ .+i0 .: x.E 1} .

Next let us estimate (3.11):

(3.12) u(x) = (

s e t t i n g k=n+l ( i t ho ld s f o r every k ) , and us ing t h a t (£+i6) s= (§)
The f Q ( . ) - c o n s t a n t 1 i s independent of 6 . Hence we can s e t 6=tx ,
t > 0 , f o r u ( x ) = 0 ( e t ' x l ( r l ~ l x l ) ) # T h e exponent i s <0 as |x |>r | , and
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u(x)=0 follows. Thus supp uC {|x|s;ri}, uE D, if (3.8) for all k.

Finally, if (3.8) holds for some k, let %(x)E D, supp x C

{|x|*l}, x(*)*0, /x(x)£x=l. For 8>0 let xE(x)=£"
nx(f). Note that

X8
A (?)=XA (e?)-*XA (0) = l, as e-K). Moreover, for any cpE 5 get (px£

A-cp-*O

in 5. Since supp x 8
c { I X N £ } w e have (3.8) for xE

A (£) with r\ rep-

laced by e for all k. Hence the product v(z)x8
A(z) satisfies (3.8)

with Y] replaced by r\+z again for all k. It follows that vxE
A=uE

A

with u ge D, supp u gC { | x| ̂ ri+e} . Also (u£ ,q)}=<ug
A ,cpv }=( v,xE

A cpv >

-» (v,(pv)=(u,cp> , for all cpE 5. The latter implies that supp uC

{ |x|^r|+8} , all e>0. It follows that u £ E , supp uC {|X|^YI}, q.e.d.

Let Z denote the space of all entire analytic functions v(z)

=v(Z|,...,z ) in n complex variables such that for k=0,l,2,...,

and some r\^0 we have (3.8) satisfied. We shall say that a sequence

v. e Z tends to 0 in Z if (i) estimates (3.8) hold with constants

independent of j, and (ii) m .=Max{ | v .(x) | : x E fcn}-*0, as j-»oo.

Corollary 3.4. The Fourier transform F: u •* uA establishes a li-

near bijection D **Z which is continuous in either direction, in

the sense that u.-» 0 in D holds if and only if u .A -> 0 in Z .

Proof. After thm.3.3 we focus on continuity only. If u .-» 0 in D

then supp u. C {|x|<;a} for a independent of j . This yields (3.8)

with Ti=a independent of j, by thm.3.3. Inspecting the first part

of thm.3.3fs proof we also find the O(.) constant independent of j.

Vice versa, if v.-»0 in Z, then (3.8) with r\ independent of j

implies supp u.v C { |x|^T]} . But (3.8), for real z=x, implies v.=

O((x)~ ), uniformly in x and j, for every k. Thus conclude from

cdn.(ii) that ||xav.|| t-> 0, as j-» <». For the inverse Fourier trans-
J L

form u.=v.A we get ||u.^a^|| ̂  0, so that indeed u.-*0 in D. Q.E.D.

Following [GS] we now define a Fourier transform of a gene-

ral distribution f eJ)'(ln) regardless of growth at infinity, as

a continuous linear functional fA :Z-»ffi. Here of course "fA contin-

uous" means that "(fA ,<p.)•»(), whenever cp.-*O in Z". We define fA by

(3.13) <fA ,cp) = <f,cpA> , for all q> 6 * ,

taking into account that q>A = (tip* ) E D for q> E Z .

This definition is compatible with the earlier ones. Indeed,

we have Z C S , in the sense that for uE Z the restriction u|ln

determines u uniquely and is contained in 5 . Moreover, Z is dense

in 5, since Z=DA , and D is dense in 5 while F and F are continu-
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ous maps S+S. Also cp.-»O in Z implies q>.-» 0 in 5. For uE 5f the res-

triction u|Z determines u and we have u | ZE Z•. Hence get a natural

imbedding S'+Z' . For u G S ' C Z 1 we earlier defined (uA ,cp)=(u,cpA)

for cpE S. The restriction uA |z gives our present functional,q.e.d.

Notice that uA , for u £ D ' in general is not a distribution,

as defined in sec.2. It is a linear functional on Z , not on D .

Recall that for a function f E L* (fc) with f=0 in x<0 and

f=O(ecx) , some c, one commonly defines the Laplace transform by

(3.14) f" (£) = J 0xe--"^f (x) , Im £ < -c ,
0

where the integral exists and defines a holomorphic function in

the complex half-plane Im £ <-c (we have modified the standard

definition, by a factor i). The inverse transform then is given by

(3.15) f(x) = J pfce
i

with a complex curve integral along the parallel Im t> = Y <-c •

We now will identify f" with the Fourier transform fAE Z% of

the distribution fE D1 . For cpE D , supp cp C { |X|^TI} , we know that

cpv is entire analytic, satisfying (3.8). For y<-c we have

(3.16) J r(t)<Pv (S)d£ = J jfeef(x) J e " i x V ( t ) « = (f̂ cp) .
Im^=y 0 Im^=Y

The integral dxd|£| exists absolutely, hence the interchange, by

Fubini's theorem. Also, we get J = J_ , at right, by the pro-

perties of the (analytic) integrand. Then (3.16) follows from

Fourier inversion for functions in D. Or, f A 6 Z ' may be written as

(3.17) <fA,cp> = J r(t)<p(z)dfc , cpEZ ,

where we must choose y < -c with c of (3.14) (for f ) .

Thus for a function fE L ioc(*)
 o f exponential growth and =0

in x<0 the Fourier transform fA is given as the complex integral

(3.17) involving the Laplace transform f" of f .

Problems. 1) Obtain the Laplace transforms of the following func-

tions (Each is extended zero for x<0). a) xk k=0,l,..., b) ea x;

c) cos bx ; d) eaxsin bx ; e) sin. x- . In each case, discuss the

Fourier transform - i.e., the linear functional on Z. 2) Obtain

the inverse Laplace transform of a)̂ =====-; b) log(l+^2 ). (In each

case specify a branch of the (multi-valued) function well defined

in a half-plane Im z < y .) 3) For u£ D1(ln) with supp uC {xi ̂ 0} =
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R^ and eCXl ue S' , for some c, show that uA may be defined by a

complex integral like (3.17), with u" replaced by ut" , "!"="*»

with respect to (x2,...,xn). 4) The convolution product w=u*v, so

far defined for u,vE L1 (Rn), by (1.19), may be defined for general

distributions u,v£D'(ln) under a support restriction -for example

(i) if supp uQCI ln, supp v general, or (ii) if supp vC {xi^O},

JJdsupp v C {|x|^cxi} . One then defines {w,qp}=JJdxdyu(x)v(y)cp(x+y),

with a distribution integral (for precise definition cf.[SchWj],

or, [Ci ],1,(8.1)). Show that (1.21) is valid for this convolution

product as well, assuming in case (ii) the cdns. of pbm.3 for u,v.

5) Let TA be the space of all entire functions %{z) satisfying

(3.8) for some k. Show that x°p£ z> f o r $>*= z / X e r
A • Moreover,

show that f£ Z' allows definition of a product %fE Z% , setting

(xf/<p) =( f/X^) / cpE Z . All polynomials p(x) belong to T^ . 6) Show

that (1.22) is valid for general distributions u e D»(£n) .

4. The Fourier-Laplace method; examples.

We now will discuss the 'Fourier-Laplace method1 for 'free

space'-problems of the following constant coefficient operators:

(4.1) A = iJL^x 2 (the Laplace operator) ,

(4.2) A + k2 (the Helmholtz operator) ,

(4.3) H = d v - A - d. - A (the heat operator) ,
Xo u

(4.4) • = aXo
2 - A = a2- A (the wave operator) ,

(4.5) O + m (the Klein-Gordon operator) .

The last 3 operators act on the n+1 variables xQ=t, (x.,...,x )=x.

The first two act on x only, distinguishing Xo from the others.

The discussion around (1.23)-(1.26) was a formal attempt to

solve constant coefficient PDE in free space (in all fcn). We found

e= (p/x\)
v * for a P(D), of special interest. Now we are prepared

to implicate this technique, called the Fourier-Laplace method.

Certain initial-boundary problems may be converted into free

space problems: (a) An initial-value problem for (4.3),(4.4), or
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(4.5) seeks to find solutions u of P(D)u=f in some half-space,

say, t=xo>O, where f is given in t^O, together with initial data

of u at t=0. Such problem may be written as a free space problem

by extending u=0 and f=0 into t<0, letting v and g be the exten-

ded functions. We will not have P(D)v =g then, but, rather, P(D)v

=g+h , with a distribution h, supp hC {t=0}, since normally v will

jump at t=0. The initial conditions on u often are well posed if

they allow to determine h, making the initial-value problem equiva-

lent to the free space problem P(D)v=g+h , where g+h is given.

(b) Another example: If Au=f (A of (4.1)) is to be solved

in a half-space under Dirichlet bondary conditions - say, Au=f in

Xj>0, u=0 as x^=0, then consider the odd extensions of u and f to

fcn: v(x1#... ,xn)=u(x), x^O, =-u(-x1,x2,... ,x n), xi <0, similarly

g extending f. It follows that Av=g in ln, again converting the

half-space Dirichlet problem of A to a free space problem over £n.

Similarly for the Neumann problem, using even extensions.

Technique (a) works as well for a more general initial sur-

face t=0(x) , x £ I n . Both techniqes may be combined to reduce cer-

tain initial-boundary problems to free space problems.

The above will emphasize the power of the Fourier Laplace

method. (4.1)-(4.5) are a crossection of popular PDE's. We control

parabolic and hyperbolic initial value problems, elliptic boundary

problems and initial-boundary problems in half spaces, etc., with

Green's (Riemann) functions, using results on special functions.

From now on interprete the equation P(D)v=g , xE Jfcn, as a

PDE involving distributions v,gGD'(ln). The Fourier transform ex-

ists without restrictions: Using 3,pbm.6, we get P(x)vA=gA , where

vA , g AEZ«. If eeD'(ln) solves P(D)e=(2Jt)n/2S we get P(x)eA=l.

In the cases corresponding to (4.1)-(4.5) we get, respectively,

(4.6) P(x) =-|x|2 , =k2-|x|2 , =it+|x|2 , =|x|2-t2 , =m2+|x|2-t2,

where t=xQ again. Generally, p, . £ L lQC, except for (4.3) and

(4.1), ns£3, due to zeros of P. Some pbm's of see's 2,3 (and, more

generally, [Ci],ll) discuss distributions p.v.a associated to a J

L 1QCJ. P(x)z=l may have many solutions zGD
1 (or E Z»). For (4.3)-

(4.5) we will be interested in z=eA , P(x)z=l, with supp eC {t«sO},

because then supp e*gC {t>0} whenever supp gC {tssO}, so that u=

(e*(g+h))|{t^0} will solve the initial-value problem for P(D)u=f ,

tssO, we started with in (a) above. Indeed, a proper z exists: In

pbm's 1 and 3 of sec.2 we defined P-v.i , and f+ , all 3 distinct,

xf=1. Only f has its inverse Fourier transform =0 for x<0.
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For (4.3)-(4.5) we will construct such eeD'(ln+1) solving

P(D)e=V"2Jin+ 6 , supp e C {t^O}, using the setup of sec.3, pbm.3:

Such e, if ecxeG S1 , will have a Fourier transform in x=(xi ,..)

and a Laplace transform in xo=t. Accordingly we must seek an in-

verse Laplace transform of an inverse Fourier transform of a sui-

table solution z of Pz=l, or vice versa, in appropriate variables.

Our proofs will be sketchy, in part, due to overflow of details.

The lemma below is convenient, due to spherical symmetry of P.

Lemma 4.1. Given a spherically symmetric function f(x)=co(|x|) ,

where co(r) 6 L (1 ,rn" dr). Then the transforms fA and fv are sphe-

rically symmetric as well: fA (x)=fv (x)=x( |x| ), where x(r) a n d w(r)

are related by the Hankel transform J*v , v=^-l. In detail we have

r^'^xCr) -
(4.7)

where

(4.8) H(Mr))(p) - J Vp? Jv(rp) X(r) dr , Re v > -4- ,

0

with the Bessel function Jv(z) . The second formula (4.7) is valid

if in addition x e L1(R+,r
n-1dr) .

Proof. For an orthogonal nxn-matrix O get fA (OS;) = j£xe~lx °

•**f(y)=fA (g). Thus fA has the same

symmetry: fA (§)=x( |S-1 ), with some x(p)« We maY s e t

(4.9) «•<£>-** (I? 1.0 O)-J^c«-iPXl co(r)=K J r" xa)(r)Je iif/6'dS
n 0

where the inner integral I is over the unit sphere |z|=l. Evaluate

this inner integral by converting it to an integral on the n-1-di-

mensional ball \\\2 asl, setting z=(z1#X). We know that dS=^y^? .

With a contribution from the upper and lower hemisphere where zi =

, writing dX=on"2dad2, o=\X\ , etc., we get

-2an-1 J
 1o n- 2

0

A substitution a= sin 6 of integration variable yields

fn/2
(4.10) I = 2 a t J d0 sin " 0 cos(rpcos 0) ,

n " x 0
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with an,i=jv (n-n/2)
 n ~ * t h e area of the n-1-dimensional

unit sphere. Using Poisson's formula ([MOS],p.79) we get

(4.11) J cos(rpcos6) sinn"26 d6 =2n/2"2V£T(£=±)J /t> f(rp) .0 ^ n/̂ -i0

Substituting into (4.10) and I into (4.9) confirm (4.7). No change

if e"ix^ in (4.9) is replaced by eix^ . Thus lemma 4.1 follows.

Recall also (1.26), now under the aspect of 3,pbm.4. In det-

ails, the convolution product v*w of two distributions v,w6D'(In)

may be defined by setting (with a distribution integral)

(4.12) (v*w,(p) = Jv(x)w(y)cp(x+y)dxdy = (v(EW,tp) , ip(x,y)=q)(x+y) ,

for all cpe D(fcn)=Cg(fcn) , if v and w satisfy the support condition

(4.13) K = (supp v x supp w)fl{ |x+y|<;a} is compact for every a>0 .
a

Here supp v and supp w are regarded as subsets of ft of the varia-

bles x and y, respectively (cf. [Schw^] or [Cj], 1,8).

The distribution v=e*g is defined for e as constructed above

whenever g E E1 for (4.1)-(4.3) , and gED»(R n + 1) , g=0 as t<0 ,

for (4.4) and (4.5) , since condition (4.13) holds under these

assumptions. Moreover, P(D)v=g follows, leading to a solution of

the free space problem, and the related initial-boundary problems.

Now let us attempt a detailed construction of the proper e.

la) Consider the operator A of (4.1), i.e., the potential

equation Au=f. For nss3 the function -T^TT is Lr>ol' h e n c e a distri-

bution in S1. This is a homogeneous distribution of degree -2 .

Hence e =- ( i • 2 )
v is homogeneous of degree 2-n . It is also sphe-

II O T\
rically symmetric. Conclusion: e(x)=c |x| , with a constant c .

4 n n

Clearly e E L p o l • The constant cn may be evaluated by looking at

(2Ji)n/2(p(0)=(e,A(p)=: cnJA(p(x) |x|
2~ndx =cnlim£^0 J dS^fj^2"11

=cnan(2-n)cp(0) . It follows that

For n=l we first define a distribution

involving the distribution derivative and p.v.— of pbm.l,sec.2.

We confirm that eA solves -x2 eA =1 . Using e=eA v one finds that

(4.16) e(x) = Vn/2\x\ .
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For n=2 we can d e f i n e ( c f . [ C { ] , 1 1 , ( 2 . 1 1 ) , f o r 1=2)

(4.17) e* j ^ ^ 1 j ^ p j g | | | X i

again with distribution derivatives. However, it is easier to con-

firm directly that

(4.18) e(x) = Kjloglxl

is a spherically symmetric L loc~function satisfying Ae=/2jiS (just

evaluate the integral (Ae,cp) =( e,Acp) , using partial integration).

Ib) Consider (4.2), i.e, the Helmholtz equation (D+X)u=f ,

also known as the time-independent wave equation if X=k >0, and as

the resolvent equation of the Laplace operator A if XE CD,

In the latter case get eA (x) = (X.-|x| 2)'iE C°°n L 1 ^ . An evaluation

of e(x) is possible, using lemma 4.1, as long as n^3 . We get

(4.19) e(x) = Ixl1""/2 I V ' 2 ^ Jn/2-l
(p|x|) •

For larger n this integral ceases to exist. However, it still

will exist as improper integral in the sense of distributions -

fA

that is, as limA_>00 J , where the limit exists in weak convergence

of D» (i.e., (lim.,cp) = lim(.,cp) ). For odd n the Bessel function
Jn/2-l m a v b e e x P r e s s e d bY trigononmetric functions. For example,

in case n=3 we get J 1 / 2(
z) = ^ s ^ g . Or,

(4.20) e(x) ̂ V f j ^ J ^ sinp|x| .

We may write X = K , picking the root K with Im K > 0 . Then

^ sinpr = I J"$!L. sinpr =,4 J " . ^ ^ = -^^ . Hence

(4.21) e(x) =-Vn/2 eiKlXl/|x| .

iKr
(4.21) may be confirmed, noting that e=e /r solves (A+X)e=2it6 .

2 2 1
For K=k real P(x)=k -Ixl vanishes at the set |x|=k, and --.

1 1
is not L 1 Q C . Then look at p.f.(p, T ) . Or else, observe that

(4.22) l i m
8^ 0,E>0

 ek+ie ( x ) = e ( x ) ' e K ( x ) a s e ( x ) i n

in the sense of distributions. This implies that

(4.23) e+(x) = -V£/2e
±ik|xl/|x|
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both will solve (A+k )e=(2n) 6 . The proper sign may be chosen

by imposing a 'radiation condition1 at °° .

For general nss2 we still may evaluate the integral (4.19).

Using a formula by Sonine and Gegenbauer (cf. [MOS], p.105) we get

( 4 . 2 4 ) e ( x ) = - ( T 7 T ) n / 2 " " l K n / 2 t ( K l x D , K2=-X , Re K > 0 ,

with the modified Hankel function K v(z). Again get (4.24) more dir-

ectly, observing that e(x)=y(|x|) solves (A+X)e=0, hence y(r) solv-

es the ODE y"+—y'-K 2y=0. Substituting y=r~vS, v=~-l, we obtain
I K 2

the modified Bessel equation S"+j.S'-(1+^ )6=0, showing that the

only spherically symmetric solutions of (A+X)u=0 in S* are the

multiples of (4.24). A partial integration shows that Je(A+X)(pdx=

cp(x) for all cpE D , fixing the remaining multiplicative constant.

II) In the case (4.3) of the heat equation Hu=u.-Au=f we may
- 1 1

use (4.24): Applying Fx to p- for the second and third polynomial

(4.6) gives the same result, if we set X=k2=-K2=it. That is, K =

e~17l/4Vt, Re K >0, in (4.24) will define F^(~) , and we then

must obtain the inverse Laplace transform.

It is more practical, however, to first obtain F7 (-̂ ).

Note 6(T) = (ix+a)"1 has inverse Laplace transform 8A (t)=V2n;e"at,

Too

J e~ a, =0, t<0 , calculating J e~ate~1Ttdt. For ev=F-1(i) get
0 F

(4.25) ex (t) = (2ji)1/2e"tlXl2 , as t;>0 , eN (t)=0 , as t<0 .

Recall that (e"l xl 2 / 2) v=e"l xl 2^ 2 (in n dimensions), by a complex

integration. Also for the function gQ(x) = g(ax) we get

(4.26) go
v (x) = cTngv (x/a) , a e 1 + ,

as shown by an integral substitution. Choosing a=V2t we thus get

(4.27) e(t,x) = ( ^ ^ e " l
x l 2 / 4 t , teO , =0 , t<0 .

This is the well known fundamental solution of the heat opera

(4.28) Hu = ax u-Au = f , xQ£0 , u(xQ,x) = cp(x) ,

where f,cp are given C^-functions. Setting u and f zero in t<0 to
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obta in funct ions v and g we g e t

(4 .29) Hv = g + 6(t)(E*p(x) = h .

Thus v=e*h , or ,

(4.30) u(t/x)=Kn+1Jx^tjJye(t-x/x-y)f(y) + Kn+1J$aye(t,x-y)cp(y).

Ill) Now we look at (4.4), or, the wave equation

(4.31) u - (d£ - A)u - f .

We apply the Fourier-Laplace method as for (II): The function

(4-32) i" =
has inverse Laplace transform (in t) given by

(and zero for t<0). Looking for F~ of the function (4.33) we can-
1

not apply a Fourier integral, since the function (4.33) is not L .

First set n=2. Writing F~ w=wA for a moment, we have

(4.34) (e,cp> - V 2 ^ (COS,2
 r t ,q)|t

A) =(f,q)| t
A) , q)£ D(l n) , r=|x| ,

using that (cos |x|t)i. = -|x| sin |x|t . Now the inverse Fourier

integral of f= cos2
 r • may be calculated as improper Riemann

integral limA f. . . , although still that function is not L :
A"*̂ r I X I ̂ A

Using (4.7), (4.8) - where v=i , J y(z)=VI
 s^£g Z , for n=3 - we get

^ f r ^ dp . Or,

co(r) - | J sin rp cos pt |£ - i J (sin p(t-r) - sin p(t+r)) |£

= ^{^ sgn(t-r) - | } . Conclusion:
(4.35) e(t,x) =rjr d.H(t-|x|) , as t>0 , =0 , as t<0 , n=3 ,

I x i t

with the distribution derivative d t , and the Heaviside function

H(t)=l, tssO , H(t)=0 , t<0. We are tempted to write dtH(t-|x|) as

6(t-|x|), but then must remember the proper interpretation.

Converting the Cauchy problem for the wave equation,


