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This book presents the first comprehensive exposition of the interpretation
of quantum mechanics pioneered by Louis de Broglie and David Bohm. The
purpose is to explain how quantum processes may be visualized without
ambiguity or confusion in terms of a simple physical model.

Developing the theme that a material system such as an electron is a
particle guided by a surrounding quantum wave, a detailed examination of
the classic phenomena of quantum theory is presented to show how the
spacetime orbits of an ensemble of particles can reproduce the statistical
quantum predictions. The mathematical and conceptual aspects of the theory
are developed carefully from first principles and topics covered include
self-interference, tunnelling, the stability of matter, spin i, and nonlocality
in many-body systems. The theory provides a novel and satisfactory framework
for analysing the classical limit of quantum mechanics and Heisenberg’s
relations, and implies a theory of measurement without wavefunction collapse.
It also suggests a strikingly novel view of relativistic quantum theory,
including the Dirac equation, quantum field theory and the wavefunction of
the universe.

This book provides the first comprehensive technical overview of an
approach which brings clarity to a subject notorious for its conceptual
difficulties. The book will therefore appeal to all physicists with an interest
in the foundations of their subject, and will stimulate all students and research
workers in physics who seek an intuitive understanding of the quantum world.






THE QUANTUM THEORY OF MOTION
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Frontispiece. The cumulative pattern generated by the ‘self-interference’ of electrons
sent one by one through a two-slit interferometer. Number of electrons: (a) 10,
(b) 100, (c) 3000, (d) 20000, (¢) 70000 (from Tonomura et al. (1989)).
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Preface

The frontispiece portrays a sequence of pictures in which a pattern reminiscent
of the interference of waves is progressively built up by a series of individual
events in which one electron at a time is sent through a two-slit interferometer
and arrives at a detecting screen. Each event is unpredictable, yet over time
a definite and reproducible pattern is formed. It is not just arbitrary. What
causes the electrons to aggregate in this way? Is there some force acting on
each individual electron as it passes through the device which impels it, on
the average, to land in certain regions of the screen rather than others?

The historically dominant view in quantum mechanics regards this
seemingly natural question as meaningless. For the query rests on the
supposition that matter can be at least conceptually analysed, and that when
we speak of an ‘electron’ we really mean an autonomous entity that can move
in spacetime and be subject to forces. In contrast, it is generally asserted that
our theoretical account of physics in the microdomain must stop short at
predicting the likely outcomes when observations at the classical macroscopic
scale are performed (the density of dots on the screen). That two electrons
in the same quantum state appear at different points does not permit one to
infer that they are, in fact, physically distinguished in some way. The
uncertainty is postulated to be intrinsic to the system.

This implies the following difficulty: our most basic physical theory
contains no account of the constitution and structure of matter, correspond-
ing to the interacting particles and fields of classical physics. It is a means to
compute the statistical results of macroobservations carried out on systems
that are unspecified and, indeed, unspecifiable. The word ‘electron’ does not
actually mean anything at all — it is simply shorthand for a mathematical
function. Quantum mechanics is the subject where we never know what we
are talking about.

Yet there is a way to know what we are talking about. It was suggested

Xvii



xviii Preface

by Louis de Broglie in 1927 and developed into a physical theory by David
Bohm in 1952, and has been almost universally ignored since. According to
de Broglie and Bohm, the novelty of quantum mechanics is not that we have
to revise our customary notions regarding the reality of physical systems, but
that their conception must be extended. In describing the electron the classical
corpuscle may be retained but must be supplemented by a new type of
physical field mathematically described by Schrédinger’s wavefunction. The
wave guides the particle so that it performs quantum motions rather than
classical ones, which gives us the title of this book. The probability distri-
bution of quantum mechanics, such as that displayed in the frontispiece, is
reproduced because the particle orbits tend to congregate where the wave is
most intense. Complete specification of the state of an individual system then
requires both aspects: not wave or particle but wave and particle. The wave-
particle composite continuously evolves according to a set of deterministic
laws.

This theory of motion is not at all foreign to physicists’ practice, for it is
tacitly invoked whenever one desires to discuss things to which quantum
mechanics potentially applies that no one doubts have positions (e.g. meters).
Perhaps part of the reason why this approach has been spurned is that its
motivation has been misunderstood. The aim of the de Broglie-Bohm theory
is not to attempt a return to classical physics, or even particularly to invent
a deterministic theory. Its goal is a complete description of an individual real
situation as it exists independently of acts of observation. According to Einstein,
that is the programmatic aim of physics. Determinism is a means to this end.
What emerges is a highly nonclassical theory in which the parts of a larger
system are subject to organization by the whole, something not anticipated
in the classical paradigm.

There are unsatisfactory aspects of the de Broglie-Bohm model but it has
been discarded by the wider scientific community in the absence of a sustained
technical examination. This book is intended as a contribution to filling that
vacuum. We do not wish to appear too evangelical in our prosecution of the
theory, but close study does reveal that the gains in conceptual clarity over
the current rivals far outweigh the drawbacks. In the first instance what is at
issue is the task of imagining the quantum world and that is our principal
concern. There now exists a core of established results in this field, some of
which are reported here for the first time, and as a research area there are
rich prospects. A recurring theme in the book is how the classical and
quantum paradigms are connected, a problem that seems to be insoluble in
the conventional approach since the usual quantum notion of state does not
contain the classical conception as a special case. Another problem where



Preface Xix

there is great scope for a rational input from the causal model is the
interpretation of relativistic quantum theory. The usual presentation of this
is extraordinarily vague and provides a classic example of how the rules
regarding the meaning of the quantum formalism as pertaining to measure-
ment outcomes are quietly put aside and the physical disposition of matter
discussed as if it were objectively real. Most importantly, there is the
possibility of bringing the de Broglie-Bohm theory into the experimental
arena, a subject that is currently under investigation.

It is a pleasure to thank the following friends and colleagues for their
support and encouragement during the writing of this book, and for their
courtesy in providing valuable information and/or constructive criticism of
the final manuscript: Michael Berry, Piotr Garbaczewski, Dipankar Home,
Phil Jacobs, Tassos Kyprianidis, Mioara Mugur-Schichter, Chris Philippidis,
Helmut Rauch, Euan Squires and Jean-Pierre Vigier. I have tried to take into
account their suggestions but the responsibility for the outcome is mine alone.
I am indebted also to D. & J. Canavan for help with the typing at a critical
moment, to L. Holland and M. Anderson for preparing many of the figures,
and to A. Tonomura for providing the frontispiece.

The volume was written while I was a visiting fellow at the Laboratoire
de Physique Théorique, Institut Henri Poincaré, Paris, to whom thanks are
due for hospitality and generous provision of facilities. Grants from the Royal
Society, the SERC and the French government provided partial support in
the early stages and the final chapter was written during the tenure of a
Leverhulme Trust fellowship. All these agencies are cordially acknowledged.
During the bulk of the writing I worked as an editor for Elsevier Science
Publishers BV. Thanks are due to Elsevier for its generosity, and to Joost
Kircz and Jean-Pierre Vigier without whose assistance and understanding
the book would not have been finished.

Paris PRH
May, 1992

Note added to Preface for paperback edition

According to the theory of evolution the path of natural phenomena may be
regarded as explicable yet unpredictable. Darwin’s theory comprises an
observer-independent, causal reconstruction of events whose random
character precludes evolutionary forecasting. Of course, the historically
important issue at the heart of the theory of evolution is the quality of its
explanation rather than its immediate predictive power. The achievement of
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the de Broglie-Bohm theory in the domain of quantum physical phenomena
is the production of a science similar in its scope and conceptual structure to
the elements of Darwinism just cited. Yet what is perceived as an intellectually
satisfying and fertile mode of explanation in evolutionary biology has been
fiercely resisted in quantum physics. Darwin would not fare well if judged by
the criteria of prediction and control currently dominant in physics. But how
can we conceive of a testable prediction of an explanatory theory unless we
contemplate the explanation it offers?

It is instructive how impractical, inhibiting ideas came to dominate and
distort the entire development of a fundamental field of physics. The early
quantum physicists attributed to nature a limitation we can now see was
simply a deficiency of contemporary thought. The biological comparison
shows the arbitrariness in the historical development of physical ideas, but it
is not merely a source of analogy. Quantum mechanicists often claim their
theory is universal and applicable, in principle, to the entire universe. But
biological processes, which are surely part of the same universe, lie beyond the
reach of physical explanation as we currently understand it. As far as we can
tell, they are not instances of quantum mechanics. Actually, the failure of
quantum mechanics to reproduce the valid results of other sciences already
occurs at a more basic level of macro-experience. The difficulty arises in
attempts to derive classical particle and field theory from the quantum theory
in cases where the former are known to be valid. The de Broglie-Bohm theory
suggests that this programme is generally unrealisable; generic classical
processes are inaccessible starting from quantum ones. Even in those cases
where the Correspondence Principle of the de Broglie-Bohm model is obeyed
(as gauged by the relative effectiveness of the quantum potential) only a
subclass of admissible classical behaviour may be recovered in general.
Taking into account the entire spectrum of physical processes to which they
have been applied, we cannot therefore assert that the quantum theory of
matter and motion is better than the corresponding classical theory. Rather,
they emerge as different theories whose domain of overlap is smaller than is
customarily believed. Some examples illustrating this point, hitherto
unnoticed even by partisans of the de Broglie-Bohm model but which may
prove to be its most significant new insight, are given in Chap. 6.

It is pleasing to report that since this book was completed many new
workers have been drawn to the de Broglie-Bohm theory. Work is still in
progress so I have restricted myself in this reprint to the correction of minor
errors. The comments of many correspondents are much appreciated.

Paris, PRH
July 1994



1

Quantum mechanics and its interpretation

1.1 The nature of the problem

The quantum world is inexplicable in classical terms. The predictions
pertaining to the interaction of matter and light embodied in Newton’s laws
for the motion of particles and Maxwell’s equations governing the propagation
of electromagnetic fields are in flat contradiction with the experimental facts
at the microscopic scale. A key feature of quantum effects is their apparent
indeterminism, that individual atomic events are unpredictable, uncontrollable
and literally seem to have no cause. Regularities emerge only when one
considers a large ensemble of such events. This indeed is generally considered
to constitute the heart of the conceptual problem posed by quantum
phenomena, necessitating a fundamental revision of the deterministic classical
world view.

Some of the principal phenomena, among those discussed in this book, are
as follows:

(a) Self-interference: a beam of electrons sent one at a time through a barrier
containing two apertures builds up through a series of localized detection events
on a screen an interference pattern characteristic of waves (cf. the frontispiece
and §5.1).

(b) Tunnelling. an a-particle trapped in a nucleus can pass through a potential barrier
in a manner forbidden to a classical particle (§5.3).

(¢) The stability of matter: atoms and molecules are found to exist only in certain
discrete, or ‘stationary’, energy states. For this reason they do not ‘collapse’,
the result predicted by classical electrodynamics. During transitions between
stationary states (quantum jumps) an atom exchanges a discrete quantity of
energy with the electromagnetic field (§§4.5, 7.6).

(d) Spin 1: a beam of atoms sent through an inhomogeneous magnetic field is split
into a discrete set of subbeams (the Stern—Gerlach experiment). This reveals a
novel type of nonclassical internal angular momentum (§9.5).

1



2 1 Quantum mechanics and its interpretation

(e) Nonlocal correlations: the properties of one system can depend on those
of another arbitrarily distant system with which it has interacted in the
past (Chap. 11).

The discrete, statistical and nonlocal character of these phenomena is
clearly in conflict with the continuous, determinist and generally local
structure of the world according to classical particle and field physics.

It is remarkable that a single coherent mathematical theory, quantum
mechanics, could be devised to correlate the heterogeneous empirical data
just cited (and many more). Through the Schrédinger equation, quantum
mechanics describes the laws of evolution of statistical ensembles of similarly
prepared systems. To date, the results obtained are in accord with all
experimental evidence. But, insofar as it only predicts the outcomes of
measurements performed on statistical aggregates of physical systems, quantum
mechanics does not in itself provide an explanation of the experimental facts.
What is missing is a description of the actual individual events of experience,
of which the statistical phenomena would be functions.

The challenge is to develop a theory of individual material systems, each
obeying its own law of motion, whose mean behaviour over an ensemble
reproduces the statistical predictions of quantum mechanics. The empirical
record would then be explained as the outcome of a sequence of well-defined
processes undergone by systems possessing properties that exist independently
of acts of observation.

A way to do this was found by de Broglie and Bohm. It turns out that a
causal representation of quantum phenomena may be constructed which
leaves intact the basic mathematical formalism of the theory, if this is
reinterpreted and extended in a certain way. The detailed working out of the
de Broglie-Bohm idea is the subject of this book.

1.2 The wavefunction and the Schridinger equation

In classical physics the state of an individual material or field (e.g. electro-
magnetic) system is uniquely defined by the position x(¢) of the object in the
first case and the real or complex amplitude ¢(x, ¢) in the second, as functions
of the time t. Here x = (x, y, z) represents the Cartesian coordinates of a point
in space. The equations of motion of classical physics, Newton’s laws and
Maxwell’s equations, specify these state variables for all time if they and the
corresponding momenta are precisely determined at one instant.

The quantum theory developed in the 1920s is connected with its classical
predecessor by the mathematical procedure of ‘quantization’, in which



1.2 The wavefunction and the Schrddinger equation 3

classical dynamical variables are replaced by operators. In the process, a new
entity appears which the operators act on, the wavefunction. For a single-body
matter system this is a complex function, y(x, t), and for a field it is a complex
functional, Y[ ¢, t]. The wavefunction constitutes a new notion of the state
of a physical system.

The historical problem of interpreting quantum theory may be formulated
as follows: In prosecuting their quantization procedure, the Founding Fathers
introduced the new notion of state not in addition to the classical state
variables but instead of them (Fig. 1.1). They could not see, and finally did
not want to see even when presented with a consistent example, how to retain
in some form the assumption at the heart of the classical paradigm that matter
has substance and form independently of whether or not it is observed. The
y-function alone was adopted as characterizing the state of a system. Since
there is no way to describe individual processes using just the wavefunction,
it seemed natural to claim that these are indeterminate and unanalysable in
principle.

How the state function is to be interpreted, at least partially, and how it
evolves in time are questions addressed by the axioms of quantum mechanics,
which we now summarize in a fairly informal way. These are generally agreed
upon and will be accepted here. It is not possible to state the rules without
some interpretative elements intruding, particularly Born’s probabilistic
interpretation of . But the further significance of y, if any, is open to debate
and will be discussed later. Although the formalism is interwoven with the
interpretation, the latter is not unique and one should not equate either of

Quantization m
Matter . >

w(x. 1) -~ wave

Particle x(7) x
Quantization

Em wave ¢(x.1) v|[¢o. 1} - wave

XU

Fig. 1.1 When the wavefunction was introduced, the classical particle and field
variables characterizing the states of individual physical systems were discarded.




4 1 Quantum mechanics and its interpretation

them with the Copenhagen interpretation (§1.3). More detailed and rigorous
presentations will be found in the standard sources such as von Neumann
(1955), Messiah (1961), Schiff (1968) and Dirac (1974). Summaries are given
by Bjorken & Drell (1964), Jammer (1974, Chap. 1) and d’Espagnat (1976).

We shall consider just the one-body problem. The wavefunction introduced
above is referred to as ‘the state in the position representation’. This means
the following. We denote the state of the system by the ket |y), an abstract
vector in a linear vector space. In this space we introduce a set of axes |x),
one axis for each value of x. Then the wavefunction is the set of components
(one for each x) of the state vector with respect to this basis: Y(x, t) = x|y (t)).

The set of complex numbers, i.e., the wavefunction, has the following
interpretation. Suppose that the wavefunction is square-integrable, so that it
lies in a Hilbert space ##, and is normalized:

W) = f T WP dx=1. (121

Then if at time ¢ a measurement is performed to determine the position of the
system described by the function ¥(x, t), the probability that the result lies in
the element of space d3x around the point x is given by

P(x, t) d3x = Y(x, t)>d3x. (1.2.2)

This probability interpretation may be generalized and applied to the
measurements of other physical quantities. We first note that all observables
in quantum mechanics are represented by linear Hermitian operators acting
in the Hilbert space. For example, the classical canonical momentum p is
replaced, in the position representation, as follows:

p—p=—itV (1.23)

where i =,/ — 1, h = h/2n, h is Planck’s constant and V is the gradient
operator. This is the procedure of quantization. In the following we shall
often denote the operator corresponding to a classical variable 4 by A4, but
where it is clear from the context that an operator is intended we sometimes
omit the caret.

The outcome of the measurement of an observable 4 is one of its
eigenvalues, a, defined by the equation

Ala) = ala) (1.24)

where a is real and |a) is the corresponding eigenstate (we assume the
spectrum is discrete and ignore degeneracy where several independent
eigenstates may correspond to the same eigenvalue). In the position
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representation we shall write (x|a) = {,(x). The eigenfunctions corresponding
to distinct eigenvalues a, a’ are orthonormal,

J YE@Y,(x) dx = 0y, (1.2.5)
-

and form a complete set so that an arbitrary wavefunction can be expanded
in terms of them:

W(x) =3 ca¥a(x), (1.2.6)

where ¢, are complex numbers. We have ¢, = {a|y) so that these numbers
are the components of the vector |y ) with respect to the basis (@) in .

If now a measurement of A is performed on a system in the general
normalized state (1.2.6), the probability of the outcome a is given by |c,|>. As
a result of the measurement the system has ‘collapsed’ into the state |a).
Notice that [c,|{? does not refer to the probability that the system is in the
state |a), independently of the performance of a measurement.

The expectation value of the operator A in the state |y is given by

Ay = WlAlY) =Y alc,|*. (1.2.7)

By a suitable choice of operators, all the testable predictions of quantum
mechanics can be expressed in terms of expectation values in the state [{).
To do this, we introduce the ‘projection operator’ B, = |a)<{a|. Then the
probabilities are given by

leal? = CYIRIY. (1.2.8)
Similarly, we find for the eigenvalues the expressions
a=<aldlay . } (1.2.9)
= Y|\BAFR N[> .

In quantum mechanics the classical Hamiltonian function, H = p?/2m +
V(x) where V is the external potential energy and m is the mass of the system,
is replaced by the Hermitian operator H = p2/2m + V(R). This determines
the evolution of the quantum state via the Schrédinger equation ih d|y /0t =
H|y>. The eigenvalues of H are the possible energies of the system corre-
sponding to stationary states. In the position representation the Schrodinger
equation becomes the partial differential equation

W%t _ W
t

ih -
d 2m

V2(x, t) + VX)X, 0). (1.2.10)
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This law of motion has two notable features: (1) It admits a linear superposition
principle. If y, and ¥, are two solutions, then the function

Y(x, 1) = c (X, 1) + coy5(x, 1), (1.2.11)

where c,, ¢, are complex constants, is also a solution. (2) The hermiticity of
H implies a conservation law for the flow of probability:

(d/de) J WP dx =o. (1.2.12)

To solve (1.2.10) for all time we must specify the initial state function
Vo(x) = Y¥(x, 0). In addition, ¥ and its derivatives must obey certain boundary
and subsidiary conditions. Thus, it is required in regions where V is finite
that ¢ and Vi be bounded, continuous and single-valued functions of x. If
the potential V" has a discontinuity along a surface with normal unit vector
n, Y and V¢ -n must be continuous across it. If, however, the potential step
is infinite, Y = 0 along the surface and n-Vy is indeterminate.

Further details of the formalism, such as the extension to many-body
systems, systems with spin, density matrices and the relativistic formulation,
will be introduced as we need them.

As presented so far, quantum mechanics appears essentially as a set of
working rules for computing the likely outcomes of certain as yet undefined
processes called ‘measurements’. One might well ask what happened to the
original programme embodied in the old quantum theory of explaining the
stability of atoms as objective structures in spacetime. In fact, quantum
mechanics leaves the primitive notion of ‘system’ undefined; it contains no
statement regarding the objective constitution of matter corresponding to the
conception of particles and fields employed in classical physics. There are no
‘electrons’ or ‘atoms’ in the sense of distinct localized entities beyond the act
of observation. These are simply names attributed to the mathematical
symbol ¥ to distinguish one functional form from another. The original quest
to comprehend atomic structure culminated in a set of rules governing
laboratory practice.

It is not clear that one can apply the formalism to concrete problems
without at least some mental image of the systems studied. For example, in
applying quantum mechanics to the formation of molecules (§7.6), we have
in mind some informal picture of the physical distribution of matter in space
so that certain interaction energies may be deemed ‘small’ and treated as
perturbations. And many orthodox accounts often slip into describing the
motion of a wave packet through space as if it were something ‘real’. Thus,
in applying the theory physicists tacitly consider, and perhaps have to
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consider, quantum mechanics to be something more than just a means of
correlating experimental results, and attribute to it the ability to describe
some kind of reality beyond the phenomena.

The quantum formalism is not an entirely well-defined, closed structure.
For example, there is no general rule for defining the order of the operators
when products of classical variables are quantized, and the treatment of time
is an open question (cf. §5.5). But even for that part which is uncontroversial,
including the rules just stated, the ‘interpretations’ that may be put on the
formalism are open-ended constructions about which there is no global
consensus. Their limits and consistency are not established. Thus the common
assumption that experiment cannot decide between the various interpretations
if these reproduce all the usual quantal predictions should be viewed critically.

1.3 The completeness assumption

It was observed in §1.2 that the rules of quantum calculus cannot be stated
without some reference to the physical interpretation of the mathematical
symbols. In this connection it may be noted that the notion of the ‘quantum
state’ used in the sense of some attribute of a physical system, although widely
employed in presentations of the subject, is not a concept that appears in
Bohr’s analysis of the interpretative problems of quantum mechanics (e.g.
Bohr, 1934, 1949, 1958). Bohr emphasizes the necessity of a complete
specification of the experimental conditions for an unambiguous application
of the formalism. Moreover, he requires that these conditions must be
expressed in terms drawn from classical physics, for it is only in this way
that he considers unambiguous communication in physics is possible. The
predictions embodied in the y-function then pertain to the total classically-
described experimental phenomenon and not to the independent properties
of an ‘object’. Bohr (1948) summarized his view thus:

The entire formalism is to be considered as a tool for deriving predictions, of definite
or statistical character, as regards information obtainable under experimental
conditions described in classical terms and specified by means of parameters entering
into the algebraic or differential equations of which the matrices or the wave-
functions, respectively, are solutions. These symbols themselves, as is indicated
already by the use of imaginary numbers, are not susceptible to pictorial interpret-
ation; and even derived real functions like densities and currents are only to be
regarded as expressing the probabilities for the occurrence of individual events
observable under well-defined experimental conditions.

Words like ‘position’ and ‘spin’ are not meant to be understood in the
way we might think, or indeed how we really do continue to think, but as
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convenient shorthands for macroscopic and technically complex instruments
designed to ‘measure’ these ‘properties’. And the following words are
attributed to Bohr (quoted by Jammer (1974, p. 204)): ‘There is no quantum
world, there is only an abstract quantum physical description. It is wrong to
think the task of physics is to find out how nature is. Physics concerns what
we can say about nature.

Much of Bohr’s argument is concerned with demonstrating that any
attempt to construct a physical explanation of the formalism inevitably leads
to ambiguity and confusion. He saw in quantum mechanics ground for an
application of his philosophy of complementarity, but we emphasize that this
view cannot be derived from quantum mechanics. In this approach the wave
and particle aspects of matter are supposed to be revealed by complementary
but mutually exclusive experimental arrangements. The purpose of comple-
mentarity is not to go beyond classical concepts but to preserve them by
limiting their range of application. In this sense quantum mechanics is claimed
to introduce no new physical concepts. Nevertheless, in the process of arguing
for this programme Bohr brought out, perhaps in a rather indirect manner,
what may be the really novel feature of the quantum description, namely its
holistic character, that the observer cannot be excluded from an account of
the physics she observes.

Bohr assumes that everyday language, and its refinement in classical
physics (particles, fields, position, momentum, energy), is a natural and
necessary mode of discourse for human beings to communicate their
experiences unambiguously, and that it is unproblematic. This seems to
ignore an essential component of language that it is a function of, and
contributor to, a changing social context. Classical physics took millennia
to develop and takes years of schooling to learn. The range and content
of ‘everyday experience’ is constantly being enriched and altered and it
is hard to see what is natural about its state in our particular epoch.
Why should everyday language not eventually come to include concepts
that do enable quantum phenomena to be conceptually analysed? Actually,
this insistence of Bohr on the necessity of a classical mode of discourse is
only of historical interest, for we now know that we can indeed develop
concepts to analyse the individuality of quantum experience (for example,
through the theory described in this book), if we countenance the intro-
duction of new concepts that go beyond the classical paradigm. In this
connection we might note that the appearance of complex numbers in
quantum mechanics, adduced by Bohr in the passage cited above as indicative
of the impossibility of a pictorial representation of the phenomena, is actually
irrelevant to this question (cf. the presentation of classical mechanics in terms
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of complex fields in Chap. 2). Further difficulties with Bohr’s approach are
discussed in Chap. 8.

Although the claim is widely disseminated that Bohr’s ‘Copenhagen
interpretation’ is the most consistent and satisfactory interpretation of
quantum mechanics available, it is remarkable that there is no source one
can turn to for an unambiguous rendering of Bohr’s position about which
there is general agreement. Scholars give varying accounts of his work (cf.,
e.g., Folse (1985) and Murdoch (1989)). Textbooks do not apply Bohr
literally. When one investigates the properties of the hydrogen atom, for
example, one solves the Schrédinger equation for two charged particles
interacting via a Coulomb potential, i.e., for a system in its own right. One
hardly bothers to specify the experimental arrangements necessary to verify
the predictions contained within the wavefunction that are calculated in this
way. Indeed, the natural inclination of scientists is to attempt to visualize the
inner workings of an atom, for example by treating |/|? as a kind of objective
‘charge density’ (cf. §4.5). In doing this they move beyond the interpretation
of s that pertains simply to the relative frequencies of measurement results
to attempt a description of the essence behind the phenomena. This is the
unspoken contradiction at the heart of quantum physics: physicists do want
to find out ‘how nature is’ and feel they are doing this with quantum
mechanics, yet the official view which most workers claim to follow rules out
the attempt as meaningless!

The views of the principal exponents of the conventional interpretation of
quantum theory (Bohr, Heisenberg and von Neumann) will be examined in
the course of this book, particularly in Chap. 8. Although their analyses differ
in certain important respects, they share a common theme which is at the
core of the conventional interpretation presented in most textbooks. This may
be stated as the following assumption of ‘completeness’

The wavefunction is associated with an individual physical system. It provides the
most complete description of the system that is, in principle, possible. The nature of
the description is statistical, and concerns the probabilities of the outcomes of all
conceivable measurements that may be performed on the system.

In practice one checks these statistical predictions through the relative
frequencies of the results of measurements carried out on an ensemble of
identically prepared (i.e., same i) systems. What this assumption boils down
to is the proposal that if i is held as descriptive of a single system, the rules
set out in §1.2 constitute in themselves the entire physical theory. Notice that
it is asserted that not only is this postulate sufficient for interpreting quantum
theory, but that it is necessary.
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We emphasize the speculative character of the completeness assumption.
It is not forced upon us by the experimental facts and the more detailed
theory of individual processes that it forbids is not excluded by the generally
agreed formalism. A difficulty with it is that it takes for granted that the
formalism is essentially closed and unambiguous. But the latter is not
completely well defined and in an area such as the problem of time (cf. §5.5)
the completeness assumption becomes vulnerable and open to question.

Because it is postulated that predicting the results of experiments exhausts
the possibilities of description of an individual system that are even con-
ceivable, the indeterminism implied in the statistical interpretation of ¥ is not
of the kind encountered in classical statistical mechanics. There the evolution
of a system is unpredictable due to our ignorance of an, in fact, well-defined
physical state of an individual system. Here no meaning is to be attributed
to the notion of a state beyond that encoded in y and hence the indeterminism
is in some sense supposed to be intrinsic to the very nature of the system. Of
course, if one relinquishes the assumption that material systems of the same
kind (e.g., electrons) are distinguished from one another by virtue of having
a well-defined location in spacetime, physical processes involving them will
appear to be inherently indeterminist since systems that are prepared
identically in the quantum mechanical sense (same initial wavefunction) and
subjected to the same forces (same Hamiltonian) behave differently (points
appear apparently at random on a detecting screen).

Following Einstein (§1.4) we shall locate the origin of the difficulties and
paradoxes encountered in quantum theory in the attempt to squeeze the entire
physical content of the theory of an individual system into the straitjacket
of the statistically interpreted y-function. It has allowed quantum mechanics
to acquire an aura of ‘magic’ in which ‘smoky dragons’ are invoked in
discussions of two-slit interference effects and mind is held actively to
influence generally occurring physical processes. The various difficulties of
interpretation largely evaporate if the completeness assumption is relinquished
in favour of less restrictive assumptions where one admits the possibility that
other physical elements may enter the theory and that y has a significance
beyond the mere specification of probabilities. Then one can indeed use
quantum mechanics to find out ‘how nature is’.

The historical triumph of the Copenhagen interpretation seems to be a
rather fortuitous affair and we do not consider that the exclusion of other
valid points of view has had a beneficial influence on the development of
theoretical science. The legacy of the orthodox view has been a lopsided
presentation of the subject where great emphasis is laid on what we cannot
know about nature. The only research it appears to have stimulated is
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the attempt to understand and/or refute it, and the latter has hardly been
encouraged. Because there is nothing in the theory to discuss but the results
of experiments, it has also contributed to the notion that science is essentially
concerned with the prediction and control of physical phenomena, and that
progress in physics is most likely to come about through the manipulation
of formalisms rather than the sharpening of our conception of reality. This
is somewhat odd in a field that prides itself on the clarity and exactness of
its thought and expression. The elegance of modern theoretical physics is
largely to be found in its formal languages, not in the images with which it
seeks to comprehend the world. Too often a concept is judged on what it
‘predicts’ and on whether a test can be proposed at its moment of inception
to demonstrate its ‘truth’. But analysed in these terms the transformation
between Ptolemaic and Copernican cosmology is incomprehensible, for what
was at issue there was a novel perception of how nature is, and this could
not be immediately ‘proved’ by a new ‘prediction’. To find a test, ideas must
first be nurtured; in the meantime, they should be assessed according to
different criteria, such as their explanatory power.

In the following the important issue is not so much the denial of causality
in the processes governed by quantum mechanics, but the claim that no
model at all can be constructed of an individual system. This latter point
is a fundamental component in Einstein’s critical analysis, as we now
see.

1.4 Einstein’s point of view

There is a popular view of Einstein in relation to the quantum theory which
holds that he was unable to assimilate the revolutionary changes in world
view apparently required by the new theory, that what bothered him most
was the elimination of determinism from fundamental physics (‘God does
not play dice’), and that he ‘wasted’ the last 30 years of his scientific life in
a fruitless quest to reestablish old-fashioned classical determinism as the
ground of physical theory, having been ‘beaten’ by Bohr in their famous
dialogue. Contrary to this view, consideration of what Einstein actually said
in his public and private writings in the quantum period from the late 1920s
to his death reveals a rather different picture. He, in fact, offered a carefully
crafted critique that has never been satisfactorily answered, or in some ways
even addressed, by the quantum establishment, and which, moreover, endures
today. Pertinent references are the articles of Einstein (1936, 1940, 1948, 1949),
the letters in Prizbram (1967) and Born (1971), and the analyses of Ballentine
(1972) and Fine (1986).
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A consistent theme in Einstein’s commentary is the incompleteness of the
theoretical description provided by the y-function, and his advocacy of a
definite counter-interpretation.

To illustrate what he means by ‘incomplete’, Einstein (1949, p. 667)
considers the case of radioactive decay in which an a-particle is emitted from
an atom localized practically at a point. This system may be modelled by a
closed potential barrier which at t = 0 encloses the a-particle. As time passes,
the wavefunction, initially finite only inside the barrier, leaks into the
surrounding space. According to the usual prescription this function yields
the probability that at some instant the particle is found in a certain portion
of the external space. Yet the wave may take many centuries to expand into
the outer space whereas the particle may be found there after only a relatively
short time. The wavefunction does not therefore imply any assertion con-
cerning the time instant of the disintegration of the radioactive atom. That
is, it does not describe the actual individual event revealed by the detector,
including its cause.

If it is reasonable to suppose that the individual atom really does have a
definite moment of decay, one may conclude, according to Einstein, that the
y-function does not provide a complete description of the individual; it must
be considered incomplete.

An objection may be raised that one is concerned here with a microscopic
system of which we can have no direct knowledge, and that one can only claim
there is a definite moment of disintegration if this can be determined empirically.
To counter this, Einstein amplifies his example of incompleteness to the macro-
scopic scale (his version of the cat problem of Schrédinger (1935b)) by including
the detector (Geiger counter) and a registration-strip, upon which a mark is
made when the detector fires, in the entire system to which quantum
mechanics is to be applied. After a suitable time has elapsed we expect to
find a single mark on the strip. Yet the theory only offers the relative
probabilities for the location of the mark if this is observed. 1t does not describe
the objective definiteness of the mark as a property of the total system per se.

In this example the lack of description of the actual moment of decay is
translated into a failure to describe the location of the mark on the strip.
Einstein admits as a logical possibility that the mark becomes definite only
when the strip is observed but states that, because we are now entirely within
the sphere of macroscopic concepts (Einstein, 1949, p. 671),

...there is hardly likely to be anyone who would be inclined to consider it
seriously . . . One arrives at very implausible theoretical conceptions, if one attempts
to maintain the thesis that the statistical quantum theory is in principle capable of
producing a complete description of an individual physical system.
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Einstein gave further arguments that quantum mechanics works with an
inadequate description of individual systems in connection with the classical
limit of the theory (a similar example to the macroscopic example above —
see §6.5) and correlations in many-body systems (Chap. 11). His method was
to show that those who adhere to the completeness assumption are compelled
to adopt ‘unnatural theoretical interpretations’, in which according to him
no one seriously believes.

It will be noted that in the example just described Einstein’s concern is the
indeterminateness of the world according to the usual quantum description
of physical events, i.e., its failure to describe a reality comprising independent
substantial objects beyond the phenomena. The complex function ¥ simply
does not exhibit any feature that could be put into correspondence with the
(presumed) real state of affairs viz. that matter has substance and form
independently of whether or not it is observed. Einstein’s argument does not
signify a general distaste for statistical theories in physics (he did after all
develop the theory of Brownian motion). In his view, the indeterministic
aspect of quantum mechanics follows from the failure to provide a complete
description and not because it is an intrinsic characteristic of matter. In a
letter written to Schrodinger in 1950 he says (Prizbram, 1967, p.40) *...it
seems certain to me that the fundamentally statistical character of the theory
is simply a consequence of the incompleteness of the description.” In Einstein’s
programme, resolving the difficulty of describing a determinate reality entails
constructing a causal (determinist) description, because he felt that this is a
basic requirement of a complete physical theory (cf. Fine (1986, p. 103)). That
is, in the process of making microphysics determinate, it would cease to be
intrinsically statistical.

Of course, although linked in Einstein’s critique, the requirements of
determinism and determinateness are logically distinct. It is useful to separate
the problem of completing quantum mechanics as a broad research pro-
gramme from the specific brand of completion that invokes a deterministic
description. As an analogy we may think of the classical theory of Brownian
motion (Ballentine, 1972). This provides an objective description of a particle
where individual events have definite antecedents, but the process is innately
indeterminist and furnishes only statistical predictions.

As a way of resolving the interpretative dilemma within the terms of
reference employed in quantum mechanics, Einstein proposed his own
interpretation in which he advocates Born’s statistical postulate, but interpreted
in the sense that ¥ pertains not to a single physical system but rather to an
ensemble of systems. In this view ¥ is admitted to be an incomplete
representation of actual physical states and plays a role roughly analogous



14 1 Quantum mechanics and its interpretation

to the distribution function in classical statistical mechanics. Unfortunately,
Einstein did not develop this idea sufficiently far for it to be clear exactly
what it entails. He did not present it as an independent point of view but
rather invoked it in the context of his examples designed to illustrate the
untenability of the completeness assumption. He consistently claimed that
the ‘ensemble interpretation’ dissolves the various difficulties and paradoxes
flowing from the postulate of completeness, but he never explained precisely
how.

Einstein’s interpretation of the y-function has subsequently been developed
into the ‘statistical interpretation of quantum mechanics’ (Ballentine, 1970;
for a review see Home & Whitaker, 1992). Here it is asserted that y refers
only to ensembles and that these are composed of particles pursuing definite
(but unknown) spacetime trajectories. The only meaning attributed to |y|? is
a statistical one, that it determines the relative frequency with which positions
are realized in an ensemble of similarly prepared systems. Although it adopts
a more modest and temperate line than the Copenhagen interpretation, a
difficulty with this proposal is that one is not told what the laws are that
govern the motions of the particles which are now admitted to exist
objectively. Clearly, they cannot be the classical Newtonian laws because the
ensemble of individual motions must reproduce the predictions of quantum
mechanics, which in general contradict those of classical mechanics. In
remaining agnostic on the issue of the laws obeyed by the particles, the
statistical interpretation does not seem to offer any greater insight into the
nature of quantum phenomena than the usual view. It is akin to treating the
evolution of systems in classical statistical mechanics as defined just by the
Liouville equation and not enquiring into the latter’s origin in Hamilton’s
equations governing the underlying ensemble elements. This gap in the
statistical interpretation is, of course, filled by the causal interpretation. But
in the process it is found that the wavefunction cannot have the significance
simply of encoding statistical information, but actually acquires the highly
nonclassical property of being a physical component of each ensemble
element, something not envisaged in the statistical interpretation. In this
sense, the causal interpretation may be viewed as conceptually lying some-
where between the Copenhagen and statistical interpretations; it posits that
¥ is in itself an incomplete description of an individual system, but in
completing the theory, ¥ is associated with the individual.

Einstein’s critique, particularly his insistence that a deeper explanation of
the phenomena correctly correlated by quantum mechanics is possible and
necessary, provides the context for the theory presented in this book. Many
statements made subsequently evoke his sentiments, without always directly
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referring to one of his utterances (for his reaction to the causal interpretation
see §1.5.2).

1.5 The causal interpretation
1.5.1 De Broglie and Bohm

There was a general movement in theoretical physics in the 1920s against the
idea that individual atomic events could be visualized as parts of causally
connected sequences of spacetime processes. In the paper where he proposed
the probability interpretation of the wavefunction, Born (1926) wrote: ‘I
myself am inclined to give up determinism in the world of atoms. But that
is a philosophical question for which physical arguments alone are not
decisive.’

It seems to have been regarded as almost axiomatic that the trajectory
concept of classical mechanics is incompatible with wave mechanics. An
argument in this direction was offered by Schrodinger (1926a,c, 1928), based
on Hamilton’s analogy between the rays of geometrical optics and mechanical
paths. Schrodinger first asserted that in optics the conception of rays is well
defined only in the geometrical limit and that in domains where the finiteness
of the wavelength becomes relevant it loses nearly all significance because,
even in homogeneous media, the ‘rays’ would be curved and appear mutually
to influence one another. Then by analogy he claimed that the notion of the
path of a mechanical system in ordinary mechanics likewise becomes
inapplicable in cases where the de Broglie wavelength is comparable to
characteristic lengths associated with the orbit, and indeed that it entails a
contradiction. Although he was not a supporter of the emerging Copenhagen
interpretation, Schrédinger proposed that the path should be replaced by the
wave and have only an approximate significance in what would be the
analogue of the geometrical optics limit. An obvious reply to this is as follows.
Whatever the merits of the argument for excluding the ray concept from
undulatory optics may be (and this is not a closed subject, see §12.6), the
analogy drawn by Schrdédinger between wave mechanics and wave optics is
not an exact one (the mathematical theories are not in one-to-one corre-
spondence) and the case against the meaningfulness of material paths in wave
mechanics cannot therefore be regarded as proved, at least not on these
grounds.

The idea that one should introduce the new matter wave not instead of
the material point but as coexisting with it was advanced in this period by
Louis de Broglie (1926a,b, 1927a,b,c). In the nonrelativistic Schrodinger case
de Broglie suggested that the wavefunction is associated with an ensemble of
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identical particles differing in their positions and distributed in space
according to the usual quantum formula, |y|2. But he recognized a dual role
for the y-function; not only does it determine the likely location of a particle,
it also influences the location by exerting a force on the orbit. It thus acts as a
‘pilot-wave’ that guides the particles (only one of which actually accompanies
each wave) into regions where { is most intense. For a scalar external
potential the law of motion of the system point is that of the classical
Hamilton—Jacobi theory according to which the possible paths are orthog-
onal to the surfaces of constant phase (de Broglie generally presented his
theory in terms of the relativistic Klein-Gordon equation which was
subsequently found to present severe interpretative problems — see §12.1). In
fact, the pilot-wave idea is a truncated version of de Broglie’s complete
proposal in which he envisaged the particle as being represented by a
singularity in a second field introduced in addition to the y-wave, rather than
just treating it as a classical-style point. We shall not discuss this ‘double-
solution’ interpretation further (see e.g. de Broglie (1956); Jammer (1974,
p. 44)).

One may say that the contradiction perceived by Schrodinger, that the
ensemble of paths seem mutually to influence one another, had been removed
in de Broglie’s approach by treating the wave itself as an agent that causes
the paths to curve (in addition to classical forces).

De Broglie presented his proposal at the 1927 Solvay conference (Electrons
et Photons, 1928, pp. 105-32). In particular, he applied his guidance formula
to compute the orbits for the hydrogen atom stationary states (see §4.5). The
approach met with a general lack of enthusiasm. Although it was discussed,
only Einstein said de Broglie was right to search in the direction of a particle
interpretation, although he did not endorse the specific model described
(Electrons et Photons, 1928, p.256). Kramers, while not questioning the
possibility of tracing precise orbits, remarked that he could see no advantage
in doing so (Electrons et Photons, 1928, p. 266). Pauli presented a detailed
objection (Electrons et Photons, 1928, pp. 280-2; see §7.5.2) which de Broglie
attempted to answer. However, the unfavourable climate, presumably com-
pounded by Heisenberg’s discovery of the ‘uncertainty’ relations, eventually
led him to abandon his programme and indeed he soon began to propagate
arguments against it (de Broglie, 1930). De Broglie returned to research in
this area only 25 years later when in 1952 David Bohm rediscovered the
approach and developed it to the level of a fully fledged physical theory (the
story is told in de Broglie (1953a, 1956)).

In the intervening period Rosen (1945) had noted the possibility of
retaining the particle picture in the quantum domain but was led to give up
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his proposed interpretation because he felt it was inconsistent with the
existence of interference phenomena.

Bohm’s classic pair of papers (Bohm, 1952a,b) remain the starting point
for anyone wishing to find out about the de Broglie—-Bohm theory. Bohm
showed conclusively by developing a consistent counterexample that the
assumption of completeness described in §1.3, a notion that pervaded
practically all contemporary quantal discourse, was not logically necessary.
One could analyse the causes of individual atomic events in terms of an
intuitively clear and precisely definable conceptual model which ascribed
reality to processes independently of acts of observation, and reproduce all
the empirical predictions of quantum mechanics. Bohm’s model is essentially
de Broglie’s pilot-wave theory carried to its logical conclusion.

But its significance goes beyond a mere existence proof, a kind of theoretical
game of no direct value to the practising quantum physicist. A phrase such
as ‘an electron moves along the x-axis’ is no longer simply an aid to
calculating the wavefunction but refers to an objective process engaged in by a
material system possessing its own properties through which the appearances
(the results of successive measurements) are continuously and causally
connected. It is thus very much a ‘physicist’s theory’ and indeed puts on a
consistent footing the way in which many scientists instinctively think about
the world anyway. This comes about not merely through an extension of
classical notions but requires the development of a new physical intuition.
Bohm locates the novelty of quantum mechanics not in its statistical or
discrete aspects but in a new physical conception of the state of a system
(mathematically described by Schrédinger’s wavefunction) that manifests
itself in the motion of particles through a new type of potential, the quantum
potential. The resulting theory stands in a clear and obvious relation to its
classical counterpart (Chap. 6). The principal feature it shares with the
classical paradigm is that the individuality of experience is comprehensible,
but it diverges in its new notion of state.

Bohm applied his interpretation to a range of examples drawn from
nonrelativistic quantum mechanics and speculated on possible alterations in
the particle and field laws of motion such that the predictions of the (modified)
theory continue to agree with those of quantum mechanics where this is tested
but disagree in as yet unexplored domains. In Bohm’s theory Born’s statistical
postulate is not dropped but is incorporated as a special case of the more
general conception that || represents the likely current location of a particle.
Born’s assumption follows when the theory is applied to measurement
processes, the analysis of which is a significant feature of Bohm’s contribution.
He lays great emphasis on the creation of the outcome of the measurement
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through the interaction between the system and apparatus; in general, this
does not passively reveal the premeasurement value of a physical quantity.
Bohm extended his approach to include the second quantized electromagnetic
field and also answered the earlier objections of Pauli, de Broglie and Rosen
cited above. It should be noted that Bohm took issue with de Broglie’s
conception of light in which ‘photons’ are conceived as massive corpuscles
moving within the electromagnetic guiding field, and proposed instead that
the only ‘real’ parameters are the field coordinates and their conjugate
momenta (see Chap. 12).

Because the causes of microevents could be analysed in their individuality
and were no longer treated as irreducibly indeterminist and inexplicable, the
de Broglie-Bohm proposal came to be known as the ‘causal interpretation’
of quantum mechanics. But while it indeed sets up a correspondence between
all the mathematical symbols appearing in the formalism and physical
properties of the wave-particle composite, the theory actually goes beyond
the mere interpretative debate concerning the assignation of meanings to the
symbols because it adds not just to the concepts but to the formalism itself,
through the particle law of motion (cf. §5.5). Its description as a causal
‘interpretation’ therefore appears to be inadequate. Since it is essentially a
novel theory of material motion (the first in quantum mechanics, in fact), a
more appropriate title is ‘the quantum theory of motion’. We shall use the
various terms ‘pilot-wave’, ‘causal interpretation’ and ‘quantum theory of
motion’ interchangeably in this book. But however we think of it, this theory
of motion is not presented as a conceptually closed edifice offering the final
word on quantum mechanics, and its originators never intended it to be this.
Rather, it is a view worth developing for the insight it provides, and as a clue
for possible future avenues of enquiry.

A few papers appeared in the wake of Bohm’s articles raising technical
questions connected with his approach, notably by Takabayasi (1952, 1953;
replied to by Bohm, 1953b). The issues raised in these various articles will
be discussed in later chapters. In this period de Broglie developed a small
school of collaborators, including Jean-Pierre Vigier (see de Broglie (1956),
Vigier (1956)). A good review of developments in the theory up to the
mid-1950s is given by Freistadt (1957) and a qualitative account by Bohm
(1957). A point to note is the attempt of Bohm (1953a) to demonstrate within
the framework of the causal axioms why the probability distribution should
be |i|?, and also the attempts to include in the theory nonrelativistic systems
with spin (Chap. 9) and systems governed by the Dirac equation (Bohm,
1953b; de Broglie, 1956; Takabayasi, 1957; see §12.2).

In the main the commentary of other physicists, particularly the Founding
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Fathers (see below), was, where it existed, negative, and the theory did not
enter the mainstream of physics either as a research topic or in textbooks.
In fact, in the following 25 years only occasional and sporadic references were
made to the de Broglie-Bohm theory. Books were written, courses taught
and research conducted as if what Bohm had demonstrated to be possible
was still, in fact, impossible. Although de Broglie continued to advertise the
idea in his books, and Bohm worked on hidden-variable theories, no
development or application of the pilot-wave theory was made.

A solitary and notable exception is the work of Bell (1966) who made
reference to the nonlocality inherent in the de Broglie—Bohm picture (Chaps.
7, 11). Raising the question of whether this is a generic feature of all
‘hidden-variable’ completions of quantum mechanics, Bell (1964) was led to
his inequality distinguishing a class of local theories from quantum mechanics,
a step which brought the issue within the realm of experimental physics.

Belinfante (1973) and Jammer (1974) respectively published technical and
nontechnical abridged accounts of the theory but it was not until the late
1970s that serious interest was rekindled when the trajectories corresponding
to the two-slit experiment were explicitly displayed in computer graphics
(Philippidis, Dewdney & Hiley, 1979; §5.1). During the 1980s developments
took place in several branches of the theory, as will be discussed in detail
later. This was motivated in part by continued dissatisfaction with the
conventional solution to the problems of interpretation, and a certain thawing
in the attitude that these matters were all settled long ago. Also, what had
for a generation been gedanken experiments, such as single-photon inter-
ferometry and Einstein—Podolsky—Rosen correlations, could now actually be
performed. In this recent period the de Broglie—-Bohm idea has featured in
some popular accounts of quantum mechanics (e.g., Squires (1986)) and
Bohm has returned to actively develop the theory, the principal new element
in his work being the proposal that the quantum potential may be interpreted
as a kind of ‘information potential’ (Bohm, 1987). The approach has been
eloquently defended in several articles by Bell (1987). Some criticisms of the
approach have appeared (e.g., Tipler (1984, 1987) (for a reply see Dewdney,
Holland, Kyprianidis & Vigier (1986)), de Muynck (1987)) and comparisons
have been drawn between the pilot-wave theory and interpretations other
than the ‘conventional’ one, such as the ‘many-worlds’ picture (e.g., Bell
(1987), Bohm & Hiley (1987), Zeh (1988)), a subject we shall not discuss.

Nevertheless, at the time of writing it is fair to say that the de Broglie-Bohm
theory of motion is still marginalized and, when it is referred to, often
misrepresented. The sustained technical examination of its novel features, a
prerequisite before any decision can be taken regarding its value, has not
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been undertaken. There has been some discussion of why this should be so
(e.g., Bohm & Peat (1989) and the following two subsections) but there
clearly remains considerable scope for analysing the social relations of science
in the context of this physical theory.

The causal interpretation may be viewed in the context of Einstein’s critique
as a concrete proposal for how a complete description of individual events
may be obtained, but the deterministic model employed is by no means the
only possible completion that is conceivable. As observed in the Preface,
reintroducing determinism into microphysics was a means to the end defined
as accounting for the individuality of physical systems, but other avenues are
open through which one may achieve the same goal. An attempt at providing
a complete description along indeterministic lines was proposed by Bohm &
Vigier (1954). The idea is to suppose that the particle is constantly subjected
to random perturbations coming from some background source, such as
random fluctuations in the y-field, so that its motion is akin to a kind of
Brownian movement and hence deviates from the deterministic law of the
basic pilot-wave theory. The latter now only describes the mean motion and
the particle may jump between the mean flow lines. By means of this further
postulate, it can be proved that an arbitrary initial distribution of positions
will decay in the course of time to the |[y|?-distribution of quantum mechanics
(for the proof see also Belinfante (1973, p. 186); see also Valentini (1991)).
This approach is connected with the subsequently developed stochastic
interpretation of quantum mechanics (Nelson, 1966, 1985; Jammer, 1974,
Chap. 9; Vigier, 1982) in which it is demonstrated how the Schrédinger
equation is implied if particles in a stochastic process are subjected to a
particular kind of force law. It is to be emphasized that the Bohm—Vigier and
Nelson programme of deriving the laws of quantum mechanics from the laws
obeyed by particles at some deeper or subquantum-mechanical level, what-
ever its merits, is logically unconnected with the basic de Broglie-Bohm
pilot-wave idea which constitutes in itself a self-contained and consistent
theory of motion that does not require the assumption of a further as yet
unrevealed layer of physical reality. In this book we shall be concerned solely
with working out the original deterministic de Broglie-Bohm proposal and
do not discuss possible stochastic extensions.

1.5.2 What the great men said

The reaction to Bohm’s work by the Copenhagen establishment was generally
unfavourable, unrestrained and at times vitriolic (e.g. Rosenfeld (1958)).
We first consider the response of Heisenberg (1955; 1962, Chap. 8) to
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Bohm’s contribution, and see in outline how the points he raises may be
answered (see also Bohm (1962) for a reply). Heisenberg first questions what
it means to say that a wave propagating in configuration space is ‘real’. His
objection to this notion is based on his assertion that only ‘things’ in
three-dimensional space are ‘real’. He offers no logical or scientific argument
to show that examining the possiblity of the physical reality of muiti-
dimensional spaces is a fruitless enterprise. It is useful to recall here the
Kaluza—Klein programme in general relativity where physicists contemplate
spacetimes of dimension greater than four as a valuable aid to comprehending
and unifying the basic physical interactions.

Heisenberg goes on to bemoan what he considers an asymmetrical
treatment of position and momentum in the causal interpretation, and the
apparent breaking of a fundamental symmetry of the quantum theory. This
criticism seems to confound the quite reasonable asymmetry in the physical
interpretation, which assumes that the preferred arena for physical processes
is position space, with the symmetry exhibited by the mathematical theory
(cf. §3.12). The asymmetry is also connected with the nature of measuring
processes which generally entail active transformations and do not passively
reveal preexisting states (Chap. 8). Classical physics exhibits in the canonical
formalism an analogous feature of mathematical symmetry but physical
asymmetry.

The ‘hidden parameters’, ie., the particle orbits, are denounced by
Heisenberg as a “superfluous ‘ideological superstructure’” having little to do
with immediate physical reality because the causal formulation generates the
same empirical results as the Copenhagen view. But in Bohm’s theory it is
precisely the positions of particles that are recorded in experiments; they are
the immediately sensed ‘reality’.

Finally, Heisenberg mentions Bohm’s tentative proposals for modifying the
quantum laws of motion so as to permit an experimental test of the trajectory
interpretation in a domain where the quantum theory may conceivably break
down. This possibility he dismisses as akin to the ‘strange hope’ that someday
it will turn out that sometimes 2 x 2 = 5. That is, Heisenberg believes that
any alternative or even modification to the current quantum theory is
logically impossible. He considers that Bohm’s purpose was to return to
classical physics and thus misses the key point about the de Broglie-Bohm
proposal: it refutes the view that the actual individual facts of experience are
in principle unimaginable.

The objection pertaining to the asymmetrical role of the position and
momentum variables in the causal interpretation had been raised in an earlier
paper by Pauli (1953). He considers that this feature renders the theory
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‘artificial metaphysics’ and that any proposal to modify the formalism so as
to demonstrate empirically the existence of particle tracks will inevitably
conflict with established experimental facts. A point of interest raised by Pauli
is why, in a theory which treats the laws of the -ensemble as functions of
individual laws, the probability distribution should be given by the quantum
formula || and not arbitrarily specified (a similar observation is made by
Keller (1953)). Although a physical justification of this assumption is not a
logical requirement of a causal theory (one may just take the probability to
be |y|?> with no further discussion, as indeed the orthodox view does), Bohm
& Vigier (1954) did, in fact, supply an argument justifying the |i/}*>-distribution
through a development of the original model, as noted above. Commenting
on Pauli’s article, Born (1971, p. 207) wrote to Einstein that ‘... Pauli has
come up with an idea ... which slays Bohm not only philosophically but
physically as well’!

At a 1957 conference in Bristol, Rosenfeld repeated the charge that Bohm
was engaged in ‘metaphysics’. Bopp summarized the discussion thus: ‘... we
say that Bohm’s theory cannot be refuted, adding ... that we don’t believe
in it’ (Korner, 1957, p. 51; Jammer, 1974, p. 296).

Viewed in retrospect, what is striking about the reaction to Bohm is not
that the proponents of the orthodoxy should attempt to defend themselves
vigorously, but the inadequate character of the arguments they adduced in
their defence. Personal distaste regarding specific features of the theory, such
as its asymmetry, or the ad hoc manner in which the quantum potential is
introduced, or its intrinsic nonlocality, seems to us to be beside the point
(they are among the criticisms that have been levelled by advocates of the
approach). The point is that it demonstrates that quantum phenomena need
not be sealed in black boxes and forever hidden from our conceptual gaze,
as claimed by the Copenhagen lobby. Such a demonstration is not invalidated
by dubbing it ‘metaphysical’ (this term carries with it the implied rebuke that
Bohm was doing ‘mere philosophy’, the physicist’s ultimate censure). In a
climate more disposed to a spirit of free enquiry, Bohm’s work would have
been acclaimed rather than treated as an inconvenience and then ignored. As
an example of how new physics may be generated by a consideration of
alternative theories, we have already cited the case of Bell’s theorem which
followed directly from contemplation of the de Broglie-Bohm model and is
widely regarded as one of the seminal discoveries of twentieth century physics.

The fact is, of course, that the assumptions made by the Founding Fathers
in regard to the possibilities of visualizing the origin of quantum phenomena
were equally ‘metaphysical’ and devoid of empirical support. One can indeed
argue that Bohm had provided at least theoretical evidence against the
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orthodox view, whereas there was no counterevidence forthcoming, either
theoretical or experimental, to exclude the pilot-wave. In fact, the establish-
ment did have in its possession theoretical evidence which indeed purported
to demonstrate the impossibility of theories, of the type propounded by Bohm,
that add supplementary variables to the quantum formalism while reproducing
all its empirical predictions: the 1932 theorem of von Neumann (1955). Given
the existence of Bohm’s counterexample, one might have expected that the
causal interpretation and von Neumann’s theorem would both have been
subjected to a sustained theoretical analysis to discover in which the error
lay. While the quantum nobility expressed (private) doubts that Bohm had
been able to circumvent von Neumann’s theorem (Hanson, 1969, p. 174), this
analysis simply was not carried out (the story is told by Pinch (1977, 1979)).
More than 10 years elapsed before von Neumann’s assumptions were
critically analysed and found to be wanting in that he supposes that the
probability distribution of the supplementary variables has the same properties
as the quantum mechanical distribution (Mugur-Schichter, 1964). This
supposition entails, for example, that the mean values of the new variables
are linearly superposable in the same way that the means of quantum
mechanical observables are, and hence that the outcome of the measurement
of a linear sum of operators is the linear sum of the outcomes of measurements
of the operators individually (Bell, 1966). The causal interpretation does not
fall within the scope of this assumption because for it measurements entail
transformations of the system under investigation. These transformations are
very specific to the observable ‘measured’ and, as we have said, such processes
do not passively reveal premeasurement values. Bell (1966, 1982) identified
similar problems with other ‘impossibility proofs’. Eventually, it proved
possible to show that quantum mechanics can always be supplemented by
‘hidden variables’ (Gudder, 1970).

In letters written in the early 1950s, Einstein (1989, p. 60) expressed
solidarity with de Broglie in his search for a complete representation of
physical reality. But he does not seem to have been overly impressed by the
specific solution advanced in the pilot-wave theory. To Born (1971, p. 192)
he wrote in 1952 ‘Have you noticed that Bohm believes (as de Broglie did,
by the way, 25 years ago) that he is able to interpret the quantum theory in
deterministic terms? That way seems too cheap to me. While the de
Broglie—-Bohm proposal might be considered as a deterministic completion
carried out in accordance with Einstein’s critique, Einstein did not think that
fundamental progress towards the discovery of a deterministic substructure
could be made by a completion from within, i.e., simply by appending
supplementary physical variables to an essentially unmodified formalism.
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He expressed this in 1954 as follows (quoted by Fine (1986, p. 57)): ‘I think
it is not possible to get rid of the statistical character of the present quantum
theory by merely adding something to the latter, without changing the
fundamental concepts about the whole structure.’

Einstein was after a more radical completion which countenanced going
beyond the classical concepts that Bohr had retained in his interpretation
and which de Broglie and Bohm were using to describe the individual process
(material points and forces). Generally, he felt that the quantum theory did
not serve as a useful point of departure. De Broglie’s notion of the
‘double-solution’ was closer in spirit to Einstein’s field-theoretic approach
than the basic pilot-wave model but was at that stage (and is still today)
largely an unfulfilled programme. Still, despite his reservations, Einstein
(1953) took Bohm’s work seriously enough to offer an objection which raised
an interesting issue, as we discuss in §6.5.

It might be argued that Einstein’s negative attitude was a tactical mistake
and that, whatever he perceived as its drawbacks, some model such as that
of de Broglie and Bohm was better than none at all in countering the
prevailing vagueness in interpretation, at least as a makeshift before a
more satisfactory foundation could be found (the view taken by de Broglie
and Bohm towards their theory). But it seems unlikely that Finstein’s
endorsement would have made much historical difference given that for 25
years he had been branded as a quantum dissident and that the precise
nature of his own critique was not widely understood. After all, his solution
to the problem of interpretation within the quantum scheme, the view that
Y refers only to ensembles, was widely advertised in his public writings
and was itself ignored (although admittedly he never developed the idea very
far).

1.5.3 Some objections

There is a sense in which physicists do not understand how it is even
possible to have a causal theory of the de Broglie—Bohm type, and feel
uneasy that there must be some inconsistency in it if it really does what it
claims and covers all the empirical ground accounted for by quantum
mechanics. But beyond aesthetic displeasure, which has always loomed large
in discussions of it, to our knowledge no serious technical objections have
ever been raised against the de Broglie-Bohm world view. Anticipating our
subsequent detailed analysis, we here summarize and offer preliminary
answers to some of the typical objections that have been advanced against
this theory.
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(1) You cannot prove the trajectories are there

Insofar as the quantum theory of motion reproduces the assertion of quantum
mechanics that one cannot perform a precise measurement of position
simultaneously with a precise measurement of momentum, this statement is
true (§8.4). But this cannot be adduced as evidence against the tenability of the
trajectory concept. Science would not exist if ideas were only admitted when
evidence for them already exists. One cannot after all empirically prove the
completeness postulate. The argument in favour of the trajectory lies else-
where, in its capacity to make intelligible a large swathe of empirical facts.

(2) It predicts nothing new

First we note that the postulate of completeness predicts nothing about the
details of a process beyond the distribution of measurement results. In
contrast, the quantum theory of motion permits more detailed predictions to
be made pertaining to the individual process (cf. $5.1.3). Whether these may
be subjected to an experimental test is an open question (cf. §§5.5, 8.8).

(3) It attempts to return to classical physics

The deterministic model of wave and particle causally evolving from the past
into the future is a particular solution to the problem of describing a
determinate reality. Although de Broglie and Bohm have often been chastised
for reintroducing the classical paradigm, this misses the key point that they
are invoking a concept not anticipated in classical physics, that of a ‘state’
of a mechanical system that lies beyond the material points. The role of the
trajectory is to bring out this new concept so sharply it cannot be ignored.
This essentially nonclassical programme should be contrasted with that of
Bohr who strove to leave intact as far as possible the classical concepts by
restricting their applicability.

(4) The price to be paid is nonlocality

Nonlocality is an intrinsic feature of the de Broglie-Bohm theory (Chaps. 7,
11). This property does not contradict the statistical predictions of relativistic
quantum mechanics (Chap. 12) but it is considered to be in some way a
defect, the implication being that entirely local theories are preferable. Yet
nonlocality seems to be a small price to pay if the alternative is to forego any
account of objective processes at all (including local ones). Also, it is
inconsistent to deny the logical possibility of a pictorial representation of the
phenomena, and then lay down conditions for what such a picture should
consist of when one is produced.
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(5) It is more complicated than quantum mechanics

Mathematically, the quantum theory of motion requires a reformulation of
the quantum formalism (not an alteration). The reason is that the usual
presentation of the theory is not the one most appropriate to the physical
interpretation. But, mathematically, the theory remains quantum mechanics.
In particular, the quantum potential is implicit in the Schrédinger equation.

(6) It is counterintuitive

It certainly runs counter to classical intuition. The concept of ‘intuition’ is
like that of “human nature’: it is a function of history and not eternally frozen.
The notion that a body persists in a state of uniform motion unless acted
upon by a resultant force would be counterintuitive to Aristotle but natural
for Galileo. Quantum phenomena require the creation of quantum intuition.

(7) There is no reciprocal action of the particle on the wave

In classical physics there is a dialectical interplay between particle and field,
each generating the dynamics of the other. In the pilot-wave model the
dynamical connection is one way. Among the many nonclassical properties
exhibited by this theory (cf. §3.3), one is that the particle does not react
dynamically on the wave it is guided by. But while it may be reasonable to
require reciprocity of actions in classical theory, this cannot be regarded as
a logical requirement of all theories that employ the particle and field
concepts, especially one involving a nonclassical field.

It will be noted how, having been chided for its classical pretensions (point
(3)), the causal interpretation is admonished in points (4), (6) and (7) because
it is not classical enough!
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Hamilton—Jacobi theory

2.1 The need for a common language

If we wish to compare the methods, content, claims and experimental
predictions of two physical theories we have to find some common ground
between them. What is needed ideally is a language which embraces the
essential elements of each theory as parts of a broader structure which
transcends them both. There are two components to such a language, which
might be called the formal and the informal. Briefly, by ‘formal’ we mean a
precisely defined set of concepts and their relationships from which one can
deduce unambiguous conclusions by a series of logical steps (mathematics); by
‘informal’ we mean the intuitive concepts and pictures that a theory employs
in order to render intelligible the ‘reality’ for which it seeks to account. These
two aspects are naturally closely connected. The possibility of constructing
a language of this type is not given a priori. It may turn out that it is possible
to develop only one of the two components, and the theories we want to
compare may or may not be commensurable, or only partly so.

We shall examine this question in connection with the relation between
two physical theories of matter: classical mechanics and quantum mechanics.
This relation is subtle and operates on several levels and we shall return to
it throughout the book. For the present we confine ourselves to some general
remarks. Roughly speaking, we may say that classical mechanics as a distinct
discipline constitutes a language possessing both formal and informal aspects.
Newton’s laws (or their refinements in the Lagrangian, Hamiltonian and
Hamilton—Jacobi formalisms) allow us not only to predict the results of
experiments on fields and particles, but also provide an explanation of these
results in terms of a definite world view — that of mass points pursuing
well-defined trajectories in space and time and interacting via preassigned
potentials. Formally this is a theory of continuous functions in configuration
or phase space and this aspect derives its physical meaning from a definite
theory of matter and motion with which it is inextricably linked.

27
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Quantum mechanics on the other hand possesses a sophisticated and highly
developed formal language of linear operators in Hilbert space but, in the
orthodox interpretation, only provides hints of what an informal language
which would explain the results the formalism predicts might be like. Indeed,
the absence of a clear physical picture has tended to lead to an identification
of ‘quantum reality’ with Hilbert space, i.e., with the formal language.

At the present stage in the development of physics the possibility of an
intuitive account is closely connected with the possibility of a theory of matter
and motion as a process in space and time. In this book we shall therefore
be mainly concerned with developing a language which allows us to
comprehend microphysical phenomena in this way. Naturally, on its own the
spacetime theory of matter and motion of classical mechanics is not broad
or deep enough to include quantum mechanics. We have to develop a new
language.

Several avenues of enquiry are open to us. We might try to express classical
mechanics in a Hilbert space language with the hope that eventually this may
lead to new insights into the quantum theory. Formally this can indeed be
done; for example, canonical transformations may be shown to be equivalent
to unitary transformations in a Hilbert space of square integrable functions
on phase space (Koopman, 1931). While this implies the possibility of a formal
comparison between classical and quantum mechanics, it does not seem to
lead to a clear physical conception of the latter. In particular it does not lead
to a spacetime picture of quantum processes.

Alternatively, one may try to introduce a kind of ‘phase space’ into
quantum mechanics. Again, this can indeed be done and leads to a formulation
of quantum mechanics in terms of, for example, Wigner functions (§8.4.3).
This is a more promising approach but again it does not result in a theory
of material processes in space and time.

We pursue here a different approach, one that associates a well-defined
phase space (i.e., simultaneously real position and momentum variables) with
a quantum mechanical system, but which is immediately tied to a picture of
physical events as processes in spacetime. To locate what is new in quantum
mechanics in relation to classical mechanics we formulate both as particular
instances of (a suitably generalized) Hamilton-Jacobi theory. It turns out
that the Hamilton—Jacobi theory admits a natural generalization which
provides a language broad enough to embrace both theories, formally and
informally. Formally there is a clear mathematical procedure as to how one
passes from the quantum to the classical domain (see Chap. 6), and informally
the language provides an unambiguous physical picture of waves, rays
(trajectories) and their interrelationships. Although historically connected
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with just classical mechanics and field theory and the semiclassical approxi-
mation to quantum mechanics, the Hamilton-Jacobi method transcends its
origins.

The aim of this chapter is to provide the relevant classical background so
as to put the generalization required by quantum mechanics into context. It
is not an intrinsic requirement of a causal spacetime theory of quantum
processes that we employ the Hamilton-Jacobi language of waves and rays.
Indeed a ‘minimalist’ version of the causal interpretation of quantum
mechanics can be formulated without reference to it (Chap. 3). However,
the Hamilton—Jacobi language affords considerable insight into the formal
and conceptual structure of quantum mechanics, in particular its relation
with classical mechanics, and we shall make extensive use of it in this
book.

2.2 The Hamilton—Jacobi method in classical mechanics
2.2.1 Hamilton’s principal function

We begin by reviewing some basic results in classical mechanics, in particular
how a certain function, a solution of the Hamilton—Jacobi partial differential
equation, facilitates the solution of the equations of motion. This method is
due to Jacobi. For definiteness we shall talk in terms of the motions of
particles, i.e., material points (in three-dimensional space or configuration
space), but all our remarks and results apply to any physical system as usually
treated by the methods of classical mechanics (e.g., rigid bodies and fields).
Our treatment is nonrelativistic and we use absolute time as an evolution
parameter. Further details may be found in the texts of Synge (1954), Landau
& Lifschitz (1960), Lanczos (1970), Arnold (1978) and Goldstein (1980).

The following notation is used. The generalized coordinates are denoted
by q;,i =1,...,n, where n is the number of degrees of freedom of the system,
x = (X, y, z) are the coordinates of a body in a Cartesian system, p; represents
the momenta in both general and Cartesian coordinates, and ¢ is the time.
Often we shall neglect the indices and write just ¢ and p. These then stand
for the points whose coordinates are g; and p;. It is assumed that a metric is
given on configuration space so that we can form invariants. Under coordinate
transformations g; transforms as the components of a contravariant vector
and p; as the components of a covariant vector, but we shall not distinguish
this in the notation (all indices are subscripts). No attempt is made at a
rigorous presentation.

Starting from the Lagrangian L = L(q, ¢,t), where along a trajectory
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q = q(t) and 4 = dq/dt, we define the momentum canonical to the coordinate
g; to be

pi = aL/aq,. (2.2.1)

The Hamiltonian is defined as a function on the phase space (g, p) by a
Legendre transformation:

H(q, ps t) = Z pid; — L(q’ 4 t)' (222)

The equations of motion may be derived as follows. Consider two points
in state space, (qq, to) and (g, t), and the paths that may join them. Then the
actual path traversed by the physical system is that which extremizes the
action integral

q,t
qo0,to
This is Hamilton’s Principle which we write as
oI=0 224
and it implies the n second-order Euler-Lagrange equations
L L
ia—.——a—=0, i=1,...,n. 2.2.5)
dtdq; 0q;

Alternatively, we can substitute for L in (2.2.3) from (2.2.2) and write the
action function as

I= J Y pidg; — H dt. (2.2.6)

Varying this with respect to the 2n independent variables g; and p; yields
Hamilton’s set of 2n first-order differential equations:

4; = aH/apiIq,-:qj(t),pfpf(t)’ pi= —aH/aqiI‘U=4.i(‘)spj=l7j(‘)' 22.7)

for all i, j. Solution of egs. (2.2.5) or (2.2.7) requires that we specify the initial
coordinates and the initial velocities or canonical momenta.

In the Hamiltonian formulation of the theory we may replace the inde-
pendent variables g;, p; by a new set of 2n independent variables Q;, P;:

Q = Q(qa D t)9 P= P(q’ b t)' (228)

This is a coordinate transformation in phase space. The new set of coordinates
is canonical if Hamilton’s equations (2.2.7) retain their form under the
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transformation. If K = K(Q, P, t) is the new Hamiltonian, we require

0; = 0K/0Plg=gw.p=pey  Br= —0K/0Qilo=gu.p=pey  (22.9)
These equations may be derived from a variational principle applied to an
action function of the form (2.2.6):

I= JZ P, dQ; — K dt. (2.2.10)
The integrands in (2.2.6) and (2.2.10) then differ by a total time derivative:

Y. PO — K =Y p:g; — H — dF/dt, (2.2.11)

where F is an arbitrary differentiable function of g, p, Q, P and t. By (2.2.8)
only 2n of the total of 4n coordinates q, p, Q and P are independent and so
F depends on just 2n of these coordinates, together with t. For example, it
may have the form F(q, O, t), F(q, P, t), F(p, Q, t) or F(p, P, t) or some other
mixture of g, p, @ and P. Note that the new coordinates may not have the
dimensions of position and momentum — they may represent some conjugate
pair such as energy and time or action-angle variables.

Consider the case where F = F(q, Q, t). Then from (2.2.11) we deduce that

p: = 0F/dq;, (2.2.12a)
P, = —0F/0Q;, (2.2.12b)
K = H + 0F/ot. (2.2.12¢)

Given F we can reconstruct from these relations the canonical transformation
(2.2.8). To do this we solve (2.2.12a) for Q in terms of p, ¢ and t and then
(2.2.12b) for P. The new and old Hamiltonians are related by (2.2.12¢). In
view of this, F is called the generating function of the canonical transformation.
Notice that F is not a function on phase space but relates two sets of
coordinate systems on that space.

In order that we may use the relations (2.2.12) to solve the dynamical
problem we need a further result: the motion of the system in time is
equivalent to the continuous unfolding of a canonical transformation. To
see this, consider the infinitesimal canonical transformation Q; = ¢q; + dq;,
P, = p; + 6p;, where dgq;, op; are infinitesimal changes in the coordinates and
momenta. To the first order in small quantities, the generating function can
in this case be taken to be a function on the phase space labelled by ¢, p and
it may be shown that

0q; = & 9G/0p;, op; = —& 0G/dq;
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where ¢ is an infinitesimal parameter and G = G(gq, p, t). Consider the case
where ¢ = dt, a small time interval, and G = H, the Hamiltonian. Then

0q; = dt 0H/0p; = dt ¢; = dq,
(Spi = —'dt 5H/aq, = dt p.i = dpi‘

In other words, the infinitesimal canonical transformation generated by the
Hamiltonian is precisely the physical change undergone by the generalized
canonical coordinates of the system during the time interval dt. Since
an arbitrary canonical transformation can be built from a succession of
infinitesimal transformations we conclude that the actual motion during a
finite time interval of any system governed by Hamilton’s equations is a
continuous canonical transformation:

q4 =440, Post), P = P(do Po ) (2.2.13)

where q,, p, are the initial canonical coordinates. We shall find the generating
function of this finite transformation below.

Inverting (2.2.13) to give q,, po in terms of ¢, p and ¢ we see that the problem
of motion is solved if we can find a canonical transformation from coordinates
g, p at time t to a set of constant (in time) coordinates q,, p, at some initial
time t,. Returning to (2.2.9), we see that this may be achieved if K = 0, for
this ensures that the new coordinates are constant in time:

Q=P=0. (2.2.14)

From (2.2.12¢) K will be zero if F satisfies the equation dF/ot + H(q, p, t) = 0.
It is usual to denote F by S in this case. If we suppose for definiteness that
F is a function of ¢, Q and ¢, and substitute for p in H from (2.2.12a), we
obtain the Hamilton—Jacobi equation:

08(qg, Q, t)/ot + H(q, 3S(q, Q, t)/0q,t) = O. (2.2.15)

The function S is called Hamilton’s principal function.

Eq. (2.2.15) is a first-order partial differential equation in the (n + 1)
variables q,,...,q,,t. Since S itself does not appear in the equation, a
complete solution involves n nonadditive constants a,, ..., a,: S = S(q, &, t).
We can take the as to be the new coordinates as in (2.2.15): o; = Q;. But
more generally the as may be any function of the Qs or, if some other form
is assumed for the generating function, of some combination of the Qs and Ps.

In order to solve the equations of motion by the Hamilton—-Jacobi method
we proceed as follows. Given a Hamiltonian H = H(g, p, t) we substitute
p = 0S/0q and write down the Hamilton-Jacobi equation

0S(q, o, t)/0t + H(g, 8S(g, o, t)/0g, t) = 0. (2.2.16)
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We seek a complete solution for S in terms of n nontrivial integration
constants a,, ..., a,. The new constant coordinates Q; may be chosen as any
n independent functions of «;: Q; = y;(«y, ..., ®,), so that we may write
S =38(q,7,t). The transformation equation (2.2.12b) introduces the new
constant momenta

P.= —0S/dy, = B.. (2.2.17)

This relation is the Jacobi law of motion: it can; in principle, be solved
algebraically for ¢; in terms of ¢ and the 2n constants S, y;. This is possible
if det(0>S/0q; dy;) # 0; p; is given by (2.2.12a). The solution is completed by
expressing f;, y; in terms of the actual initial conditions q,;, p; of the problem.
Evaluating the transformation equation (2.2.12a) at time ¢, gives

Po = 05/0q4=g0.t =10 (2.2.18)

which implies a relation between q,, p, and y, and evaluating (2.2.17) at ¢,
gives a relation between q,, y and f. Finally then we obtain

g =4(4o, Post), P = p(go, Pos t)- (2.2.19)

By an identical procedure we can derive (2.2.19) if we use a generating
function in which the nonadditive constants are expressed in terms of the
new momenta: P, = y,(«,, . . ., «,). Then the transformation equation (2.2.12a)
is unchanged and (2.2.12b) is replaced by an expression for the new
coordinates, Q; = 0S/dy; = B;, which is now the Jacobi law of motion.

- We have thus constructed a function, Hamilton’s principal function, which
generates a canonical transformation to coordinates and momenta that are
constant along a trajectory. This establishes an equivalence between the 2n
first-order Hamilton equations and the single first-order Hamilton—Jacobi
partial differential equation. This type of relation is well known in the theory
of differential equations where the mechanical paths are the characteristics
of the Cauchy problem associated with the Hamilton-Jacobi equation.

2.2.2 The action function

An alternative perspective on the meaning of the Hamilton-Jacobi function
S may be gained as follows. In formulating Hamilton’s Principle (2.2.4) we
considered the motion of a system between two given instants ¢, and ¢ at
which its coordinates are g, and g respectively. The values of I for
neighbouring paths linking these fixed limits are compared, and the true path
is the one for which I is an extremum. We shall now regard the action function
I as a quantity associated with just the actual path traversed by the system
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and consider the change in I induced by variations in the final coordinate g
and time ¢ and the initial coordinate q,, keeping the initial time ¢, fixed. That
is, define

I(g, t; qo to) = J L(q, 4, 1) dt, (2.2.20)

7
where the integral is evaluated along the extremal y joining the point (gq, o)
to (g, 1).
Taking the differential of I as a function of the variable coordinates it is
possible to show that

dI = pdq — H dt — p, dq,, (2.2.21)

where p = 0L/dq, H = p4 — L, q is the terminal velocity of the trajectory 7,
and similar relations hold for g, and p,. Writing

dI = (0I/0q) dq + (0I/0t) dt + (01/0q,) dq,
and comparing with the right hand side of (2.2.21) we deduce that
p = 0l/dq, H = —0l/ot, po = —01/dq,
and hence that I satisfies the Hamilton—Jacobi equation:
ol/ot + H(q, 01/0q,t) = 0. (2.2.22)

Indeed, (2.2.21) has the form of a canonical transformation (2.2.11) which
trivializes the motion (K = 0), where I is the generating function and g, = Q,
po = P. The action function I is therefore a particular complete integral of
the Hamilton—Jacobi equation, the n nonadditive constants being the initial
positions gq;, i=1,...,n and the new momenta being the actual initial
momentum coordinates. In view of the identity of the action function with a
form of Hamilton’s principal function we shall henceforth denote both by the
symbol S.

We started by showing how Hamilton’s equations could be solved by
integrating the Hamilton—Jacobi equation. The result just proved enables us
to do the converse — to solve the Cauchy problem for the Hamilton—-Jacobi
equation (i.e,, solve (2.2.16) subject to the initial condition S(q, ty) = So(9),
ignoring the constants) by writing down the equivalent set of Hamilton
equations and solving these by some other method. The resulting trajectory
is a characteristic of the partial differential equation and S(q,t) may be
constructed by integrating the Lagrangian (obtained from the Hamiltonian
by an inverse Legendre transformation) along the characteristic. The result is

S(qa t) = SO(qO(qa t)a to) + J L(q, q’ t) de. (2223)

b
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Notice that the function S obtained in this way depends on S, and may be
quite different in form from a complete integral for the same problem found by
a separation of variables, even though the paths associated with the two
functions are the same. This point is considered in more detail in §2.3.

2.2.3 A single particle

In the following we shall often refer to the case of a single body of mass m
in a scalar external potential ¥ and described by a Cartesian coordinate
system. The Lagrangian is given by

L(x, X, t) = imx* — V(x, 1) (2.2.24)
from which the canonical momentum (2.2.1) is found to be
p = mx (2.2.25)
and the Hamiltonian (2.2.2) is
H(x, p, t) = p/2m + V(x, t). (2.2.26)

Eq. (2.2.26) is evidently the total energy. The Euler-Lagrange equations
(2.2.5) imply the equation of motion in Newton’s form

mx = —VV|,_y0- (2.2.27)
From (2.2.26) we obtain the Hamilton—Jacobi equation
0S/ot + (VS)*2m + V = 0. (2.2.28)

When the potential is time-dependent the energy of the particle, (—0S/0t)
evaluated along the trajectory x = x(z), is not conserved in general.

We shall also study the case where the particle carries a charge e and is
acted upon by an external electromagnetic field with scalar potential A4(x, t)
and vector potential A(x, t). If ¢ is the speed of light, the Lagrangian, canonical
momentum and Hamiltonian are respectively

L =1imx? + (e/c)A-x —eAy— V
P = mX + (¢/c)A (2229)
H = (12m)[p — (e/c)A]* + ed, + V.

The equation of motion includes the Lorentz force:

mik = —VV + e(E + ¢~ 'k x B) (2.2.30)
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where E = —VA, — (1/c) 0A/0t,B =V x A and the Hamilton—Jacobi equation
becomes

0S/0t + (1/2m)[VS — (e/c)A]? + ey + V = 0. (2.2.31)

The case of a rotator, for which the generalized coordinates are the Euler
angles, is treated in Chap. 10.

2.3 Properties of the Hamilton—Jacobi function
2.3.1 The nonuniqueness of S for a given mechanical problem

The Hamilton—Jacobi theory is often taught as a technique for solving the
equations of motion of mechanics, and this is indeed how we have introduced
it in the last section. Yet it presents certain features that point the way to a
development of the conceptual framework of Newtonian mechanics, and in
this and the next sections we call attention to some of these.

To solve a dynamical problem in classical mechanics using Jacobi’s
transformation theory as set out in §2.2, we require a complete integral of
the Hamilton—Jacobi equation depending on as many nonadditive constants
as there are degrees of freedom in the system. Such a solution may be found
for example by a separation of variables. In order to understand clearly the
difference with the analogous case of solutions to the quantum Hamiiton—
Jacobi equation studied later, it is important to emphasize that any complete
solution will do in determining the particle motion. A given Hamilton-Jacobi
equation may have many different complete integrals, for fixed particle initial
conditions, in the sense that the functional dependence of S on ¢, « and ¢
may vary. But, for the given initial coordinates and momenta, the particle
motion associated with all these functions will be the same.

While the S-function corresponding to a given mechanical problem (i.e.,
prescribed Hamiltonian, g, and p,) is not unique, the various solutions are
nevertheless distinguished by virtue of the fact that S is evidently a field
function in configuration space. Thus, while the aim of Jacobi’s method is
the computation of a single orbit, S is actually connected with an infinite set
of potential trajectories pursued by an ensemble of identical particles. This
set is obtained by varying the constants f for fixed o. The relation (2.2.12a),
p = 0§/0q, gives at each point g at each instant the canonical momentum of
a system that may potentially pass through that point. The physical momentum
follows from (2.2.1). The ensemble of motions is characterized by the form
of § as a function of g and ¢t and the values of the constants o.

The different functional forms of S connected with the same Hamiltonian
imply different types of ensemble. However, at one point at one moment the
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various S-functions will have the same gradient and they will all imply the
same subsequent (and preceding) motion for a system passing through that
point. For other space points where the gradients of the S-function do not
coincide, the motions of the other ensemble elements are different.

These points are easily illustrated by a simple example. It suffices to treat
a free particle in Cartesian coordinates, for which (2.2.28) becomes

8S/0t + (VS)2/2m = 0. 2.3.1)

First of all we solve this equation by separating the variables, i.e., we treat
S as a sum of four functions depending on x, y, z and ¢ respectively. The
result is

S(x, y, z, Py, Py, Py, t) = —(1/2m)(P} + P} + Pt + Pix + Py + Pyz, (23.2)

where the nonadditive constants P, P,, P are the components of a momentum
vector. Eq. (2.2.12a), p; = 0S/0x;, i = 1,2, 3, yields p; = P,. The trajectory is
found by writing 0S/0P, = Q;, where Q; are constant coordinates. We obtain
—(P/m)t + x = Q, showing that Q is the initial (we choose t, = 0) coordinate
vector. Writing x, = Q and v = P/m we therefore find

X(t) = X + VL. (2.3.3)

The motion is uniform and rectilinear, starting from the point x, with velocity
v. The ensemble described by (2.3.2) pursues a set of parallel straight line
motions of momentum P generated by varying x, (the fs of this example).

To obtain a different functional form for S we construct the latter from
(2.2.20) by integrating along the trajectory (2.3.3). The Lagrangian is L = imx?
and so the free particle action function is given by the expression

S(x, t; Xo, 0) = (m/2t)(x — x,)>. (2.3.4)
Here the nonadditive constants are the initial coordinates x,. Applying the
Jacobi theory we can reconstruct the path from (2.3.4): S/0x,; = — P, implies
—m(x — Xy)/t = —P. Writing again P/m = v we recover (2.3.3). In this case,

the function (2.3.4) describes an ensemble of particles which all emanate from
the point x, with a range of momenta P (i.e. f). The motions generated by
(2.3.2) and (2.3.4) coincide when x, and P are chosen to be the same in both
cases.

We shall see that in quantum theory two S-functions are distinguished not
only globally through the ensembles they generate but in a stronger sense:
two particles that start with the same x,, p, do not in general pursue the
same trajectory in the given potential V.
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2.3.2 The basic law of motion

It is by no means guaranteed that we will have available a complete integral
of the Hamilton-Jacobi equation. There is no rule for obtaining such a
solution; the possibility of solving by a separation of variables depends on
finding a suitable coordinate system and for many problems of physical
interest (e.g. the three-body problem) this is impossible. It may be possible
to find a solution depending on less than the required number of nonadditive
constants, but even this may not be feasible. It follows that if, for whatever
reason, we do not possess a complete solution of the Hamilton—Jacobi
equation, the Jacobi law of motion 0S/dy = f cannot be used to solve the
dynamical problem completely, and perhaps cannot be used at all.

Suppose though that we have available a general solution to the Hamilton—
Jacobi equation, that is a function of S(g, t) not depending explicitly on any
constants. Then, although we cannot use dS/0y = f to solve for the motion
of the system point algebraically, we may employ the other set of trans-
formation equations (2.2.12a). The covariant momentum is

p; = 0S/0q; (2.3.5)

and expressing p in terms of ¢, § and ¢ using (2.2.1) we may solve for g(t) by
directly integrating (2.3.5) and specifying g, = ¢(0).

Of course, there should be consistency between the two laws of motion
(B = 0S/0y and p = 0S/0q) in the case where we have a complete integral and
both are applicable. This is ensured by (2.2.18), which is simply (2.3.5)
evaluated at a definite point g, and indeed we must always use this in
conjunction with (2.2.17) to solve for the motion completely. Thus, however
the trajectory is calculated, we always make use of the relation (2.3.5), either
to fix the initial conditions in the case of a complete integral or to integrate
directly when we have no complete integral. It follows that, since p = 05S/0q
applies in all cases, it is natural to regard this as the basic law of particle
motion in the Hamilton—Jacobi theory.

We now give illustrations of this technique (albeit applied to complete
integrals) for the case of the two S-functions given in §2.3.1. There p = VS
and from (2.2.25), p = mx.

For S of the form (2.3.2) we have

mx = VS =P, (2.3.6)

which is a constant. If the initial condition is x(0) = x, this integrates
immediately to give (2.3.3). On the other hand, the form (2.3.4) gives

mx = VS = m(x — x,)/t. 23.7)
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This is again readily integrated to yield (2.3.3) if x(0) = x,. Notice the quite
different functional dependence of VS in (2.3.6) and (2.3.7). In one case it is
constant in space and time and in the other it is variable. Nevertheless, both
forms imply the same physical trajectory if the initial canonical coordinates
are the same, and coincide along that trajectory.

Indeed, all functions of S representing particle properties will take the same
value when evaluated along the same trajectory. Apart from the momentum
VS, these include the energy (—0S/0t) and the angular momentum x x VS.
The two functions differ in their global properties.

What lies behind the more general method of solution is the formulation of
dynamical evolution in terms of a Cauchy problem for the Hamilton—Jacobi
equation:

0S/ot + H(q, 0S/0q,t) = 0. (2.3.8)

Specification of the initial S-function S, for all g implies a unique solution
for S(g,t). It also has the effect of fixing the initial canonical momentum
everywhere in configuration space:

Po = 08,/0q. 2.39)

Obviously, the specification of an ensemble of p,s considerably overdetermines
the mechanical problem since all that is required is p, at one point g,. But,
of course, one is tacitly making a choice of Sy(q) for all ¢ when one seeks a
complete integral of the Hamilton—-Jacobi equation. For example, for a
conservative one-body system we may seek a solution by separating the time
variable:

S(x, E, t) = W(x, E) — Et. (2.3.10)

The function W(x, E) is called Hamilton’s characteristic function and satisfies
the equation
E=(W)22m+ V. (2.3.11)

Clearly, W is nothing more than the initial S-function, W(x) = Sy(x). The
function (2.3.10) describes an ensemble of particles with the same energy E
and variable momentum p = VW. An example is the function (2.3.2) which
corresponds to choosing S, = P+x. Any solution to the Hamilton—Jacobi
equation for the given time-independent potential ¥ will have the property
that (— 0S/0t) = E when evaluated along the trajectory.

To summarize so far, we have shown the following. The problem of
dynamics as defined by Hamilton’s canonical equations may be formulated
in terms of a partial differential equation (2.3.8) determining the evolution
of a field S(q, t). This function determines at each point and at each instant
the momentum of a system that may be potentially placed there through the
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relation (2.3.5). For one body the basic law of motion is x = VS/m. The
function S is thus connected with an ensemble of identical systems rather
than a single orbit. It is in this way that the S-functions may be physically
distinguished. For fixed g, p, all S-functions imply the same time development
q(t). This reflects the fact that the state of a material system is completely
exhausted by specifying its position and momentum — the S-function plays
no role in either defining the state or in determining the dynamics.

2.3.3 Multivalued trajectory fields

The set of classical orbits moving in a given potential forms a single-valued
congruence when represented in phase space, ie., only one trajectory may
pass through each phase space point. It is a common property of classical
force fields that when mapped into configuration space the trajectory field is
multivalued: at an instant ¢ more than one orbit may pass through a point
q. The degree to which this happens depends on the nature of the force and
the particular ensemble chosen (i.e., on Sy(q)) and is reflected in the value of
S(g, t) (which may, for example, include square roots and hence possess
different branches). Most interesting ensembles (bound or scattering) in most
interesting force fields are of this sort.

An example is an ensemble of one-dimensional harmonic oscillators of
frequency @ having potential energy V = imw?x? and energy E. Each orbit
is distinguished by the initial position x,:

x(t) = x, cos wt + (a* — x3)"? sin wt (2.3.12)

where a = (2E/mw?)"/? is the amplitude of the motion. Two trajectories cross

each point x with equal and opposite velocities (see Fig. 2.1 which shows
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Fig. 2.1 Three orbits of a harmonic oscillator (corresponding to x, = 0, a/2, a). Each
orbit has two segments, each belonging to a single-valued trajectory field.




