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Preface

The theory of automorphic forms, rightly or wrongly, has a reputation of being
difficult for the student. I felt that there was a need for a book that would
present the subject in a style that was accessible yet based on complete proofs
and revealed clearly the uniqueness principles that underlie the basic construc-
tions. I have been lecturing on automorphic forms and representation theory
at Stanford and the Mathematical Sciences Research Institute since 1990, and
this book is the end result.

The level of this book is intermediate between an advanced textbook and a
monograph. I hope that it will be interesting to experts as well as graduate
students. Its aim is to cover a substantial portion of the theory of automorphic
forms on GL(2). Both the "classical" and "representation theoretic" viewpoints
are covered.

There are significant omissions from my treatment, most seriously the Selberg
trace formula. It has not been my aim to achieve complete coverage of the topics
treated or to write a reference book. I feel that the existing reference material
is adequate, and that it was not feasible to cover any single topic with the
thoroughness I would have liked. I hope that the reader will begin studying the
reference material (such as the Corvallis volume (Borel and Casselman, 1979)
and above all Jacquet and Langlands (1970)) in the course of reading this book.
If I have done my job well, the task of approaching Jacquet and Langlands
should be made easier by the current volume.

I can imagine a useful sequel to this book. A second volume is therefore a
possibility, but not for several years.

I would like to thank William Banks, Antonia Bluher, Aleksandr Brener,
David Cardon, Jim Cogdell, Anton Deitmar, David Feldman, Solomon Fried-
berg, Masaaki Furusawa, Steve Gelbart, Tom Goetze, David Goldberg, Jiandong
Guo, Jeffrey Hoffstein, Ozlem Imamoglu, David Joyner, Chris Judge, Par Kurl-
berg, Annette Klute, David Manderscheid, Greg Martin, Andrei Paraschivescu,
Ralph Phillips, Freydoon Shahidi, Tom Shemanske, Trask Stalnaker, Steve
Rallis, Ken Ribet, Dinakar Ramakrishnan, Julie Roskies, San Cao Vo, James
Woodson - and probably others I've forgotten - for helpful comments, cor-
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viii Preface

rections, discussions, or other feedback. Thanks also to Lauren Cowles of
Cambridge University Press for her interest in the manuscript and for her guid-
ance, to Ellen Tirpak and the staff at TechBooks for their expert treatment of
the manuscript, to Reid Augustin for helping me set up my Linux machine, and
to the MSRI for their help and support during 1994-1995. And thank you, my
wife Kathi, and my parents Kenneth and Ellen Bump, for your support, which
was always there when I needed it most.

Parts of this book were written with the support of the American Mathe-
matical Society Centennial Research Fellowship and grants from the National
Science Foundation.



Advice to the Reader

It has not been my intention to write a reference book on automorphic forms. I
have cut corners in many places. For example, although I treat the representation
theory of GL(2, R) from the viewpoint of (9, £>modules with some degree
of completeness, I ignore GL(2, C) completely. In laying the foundations for
automorphic representations, I have concentrated on the cuspidal representa-
tions and given only indications of what happens with the continuous spectrum.
I do discuss the theory of Eisenstein series but only in so far as necessary for
my limited goals - I want to discuss the Rankin-Selberg method, and I want
to show how the intertwining integrals that pervade the local theory arise from
the constant terms of the Eisenstein series. My proofs of some foundational
results in Section 3.3 are complete only when the ground field is Q. I feel that
despite these omissions, I have been able to treat my subject matter with some
degree of depth.

In some places I have left details to the reader in the form of exercises. If the
result of an exercise is required in the text, I have usually provided enough in
the way of hints that the reader will be able to fill the gaps. Hints are enclosed in
square brackets, sometimes explicitly labeled as such, sometimes not. Some ex-
ercises are trivial and some (those not needed for the text) are genuinely difficult.

Each of the four chapters is itself a complete course. The material of the
four chapters is complementary, but each can be studied on its own. However,
Chapter 3 should be read after Sections 1-4 of Chapter 2. Also, Chapter 3
makes use of results on the representation theory of GL (2, F), where F is a
non-Archimedean local field, whose proofs are postponed until Chapter 4. The
reader may take these on faith during a first reading of Chapter 3. Chapter 3 may
be more difficult than Chapter 4. Some readers will want to start with Chapter 4.

I have tried to write in a style that encourages the reader to skip around or
to start in the middle. Definitions are sometimes repeated, and there is a lot of
cross referencing.

Chapter 1 is written in the classical language. It is based on the paper of Doi
and Naganuma (1969) which exhibits a rich variety of ideas and techniques. The
chapter contains an introduction to the Langlands conjectures, which are taken

IX



x Advice to the Reader

up from a more sophisticated point of view later in the book. The phenomenon
of base change, which was discovered by Doi and Naganuma, is an example of
a lifting of automorphic forms. Such liftings are systematically predicted by the
conjectures of Langlands. The method by which Doi and Naganuma proved
their result is also suggestive - it is based on the Rankin-Selberg method and
the converse theorem, a pleasant combination of techniques that is at the heart
of the present-day project of Piatetski-Shapiro and his collaborators to prove
liftings of automorphic forms from classical groups to GL(n).

The reader approaching this subject for the first time might want to read
Sections 1.1-1.4,1.6, and 1.8, skimming Sections 1.5 and 1.7 before attacking
Section 1.8. Sections 1.7, 1.9, and 1.10 are more difficult, and the details of
how the approach to base change laid out in Section 1.8 are carried out are only
important if you care about them. Be aware that the rest of the book is largely
independent of Chapter 1.

There is an apparent dichotomy in our field between the "classical" and
"representation theoretic" approaches. But in fact this dichotomy is illusory,
and it is important for the worker to understand both languages. Although
Chapter 1 could be skipped by the reader, it is included for a good reason. The
adele group is a large and complex object, and we derive our intuition to a
large extent from the example of GL(2, R). Moreover, adelic statements often
reduce in the end to classical ones.

Chapter 2 marks the introduction of representation theory into the study
of automorphic forms. There are two types of classical automorphic forms,
namely, Maass forms and modular forms. This dichotomy reflects the fact
that the irreducible representations of SL(2, R) fall into two main classes - the
principal series and the discrete series. In Chapter 2, we study the representation
theory of GL (2, R) and the spectral theory of compact quotients of the upper
half plane and make clear the relationship between these two topics.

Chapter 2 ends with two special results that are needed for Chapter 3, namely,
the uniqueness of Whittaker models and a theorem of Harish-Chandra. We do
not discuss the representation theory of GL(2, C), though it is in many respects
simpler than the representation theory of GL(2, R).

In Chapter 3, we introduce the adeles and the modern approach to automor-
phic forms. We cover Tate's thesis, the discreteness of the cuspidal spectrum,
the tensor product theorem of Flath, and, following Jacquet and Langlands
(1970), the implications of the uniqueness of Whittaker models-the strong
multiplicity one theorem and the construction of L-functions. We consider the
standard L-functions, the Rankin-Selberg L-functions, and (briefly) the triple
L-functions. We discuss the Eisenstein series in enough detail for our study of
the Rankin-Selberg method, but we do not prove much about the continuous
spectrum.

Chapter 4 is independent of the first three chapters, and some readers will
want to begin with it. In contrast to Chapter 3,1 tried for some measure of com-
pleteness in Chapter 4, which is devoted to the representation theory of GL(2)
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over a local field. I begin the chapter with a long section on the representation
theory of GL(2) over a finite field, where complete proofs may be given in just
a few pages. The exercises for Section 4.1 emphasize the Weil representation
and the philosophy of cusp forms, where representations are built up from cusp-
idal atoms by parabolic induction. Turning to GL(2) over a non-Archimedean
local field, I follow Bernstein and Zelevinsky (1976) in emphasizing sheaves
and distributions in the proofs, among other things. I prove the uniqueness of
Whittaker models and the fact that the character of a representation is invariant
under transpose. As in Bernstein and Zelevinsky (1976), I treat the character
as a distribution, without establishing its nature as a locally integrable func-
tion. I give fairly complete discussions of the principal series and spherical
representations, including the Macdonald formula for the spherical function
and the explicit formula for the spherical Whittaker function, which I prove by
the method of Casselman and Shalika (1980). I show how the local functional
equations follow from a uniqueness principle and how supercuspidal represen-
tations may be constructed by means of the Weil representation. I also prove
the multiplicativity of the local 6-factors by means of the Weil representation.
My discussion of the Weil representation is based on Jacquet and Langlands
(1970). The chapter ends with a discussion of the local Langlands conjectures.

The reader may take the chapters in any order. Because Chapter 3 contains
forward references to Chapter 4 (which is independent of Chapter 3), the logical
sequence of the chapters is 1, 2, 4, then 3. However, there is a rationale for
putting Chapter 3 ahead of Chapter 4. This is that the motivation for many of
the topics in Chapter 4 comes from automorphic forms.

I would appreciate any comments that you may have. I may be able to
take them into account in revising this text some day. Particularly, if you
find mistakes - whether typographical errors or more serious mathematical
or historical mistakes - I would like to be informed. My e-mail address is
bumpOmath. Stanford. edu. I intend to maintain a list of errata on my web
page at ht tp: / /math.Stanford.edu/~bump.



Prerequisites

We assume a basic knowledge of algebraic number theory, the representation
theory of finite groups, and of Fourier analysis on locally compact abelian
groups (Pontriagin duality). Moreover, we will assume the existence and basic
properties of Haar measure on locally compact groups. On the other hand, we
develop all the Lie theory and much of the functional analysis that we need
from scratch, and the prerequisites from Fourier analysis are reviewed as they
arise.

In Chapter 2, Section 9, we use the fact that a solution to an elliptic differ-
ential equation is analytic. In Chapter 3, Section 4, we expect the reader to
consult Knapp and Vogan (1995) for the properties of a certain Hecke algebra
of distributions.

xn



Notations

We have attempted to write in a style that allows the reader to start in the
middle if desired. Definitions are sometimes repeated, and there is a lot of
cross referencing. We attempt to avoid "global" notations that are defined
throughout the book. We did compromise on this point in the matter of matrix
transposes. If g is a matrix, Tg is its transpose.

We may denote the identity matrix as either / or 1. We will often omit zero
entries from a matrix. Thus

a b\ fa
d) m e a n s \o d

Occasionally, we will denote an "arbitrary" matrix entry with an asterisk. Thus
for example

means that this identity is true regardless of the value of *.
"Almost all" means for all but finitely many.
If G is an affine algebraic variety, particularly an affine algebraic group,

defined over a field F, and if A is a commutative ring containing F, we will
denote by G(A) or GA the points of G with coordinates in A. Some affine
varieties, such as GL(n), are really defined over Z. Thus GL{n, A) is defined
if A is any commutative Z-algebra, that is, any commutative ring. We will
encounter mostly affine algebraic varieties. Our notations for affine algebraic
varieties are discussed in more detail at the beginning of Section 3.3.

A character of a group is a continuous homomorphism into the group of
complex numbers of absolute value 1. A continuous homomorphism into Cx

is called aquasicharacter.
A global field F is by definition an algebraic number field, or else a "function

field," which is a finitely generated field of transcendence degree 1 over a finite
field. If v is a place of F, we will denote by Fv the completion of F at v.
If v is non-Archimedean, we will denote the ring of integers in F by ov, its

X l l l



xiv Notations

maximal ideal by pv, and the cardinality of o^/p^ by qv. By mv, we will denote
an arbitrarily selected generator of pv. We will denote by ord : Fx -> Z the
valuation, so that ord(6GT™) = m when e e o j .

Let F be a global field and A its adele ring. We will use the notation a = (av)
for elements of A. This notation means that for each place v of F, av is the
vth component of the adele a. Thus av e Fv and av e ov for almost all v.
Similarly, if G is an affine algebraic variety, we will denote elements of G(A)
by g = (gv), where gv e G(FV) and gv has coordinates in ô  for almost all
v. This notation requires some explanation. Let us assume that G is the locus
in affine «-space of some system of equations. Then a priori an element of
g is an n-tuple (g1, • • •, gn) with gl = (gl

v) e A. For each v, we find that
gv = (gl '->gv)£ °(Fv)> and we write g = (gv).

If /? is a topological ring, then for a e R, we will denote by |a| the module
of the endomorphism x i-> ax of R, namely, the factor by which this trans-
formation multiplies the additive Haar measure. Thus if R = R, then | | is
the usual absolute value, while if R = C, then | | is the square of the usual
absolute value. Also for a topological ring R, we will denote the additive Haar
measure by dx and the multiplicative Haar measure by dxx. These are subject
to normalizations that will be discussed when they arise. We will use these
notations if R is a local field or the adele ring of a global field.

If F is a local field, we will often denote by x// : F -> C a fixed nontrivial
character of the additive group F. Alternatively, if A is the adele ring of a global
field F, we will denote by x/s a fixed nontrivial character of A that is trivial on
F. In either case, we will normalize the additive Haar measure on F or A to be
self-dual for Fourier transform with respect to \\r. That is, if / is a compactly
supported continuous function on F or A, define its Fourier transform

f(x) = f
The Fourier inversion formula asserts that

and this is true for a unique choice of Haar measure. This is the Haar mea-
sure that we will usually use. With this normalization in the global case, the
Haar volume of the compact quotient A/F is one, as is proved in Proposi-
tion 3.1.3.

If G is a topological group, we will always denote the left Haar integral by
SGdg-

The end-of-proof symbol is • , and we will also use CH to indicate the end
of the proof of a lemma that is interpolated in the middle of another proof.
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Modular Forms

In this chapter, we will introduce the study of modular forms through the paper of
Doi and Naganuma (1969). This paper gave one of the first historical examples
of a functorial lifting of automorphic forms, a phenomenon now codified in
Langlands' important functoriality conjecture. The paper also uses (following
a suggestion of Shimura) a beautiful L-function technique based on the Rankin-
Selberg method and the so-called converse theorem for GL(2). Though this
method has been somewhat eclipsed by the trace formula, it is still being used
to good effect by I. Piatetski-Shapiro and his coworkers in constructing liftings
from classical groups to GL(n).

The unifying theme of this chapter and those that follow will be L-functions.
Briefly, an L-function is a Dirichlet series, that is, a series of the form

which has an Euler product and a functional equation. We may illustrate this
with two examples. The first is the Riemann zeta function

which is convergent for re(s) > 1 and has meromorphic continuation to all s,
with just a simple pole at s = 1. The Euler product expresses this as a product
over all primes p:

p

The functional equation asserts that if
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then

The second example is due to Ramanujan (1916), who defined a certain
function x(n) by equating the coefficients in the series

Thus r ( l ) = 1, r(2) = -24, r(3) = 252, etc. Ramanujan's intuition had led
him to a function with very remarkable properties. To begin with, the coeffi-
cients are multiplicative: if (n, m) = 1, then x(nm) = x(n) r(m). Ramanujan
considered the Dirichlet series

oo

L(s, A) = ^2r(n)n~s.
n=\

He conjectured, and Mordell (1917) later proved, that

L(s, A) = [ ] (1 - x{p) p~s + pn-2s)-1.
p

This is the Euler product. As for the functional equation, L(s, A) has analytic
continuation to all s, with no poles, and if we define

we have

A ( J , A) = A ( 1 2 - s , A).

The explanation of these formulas is connected with the fact that the coef-
ficients x(n) are the Fourier coefficients of a modular form. Let z = x + iy
where JC, y e R, y > 0. Then with q = e2niz, (0.1) becomes a function of z\

A(z) = e27Tizf[(l - e27tinz)24.
n=\

This function, Ramanujan's discriminant function is a modular form of weight
12, which means that

for a,b,c,d e Z, ad — be = 1. It turns out that there are lots of modular
forms besides A; associated with such modular forms are L-functions having
Euler products and functional equations. We will study the modular forms by
studying their L-functions.
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We will begin by studying a more basic type of L-function than those asso-
ciated with modular forms; these are the L-functions associated with Dirichlet
characters, of which the Riemann zeta function may be regarded as the proto-
type. Proving the Euler products and functional equations of these L-functions
is the subject of Section 1.1.

Sections 1.2-1.4 form a basic course in modular forms, culminating with the
Hecke theory. There are many exercises, particularly in Section 1.3, and this
part of the book could be studied by an advanced undergraduate. Section 1.5
has as its goal Weil's converse theorem, which allows us to assert the existence
of an automorphic form if sufficiently many functional equations can be proved,
and though this particular theorem is not needed in the remainder of the book,
variants of it are applied in Sections 1.9 and 1.10 to prove the existence of au-
tomorphic forms. Still, the proof of Weil's theorem could be skipped without
loss of continuity. Sections 1.6 and 1.7 introduce tools we need, the Rankin-
Selberg method and Hilbert modular forms, and at the end of Section 1.7, the
result of Doi and Naganuma is formulated. This result asserts that given a
modular form for SL(2, Z), there exists a Hilbert modular form - the base
change lift - whose L-function is described in terms of the L-function of the
given modular form for SL(2, Z). Section 1.8 explains how this result fits into
the very general functoriality conjecture of Langlands. To apply the converse
theorem, the functional equations of many L-functions must be proved. Sec-
tions 1.9 and 1.10, which are more technical than the rest of the chapter, carry
out this program by constructing certain nonholomorphic automorphic forms
(the first application of a converse theorem). They then form Rankin-Selberg
convolutions of these auxiliary forms with the given one in order to prove the
functional equations that are needed to conclude (in the second application of
a converse theorem) that the base change lift exists.

1.1 Dirichlet L-Functions

The results of this section will be generalized in Section 1.7, and again in
Section 3.1.

Let N be an integer. A Dirichlet character modulo N is a function x • Z ->
C, which is periodic with period N, such that

- {
1 if(n,N) = l,
0 otherwise,

and such that x (nm) = x(n) X On)- To obtain a Dirichlet character, start with
a character of the finite Abelian group (Z/NZ)X, and extend it to a function
on all of Z/NZ by making it zero on the residue classes not prime to N; then
compose this function with the canonical map Z -> Z/NZ.

If Ni\N, there are canonical maps Z/NZ -> Z/NXZ and (Z/NZ)X ->
(Z/NiZ)x. If x is a Dirichlet character modulo N\, we may take the cor-
responding character of (Z/MZ)X, pull it back to (Z/NZ)X, and obtain a
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Dirichlet character modulo TV. If x is obtained this way from a character
modulo a proper divisor N\ of N, then x is called imprimitive. If x is not
imprimitive, it is called primitive. If x is primitive modulo N, we say that N
is the conductor of x •

If X is a Dirichlet character, whether primitive or not, we may define an
L-function

n=\

By comparison with the Riemann zeta function, it is absolutely convergent for
re(s) > 1. It has an Euler product, as we can see as follows. We will prove
that for re(s) > 1, we have

« « > - n (•-*?)"'• <••»
P

Indeed, expanding a geometric series, each individual Euler factor

k=o

Now for any positive integer n, there is exactly one way to write n s as a product
of factors p~ks\ so if n = n p)1, on expanding

p k=0

the coefficient of n~s is

l[x(Pi)ki=X(n).
i

Hence the right side of Eq. (1.1) is equal to the left side, as required.
Dirichlet L-functions have another, deeper property, namely analytic con-

tinuation and a functional equation, which may be regarded as aspects of the
interplay between additive and multiplicative Fourier analysis. The functional
equation only works well for primitive characters. The remainder of this section
will be devoted to developing the functional equations of Dirichlet L-functions.

It is a useful property of primitive characters that there is a convenient way
to interpolate the character, originally defined on Z, to a smooth function on R.
To this end, we introduce Gauss sums.

Let x bea primitive character modulo N. The Gauss sum r (x) or rx is
defined by the formula

Yl x(n)el7tin'N. (1.2)
« mod N
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We will prove that

X(n)e2«inm/N=J(mJT(x). (1.3)
n mod N

There are two cases. If (m, N) = 1, we have |x(#0| = 1. Making the change
of variables n ^ wm, we see that

t(x)= £
n mod Af n mod N

and multiplying by x W " 1 = x(m)» w e obtain Eq. (1.3).
On the other hand, if (m, N) > 1, we have x (#0 = 0, so it is sufficient to

show the left side of Eq. (1.3) vanishes. Suppose that m = dM and N = dN\
where d > 1. Let us show first that the primitivity of x implies that there exists
c = 1 mod N\ such that (c, AT) = 1 and x W ^ 1. If not, x(c) = 1 for all c
prime to Af such that c = 1 mod Ni, which implies that x («) = X (w) whenever
n, n' are prime to Af and n = nf mod Afi. Hence x is well defined modulo A î,
a proper divisor of N, and x is the pullback of a character under the canonical
map (Z/NZ)x ->• (Z/ Â i Z) x , contradicting the primitivity of x • Now observe
that the left side of Eq. (1.3) equals

n mod iV r mod iVi n mod TV
w = r mod TVi

Now the substitution n -> en permutes the residue classes n mod Af such that
n = r mod Afi amongst themselves, so

n mod N n mod Af n mod Af
n = r mod Af i n = r mod A7! n = r mod Af i

as x(^) 7̂  1> this expression must equal zero. Hence Eq. (1.4) vanishes,
completing the proof of Eq. (1.3).

Now we need to know that r(x) ^ 0. In fact, we will prove that

(1.5)

Because

x(n)e2ninm/N = J ^ e-2ninm/N ̂

we have

X(nl)x(n2)e2^n'-n^N.
nmodN .-„--„

(ni«2> N) = I
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By Eq. (1.3), this equals |r(x)|2 if (m, N) = 1 and zero if (m, N) ^ 1.
Summing over all m modulo N, we obtain

<KN)\T(X)\2= Y £ X(n1)7UZ)e7"<"-*>m"t,
mmodN ni,rt2modN

where <p is the Euler totient function: </>(N) is the number of residue classes
modulo N prime to N, or in other words, the cardinality of (Z/NZ)X. Because

E e2jriam/N __
10 otherwise,

only terms with n\ == mmo&N contribute; for these, x(n\)x(n2) = 1, so we
obtain

(nm2, N) = 1

Hence we have Eq. (1.5).
Now that we know the Gauss sums do not vanish, we may explain how to

interpolate a primitive Dirichlet character between the integers. Replace x by
Y and rewrite Eq. (1.3) as follows:

0-6)
mmodN

so by Eq. (1.5) and Exercise 1.1.1, we have

x(n) £
mmodN

Observe that the right-hand side is defined when n is an arbitrary real number.
We have therefore obtained our goal of finding a natural way of interpolating a
primitive Dirichlet character to an arbitrary real argument.

We now require the Poisson summation formula. Let / be a function on R
that is sufficiently well behaved. For example, it is sufficient if / is piecewise
continuous with only finitely many discontinuities, of bounded total variation,
satisfies

f(a) = i [ lim /(*) + lim /(*)]

for all a, and

\f(x)\<clmin(l,x-Ci)
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for some c\ > 0, C2 > 1. We define the Fourier transform

00

f(x)= J f(y)e2»ix>dy. (1.8)

The Poisson summation formula asserts that

0 0

^2
n=—oo

To prove this, let

F(x)

oo

f(n)= Y,
n=—oo

oo

n=—oo

Then F(JC) is periodic with period 1, is of bounded variation, and satisfies

F(a) = \ lim F(x) + lim F(x) .

It is a standard theorem from Fourier analysis that F(x) has a Fourier expansion
that represents it for all values of x:

(This follows, for example, from Whittaker and Watson (1927,9.42 on p. 175))
The constants am are computed in the usual way, by orthogonality:

am= f F(x)e-2«imxdx= f f ] / (x+n)^" 2 — dx.
n=-°°o o

Because e2nimx = e27nm(*+"), this equals

n=-°°

I f(x+n)e~2nim(x+n)dx= f f(x) e~l7limx dx,

so am = f(—m). Thus

n=—oo n=—oo

as required.
Actually, we require a slight generalization of the Poisson summation for-

mula, which we call twisted Poisson summation; the formula is like the usual
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Poisson formula, except that it is "twisted" by a Dirichlet character. Let x
a primitive character modulo N. We will prove that

Xin) f(n) = XV ^ T U U £ W)fin/N). (1.10)

To prove this, let us observe that by Eq. (1.7), the left side of Eq. (1.10) equals
), where

Mx)=^ N "' ^ xW«a r a /7W.
mmodN

We may thus apply the Poisson summation formula. It is easy to check that

AT
mmodiV

Thus the left side of Eq. (1.10) equals

oo

m mod AT n=—oo

Because x(m) = x(Nn + m), and because Nn -f m runs uniquely through Z
when m runs through a set of residue classes modulo N and n runs through Z,
this equals the right side of Eq. (1.10). This completes the proof of the twisted
Poisson summation formula.

Now we need to compute the Fourier transform of the Gaussian distribution.
Let t have positive real part, and let

Then ft is of faster-than-polynomial decay as x ->• ±oo. We will prove that

ft = ^Ffi,t. (1.12)

Because both sides are analytic functions of t defined when the real part of t
is positive, it is sufficient to prove Eq. (1.12) when t is real, which we now
assume. Completing the square

/,(*) = f e-^2-11^ dy = e-™1!1 f e-^y-ix/^ dy,
J J

— 00 —OO

Now we may use Cauchy's theorem to shift the path of integration with respect
to y vertically by a constant distance depending on x, amounting to replacing
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v by v + ix/t. Thus

oo

/ , (*) = e~nx2/t f e~nt* dy = -^ e~nx2/\ (1.13)
J wt

—OO

where
oo

c=

—00

It is well known that c = 1; in fact, we may prove that right now by applying
Eq. (1.13) twice to obtain

/ , = -L/I/( = c2/,

We recall the Fourier inversion formula

/(JC) = / ( -*) ,

which is valid if / is any continuous function such that both / and / are in
Ll(R). (See Katznelson, 1976, VI. 1.12.) Applying this to the even function
/,, we have / , = /,. Therefore c2 = 1. Evidently, c > 0, and so c = 1, from
which we get Eq. (1.13).

Now we may construct some theta functions. Let x be a primitive character
modulo N. First assume that x(—1) = 1, and define

00 OO

MO = \ YL xC")*"™2' = jx(O) + ^x(«)«""" ! l (1.14)
n=—oo n=l

when t has positive real part. (Here x (0) = 0 unless N = I because x is
primitive.) Using Eq. (1.12) and the twisted Poisson summation formula, we
obtain the functional equation:

B N ^ ) (u5)
Now suppose that x ( ~ l ) = ~1- In this case, we cannot use the definition

Eq. (1.14); the terms for n and — n cancel, so Eq. (1.14) is zero in this case. So
we must do something else. Let

We will prove that

g,(x) = -^gl/t. (1.17)
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We have, by definition of the Fourier transform

Integrating by parts, this equals

00

j J My)e2™>dy,
—oo

which by Eq. (1.12) equals the right side of Eq. (1.17), which is now proved.
Now if x(—1) = —1, we define

OO 00

n=-oo n=\

Applying twisted Poisson summation to gt, we obtain

Now we may prove the functional equations of Dirichlet L-functions.

Theorem 1.1.1 Let x be a primitive Dirichlet character with conductor N,
and let e = 0 or 1 be chosen so that x(—1) = (—1)€ - Let

Then A(s, x) has meromorphic continuation to all s; indeed, if x ^ I, it is
entire, while if x = 1, it is analytic for all s except s = 1 or s = 0, where it
has simple poles. We have the functional equation

Ms, X) = (-i)€  r (x) N~s A(l - 5, x). (1-20)

Proof We will consider the case where x # 1 • If x is the trivial character, then
the primitivity of x implies that N = I, and L(s, x) is just the Riemann zeta
function; we leave this case to the reader (Exercise 1.7). Because x(0) = 0,
the series 0x (t) is a sum of terms of the form n€  x in) e~nn t with \n \ > 1, each
of which is of very rapid decay as t - • oo; combining Eqs. (1.15) and (1.19),
we have

i
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this implies that 9x(t) is also of very rapid decay as t -> 0. Therefore the
Mellin transform

0

is convergent for all s. If the real part of s > 1, we may use the identity

oof
J

-ntn2
 t(s+€)/2  ^i _ n-

V 2

to see that Eq. (1.21) equals A(,s, x) . Because the integral Eq. (1.21) is con-
vergent for all s, and clearly defines an analytic function, this gives the ana-
lytic continuation of A(s, x)- Now substituting Eq. (1.15) or Eq. (1.19) into
Eq. (1.21) and making the change of variables 11-> l/N2t, Eq. (1.21) equals

Hence we obtain Eq. (1.20).

Exercises

Exercise 1.1.1 Let x be a primitive character modulo N. Show that r(x") =

Exercise 1.1.2: Dirichlet (a) Show that the identity

« = 1 n

valid if |JC| < 1, remains true if |JC| = 1 and JC ^ 1, in which case the series is
conditionally convergent.
(b) Let x be a nontrivial primitive character modulo N. Assume N > 1, so
that x is nontrivial. Use Eq. (1.7) to prove that

n=l mmodN

(1.22)
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From this, deduce that

r(x)
N ^ x(m)log|l-e^""/JV|

mmodN

L(hx)=< . . . N
i7tr(x) v~>

Recall that for the character x modulo N to be quadratic means that x (ft) = ± 1
for all («, AT) = 1, but that x is not identically one.

Exercise 1.1.3 Let /? be an odd prime.

(a) Prove that there is a unique quadratic character x modulo p.
(b) Prove that the number of solutions to x2 = a mod p equals 1 + x («)•
(c) Show that

P-\

n=0

Exercise 1.1.4 Let r = JC + /y, where JC, y e R and v > 0. Let k be an
integer greater than or equal to 2. Define

f(u) = (u — x)~k.

Use the residue theorem to show that

ilni rcs(e2niuv (u - r)-k) \U=T if v > 0;

1 0 if u < 0.

Hence

[0 i f u < 0 .

Conclude that

r/i^ Quadratic Reciprocity Law I will state without proof this fundamental
theorem of Gauss. If p is an odd prime, the Legendre symbol

if x2 = a mod p has two solutions;
if x2 = a mod /? has no solutions;
if a == 0mod/7.
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The definition is extended so that ( | ) is defined whenever b is an odd positive
number by the rule

where p\,- -, pn are primes. Extended in this way, the symbol is called the
Jacobi symbol. The basic properties of the Jacobi symbol are as follows:

^ n if * = ± lmod8;
b)~ ~ \ - l iffo = ±3mod8.

If a and fc are fooffc odd positive integers, we have

otherwise.

Part (vi) is the quadratic reciprocity law.

Exercise 1.1.5: Quadratic Fields If K is a quadratic extension of Q, let 0*-
denote the ring of integers in K. Then o^ = Z © Z as an Abelian group. Let
a, /3 be a Z-basis of o^. The discriminant of K is by definition

where JC h^ jcr denotes conjugation, that is, the nontrivial Galois automorphism
of K over Q. Show that this definition is independent of the choice of basis
and that DK e Z.

Exercise 1.1.6: Fundamental Discriminants Part (c) of this exercise as-
sumes the quadratic reciprocity law, and part (d) assumes the definition of a
discriminant of a quadratic field.
(a) Prove that if q is a prime power, then there exists a primitive quadratic
character modulo^ if and only if q equals4,8, oris an odd prime; in each of these
cases there is precisely one primitive quadratic character, except that if q = 8,
there are two, one satisfying x(— 1) = 1 and one satisfying /(—1) = —1.
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(b) Show that if (m, n) = 1, then

(Z/mnZ)x = (Z/mZ)x x (Z/«Z)X,

and deduce that there exists a primitive quadratic Dirichlet character modulo
a positive integer d if and only if d is the product of relatively prime factors,
each of which is an odd prime, or else equals 4 or 8.
(c) Show that if D is an integer, positive or negative, and if there exists a
quadratic character x that is primitive modulo \D\ such that the sign of D is
equal to /(— 1), then

for odd positive integers n.
The integers D satisfying the condition of (c) are called fundamental dis-

criminants. They are in one-to-one correspondence with the primitive quadratic
characters.

The restriction to odd n in (c) is undesirable; it is sometimes removed by
employing Kronecker's modification of the Jacobi symbol, in which ( | ) is
sometimes defined even when b is even. Using the Kronecker symbol, one may
say that the unique quadratic character modulo |D|, where D is a fundamental
discriminant, is n H-> (-^). This has some disadvantages; for example, (i) above
is no longer true for the Kronecker symbol. (Shimura (1973) has proposed
yet another modification of the quadratic symbol.) We will avoid using the
Kronecker symbol. If D is a fundamental discriminant, we will denote the
unique primitive quadratic character modulo \D\ such that x (—1) has the same

signasDbyxz).
(d) Prove if K is a quadratic extension of Q, there exists a unique fundamental
discriminant D such that K = Q ( A / D ) ; thus the fundamental discriminants are
in one-to-one correspondence with quadratic fields.
(e) Prove that if D is a fundamental discriminant, then D = 0 or 1 mod 4, and
that the ring of integers in K = Q(VI5) is Z 0 Zr where

if D = 0mod4;

if D = Imod4.

Conclude that D is the discriminant of K. Hence the fundamental discriminants
are precisely the discriminants of quadratic fields.
(f) Let D be a fundamental discriminant, p a prime, and K = Q(>/~D). Show
that

f p splits in K if and only if XD (/?) = 1;
p remains prime in K if and only if XD (p) = — 1;
p ramifies in K if and only if XD (P) = 0.

(Use the quadratic reciprocity law. The case p = 2 must be handled separately.)
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Exercise 1.1.7 Explain how to modify the proof of Theorem 1.1 to handle the
case where N = 1, so that x = 1 and L(s, x) is the Riemann zeta function.

Exercise 1.1.8: Riemann (1892) Riemann gave two proofs of the functional
equation of f, each important in its own way. The proof based on taking
the Mellin transform of a theta function as in the proof of Theorem 1.1 is
Riemann's second proof. (It was extended to L-functions by Hecke (1918)
and (1920)). This exercise, based on Riemann's first proof of the functional
equation, leads to a determination of the values of i;(s) at the negative odd
integers or equivalently, at the positive even integers. Riemann's paper is
discussed at length in Edwards (1974). For the extension to L-functions, see
Chapter 4 of Washington (1982).
(a) The Hankel Contour C begins and ends at oo, circling the origin counter-
clockwise:

Prove that if re(s) is large

oo

/ ( -JC)5"1 e~x dx = -2i sin(7ts) / ts~l e~f dt

c o
= —2i sin(7rs) T(s).

In this integration, we define (—x)s~l to be e(5~1} lo^~x\ where we choose
the branch of log that is real when (—JC) is real and positive. In view of the
well-known identity

this may be rewritten

r ( l - s ) 2n J

Although we proved this only for re(s) large, observe that the integral is con-
vergent for all s, so by analytic continuation, this formula is valid for all s.
(b) Use the geometric series identity
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valid if re(jc) > 0, and adapt the calculation of (a) to show that

~ ^) I v x)
— / ax.
i J e*-\

{S) = - 2ni
c

This formula is valid for all s.
The Bernoulli numbers are defined by the identity

tn

«=o n'

We have Bo = 1, B\ = - 1 / 2 , B2 = 1/6, and B4 = -1/30. It is not hard to
see that Bn = 0 if n is odd and greater than 1; if n is even, it is clear that Bn is
rational, and it will follow from (d) below that the sign of Bn is —(—l)n/2.
(c) Use the functional equation to show that f vanishes at the negative even
integers. Use the residue theorem to show that if n is a positive even integer,
thenf(l -n) = -Bn/n.
(d) Use the functional equation to deduce that if n is a positive even integer

2""1 7tn (-1)"/2 Bn

?(«) = : •
n\

Exercise 1.1.9 We return to the setting of Exercise 1.2(b). Assume that /
is quadratic, so its conductor N = \D\, where D is a fundamental discrim-
inant. Then x is the quadratic character attached to the quadratic extension
K = Q(\/D). We recall the factorization of the Dedekind zeta function
$K(s) = $(S) L(s, x) (see Lang (1970, Theorem XII.l, p. 230)). Thus L(l, x)
is the residue at s = 1 of f̂ , which is computed classically as in Lang (1970,
Theorem XIII.2, p. 259). Suppose that /(— 1) = —1 so that K is imaginary
quadratic. Then

where D is the discriminant of K, h is its class number, and w is the number
of roots of unity in K (two unless D = — 4 or —3.) Thus by Exercise 1.2(b),

K\m)m.

But r(x) = i^D. (See Washington (1982, Corollary 4.6, p. 35) for the
evaluation of quadratic Gauss sums. Also, compare Eq. (9.15) in section 1.9.)
We obtain Dirichlet's class number formula
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Exercise 1.1.10 (a) Let x be a primitive character modulo N. Prove, using
the functional equation, that L(s, x) has a simple zero at s = 0 if /(— 1) = 1
and is nonzero at s = 0 if x(—1) = —1.
(b) Stark (1971), (1975), (1976) and (1980) has conjectured that if p :
Gal(Q/Q) - • GL(n, C) is a Galois representation such that the Artin L-
function L(s, p) has a zero of order r at s = 0, the leading coefficient in
its Taylor expansion is essentially a n r x r "Stark regulator" of units in some
number field. The simplest open cases of the conjecture are when r = 1. Artin's
reciprocity law allows us to consider x to be a Galois character, namely, it gives
a character of Gal(Q(£)/Q) = (Z/NZ)X, f = elni/N, where a e (Z/NZ)X

corresponds to aa e Gal(Q(f)/Q), <rfl(f) = t,a. With this identification,
reinterpret (a) to show that r — 1 if /(— 1) = 1, and r = 0 if /(— 1) = —1.
(c) Assume that x ( ~ l ) = 1- I*1 tnis case Exercise 1.2(b) verifies the Stark
conjecture because it shows that

.1, d-24)
m mod N

where em = (1 - el7Tim/N)/(l - e2lTi/N). Note that if m and N are coprime, em

is aunitinZ[f].

1.2 The Modular Group

In this section, let G = SL(2, R) and let H be the Poincare upper half plane
consisting of z = x + iy where JC, y €  R, and y > 0. G acts on H via linear
fractional transformations:

{2A)

It is easy to check that this is a bona fide group action, that is, (g\g2)(z) =
gi (g2(z)). This action is not quite faithful because —/ acts trivially, / being
the identity matrix. If we wish to work with a group having a faithful action, we
may pass to the group PSL(2, R) = G/{±/}, which may be identified with a
group of transformations of H. If T c G is any group, we will denote by T its
imageinG = P5L(2,R). ThusT = r / { ± / } i f - / e T ,orF = F i f - / ^ T.
We may sometimes extend the action of SL(2, R) to the group GL(2, R) + of
2 x 2 nonsingular matrices with positive determinant by the formula (2.1). Of
course, the scalar matrices act trivially.

More generally, we allow SL(2, C) (or GL(2, C)) to act on the Riemann
sphere PJ(C) = C U {oo} by linear fractional transformations using the same
formula (2.1). The subgroup of SL(2, C) that maps the subspace H C P!(C)
onto itself is just 5L(2, R).

The action of G on H is transitive because in fact the subgroup B of upper
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triangular matrices acts transitively. Indeed,

/ 1/2 - l /2 \

so every element of H is in the orbit of i. The stabilizer of i is the subgroup

Recall that if X is any set, and if G is a group acting transitively on X, we may
identify X with the set of cosets G/GXi where Gx is the stabilizer of some fixed
point x €  X. In the particular case where G = 5L(2, R), X = H, and x = i,
we see that we may identify H with the space of cosets G/SO(2). Because,
as we have just seen, B acts transitively on H, it acts transitively on G/SO(2),
and so we obtain a geometric proof that G = B • SO (2). This relation is known
as the Iwasawa decomposition for 5L(2, R).

We will be particularly interested in the subgroup F(l) = 5L(2, Z) of
5L(2, R) and certain subgroups that are called congruence subgroups. Let

a = d = lmodiV,6 = c = OmodiV >

Note that F(N) is the kernel of the canonical map F(l) -+ 5L(2, Z/NZ).
Because this is a finite group, we see that F(N) is normal in F(l) and of finite
index. A subgroup of 5L(2, Z) is called a congruence subgroup if it contains
F(AO for some N.

The identity

im (g(z)) = \cz + d\~2 y (2.2)

d

is readily confirmed (Exercise 1.2.1). If V is a subgroup of G, we say that the
action of F on H is discontinuous if for any two compact subsets i ^ i . ^ C W,
the set

is finite. As a first application of Eq. (2.2), let us prove the following:

Proposition 1.2.1 The group T(l) acts discontinuously on H.

It may be shown more generally that a subgroup F C SL(2, R) acts discon-
tinuously on H if F is discrete in the topology that it inherits from 5L(2, R).
For our purposes, however, Proposition 2.1 is sufficient.
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Proof Let K\ and K2 be compact subsets of H. There exists a constant €  > 0
such that im(w) > €  for all w e K2. Now for fixed z = x + iy e K\,
note that (c, d) h-> |cz + d|2 is a positive definite quadratic form. Applying
Eq. (2.2), there is a constant R(z) such that im (g(z)) = \cz+d\~2y < e unless
\c\, \d\ < R(z)- Because K\ is compact, R = max{/?(z)|z €  K\] < oo, and
£ 2 H y(K\) = 0 unless |c|, \d\ < R. This proves that there are only a finite
number of possible bottom rows of y e F(l) such that K2 n y(A'i) ^ 0 . We
must therefore show that given c, d, there are only a finite number of possible y
with given bottom row (c, d) with K2r\y(K\) ^ 0. If y\ and y2 have the same
bottom row, then y2 = yo/i where yo has the form (*"). The effect of the matrix
y0 is therefore translation by an integer distance n: yo(z) = z + n. For fixed
yi, there can clearly be only finitely many yo such that yo(y\(K\)) fl K2 ^ 0.

To summarize, there are only finitely many possible bottom rows (c, d) of
y such that y(A'i) D K2^ 0, and for each (c, d) there are only finitely many
possible y with the prescribed bottom row such that y (K\) O K2 ^ 0 . Hence
the action of F(l) is discontinuous. •

As a second application of Eq. (2.2), we will determine a fundamental do-
main for F. If F C SL(2, R) is a subgroup acting discontinuously on W, a
fundamental domain for F will be an open subset F C Ti such that (i) for
every z e H, there exists / 6 F such that y(z) is in the closure F; and (ii) if
Zu z2e F, and y(zi) = z2 for some y e f , then z\ — z2, and y = ±7.

Let F = {z = x + iy e H\ - \ < x < \, \z\ > 1}.

Proposition 1.2.2 The set F is a fundamental domain for SL(2, Z).

Proof Let z €  H. Because (c, d) \-+ \cz + d\2 is a positive definite quadratic
form, it has a minimum value as (c, J) runs through the pairs of relatively
prime integers. It follows from Eq. (2.2) that im (y(z)) has a maximum with
y e 5L(2, Z), so let y e F(l) maximize im (y(z)). Now we can find n e Z
so that y(z) + n has a real part with absolute value < 1/2; replacing y by
01) y> w e s e e that there exists y such that | re (y(z)) \ < 1/2 and im (y (z)) is
maximal for y e 5L(2, Z). This implies that |y(z)| > 1, because otherwise
the imaginary part of y\ (z) would be larger, where

Y\ = ( j j X» im(yi(z)) =
im y(z)

\y(z)\2

This shows that every F(l) orbit intersects the closure of F establishing prop-
erty (i) in the definition of a fundamental domain.

Now suppose that z = x + iy e F and that y = ("J) e T(l) such that
w = y(z) e F. If c = 0, then y = ±( ! " ) for some n e Z, and z, y(z) e F
implies that n = 0, so z = y(z), in accordance with (ii) in the definition of
a fundamental domain. Thus we may assume that c ^ 0 . Observe that every
element of F has imaginary part greater than V3/2. Also, clearly \cz+d\ > cy.
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We therefore have the inequalities

V3 . . , ^ y 1 2

Hence c2 < 4/3, implying that c = ± 1 . Suppose that c = ± 1 . Because y and
—y have the same action on H, we may assume without loss of generality that
c = 1. Then ad — be = 1 implies that

Now let zi = z + d and wi = w — a. Because |re(z)| < 1/2, we have
\z\\ > \z\ > 1, and similarly |iui| > 1, yet w\ = d^JCzi). This is a
contradiction. This proves that F satisfies (ii) in the definition of a fundamental
domain. •

It is often convenient to have generators for the group 5L(2, Z). Let

r = 0 0 ' 5 = G "')• (23)

Proposition 1.2.3 SL(2, Z) w generated by S and by T.

The method of proof generalizes easily to give generators for other discon-
tinuous groups. See Exercise 1.2.3(b) for an example.

Proof Let T be the subgroup of T(l) generated by S and T. We will show
that F = F(l). Because —I = S2e T, it is sufficient to show that the images
T = r ( l ) in PSL(2, R). Let y e T(l); we will describe a process by which
y may be reduced to a product of elements of the form 5, 7, and T~l. We
do not distinguish now between matrices A and —A because these are equal in
PSL{2, R) and have the same effect on H.

Because F is a fundamental domain for T(l), W is the union of the closure
y(F) with y e F(l), and these sets have disjoint interiors. We may therefore
find a sequence y\, • • •, yn e T(l) such that y\(F) = F and yn(F) = y(F),
and each y*(F) is adjacent to yk+\(F). Of course, this implies that y\ = I
and yn = y. Observe that the domains y F that are adjacent to F are precisely
T(F), T~\F)y and S{F) (cf. Figure 1).

Because yk(F) is adjacent to y*+i (F), we must have y^1 y^+i (F) adjacent to
F, and so YkXYk+\ equals 5, 7\ or 7"1 . Thus y = yfV» = fl X*"1 W+i 6 r>
as required. •

What is the "boundary" of the Poincare upper half plane? If we embed
H in the Riemann sphere P1 (C) = C U {oo}, the topological boundary is

= R U {oo}. The point oo should be regarded as no different from the
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Tl(F) T(F)

Figure 1

other boundary points. For example, the group SL(2, R) acts transitively on
R U {oo}. Another way of seeing this is to use the Cayley transform C, which
maps H to V, the unit disk, defined by

C(z) = z — i (2.4)

(Clearly z e H if and only if z is closer to / than to —/, i.e., if and only if
C(z) G V.) Then C maps R U {oo} onto the unit circle. This shows again that
the points of R U {oo} should be considered equivalent to each other. To give
an example, the image under the Cayley transform of the fundamental domain
F for SL(2, Z) described above looks like that shown in Figure 2.

If F is a discontinuous group acting on H, let F\H be the quotient space
consisting of the orbits of elements of H under the action of P. We topologize
F\H as a quotient: This means that a subset of F\H is open if and only if its
preimage in H under the canonical map H ->• F\W is open.

Figure 2
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Figure 3

We now consider the cusps of a congruence group F. (We will extend
this discussion shortly to the case of a discontinuous group F such that Y\H
has finite volume with respect to the measure introduced in Exercise 1.2.6.)
Intuitively, the cusps are the places where a fundamental domain for F touches
the boundary of H. For example, in Figure 2, we see that 5L(2, Z) has one
cusp. On the other hand, F(2) has three. Indeed, its fundamental domain looks
like that shown in Figure 3 (Exercise 1.2.3).

Its image under the Cayley transform looks like the region shown in Figure 4.
Evidently, there should be three cusps, if we can give the correct definition.

Figure 4

Let P1 (<Q>) = QU {oo} be the projective line over <Q>; SL (2, Z) acts transitively
on P^Q). SO a subgroup of finite index can have only finitely many orbits on
this set. An orbit of F in P1 (Q) is called a cusp of F. In practical terms, these
are the points where a fundamental domain for F must touch the boundary of H.

More generally, if F is not assumed to be a congruence subgroup, but only
a discontinuous group acting on H with V\H having finite volume, the term
cusp refers to either (i) a point of a G P 1 (R) = R U {oo} such that F contains a
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parabolic element y ^ I with y (a) — a, or (ii) an orbit of such points under the
action of F. (We recall from Exercise 1.2.7(c) that y ^ / is called parabolic if
| tr(y)\ = 2.) See Exercise 1.2.10 for the relationship of this definition to the
one previously given for congruence subgroups.

We now show how T\H, for F a congruence group, may be compactified
to give a compact Riemann surface by adjoining a finite number of points;
indeed, by adjoining precisely one point for each cusp. Again, the discussion
generalizes easily to a discontinuous group F where F\H has finite volume.
We start with the topological space H* = H U Q U {oo}. (For a general
discontinuous group F, we would take H* to be the union of H and the cusps
of F in P 1 ^ ) . ) We topologize H* as follows. The set H is to be an open set
with its usual topology. We must describe the topology in the neighborhood
of a point a e QU {oo}. If a == oo, we take as a neighborhood base at a the
sets of the form {oo} U {z\ im(z) > C} for 0 < C €  R. On the other hand,
if a G Q, we take as a neighborhood base at a the sets {a} U U, where U is
the interior of a circle contained in H, tangent to the real line at the point a.
With H* topologized in this way, we give F\H* the quotient topology. This is
a manifold. We will now specify charts around each point, which will give it a
complex structure.

Around "most" points a e T\H, we may simply take a neighborhood of
a in H to be a chart. Certain points must be treated carefully: These are the
elliptic points. We call a point a e H an elliptic point if there exists a nontrivial
subgroup Fa of the image F of F in SL(2, R)/{±/} that stabilizes a. Such a
group is necessarily cyclic (Exercise 1.2.4). Its order is called the order of a.

For example, if F = F(l), the F-orbits of elliptic points are represented by

i, with 17 = ( d " ' ) y and by p = e27r//3, with T^ = ( d "})). The orders of
these points are 2 and 3, respectively. Most congruence subgroups do not have
elliptic points.

Suppose that a is an elliptic point. How are we to construct a chart in a
neighborhood of a? We use the modified Cay ley transform

z- a

z — a
This maps H to the unit disk V but maps a to zero. Conjugation by this modified
Cayley transform maps Ta to the group of rotations of the unit disk in angles that
are a multiple of In/n, where n is the order of a (Exercise 1.2.5(c)). If w is the
coordinate function on V, it is easy to see that z H^ wn maps a neighborhood of
a in r\H* homeomorphically onto a neighborhood of the origin in C, and we
take this map to be a coordinate chart near a. This takes care of the remaining
points in H.
_ A s for the cusps, if a e Q U {oo}, letp e SL(2, Z) such that p (a) = oo. Let
Va be the stabilizer of a in F. Now pTp~x is a subgroup of finite index in F(l),
and the stabilizer of oo in this group is pTap~x. Hence this is a subgroup of
finite index in the stabilizer of infinity in F(l). The image of this stabilizer in
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PSL(2,R) is the infinite cyclic group generated by z H> Z + 1. Thus pTap~l is
an infinite cyclic group generated by z i-* z + n for some «. It is not hard to see
then that z H> e27Tlp^/n maps a neighborhood of a in F\W* homeomorphically
onto a neighborhood of the origin in C, and we take this map to be a coordinate
chart near a.

We have specified a coordinate chart near each point of V\H*, which thus
becomes a compact Riemann surface.

Exercises

Exercise 1.2.1 Prove Eq. (2.2).

Exercise 1.2.2 Let F be a discontinuous subgroup of SL(2, R), and let F' be
a subgroup. Let F be a fundamental domain for F, and let yi, • • •, yn be a set
of coset representatives for F ' \F; that is, F = (J F'y* disjointly. Prove that
(J y,- (F) is a fundamental domain for F'.

Exercise 1.2.3 (a) Prove that a fundamental domain for F (2) consists of x+/y
such that - 1 / 2 < JC < 3/2, |z + 1/2| > 1/2, \z - 1/2| > 1/2 and |z - 3/2| >
1/2 (cf. Figure 3). [HINT: construct first a fundamental domain by means of
Exercise 2.2, then modify it to obtain the domain in question.]
(b) Use the method of Proposition 2.3 to prove that F(2) is generated by (* f)

Exercise 1.2.4 Prove that the stabilizer of an elliptic point is cyclic.

Exercise 1.2.5 (a) Let SL (2, C) act on P1 (C) by linear fractional transforma-
tions as in Eq. (2.1). Prove that the subgroup that maps the unit disk V onto
itself is

SU(l9l) = |2\a\z-\b\l =

(b) Prove that the group SU(l, 1) is conjugate to SX(2, R) in 5L(2, C). [HINT:

use the Cayley transform.]
(c) Prove that the subgroup of SU(1, 1) fixing 0 e V is the group of rotations

/ei0/2

e
-10/2

Exercise 1.2.6 (a) Bruhat decomposition: Prove that if B is the Borel sub-
group o f 5 L ( 2 , R ) c o n s i s t i n g of u p p e r t r i angu la r m a t r i c e s a n d S = (l~

l),
t hen

and the union is disjoint. Thus SL(2, R) is generated by matrices of the
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following types:

«-)• C
(Making use of the identity (IV. 1.16) below, it is possible to dispense with the
diagonal matrices here.)
(b) Show that the measure \y\~2 dxdy is invariant under the action of SL(2, R)
by checking that it is invariant under generators in part (a).
(c) Show that the volume of T{\)\H is finite with respect to this invariant
measure.

Exercise 1.2.7 Let ±1 ^ y e 5L(2, R) acting on the Riemann sphere
P1(C) = CU{oo}.
(a) If | tr(y) | < 2, show that y has two fixed points in P1 (C): one in H and its
complex conjugate. Such an element is called elliptic.
(b) If | tr(y) | > 2, show that y has two fixed points in P1 (R) and no other fixed
points in P1 (C). Such an element is called hyperbolic.
(c) If | tr(y)| = 2, show that y has a single fixed point in P*(R) and no other
fixed points in PJ(C). Such an element is called parabolic. If tr(y) = 2, then
both eigenvalues of y are one, in which case the matrix y is called unipotent.
If y is parabolic, then either y or — y is unipotent.

Exercise 1.2.8 (a) Let F c 5L(2, R) be a discontinuous group, and let
±1 ^ y G F. Show that y is elliptic if and only if it has finite order. In
this case, we call the fixed point of y in H an elliptic fixed point for F.
(b) Show that there are only two orbits of elliptic fixed points for SX(2, Z), rep-
resented by i and e2ni/3, respectively. [Prove this by examining the fundamental
domain.]

Exercise 1.2.9 Let F c SL(2, R) be a discontinuous group such that the
quotient T\H has finite volume (cf. Exercise 2.6(c)). Show that F\H is compact
if and only if F contains no parabolic elements.

Exercise 1.2.10 Let F be a congruence subgroup of SL(2, Z). Prove that if
a e PX(M) = R U {oo}, then there exists a parabolic element y e F such that
y(a) = a if and only if a e Fl(Q) = Q U {oo}.

Exercise 1.2.11 Lety e F(l) be a hyperbolic element. Show that there exists
a real quadratic field K = Q(y/~D) with D > 0 such that the fixed points and
eigenvalues of y lie in K. Show that the eigenvalues of y are a conjugate pair of
units of norm one in K. Make the following assumption about K: assume that
the ring generated by the units of norm one in K is the full ring of integers. This
may or may not be true. Let e, ef be the eigenvalues of y. If a is a fractional
ideal of K, then a is a free Z-module of rank 2; let {^1,̂ 2} be a basis. Then
there exists an element y e SL(2, Z) such that e(a\, a2) = (a2, a2)y. Show
that the GL (2, Z)-conjugacy class of y depends only on the ideal class of a, and
that the GL(2, Z)-conjugacy classes of hyperbolic elements with eigenvalues
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e and e' are thus in bijection with the ideal classes oiK. For a fuller discussion
of the hyperbolic conjugacy classes in SX(2, Z), see the references in Volume I
ofTerras(1985,p.273).

1.3 Modular Forms for SL(2, Z)

Modular forms are certain holomorphic functions on H that have in common
with Dirichlet characters the remarkable property of being associated with Euler
products having functional equations. We will consider first the case of a
modular form for F(l) = SL(2, Z).

Let k be an even nonnegative integer. A modular form of weight k for
5L(2, Z) is a holomorphic function / on W, which satisfies the identity

and which is holomorphic at the cusp oo. The latter condition requires some
discussion. Recall from the end of the previous section that we may choose
the quantity q = e2niz as a coordinate function near oo in F(1)\W*. Because
(*}) G r ( l ) , Eq. (3.1) implies that f(z + 1) = / (z) , and thus any function
satisfying Eq. (3.1) has a Fourier expansion

OO 00

f(z)= £ a n e
2 ^ = 5 ] aW". (3.2)

n=—oo n=—oo

If for some sufficiently large N the coefficients an are zero for n < — N, we
say the function / is meromorphic at oo. If <zrt = 0 for n < 0, we say that / is
holomorphic at oo. If / is holomorphic at oo and furthermore ao = 0, we say
/ vanishes or is cuspidal at oo.

A modular form for SL(2, Z) that vanishes at oo is called a cusp form.
We denote the space of modular forms of weight k for F(l) = 5L(2, Z) as
Mk (F(l)), and the space of cusp forms as S* ( f ( l ) ) . Our first objective is to
prove that these spaces are finite dimensional.

There is a related notion of an automorphic function. We call / an automor-
phic function for F if

2£±^ =
'(

and / is meromorphic on H and at oo. Hence / may be regarded as a mero-
morphic function on the compact Riemann surface T(\)\W. Note that an
automorphic function is allowed to have poles, while a modular form is not.
It is a consequence of the maximum modulus principle that an automorphic
function with no poles is constant. (An automorphic function with no poles is
the same as a modular form of weight zero, so we may equally well state that
a modular form of weight zero is constant.) This simple fact, together with the
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observation that if / i , fi e Mk(T(l)) then /1//2 is an automorphic function,
is quite a powerful tool that we will use systematically in determining the spaces
Mk (F(l)). A first application of this principle is Proposition 1.3.2 below.

Proposition 1.3.1 Let Xbea compact Riemann surface, P\, • • •, Pn e X, and
let 7*1, • • • ,rn be positive integers. Let V be the vector space of meromorphic
functions on X, which are holomorphic except possibly at the points Pm, and
which are holomorphic or else have poles of order at most rm at Pm. Then the
space V has dimension at most r\ + . . . + rm + 1.

More precise information about the dimension of this space is contained in
the Riemann-Roch theorem.

Proof We will denote r = r\ + . . . + rm. Let us choose a coordinate function
t = tj in a neighborhood of Pj with respect to which Pj is the origin. If 0 e V,
it has a Laurent expansion:

We associate with (/> the vector A(0) e Cr whose coordinates are the r Taylor
coefficients fly,-/,, 1 < h < rj. If 0i, • • •, 4>N €  V, and if N > r, we may
find coefficients c\, • • •, cN, not all zero, such that Ylci A(<Pj) = 0. This
means that ^ c7 0 ; has no poles. It is a consequence of the maximum modulus
principle that any meromorphic function on a compact Riemann surface having
no poles is automatically constant. Hence any vector subspace of V having
dimension greater than r contains a nonzero constant function. This implies
that dim V < r + 1. •

Proposition 1.3.2 The space Mk (F(l)) is finite dimensional.

Proof Let /o be a nonzero element of Af* ( r ( l ) ) . Let X be the compactifica-
tion of F(1)\W described in the previous section. Let P\, • • •, Pm be the zeros
of /o, and let r\, • • •, rm be the orders of vanishing of /o at these points. (Ac-
tually, we must count the order of vanishing at an elliptic fixed point carefully.
The order of vanishing of a function on H at an elliptic point a whose stabi-
lizer Fa has order e will be e times the order of vanishing of the corresponding
function on X.) If / e M^(F(1)), then f/fo is an automorphic function, and
indeed, / h^ f/f0 is an isomorphism of M^ (f( l ) ) with the vector space V in
Proposition 3.1. Thus M^ (F(l)) has dimension at most r + 1. •

We would like to know, on the other hand, that modular forms do exist. A
convenient construction is by means of Eisenstein series. Let us assume that k
is an even integer > 4. Define

Ek(z) = \ Yl (™z + n)-k. (3.3)
m,n e Z
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The series is absolutely convergent (Exercise 1.3.1). Let us show that Ek(z) is
a modular form of weight k. We have

\ ^2 (m(az + b) + n(cz + d))\-k

m,n G L
(m, n) / (0, 0)

= (cz + d)k \ ^T ^ma + nc^z +
m,n e Z

(m,n)#(0,0)

Observe that because c and d are coprime, (m,ri) i-> (ma + nc, m̂ 7 + nd)
permutes the nonzero elements of Z x Z amongst themselves, so we see that
Ek satisfies Eq. (3.1). To show that it is analytic at oo, let us compute its Fourier
expansion. Firstly, the sum of the terms with m = 0 is clearly just f (k). For
the terms with m ^ 0, because k is even, the terms ±1 contribute equally, and
we may consider only m > 0. By Exercise 1.1.4, these contribute

try . x £ °°
^ Jl l) \ ^ Mk— 1 Jlninmz

If r is a complex number, let us define the divisor sum

d\n

We see that the Fourier expansion of Ek has the form

q = e2™. (3.4)

Note that by Exercise 1.1.8, the Fourier coefficients of Gk(z) = £(k)~l Ek(z)
are rational numbers.

For given k, either 5^(r(l)) = Af*(r(l)) or else dim Mk(V(l)) =
dim5lA;(r(l)) + 1, because if there exists a modular form of weight k with
nonvanishing constant Fourier coefficient, we may subtract a suitable multiple
of that from any given modular form to obtain a cusp form. Because there exist
Eisenstein series with nonvanishing constant coefficient for k > 4, we see that

dim M*(r(l)) = dim S*(r(l)) + 1 for k > 4. (3.5)

Although we have now constructed some modular forms, we still have not
constructed cusp forms. This may be accomplished as follows. The modular
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forms form a graded ring, because if / €  Af*(F(l)), g e M/(F(1)), then
fg e Mk+i ( r ( l ) ) . One may thus construct a large number of modular forms
by ring operations. For example, we see that

G4(z) = 1 - _
n=l n=l

From these we may compute the Fourier coefficients of G\ — G\, a modular
form of weight 12. We find that

j^(Gl -G2
6) = q- 24q2 + 252q3 - I412q4 + 4830^5 + . . . .

We have constructed a nontrivial cusp form of weight 12. This modular form
is denoted A(z).

We will obtain another formula for A(z), due to Ramanujan (1916). It will
be useful to have at our disposal a famous formula from the theory of elliptic
functions, JacobVs triple product formula'.

n——oo n=\

valid if 0 < \q\ < 1 and x ^ 0. A proof of this is sketched in Exercise 1.3.2.
NowinEq.(3.6),substitute#3/2forqand— q~l/1 forx. (Because^ = e2niz,

a fractional power qr is naturally interpreted as ^27rirz.) We see that

OO OO OO

J2 ( -D n qOn*+n)n = l i d - <?3")(i - ^ " ' X i - q3"-2) = II^1 - ?">•
n=—oo n=l n=l

Now completing the square in this identity, we see that

JT ( - D n <7<6"+1>2/24 = ^J/24 JJ (1 - qn). (3.7)
n=—oo n=\

The function ^(z) = g1/24 [|(1 — ^n) is known as the Dedekind eta function.
Grouping the terms with n positive and negative together, we may rewrite this
formula:

x(n)qRV24, (3.8)
n=l

where / is the primitive quadratic character with conductor 12 (Exercise 1.1.6).
We have

n = ± lmod l2;
X(n)= { - 1 ifn = ±5modl2;

0 otherwise.
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Now we show that if y = (**) G F(l), there exists a 24th root of unity e(y)
such that

cz + d )

(There is an ambiguity in sign in the choice of square root (cz + d)l/2, but
because we are only asserting that e(y) lies in the group of 24th roots of unity,
this is not a problem.)

From Proposition 1.2.3, it is sufficient to check this when y = T = (* J) and
y = S = d - 1 ) • The transformation property for y = T is clear from the right-
hand side of Eq. (3.7), because under this transformation q1/24 h^ e

2711/24 q1/24.
On the other hand, if y = 5, Eq. (3.8) gives rj(z) = 0x (-iz/12) with 0x as in
Eq. (1.14). In Eq. (1.15), we have r ( / ) = 2^3 and # = 12, so

(3.10)

so we have Eq. (3.9) in this case also. This completes the proof of Eq. (3.9) for
ally G T(l).

Next, we raise Eq. (3.9) to the 24th power to get rid e(y). We see that if

oo

A(z) = rj(z)24 = ql[(l-qn)2\
n=l

then A is a cusp form of weight 12. Observe that A is defined by a convergent
infinite product, each of whose factors has no zero on TL. Consequently,

Proposition 1.3.3 The space ^ ( i ^ l ) ) is one dimensional and spanned by
A. In particular

^ = mx(G\-Gl). (3.11)

Proof If / G 5i2(F(l)), then / / A is an automorphic function. It clearly
has no poles in H. It is also holomorphic at the cusp because A has only a
first-order zero there, while / also vanishes. Because an automorphic function
without poles is constant, / / A is constant. In particular, -^ (G\ — G\) = cA
for some c; examining the Fourier coefficients, we see that c = 1. •

In general, one may give formulas for the dimensions of spaces of modular
forms starting with either the Riemann-Roch theorem or the Selberg trace
formula. For the group SL (2, Z), however, we will obtain complete information
using ad hoc tools.
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Proposition 1.3.4 Suppose that k is an even nonnegative integer. Let k =
12; + r where 0 < r < 10. Then

rmg 0 ^ o Mk ( r ( l ) ) of modular forms is generated by G4 and G&

Proof First let us show that M^ (F(l)) is one dimensional and generated by
Ek if k = 4, 6, 8, or 10. Let h = 6(12 - k). If / e M* ( r ( l ) ) is not in the one-
dimensional space spanned by E^, we may subtract a multiple of Ek to cancel
the constant Fourier coefficient, and so we may assume that / is a nonzero
element of Sk (F(l)). We consider Eh ( / /A)6 . This is an automorphic function
with no poles, and hence is constant. Therefore Eh = c A 6 / / 6 for some c. We
see that Eh can have no zeros on H. Now h = 12H where H = 1, 2, 3, or 4.
We consider AH/Eh. This is a nonzero automorphic function with no poles but
with a zero of order H at oo, which is a contradiction. This shows that each of
the spaces Af*(r(l)) is one dimensional, spanned by Ek if k = 4,6, 8, or 10.

Now let us show that M2 ( r ( l ) ) is zero. Suppose that / is a nonzero element
of this space. Then /2s4 e M6(F(1)), so / £ 4 = cE^ for some nonzero
constant c. Because E*(p) = 0 with p = elltl^ (Exercise 1.3.3), we see
that Et(p) = 0. Now Eq. (3.11) implies that A(p) = 0, a contradiction.
Hence M2(F(1)) = 0. Of course MQ(T(\)) is one dimensional, comprising
the constant functions. Thus Eq. (3.12) is proved if k < 12.

Ifk > 12, we show that multiplication by A is an isomorphism of M^_ 12 (F(l))
with S*(r(l)). Indeed, it is an injection of M*_i2(r(l)) into S* ( r ( l ) ) , and if
/ €  ^(r(l)),then//Ahasnopoles,andhenceliesinMfc_i2(r(l)). Formula
(3.12) now follows from Eq. (3.5).

As for the fact that G4 and G& generate the ring of modular forms, let R be
the subring generated by these. It follows from the one-dimensionality of Mg
and M10 that E% and 2s 10 are constant multiples of 2s4 and E^E^\ Mk lies in
R for k < 10. Also, Eq. (3.11) implies that A e R. Let k be the first even
positive integer such that Mk (F(l)) is not contained in R\ we see that k > 12.
Now R D AM*_i2(r(l)) = ^ ( r ( l ) ) . Moreover, R contains a noncuspidal
modular form in Af*(r(l)), namely, 2s42sg, where r and s are chosen so that
4r + 6s = k. Hence by Eq. (3.5), R contains Mk. •

There exists a natural inner product on 5^(r(l)), known as the Petersson
inner product. If f(z), g(z) €  Sk (T(l)), then it is a consequence of Eq. (2.2)
that

f(z)g(z)yk
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az+b
cz+dis invariant under z i-> ^iz- Hence by Exercise 1.2.6(b), the integral

</,*>= / f(z)g(z)yk—^- (3.13)
J y

r(i)\w
is well defined. Because if n > 0,qn -+ 0 very rapidly as z -> oo, and because
a cusp form has a Fourier expansion ^ tf n #

n with an ^ 0 only for n > 0, a cusp
form / (z) decays very rapidly as y -> oo. Hence the integrand in Eq. (3.13) is
very small near the cusp, and the integral is very rapidly convergent. Evidently,
(/, g) is a positive definite Hermitian inner product.

Let f(z) = Y^^Lo an qn be an element of Mk(r(l)). Let

n=l

This is known as the L-function of / . We need to know that this series is
convergent for s sufficiently large. For this, the following estimate is sufficient.

Proposition 1.3.5 If f is cuspidal, its Fourier coefficients satisfy an < C nk^2

for some constant C independent ofn.

This estimate, called the trivial estimate, is due to Hardy (1927) and (more
simply) Hecke (1937). The correct estimate an < Cn(*~1)/2+€  for any €  > 0,
was conjectured (for / = A) by Ramanujan (1916); this famous statement,
the Ramanujan conjecture, was finally proved around 1970 by Deligne (1971)
using difficult techniques from algebraic geometry. See Section 3.5 for further
discussion of this conjecture.

Proof It follows from Eqs. (2.2) and (3.1) that \f(z) yk/2\ is T(l) invariant.
Because / is cuspidal, this function decays rapidly as z approaches the cusp,
and so it is bounded on the fundamental domain; consequently, there exists a
constant Cx such that | / (z) yk/2\ < Cx for all zeH. Now for fixed v,

l l

Me-2*" = \Jf(x + iy)e~^inxdx\ < J \f(x + iy)\dx < Cx y~k/2.
o o

This estimate is independent of n. We choose v = \/n and obtain

an < e2* Cx n
k/2

as required. •

If / is not a cusp form, this estimate is no longer valid. If / is the Eisenstein
series £*, the nth Fourier coefficient of / is ok-X{ri), which is bounded by a
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constant times \og(n) nk~l. In any case, the L-series L(s, f) is convergent for
reO) sufficiently large.

Proposition 1.3.6 The L-function L(s, f) has meromorphic continuation to
all s and satisfies a functional equation. In fact, if

A(s,f) = (2n)-sr(s)L(s,f) (3.14)

then A(s, f) extends to an analytic function ofs if f is a cusp form; if f is not
cuspidal then it has simple poles ats = 0 and s —k. It satisfies

A(J , / ) = (-1)*/2 A(* - J, / ) . (3.15)

Proof In this proof we will assume that / is a cusp form, leaving the remaining
case to the reader (Exercise 1.3.5). Because / is cuspidal, f(iy) -> 0 very
rapidly as y -> oo. When y = S9 Eq. (3.1) implies that

f(iy) = (-l)k/2y-kf(i/y), (3.16)

so f(iy) —> 0 very rapidly as y -> 0 also. Hence the integral

00

fdy)ys— (3.17)
y

0

is convergent for all s and clearly defines an analytic function of s. If refa) is
large, we may substitute the Fourier expansion for / . Noting that

oo

we see that Eq. (3.17) equals A(s, / ) . Now substituting Eq. (3.16) into
Eq. (3.17) and substituting 1/v for y, we see that Eq. (3.17) equals

(-D*/2

o

from which we get Eq. (3.15). •

The first historical hint that a Euler product should be associated with
the L-series of a modular form came from Ramanujan's investigation of A.
The Fourier coefficients of A comprise Ramanujan's tau function: A(z) =
J2 r(n) qn> Ramanujan (1916) conjectured, andMordell (1917) proved shortly
afterward, that

00

n=\ p
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The true explanation of this identity requires the theory of Hecke operators,
which is our next topic. We will give the proof of Eq. (3.18) at the end of
Section 4.

Exercises

Exercise 1.3.1 Verify that the Eisenstein series Eq. (3.3) is absolutely conver-
gent if k > 4.

Exercise 1.3.2 This exercise outlines a proof of Jacobi's triple product formula
(3.7). Let z and w be complex parameters such that z e W . Let A c C be the
lattice {2mz + n\m,ne Z}. We will also let q = e2niz and x = e2niw.
(a) An elliptic function with respect to the lattice A, is meant a meromorphic
function / such that f(u + X) = f{u) for X €  A. Use the maximum modulus
principle to show that if / is an elliptic function that has no poles, then / is
constant.
(b) Define

and let

, w) = JJ(1 + q2n'1 x) (1 + q2n'1 x~l

7 1 = 1

Prove that

#(z, w)

and that

w + 2z) = (qx)~l P(z, w).

Hence for fixed z, f(w) = ft(z, w)/P{z, w) is an elliptic function,
(c) Prove for fixed z that if P(z, w) = 0 then either w = \+z + Xot else
w = j — z + X for some l e A. Show that these values of w are also zeros
of #(z, w)> and conclude that /(u;) has no poles, and hence by (a) is constant.
This shows that

where (p(q) is independent of w.
(d) The Jacobi triple-sum formula will follow if we know that

n=\

To this end, show that

z, 1/2) = Hz, 1/4),
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whereas
00

P(4z, l/2)/P(z, 1/4) =

Then

Now show that (/>(q) -+ 1 as # -> 0, and thus evaluate <f>(q).

Exercise 1.3.3 Show that if p = e2;n/3 6 W, and if 3 f £, then / (p) = 0
for any modular form of weight k. [HINT: Observe that y(p) = p where
y = ( . j1) , and apply Eq. (3.1).]

Exercise 1.3.4 Show that G4 and G$ are algebraically independent.

Exercise 1.3.5 Prove Proposition 1.3.6 in the case where / is not necessarily
cuspidal.

Exercise 1.3.6 Show that the inner product Eq. (3.13) is defined if only one
of / and g is cuspidal and the other is an arbitrary modular form. Prove that
the Eisenstein series Ek is orthogonal to the cusp forms (cf. Exercise 1.6.4).

Exercise 1.3.7 (a) Let M be a compact Riemann surface, and let / : M —> C
be a meromorphic function. Assume that / has only one pole, at m e M, which
is simple. Extend / to a mapping M -> P1 (C) by f(m) = 00. Prove that / is
an isomorphism of Riemann surfaces.
(b) Define a function j : H - • C by j(z) = G^/A. Show that j is an
automorphic function for 5L(2, Z) with a Fourier expansion

= I + 744 + 1968844 + 21493760q2 + 864299970q3 4 - . . . .

Prove that j (i) = 1728 and jie2*'/3) = 0. Use part (a) to conclude that j is a
bijection of the compactified space

SL(2, Z)\MU {00} = PJ(C).

We now recall some elementary facts from the topology of surfaces and
the theory of compact Riemann surfaces, particularly the notions of genus
and ramification. For further information, see Siegel (1969, 1971, and 1973),
Lang (1982), and Gunning (1966).

If X is a (connected) compact Riemann surface, then as a topological space,
X is a compact orientable surface, which is homeomorphic to a sphere with g
handles attached, where the genus g of X is half the rank of the first homology
group #i(X,Z) = Z2*. The second homology group H2(X,Z) = Z. If
/ : X -> Y is a holomorphic mapping of compact Riemann surfaces, then the
topological degree of / is defined to be the positive integer n such that the map

Z £ H2(X, Z) -> H2(Y, Z) = Z
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induced by / is multiplication by n. Equivalently, / induces an injection of
the field FY of meromorphic functions on Y into the field Fx of meromorphic
functions on Fx, and n is the field degree [Fx : FY]. If y is a point of Y in
general position, then the cardinality of the fiber f~l (y) is usually n. However,
there can be a finite number of points y such that the cardinality of f~l (y) is
strictly less than n\ we say that these points ramify. Intuitively, we think of
the mapping / as a covering of 7 by X; however, if ramification occurs, it is
not strictly a covering in the topological sense but a ramified covering. Here
ramification means that some of the points of the fiber can coalesce when a is
specialized to a point that ramifies.

Suppose that y e Y and that JCI, • • •, xr are the points of f~l(y). Let et be
the number of points of f~l (rj) that are near JC,- when rj e Y is a nonramified
point of Y that is near y. Then et is called the ramification index of JC,, and
if e\ > 1, we say that JC, is ramified. It is clear that J2ei = n- Note that
with this definition, et — 1 if JC; is not ramified. We also denote et = e{xt\y).
There is a strong analogy between ramification in this geometric setting and the
ramification of primes in a number field.

We have the Hurwitz genus formula (Lang (1982)). Let gx and gY be the
genera of X and Y, respectively, let n be the topological degree of / , let
Pi, • • •, Pu be the finite number of ramified points in X, and let Qt = f(Pi),
their images in Y. Then the genus formula asserts that

(2gx - 2) = n(2gY - 2) + ] T (^PflQi) - 1). (3.19)

Exercise 1.3.8 Apply this now in the case of the canonical map / : F(N)\H*
-> SL(2, Z)\W*, with AT > 2. Show that the degree n of / is 6 if # = 2, and
|A^ 3 n^ | iv( l -P" 2 ) i f^ > 2. Show that the points of SL (2, Z)\W* that ramify
are /, e27Tl^3, and oo. Show that there are n/2 points in the fiber over i, each with
ramification index 2, n/3 points in the fiber over e2ni/3, each with ramification
index 3, and n/N points in the fiber over oo, each with ramification index N.
Hence show that when N = 2 or 3, F(N)\H* has genus zero. Confirm this
when N = 2 by examining the fundamental domain in Exercise 1.2.3.
(Note: The fact that all the points in the fiber over the three points that ramify
all have the same ramification index is due to the fact that T(N) is a normal
subgroup of 5L(2, Z). This phenomenon does not occur for subgroups that are
not normal.)

Exercise 1.3.9 Show that To (11)\H* has genus one.

Exercise 1.3.10: Picard's theorem Prove that if 0 is an entire function on C
such there are two complex numbers a and b such that a,b £ 0(C), then 0 is
constant.

[HINT: By Exercise 1.3.8, T(2) has three cusps and T(2)\H* has genus zero.
Consequently, r(2)\7i is equivalent to the Riemann sphere minus three points,
or C — {a, b}. Making this identification, we may regard / as taking values
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in T{2)\H. Now mapping H onto the unit disk by the Cayley transform, we
obtain a bounded entire function, which is therefore constant.]

Now we require some basic facts about (nonramified) covering spaces. This
well-known and important theory has applications to ramified coverings because
if / : X -> Y is a ramified covering, and Pi, • • •, Pr are the points of Y that
ramify, and if Y' is the (noncompact) space Y — {P;} and X' = f~l(Yf), then
X' is a bonafide covering space of Y''. For the theory of covering spaces, see
Spanier (1966) and Hilton and Wylie (1960), or other standard references on
topology.

Let U be a topological space, x,y e U. A path from x to y is a continuous
map t of the unit interval [0, 1] to U with t(0) — x and t(l) = y. x is called
the left endpoint and y is called the right endpoint. U is called path connected
if any two points may be joined by a path. The space U is called contractible
if the identity map U - • U is homotopic to a constant map.

We will consider topological spaces U satisfying the following axiom:

Axiom 1.3.1 U is path connected and every point of U has a contractable
neighborhood.

For example, (connected) manifolds have this property. Let U and V satisfy
Axiom 1.3.1, and let p : V -> U be a continuous map. We say that p is a
covering or covering map if the fibers p~l(u) are discrete and if every point
u e U has a neighborhood N such that p~l(N) is homeomorphic to a direct
product N x p~l(u) in such a way that the composition

p-\N) = Nxp-l(u)-+ N,

where the second map is projection, coincides with p. Covering maps have the
following important path-lifting property:

Property 1.3.1 Ifu : [0, 1] -> U is a path, and v e p~l(u(0)), then there
exists a unique path w : [0, 1] —> V such that u = p o u and M(0) = v.

This property is crucial in supplying proofs in the theory that we now describe.
One easy consequence of the path-lifting property is that the fibers p~x (w) all
have the same cardinality. Indeed, if u' is another point, we choose a path from
u to u'. Now for every v e p~l(u), by lifting this path to V with v as the left
endpoint, the right endpoint of the lifted path is an element of p~l (uf), defining
a bijection between the fibers. The cardinality of the fibers is called the degree
of the covering.

We say a topological space V is simply connected if it is path connected and
if every homeomorphism of the circle into V is homotopic to a constant map.
If U satisfies Axiom 1.3.1, then U admits a simply connected cover U, called
the universal covering space. To construct it, we fix a base point UQ e U',
let U be the space of all paths h : [0, 1] —• U such that the left endpoint
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h(0) = M0, modulo the identification of two paths when they can be deformed
one into the other by a homotopy fixing both endpoints. The projection map
/? = J)V ; U -> U is given by /?(/*) = h(l). We may topologize U in a natural
way (we leave this to the reader), and /? is a local homeomorphism.

Defining the fundamental group 7i\(U) also requires fixing a base point
UQ eU. Then n\(U) may be defined to be the set of all paths h : [0, 1] - • U
with both endpoints equal to wo, modulo the identification of paths that can be
deformed one into the other by a homotopy fixing both endpoints. Thus TC\ (U)
is precisely the fiber J>~x (w0) in the map ]> : U -> U. To make it\ (U) a group,
if Ki, Yi £ n\(U), w ^ define the product to be the homotopy class of paths
obtained by gluing the right endpoint of y\ to the left endpoint of yi. Similarly,
if y e 7T\ (U) and h e £/, we define yh by gluing the right endpoint of y to the
left endpoint of h, and^we obtain an action of n\ (U) on U, and we may identify
the quotient space V\U = U.

We say that two covering maps p : V -> U and p' : V' -> U are equivalent
if there exists a homeomorphism 0 : V -> V such that p = pf o(f>.

Exercise 1.3.11 Prove that there is a bijection between equivalence classes of
coverings of U and conjugacy classes of subgroups of the fundamental group
7ti(U), which associates with the subgroup F c 7t\(U) the covering map
T\U -> U induced by projection pv :U ^ U. Show that m(r\U) = r.

[HINT: using the the path-lifting property, show that any covering map p :
V -> U lifts toan isomorphism V -> L/j that is, the existence of the covering
p implies that V may be identified with U in such a way that Ipu = /? o /?y • We
assume the base points uo G U and i>o €  V are chosen so that UQ = /?(i>o); then
the fundamental group 7t\(V) = / ^ ( f o ) is a subgroup of TT\(U) = / ^ ( " o ) -
The flexibility in this construction is that we may change the base point vo to
another element of the fiber p~l (wo); this has the effect of replacing pyl (u0)
by another conjugate subgroup. Conversely, given a subgroup F of 7Ti(£/), we
define a covering space of U as the quotient space^F\£/, where the action of
F is inherited from the natural action of it\ (U) on U. These two constructions
are inverses of each other.]

Let p : V -* £/ and / / : Vr -> (7 be covering maps. We say that p
dominates p' if there exists a covering map q : V —> V such that p = p' o q.

Exercise 1.3.12 Let p \ V -> U and pf : Vr -> £/ be covering maps, and
let F, Fr c 7t\(U) be the subgroups associated with these covering maps by
Exercise 1.3.11. Show that p dominates p' if and only if F is conjugate in
Tt\ (U) to a subgroup of F'.

A covering p : V -> U is called regular if the group F c 7t\(U) associated
with the covering by Exercise 3.11 is normal. In this case, the quotient group
TTI(£/)/ F acts on V. Indeed, identifying V with V\U, ifyeF.ueU, let the
coset y of y in JTI ((/)/ F act by yFi/ = Tyu. The action of it\ (U)/ F com-
mutes with the map p, and hence preserves the fiber p~l(uo) and is transitive
on the fiber.
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Exercise 1.3.13 Conversely, show that if p : V -> U is a covering, and if
there exists a group G of automorphisms of V that commute with /? such that G
is transitive on the fiber p~l (wo), then the covering p is regular, and if F is the
subgroup of 7Ti(LO associated with p by Exercise 1.3.11, then G = TT\(U)/ F.

Exercise 1.3.14 Show that every covering is dominated by a regular covering.
A regular covering should be thought of as analogous to a Galois field ex-

tension, and the covering group TT\{U)/ F should be thought of as analogous
to the Galois group.

Exercise 1.3.15 shows that there is a close connection between the topology
of covering spaces and holomorphic mappings of compact Riemann surfaces.
The covering map p : V -> U is called finite if the fibers p~l(u) are finite for
ueU.

Exercise 1.3.15 Let X and Y be compact Riemann surfaces and l e t / : X —• Y
be a holomorphic mapping. Let Pi, • • •, Pr €  Y be the points that ramify. Let
U = Y - {P\, • • •, Pr}, and let V = f~l (U). Then the restriction of / to V is a
finite covering of U. Conversely, show that if / ' : V -> U is any finite covering
of U, then V may be identified with an open subset of a compact Riemann
surface X', and / ' may be extended to a holomorphic mapping Xf -> Y.

[HINT: V' inherits a complex structure from £/ by the requirement that f be
a holomorphic mapping. The problem is how to compactify V by adjoining
points to make up the fiber ff~l(P) when P is one of the exceptional points
Pt. This is a purely local question. First solve the topological problem of
constructing the fiber; what remains then is the analytic problem of imposing
a complex structure in the neighborhood of a point Q e f'~l(P). Let e =
e(Q\P) be the ramification index of Q. Let (U, y) be a chart near P so U is
a small neighborhood of P and y : U -> C is a holomorphic equivalence of
U with a domain in C; assume that y(P) = 0. Show on purely topological
grounds that v o f = xe for a function x defined in the connected component
of f ~l (U — P) whose closure contains Q. Now use a theorem on removable
singularities, such as Rudin's Theorem 10.20 (Rudin, 1974), to extend x to a
chart near Q, making Xf a complex manifold.]

Exercise 1.3.16 In the setting of Exercise 1.3.15, the holomorphic mapping
/ : X —> Y induces an inclusion Fy —> Fx of the fields of meromorphic
functions. Show that the field degree [Fx : Fy] equals the degree of the cover
V -> U and that the cover is regular if and only if Fx/Fy is a Galois extension,
in which case the group 7t\(T\U) = F of Exercise 1.3.11 is isomorphic to the
Galois group Gal(Fx/FF).

Exercise 1.3.17 Let Y = P1 (C), let y0, vi, and Voo be three distinct points of
y,andlet£/ = Y — {yo, y\, yoo}. Prove that there exists a regular cover of degree
six of U9 which can be extended to a holomorphic mapping / : X ->- Y of
compact Riemann surfaces, and such that f~l(yo) and f~l (vi) each consist of
three points, with ramification index two, and f~l(yoo) consists of two points,
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each with ramification index three. Use the genus formula (3.19) to show that
X has genus zero. Let p : Z -> Y be any holomorphic map from another
Riemann surface to Y. Assume that only yo, yi, and Voo ramify, and that the
ramification index of any point in the fiber over yo or y\ is either 1 or 2 and that
the ramification index of any point in the fiber over y^ is either 1 or 3. Prove
that there exists a holomorphic mapping q : X ->• Z such that / = p o q.

[HINTS: For the first part, note that jt\ (U) is a free group with two generators
yo and y\. Here y; is a loop issuing out of the base point and circling the
point yt once counterclockwise before returning to the base point. Let F be
the smallest normal subgroup of TT\(U) containing by y0

2, yf, and (yoyi)3, and
let V = F\U. Note that n\(U)/ F is the group with two generators go and g\
subject to the relations

gl = g\ = (gogi)3 = 1.

This group is isomorphic to the symmetric group S3. Extend the cover V - • U
to a ramified cover of Y by a Riemann surface X by using Exercise 1.3.15. For
the other part, first construct q over f~l (U) by Exercise 1.3.12, then extend it
by Exercise 1.3.15.]

We now show how these ideas can be applied to the construction of auto-
morphic functions for various groups.

Exercise 1.3.18 Prove that there exists an automorphic function z on F(2)\H
that satisfies the polynomial

z3 - zj - 16j = 0.

[HINTS: By identifying SX(2, Z)\H with P^C) by means of the map j as
in Exercise 1.3.7 (b), we may take yo = 0, y\ = 1728, and y^ = 00 in
Exercise 1.3.17. If X = F(2)\W, the projection

/ : r (2) \W-> SL(2,Z)\H

has the ramification described for the map X -> P!(C) in Exercise 1.3.17, so
we may identify the covering space X with F(2)\W. Check that if 70 e C, the
polynomial z3 — zjo — I670 has no multiple roots unless y'o = 0 or jo = 1728.
(Compute the discriminant of this cubic polynomial.) Define, therefore, a
threefold covering Z -> 5L(2, Z)\H by taking

Z = {(zo, r) e C x SL(2, Z)\W|zg - zoy'(r) - I67OO = 0},

with the covering map p : Z —> SL(2, Z)\H being the projection on the
second component. Check that the hypotheses of Exercise 1.3.17 are satisfied,
and conclude that there exists a holomorphic mapping q : X -> Z such that
f = p o q. Composing q with the projection on the first component gives the
required holomorphic mapping.]

Exercise 1.3.19 Prove that there exists an automorphic function on F(3)\W
whose cube equals j .
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1.4 Hecke Operators

Hecke (1937) introduced a certain ring of operators acting on modular forms.
The commutativity of this ring leads to Euler products associated with modular
forms. In the modern viewpoint, the Hecke ring is seen as a convolution ring
of functions on GL(2, Af), where Af is the ring of "finite adeles," which we
introduce in Section 3.1. We will encounter Hecke operators in various forms
throughout the book.

We are influenced in our treatment of this subject by the discussion in
Shimura (1971). Let us fix a weight k, which is a positive integer. It may
be even or odd.

If / is a holomorphic function on H, and y = (a
c
b
d) e GL(2, R)+, we will

denote by f\y the function

(f\yXz) = (det Y)k/1 (cz + d)~k f (^^] . (4.1)
\ cz + d J

That (f\y)\yf = f\(yyf) may be checked, so this is a bona fide right action on
holomorphic functions on H. Note that if k is even, scalar matrices act trivially;
on the other hand, if k is odd,

/

It will be convenient to immediately generalize the definition of modular
forms. Let F be a discontinuous subgroup of SL (2, R) such that F \H has finite
volume with respect to the measure defined in Exercise 1.2.6, for example, a
congruence subgroup of F(l) = 5L(2, Z). We say that a holomorphic function
/ on H is a modular form with respect to F if it satisfies Eq. (3.1) for all y e F
and is holomorphic at the cusps of F\H. Furthermore, it vanishes at all the
cusps, we say it is a cusp form. The notion of holomorphicity or vanishing
at the cusp c e R U {oo} is made precise as follows. Choose p e 5L(2, R)
such that p(c) = oo. Then f\p~l is modular with respect to the group pFp~l,
which contains a translation z f-> z + t for some real t > 0. Hence f\p~l

has a Fourier expansion ]T) aPyH e
27rinz^. We say / is meromorphic at c if the

coefficients 0 ^ = Ofor« < — C for some constant C; we say it is holomorphic
at c if aPjK = 0 for n < 0, and that it vanishes at c if the coefficients aPjfl = 0
for n < 6.

We note that if —/ 6 F, then Eq. (3.1) is impossible unless k is even.

Lemma 1.4.1 Let F be a congruence subgroup of 5L(2, Z), and let a e
GL(2, Q)+ . Then there exists an integer M such that o r 1 Fa 2 T(M). Con-
sequently, a~lFa HF(1) is a congruence group.

Proof Let N be such that F(N) C F. We may find positive integers M\, M2

such that Mia, M2a~l e Mat2(Z). Let M = MXM2N. If y e F(M), write
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y = I + Mg, where / is the 2 x 2 identity matrix, and g e Mat2(Z). Then
aya'1 = I + N{Mxa) g (M2a~l). This is clearly an element of Y(N). •

Now if / i s a modular form for a congruence subgroup F, and a e GL(2, Q)+,
then / | a is modular with respect t o a ^ F a P i F Q ) , which, we see, is a congru-
ence group. Let us say that / is a congruence modular form or a congruence
cusp form if it is a modular or cusp form, respectively, for some congruence
subgroup of F(l). We see that the action of GL(2, Q)+ preserves the property
of being a congruence modular form or cusp form.

If H is a group acting on the left on a set X, we will denote by H\X the
set of orbits of X under this action. If X is a topological space, then H\X is
given the quotient topology in which a subset is open if and only if its preimage
under the natural map X ->• H\X is open. The set H\X is variously known as
a quotient space, homogeneous space, or orbit space - these terminologies are
especially appropriate if X is a topological space but may be used in any case.

For example, if G D H is a bigger group, H acts on G by left translation and
H\G is the set of right cosets Hg for g €  G. Similarly, if H acts on X by right
translation, we denote the set of orbits by X/H, so if G D H is a bigger group,
G/H is the set of left cosets gH. Of course, this is a group if H is normal, but
otherwise it is just a set. If H\ and #2 are groups acting on X on the left and
right, respectively, such that the actions are compatible

(h\x)h2 = hi(xh2) for/ii e H\,x e X,h2 e H2,

we again have a set of orbits; x and y will lie in the same orbit if x = h\yh2

for some h\ e H\ and h2 e H2. The set of orbits in this situation is denoted
H\\X/H2. As a special case, if H\ and //2 are subgroups of a group G,
H\\G/H2 is the set of double cosets H\gH2. One way to think of this is that
H\ acts on G/H2 by left translation, and H\\G/H2 is simply the set of orbits
under this action; equivalently, H2 acts on H\\G by right translations, and
H\\G/H2 may be equally regarded as the set of orbits under this right action.

We will describe Hecke operators for F(l) = SL(2, Z), leaving Hecke
operators for congruence subgroups to the exercises. Because —/ e SX(2, Z),
as we have already noted, Eq. (3.1) requires that the weight k must be even,
and we assume this for the remainder of this section, excluding the exercises,
where we consider Hecke operators for congruence subgroups.

Proposition 1.4.1 Let a G GL(2, Q)+. Then the double coset F( l)aF(l) is
a finite union of right cosets:

N

r(l)«r(l) = U r(l)a/, at e GL(2, Q)+. (4.2)
1=1

Indeed, the number of right cosets in this decomposition equals [F(l) : a~xY(Y)
a fl F(l)], which is finite.
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Proof We will show the cardinality of F( l ) \F( l )aF( l ) is equal to [F(l) :
a~lT(l)a n r ( l ) ] . (This cardinality is finite by Lemma 1.4.1 because a~JF(l)
a f i r ( l ) i s a congruence subgroup.) Right translation by a"1 is a bijection of
GL(2, Q)+ onto itself, which induces a bijection of this set with

ar1 = (r(i)nar(i)a"1)\ar(i)a"1.

Conjugating by a, this quotient has the same cardinality as [a~lT{\)a Pi

If a e GL(2,Q)+,wedefmetheHeckeoperatorTa = T(a)onMk(F(l))by

f\Ta =

with the at as in Eq. (4.2). Observe that f\Ta is independent of the choice of
representatives at because / is modular. Moreover f\Ta is modular, because
if y e F(l), it follows from Eq. (4.2) that the cosets F(l) aty are the same as
the F(l) a, permuted, so there exist y, e F(l) such that the aty are the yi<*i
permuted, and then

(f\Ta)\y = 2/|«,-y

Thus f\Ta is a modular form for F(l), and Ta is a linear transformation of
Af*(r(l)). The space 5^(F(1)) is clearly an invariant subspace.

If a, p e GL(2,Q)+, let at be as in Eq. (4.2) and also F(1)^F(1) =
\JV(I)Pi (disjoint). We have

f\Ta\Tfi = J2 f\<*iPj =
Orer(l)\GL(2,Q)+

where a runs through a set of representatives for a e F(1)\GL(2, Q)+, and
ra(a, P\ <T) is the cardinality of the set of indices (/, j) such cr e F(l)of/^;. We
see easily that m(a, P\ a) depends only on the double coset F( l )aF( l ) , so we
may rewrite this

f\Ta\Tp = J2 f\aiPj = Yl m(a ' P> a)

or€r(l)\GL(2,Q)+/r(l )

where a runs through a set of representatives for F(1)\GL(2, Q ) + / F(l). This
prompts us to introduce a certain ring 1Z. Let 1Z be the free Abelian group
generated by the symbols Ta = T(a) as a runs through a complete set for
F(1)\GL(2, Q)+/ F(l). We define a multiplication in U by

m(a,fro)To. (4.5)
o-€r(l)\GL(2,Q)+/r(l )


