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Physics of Crystal Growth

This text introduces the physical principles of how and why crystals grow.
The first three chapters recall the fundamental properties of crystal surfaces at

equilibrium. The next six chapters describe simple models and basic concepts of
crystal growth including diffusion, thermal smoothing of a surface, and applica-
tions to semiconductors. Following chapters examine more complex topics such as
kinetic roughness, growth instabilities, and elastic effects. A brief closing chapter
looks back at the crucial contributions of crystal growth in electronics during this
century. The book focuses on growth using molecular beam epitaxy. Throughout,
the emphasis is on the role played by modern statistical physics. Informative
appendices, interesting exercises and an extensive bibliography reinforce the text.

This book will be of interest to graduate students and researchers in statistical
physics, materials science, surface physics and solid state physics. It will also be
suitable for use as a coursebook at beginning graduate level.
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Preface

In writing a preface, an author is faced with the question: what is this
book of mine? Of course, in the end only the reader will decide what it
really is. The scope of this preface, as of all prefaces, is to say what it was
intended to be.

This book tries to offer a reasonably complete description of the physical
phenomena which make solid materials grow in a certain way, homoge-
neous or not, rough or smooth. These phenomena belong to chemistry,
quantum physics, mechanics, statistical mechanics. However, chemistry,
mechanics and quantum physics are essentially the same during growth as
they are at equilibrium. The statistical aspects are quite different. For this
reason, the authors have insisted on statistical mechanics.

Another reason to emphasize the statistical mechanical concepts is that
they will probably survive. The concepts developed many years ago by
Frank, or more recently by Kardar, Parisi and Zhang are still valid while,
for instance, quantum mechanical calculations of the relevant energy
parameters will certainly evolve a lot in the next few years. We have not
considered it useful to devote too many pages to them, but we have tried
to present the frame in which the data can be inserted, as soon as they
are known.

However, although emphasis is on statistical mechanics, other aspects
are not ignored, even though they may have been treated somewhat
superficially. The reader will find more detailed information in an extensive
bibliography, where all titles are given in extenso, thus making its use much
easier.

This book is mainly devoted to growth, and therefore to non-equilibrium
processes. Nevertheless, we have tried to make it self-contained and to
incorporate some elements of equilibrium surface physics, for instance
the roughening transition and the equilibrium shape. The reader eager to
know more will again find the necessary references in the bibliography.

xin



xiv Preface

The authors are theorists and their book is mainly devoted to theory.
Few details are given on experimental methods, but many experimental
pictures (mostly from scanning tunneling microscopy) show how real
materials do behave. In this domain, too, an abundant bibliography is
available.

Although the responsability for all which is written here-good or bad-
is completely ours, we owe a lot to all those who contributed to our
understanding of the subject. We wish to thank J.M. Bermond, H. Bonzel,
J.-P. Bucher, J. Chevrier, G. Comsa, J. Ernst, J. Frenken, M. Hanbiicken,
J.C. Heyraud, K. Kern, R. Kern, M. Lagally, J. Lapujoulade, J.J. Metois, B.
Mutafschiev and E. Williams, whose experimental works revealed to us all
the beauty of Surface Physics and Crystal Growth-and often contributed
to the iconographic asset of the book. We are also very grateful to D.
Wolf, Ph. Nozieres, R. Kern again, J. Krug, P. Jensen, J. Langer, C.
Misbah, L. Sander, D. Vvedensky and A. Zangwill, who shared with us
some of their secrets. Special thanks are due to P. Politi and M. Schroeder,
whose untiring reading of preliminary versions has been a source of most
valuable suggestions and improvements. A good share of the chapters
on elasticity has much profited from the competence of C. Duport, who
corrected all our formulae, and even explained some of them to us!

We thank and beg pardon to all who are omitted here either for space
or memory limitations. A final thank is due to the people in Cambridge
University Press, and most of all to R. Neal, for waiting patiently for the
completion of this work.
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1
Morphology of a crystal surface

Je ne me persuade paS aisement I can hardly convince myself that

qu'EpiCUre, PlatOll et Pythagore nOUS Epicurus, Plato and Pythagoras

aient donne pour argent comptant leurs have sold us for sound

AtOmeS, leurs IdeeS et leurs NombreS. their Atoms, their Ideas and

IIS etaient trop Sages pOUr etabHr their Numbers. They were

articles de foi de CllOSeS Si in- too wise to found their belief

et Si dSbattableS. on such uncertain and questionable things.

Montaigne (Essais, II, 12)

Twenty five centuries after Democritus, we are now able to see individual
atoms, or at least small groups of them, through a variety of electron mi-
croscopy techniques. The visible atoms are of course those at the surface of
a solid. Even motions at atomic scales can be observed.

It is thus possible to identify the fundamental elements of the morphology
of a surface: terraces, steps, kinks, adatoms, advacancies.

Despite the fantastic progress in surface experimentation between 1970 and
1995, surface physics relies much on theory. The theory of two-dimensional
systems (e.g. surfaces) is fascinating. The transition of a surface at equilibrium
from its high-temperature, rough state, to its low-temperature, smooth state,
has quite unusual features, e.g. no observable specific heat singularity. The
roughness of an equilibrium surface is also extraordinarily weak: a few atomic
distances over several centimetres.



2 1 Morphology of a crystal surface

1.1 A high-symmetry surface observed with a microscope

In 1986, the Nobel Prize for Physics was awarded to Binnig and Rohrer
for the invention of scanning tunneling microscopy (STM). This technique
(Binnig & Rohrer 1987) allows the observation of the atomic structure of
crystal surfaces.

The observation is easier when the orientation of the surface is close to
a high-symmetry direction: (001) or (111) in the case of a cubic crystal.
Such orientations are mostly used in technological applications and will
generally be considered in this book. For such orientations, the microscope
'sees' (Fig. 1.1) terraces separated by steps of atomic height. These steps
are not straight; they contain straight parts separated by kinks. On the
terraces one can see surface vacancies (or advacancies) resulting from

Fig. 1.1. [110] steps on a (001) vicinal silicon face. Terrace width: about 100
A. Note the alternation of steps of different roughness, which will be explained
in chapter 9. Experimental technique: scanning tunneling microscopy (STM)
(Lagally et al. 1990, with the kind permission of the authors).
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missing surface atoms. Certain features (e.g. the alternation of steps with
different roughness) are special characteristics of the material which is
observed, silicon in this case. They will be discussed in chapter 9.

Technical progress has been fast, and STMs exist that can now be
used at very high temperatures (at present, the beginning of 1997, the
limiting temperature seems to be around 1500 K). However, varying the
temperature without upsetting the instrument is quite a delicate matter,
and therefore the STM is not always adequate for the observation of
collective motions on a surface. Indeed, the evolution of the morphology
of a metal or semiconductor surface at room temperature (still the ideal
temperature for most STMs) is very slow, as will be seen in chapter 8.
Other methods of electron microscopy, e.g. reflection electron microscopy
(REM) (Fig. 1.2) bridge this gap, and also allow the observation of larger
scales. Fig. 1.2 is remarkable for the different lengthscales observed in
3 directions: the step height (perpendicular to the surface) is of order
a few Angstroms, while the length of the steps in the image amounts
to hundreds of Angstroms and the distance between the steps is of the
order of one micron. Moreover, several steps can be seen at the same
time, because the electron beam makes a very small angle with the surface

Fig. 1.2. Steps on the silicon (111) face during evaporation by Joule heating. Dark
bands are macrosteps or step bunches, while thin lines are monolayer-high steps.
The origin of the step bunches is discussed in chapter 9. Width: 1 |im (parallel
to the steps). Depth: 35 |am (perpendicular to the steps). Experimental technique:
reflection electron microscopy (Alfonso et al. 1992, with the kind permission of
the authors).



4 1 Morphology of a crystal surface

(grazing incidence). The steps are seen to be smoother than on Fig. 1.1.
This is partly due to the different scale and surface orientation, but it is
also a consequence of the fact that Fig. 1.1 shows the surface of a growing
crystal, and a growing surface is far from equilibrium, as will be seen in
chapters 11 to 14.

Observation of crystal growth at the atomic scale is not always easy,
especially when the crystal grows from the melt or from a solution. Even
in growth from the vapour, it is difficult to control the thickness of the
deposited atom layer. The type of growth used in the case of Fig. 1.1
was molecular beam epitaxy (MBE). An MBE apparatus is shown in
chapter 17. The principle is simple: under ultra-high vacuum conditions,
atoms (single or in molecules) are sent onto the surface, where they
diffuse until they meet a step where they are incorporated. These diffusing
atoms are called adatoms. Free adatom diffusion has clearly a meaning
only on a high-symmetry terrace (between steps). Adatoms are in general
not easily visible by STM, either because their number is too small or
because they move too quickly to be resolved by the instrument. Possible
instrument-induced perturbations should also be mentioned. A scanning
tunneling microscope is essentially a metal tip taken very close to the
surface, from which or to which electrons can flow by tunneling. This is a
rather disturbing device for the surface, and an isolated atom has a great
chance to be strongly perturbed. Isolated atoms can be seen, however, by
another technique called field ion microscopy (FIM) (Ehrlich & Hudda
1966, Ehrlich 1977, Wang & Ehrlich 1991). Indeed, field ion microscopy
allows the observation of the motion of individual adatoms.

Adatoms are already present at equilibrium. Their equilibrium density
(number of occupied sites/number of surface sites) is, according to the
Gibbs formula

(1.1)

Table 1.1. Values of some typical energies (in Kelvin) for four fee
metals (Stoltze 1994)

Adatom energy Wa(001)
Step energy P̂ i(OOl)
Kink energy Wo
Ad vacancy energy (001)
Adatom energy VFa(lll)
Cohesive energy — VFCoh

Ni

8700
2200
1800
8400
11650
51600

K
K
K
K
K
K

Cu

5900
1450
1250
5500
8300
40800

K
K
K
K
K
K

Ag

4200 K
1000 K
950 K
3850 K
6450 K
34400 K

Au

3550 K
750 K
800 K
2900 K
6600 K
44000 K



1.1 A high-symmetry surface observed with a microscope

Fig. 1.3. a) The silicon (001) face after MBE growth at room temperature
and annealing at 625 K. Note the terraces (or 'islands') and the steps. Scale:
800 x 560 A. Experimental technique: STM (Lagally et al. 1990, with the
kind permission of the authors), b) The silicon (001) face after MBE growth
at room temperature, but without annealing. The elongated island shape in-
dicates anisotropy in adatom sticking to steps. Scale: 400 x 400 A. Experi-
mental technique: STM (Lagally et al. 1990, with the kind permission of the
authors).

where 1/jS = /c#T and /c# is the Boltzmann constant. W& is the (free)
energy needed to extract an atom from a step and to make it an adatom.

It is one of the many parameters which are required for a quantitative
description of surface kinetics. In this book, these parameters will be
taken for granted. In principle, they can be obtained from a theory of the
electronic structure, which can be ab initio (Gross 1990, Ruggerone et al.
1997) or make use of simple approximations such as 'tight binding', 'em-
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bedded atom', 'effective medium'... The reader will find details in textbooks
(Desjonqueres & Spanjaard 1993, Lannoo & Friedel 1991, Noguera 1995)
and review articles (Stoltze 1994).

Typical values of W^/ks according to recent model-potential calcula-
tions (Stoltze 1994) are listed in Table 1.1. According to these data, there
is at room temperature, on the (111) face of nickel, about one adatom per
square centimetre, which is a very low density. On the (001) face of Cu,
the proportion of lattice sites occupied by adatoms is about 10~9 at room
temperature, which is still rather low. This proportion is considerably
increased on a growing crystal, as will be seen in chapter 11.

The experimental images displayed in this chapter confirm much older
conjectures. We shall not review the twenty five centuries which elapsed
between Democritus and the Nobel Prize of 1986, but it is worth men-
tioning a fundamental article by Burton, Cabrera & Frank (1951) where
crystal growth was described as a motion of steps at a time where direct
observation of steps (and even less of moving steps) was impossible. This
article will be discussed at length in chapter 6.

What happens if the growing crystal is limited by a perfectly oriented
high-symmetry surface without steps? The answer is given by Fig. 1.3:
new terraces appear, at least temporarily, and therefore steps appear. In
practice, a crystal surface always contains steps for two reasons: first,
because it is not possible to cut it perfectly straight, and second because
a crystal always contains dislocations. A screw dislocation through a

Fig. 1.4. Dislocation and steps on Ag (111) observed by STM (Wolf & Ibach
1991, with the kind permission of the authors.)
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surface is necessarily, for geometric reasons, the origin of a step (Fig. 1.4).
However, dislocation-free surfaces on macroscopic scales can nowadays
be grown for certain materials, e.g. the technologically essential element
silicon.

1.2 In situ microscopy and diffraction

Now that we have a surface microscope, we would like to look at the
surface of a growing crystal as it grows-or, as the jargon demands, in
situ. It is not that easy, however. On one hand, it is hard to imagine
introducing any microscope into a liquid metal or silicon melt! On the
other, even though the use of a microscope is in principle easier during
vapour phase or ultra-high vacuum growth, each different technique has
some specific limitations. Reflection electron microscopy can be used at
any temperature, but the images suffer from the strong foreshortening
effect seen in Fig. 1.2, which limits the ability of seeing small details. Low-
energy electron microscopy (LEEM) does not have this problem, and it
has been used for in situ studies of growth (see Bauer 1992 for a review),
but its resolution is poor (5 to 15 nm) compared to STM. The latter is
limited to not-too-high temperatures by technical difficulties which will be
certainly overcome in the future, and still suffers from a long-but steadily
decreasing-image acquisition time. Some in situ observation of growth has
started showing up in the literature (Voigtlander & Zinner 1993).

More appropriate for in situ observations than microscopy is still diffrac-
tion, i.e. scattering of electrons, X-rays or atoms. In a scattering or diffrac-
tion experiment (we shall use both words with essentially the same mean-
ing), one measures the scattered radiation as a function of the scattering
angle. The analysis as a function of the energy is essential in certain cases,
but we shall not care very much about it in this book. The essential differ-
ence between microscopy and diffraction is that the diffractionist works in
reciprocal space rather than in real space. For a good, three-dimensional
crystal, the diffraction spectrum can be interpreted by any student. In
the case of a reasonably smooth crystal surface, i.e. a two-dimensional
object, the task is already harder. And if the number of imperfections
becomes very large, the interpretation is very difficult. On the other hand,
pictures from a microscope are understandable (after some image pro-
cessing, sure...) by the layman, and can in principle be obtained even for
a non-crystalline material.

1.3 Step free energy and thermal roughness of a surface

At zero temperature, a surface at equilibrium should contain no step.
At low temperature, there are a few adatoms as seen above; there are
fewer pairs of adatoms, whose number (or better, whose density) may
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be obtained by a Gibbs formula similar to (1.1); and smaller yet is the
density of larger clusters. Atom clusters are closed terraces bounded by
steps. The step density (total step length per unit surface) increases with
temperature.

This increase is not easily seen directly by microscopy. Indeed, most
of microscopic methods work best at low temperature, when the surface
does not easily attain thermal equilibrium. The atom scattering or X-ray
diffraction signal does exhibit a dramatic broadening when temperature
is increased (Fig. 1.5). Above some temperature, the lineshape, which is
lorentzian at low temperature, undergoes a qualitative change. One can
for instance measure the 'specular' reflection, i.e. that whose reflection
angle almost equals the incidence angle (speculum is the Latin for mirror).

(a)

(b)

Intensity

370 K 56
70 K

Intensity

Fig. 1.5. Atom scattering lineshape at temperatures (a) below and (b) above TR

=380 K in Cu(115), after Fabre et al (1987b). The reflected intensity is plotted vs.
the deviation 39 with respect to the reflection angle corresponding to the ideally
smooth surface.
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The specular peak (as well as the Bragg peaks) is narrow for a smooth
surface while a rough surface scatters radiation in all directions.

This type of experiment is a quantitative version of everyday observa-
tion. Galileo (1632) was perhaps not the first who noticed the importance
of surface roughness in light scattering, but he was presumably the first
one who realized that light was scattered rather than lost. His problem
was to understand the brightness of the moon, which he compared to a
wall scattering sunlight:

You see the difference between the reflections occuring on the respective
surfaces, that of the wall and that of the mirror: ... Look how the reflection
from the wall scatters to all parts of the opposite wall, while that from the
mirror goes to a single part, not larger than the mirror itself... If you want to
understand all that, you should notice that, for a surface, to be rough means
the same thing as to consist of innumerable small surfaces of innumerable
orientations, and it necessarily occurs that, among them, many have the ap-
propriate orientation to direct the reflected beams to this place, and many to
that place.

The interpretation of diffraction patterns from a hot surface is difficult
(Blatter 1984, Levi 1984, Armand & Manson 1988) because the effect of
atomic vibrations adds to roughness to broaden the reflected beam. It is
however clear, from a quantitative analysis, that the total step length is
greatly increased by heating.

The reason is basically the following. Even if the step energy per unit
length, W\9 does not change much, its entropy increases, so that the free
energy decreases. In order to calculate it, we consider (Fig. 1.6) on the (001)

2L

Fig. 1.6. A step on a surface with a square symmetry, e.g. the (001) face of an
fee metal. For this orientation, the line tension is given by (1.2).
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face of a cubic crystal a zig-zag step, whose average direction makes an
angle of 45° with bond directions. This step orientation is chosen because it
allows a simple, though approximate, calculation. The only configurations
which will be considered are those which result from random walks going
from the left to the right, each step of the random walker being parallel to
a lattice bond, and backward steps being forbidden. This definition may
be complicated, but what it means is clearly suggested by the figure. If the
width of the system in the direction of the walk is uniformly equal to the
bond length multiplied by L>/2, all configurations have the same energy
2LW\. Since there are 22L configurations, the entropy is 2Lln2 and the
free energy per bond is

y = Wi-kBTln2. (1.2)

The free energy per unit length y/a is called the line tension of steps.
Since a, the lattice parameter, is generally chosen as the length unit in this
book, the term line tension will be often employed for y itself.

When y is positive, one has to provide mechanical work to introduce
a step into the surface. If the total step free energy Ly becomes negative,
thermodynamics tells us that one should provide mechanical work to
remove steps from the surface. Thus, equation (1.2) tells us that the
surface undergoes a transition at a temperature TR approximately given
by

This transition is called the roughening transition.

1.4 The roughening transition

As seen above, the roughening transition temperature may be defined as
the temperature at which the line tension of steps vanishes. According to
the experiment (Fig. 1.7) the line tension does vanish at some temperature.
The linear temperature dependence predicted by formula (1.2) is in pretty
good agreement with experimental observation, at least far from TR. Near
TR, the experimental curve bends away from the straight line: one can
wonder whether it is an instrumental effect or a fundamental one. As will
be seen in the next section, it is a fundamental effect. But before discussing
that, we would like to make three remarks.

1) The roughening transition temperature depends on the surface orienta-
tion, i.e. it is different for a (111) and for a (1,1,19) surface. This point
will be addressed in section 1.7.
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Fig. 1.7. Line tension of a step as a function of temperature, as measured by
Gallet et al. in helium (Gallet et al. 1987, with the kind permission of the authors).

2) For a given surface orientation, the step line tension vanishes at the
same temperature for all step orientations, so that TR is independent of
the step orientation. This can easily be proved in the case of a square
or hexagonal symmetry. If a step of orientation x has a vanishing free
energy, the free energy of a step of any orientation y deduced from x by
a lattice symmetry operation also vanishes. But then, a step of average
orientation £ may be obtained as a succession of two consecutive steps
of orientations x and y9 and has therefore a vanishing free energy, apart
from the energy of the kink between the two pieces, which is negligible
for a long step.

3) Formula (1.2) suggests that the step line tension becomes negative
for T > TR. Actually, it is not so, if a step is defined in a model-
independent way. An appropriate definition is to consider a rectangular
sample of sizes Lx and Ly in two orthogonal directions x and y, and
to fix the surface height at the two ends of the sample at z(0) and
z(Lx) = z(0) + bz, respectively. The step free energy is the difference
between the free energies of the system for Sz = 0 and for bz = 1 in
atomic layer units. With this definition, it can be proved that the line
tension is identically zero for T > TR. Actually, the very concept of a
step is not very meaningful for T > TR. In this case, if bz = 1 one can
say that there is a step in the system, but if one looks at the surface
one cannot say where it is.
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1.5 Smooth and rough surfaces

The roughening transition is much more complicated than suggested by the
discussion of section 1.3. Indeed, thermally excited steps are not isolated
objects as suggested by Fig. 1.6, they are closed loops. In this section, we
shall try to give an idea of what a rough surface really is. The reader will
find more details about the roughening transition in the monographies by
Balibar & Castaing (1985), Van Beijeren & Nolden (1987), Lapujoulade
(1994), Nozieres (1991) and Weeks (1980).

As seen in the previous section, the concept of step is not useful above
TR. It is therefore appropriate to characterize roughness in an alternative
way. Consider an infinite surface of average orientation perpendicular to
the z axis. Let (x9y9z) be a point of the surface. The 'height' z will be
assumed to be a one-valued function of x and y9 so that 'overhangs' are
excluded. Let R = (x, y) be a point of the two-dimensional (x, y) space.
We define the height-height correlation function

G(R) = ([z(r) - z(r + R)]2^} . (1.4)

The interest of this function is that it has, if gravity is neglected, two
qualitatively different behaviours above and below TR :

f finite value for T < TR (1.5a)

feG^ = {oo for T>TR. (1.5b)
The finiteness of G(R) at low temperature, in agreement with (1.5a),

results from a low-temperature expansion, whose lowest order will be
derived below. At very low temperature, the surface is flat, except for very
few adatoms, whose density is, as in section 1.2, equal to exp(—pwa).
However, there can be advacancies, whose energy is not very far from
Wa in usual metals as seen from Table 1.1. The probability that z(r) or
z(r + R) is 1 or —1 is therefore 2exp(—p\Va). The probability that both
z(r) and z(r + R) are equal to 0 is 1 — 2exp(—p\Va) and the probability
that both z(r) and z(r + R) are different from 0 and +1 is negligible. The
first term of the low-temperature expansion is therefore

G(R) = ( [ z ( r ) - z ( r + R)]2\ ~ 2 e x p H 8 W a ) (R + 0). (1.6)

Of course, G(0) = 0.
Thus, we have proved (1.5a). It is more difficult to prove (1.5b), and only

a plausibility argument will be given. It is indeed reasonable to assume
that, at sufficiently high temperature, say ksT > W\9 the discreteness of
the crystal lattice becomes negligible, so that the surface height z(x9y)
may be regarded as a differentiate function of x and y9 as it is in a liquid.
Thus, we just forget that we have a crystal, and we write the surface
energy as if it were a liquid. The surface free energy #"Surf of a liquid is
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simply proportional to the surface area, and the proportionality coefficient
a is called the surface tension. Writing za = dz/dxa,

^surf = ° dxdy ^ I +z^ + zj

or, for small fluctuations,

#-surf == Const + °- I j dxdy (z% + z2) . (1.7a)

However, in our world subject to gravity, thermal fluctuations of the
surface have an additional energy resulting from gravity. The effect of
gravity might easily be taken into account in the treatment below TR
and would be found to be irrelevant. It is not so above the transition
temperature as will be seen shortly. The energy of a column of matter of
cross section dxdy, whose ends are at heights z\ and z, is

pgdxdy f CdC = pgdxdy(z2 - z\)/2
Jzi

where p is the specific mass and g the gravity acceleration. The term
containing z\ is constant and will be omitted. The energy excess associated
with surface shape fluctuations and resulting from both gravity and surface
tension is

~\
This quadratic form is readily diagonalized if one introduces the Fourier

transform of z of wavevector q = (qx, qy):

= J-J- / dxdyz(x,y)Qxp(iqx

One obtains then

2

where a = a for a liquid. The notation a has been introduced because,
in the case of a crystal, two different quantities appear, as will be seen
in chapter 2. The variance of zq is easily deduced, and the result (the
so-called equipartition theorem) is

Inverting the Fourier transform, the correlation function (1.4) is readily
obtained as

[z(r)-z(r + R)]2\ =2kBT [^ dqxdqy
 1

1 h Pg
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An order of magnitude may be obtained if the lower limit of integration
is replaced by an appropriate cutoff, below which the numerator is almost
zero. This allows us to replace the cosine by its average value 0, and one
obtains

'[z(r)-z(r + R)]2\« / ° 2nqdq ^ T 9 • (1.11)
^ ' Ji/R pg + aq

If gravity is neglected, which implies R <C \Ja7'pg, (1.11) diverges at
large R as:

- z ( r + R)] {4nkBT/d)]nR . (1.12)

This proves (1.5b). A surface is called rough if Hz(r) — z(r + R)]
diverges as in (1.12), and smooth if there is no divergence, as in (1.6).

Previously, we defined the roughening transition in terms of the vanish-
ing of the step free energy y. We should worry about the equivalence of
the two definitions. In fact, the proof of (1.12) relies on the use of (1.7b).
If the step line tension is positive, equation (1.7b) cannot be true. Indeed,
since the number of steps per unit length is given by \zx\9 we must add to
the surface free energy (1.7b) a contribution of the form

dxdyy\zx\ ,

assuming for simplicity that g = zy = 0. The surface free energy is thus
non-analytic in contrast with (1.7b). If y > 0, the formation of a terrace of
size L requires a free energy which diverges with L. Since this is forbidden,
the function (1.4) is finite for R = 00. Therefore, the roughening transition
can be defined (at least on a high-symmetry surface) either by (1.5) or by
the vanishing of y.

From (1.11), gravity is seen to kill the roughening transition. It is also
seen from (1.11) that gravity is negligible if the length l/q of interest is
shorter than the capillary length

* = }fi/pg. (L13)
The order of magnitude of a is typically the energy of a chemical bond,

i.e. 1 eV per atom. The resulting value of X is a few centimetres, i.e. much
larger than the distance over which equilibrium can be reached at a crystal
surface. For this reason, gravity will be neglected everywhere else in this
book. Note that in the case of water, X depends on temperature but is of
order 0.5 cm as known from everyday life (see next chapter, Fig. 2.1).
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If one wishes to go beyond (1.6) and to determine the next terms of the
low-temperature expansion, one has to know, in addition to the energy
of a single adatom, the energy of a pair of adatoms, of a triplet, etc.
These energies are not known with precision. On the other hand, the
qualitative properties of the system should not depend much on those
details. Therefore, the theory is often done for simplified models. One
of them, called the 'SOS' (solid on solid) model is described in Fig. 1.8.
It belongs to the broad class of 'broken bond models'. In such models,
atoms are supposed to be hard spheres and the energy (counted from
the completely dissociated state) is assumed to be proportional to the
number of bonds between nearest neighbours. If the energy per atom
is counted from that of the ideal, infinite crystal, then the energy of
a particular configuration is proportional to the number of bonds which
should be broken to obtain this configuration from the infinite crystal. The
proportionality coefficient is 2W\ where W\ is the step energy per atom
introduced in section 1.3. The factor 2 appears because, when breaking an
atomic layer into two pieces, one makes two steps.

In a broken bond model, the quantities Wa and W\ introduced previ-
ously in this chapter are linked, on the (001) face of a cubic crystal, by
the obvious relation

W& = 4Wi . (1.14)

According to Stoltze's review article (1994) this relation is satisfied with
an accuracy of order 1% by calculated values for Cu and Ni, while the
accuracy is not so good for Au. Other predictions of broken bond models

Fig. 1.8. The SOS (solid on solid) model. The adatom positions are fixed on a
rigid lattice, and the only degree of freedom is the presence or the absence of an
atom, so that there are no overhangs. Each bond has an energy e = 2W\.
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do not fit reality so well. For instance, in the broken bond model of an
fee crystal, the cohesive energy per atom (energy needed to break the
material into invidual atoms) is 6 times the bond energy 2W\9 so that
its value is 12W\ in broken bond models. The actual ratio predicted by
more elaborate theories (Stoltze 1994) and to some extent confirmed by
experiment, is much larger than 12 (23 for Ni, 28 for Cu, 35 for Ag,
58 for Au). Another prediction of the broken bond model is that the
surface energy per atom (1.14) of a (001) face is 4W\. More sophisticated
approaches (Stoltze 1994) agree with this simple result within 13%: an
astonishingly good success for the broken bond model.

As a general rule, the energy of defects (adatoms, advacancies, steps or
the surface itself) is much lower than the value expected from the broken
bond model. This is due to the fact that the solid has many continuous
degrees of freedom which can be used to reduce the energy. This reduction,
however, is often spectacular.

The SOS model (Fig. 1.8) is a broken bond model on a simple cubic
lattice. A related model is the discrete Gaussian model defined in appendix
A.

Another model, generally used for the theoretical treatment of the
roughening transition, employs the free energy (1.7b) modified by an
additional term y\ COS(2TTZ) which mimics the crystal periodicity.

1.7 Roughening transition of a vicinal crystal surface

Let us come back to reality and ask the essential question, whether
the roughening temperature of a high-symmetry surface occurs below
the melting point Tw If one accepts the crude estimate (1.3) and the
theoretical evaluations of Stoltze (1994) the answer is negative for most
materials. This means that the roughening temperature occurs when the
crystal is in contact with its melt. In the case of semiconductors, the
situation may be further complicated by elastic mechanisms, as will be
seen in chapter 15. All this makes experimentation difficult for any material
except helium, studied by Balibar et al (1993).

However, experimentation is possible on stepped or 'vicinal' surfaces
(Fig. 1.9). A vicinal (001) surface, for instance, has an orientation in the
vicinity of the (001) orientation. We can rightfully wonder what is the
roughening temperature for such surfaces.

An example are the stepped (11 2n+l) faces of metals: copper has been
studied by Fabre et al (1986, 1987a,b) and Ernst et al (1995) using atom
diffraction, and using STM by Giesen-Seibert et al. (1993) and Girard et
al. (1994); nickel has been investigated with X-ray diffraction by Robinson
et al. (1990). These surfaces can be considered as a succession of (001)
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Fig. 1.9. Schematic representation of a stepped (or 'vicinal') surface below (a)
and above (b) TR.

terraces separated by steps (Fig. 1.9). These steps would like to be straight,
since each kink costs an energy Wo- On the other hand, the steps would
like to be equidistant. If they are closer or farther than the average by
one atomic distance, this costs an energy e for each atom of the step. This
energy should be small if the average distance between steps is large. The
kink energy Wo is equal to W\ in the broken bond model, and actually not
very different even within the more sophisticated evaluations of Stoltze's
(1994) shown in Table 1.1. On the other hand, it is larger than e.

It will now be shown that, if e is small enough, a vicinal surface
is rough at fairly low temperatures T < TM, in contrast with high-
symmetry surfaces. The average distance between kinks is about exp(pWo)
atomic distances. In other words, and roughly speaking, the independent
elements of a step are not atoms, but step pieces of length exp(/3Wo)
atomic distances. The interaction energy between these pieces is of order
eQxp(f3Wo). The roughening transition occurs when this energy is of the
same order as the temperature T. The roughening transition temperature
is therefore given by

%-) . (1.15)

This hand-waving argument can be confirmed by an exact calculation
on a special model (Villain et al. 1985).

1.8 The roughening transition: a very weak transition
In fact, thermal roughness is very 'weak' (see problem 1.1). We mean by
that that the surface undulation arising from thermal fluctuations is very
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shallow in comparison with the waves produced by wind on a pool. This
is because the logarithm diverges very slowly in (1.12).

Let us try to imagine people living in a d-dimensional space with
d slightly larger than 3. The dimension of a surface would be d — 1,
in the integrand in (1.11) they would replace qdq by qd~2dq, and the
integral would no longer diverge! In more than 3 dimensions, there is no
phase transition, and d-dimensional scientists would say that a surface at
equilibrium is always smooth. On the contrary, in less than 3 dimensions,
the divergence of G(R) is faster than a logarithm (see problem 1.2).

It is conceivable that a transition which is absent above 3 dimensions
is very weak at the critical dimension 3. We shall see later what this
means, but we first want to see how the roughening transition can be
studied theoretically. The standard method to study phase transitions is
the so-called renormalization group technique. This method was first used
by high-energy physicists, and the idea to apply it to phase transitions
was rather natural. It was the merit of K.G. Wilson to put this idea
into a simple form (Wilson 1983). Wilson's articles generated a cascade of
discoveries in the 1970s, and were rewarded by the Nobel prize in 1982. The
renormalization group method is outlined in appendix B in the case of the
roughening transition, and in appendix J in another instance. In appendix
B, we use the equivalence of a model having a roughening transition
(the discrete Gaussian model) with a two-dimensional electrolyte. This
equivalence (Chui & Weeks 1976) is derived in appendix A. The two-
dimensional electrolyte has a transition, whose renormalization group
treatment was done for the first time in a celebrated paper by Kosterlitz
& Thouless (1973). In appendix B, we present a simpler treatment due to
A.P. Young.

We shall only mention two results of the renormalization group treat-
ment:

i) G(R) diverges at TR as

G(R) = ([z(r) - z(r + R)]2) -> -^ inR . (1.16)
\ / n2

This is formula (1.12), but with a well-defined value of the prefactor,
in which we have explicitated the lattice constant a (usually taken equal
to 1 in this book).

ii) The specific heat does not diverge, and all its derivatives with respect
to T are continuous, in contrast with usual transitions (e.g. at the
Curie temperature of a ferromagnet). The specific heat has therefore
no observable singularity. It has, however a singularity called an essen-
tial singularity-a seemingly strange name (coined by mathematicians,
probably inspired by philosophic language) for an invisible singularity!


