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Preface

The origin of this volume can be traced to a letter from Dr. P. V. Landshoff
(PVL), inviting me to write on liquid metals for his series. By then, my
earlier book on the subject, published in 1968, described correctly by
Professor N. E. Cusack in his generous review as 'Bare bones of liquid
metals', was almost 20 years old. Of course, Dr. T. E. Faber's 1972 book
was much more extensive, and I immediately recognized that in one im-
portant area of the subject: namely, weak scattering theory of electrical
transport in liquid metals and alloys (Ziman and Faber-Ziman theory,
respectively; see also below), I could not possibly compete with the quality
of that.

However, after a long inner debate, I accepted the iniviation and sent
PVL a proposed outline which already made clear that it would be a large
volume. Back came a reply from PVL and an adviser: could I extend it
somewhat?! Perhaps this may have been partly motivated by my long-
standing interests in matter under extreme conditions of temperature and
pressure, but, nevertheless, these additional proposals led me into areas in
which I had not contributed myself for more than a decade. In the end,
Chapter 16 became the main response to this challenge, and this could not
have been written without the help of the 1985 review by Dr. M. Ross of
the Lawrence Livermore Laboratory. While mentioning that, I must also
acknowledge the 1987 survey by Dr. R. N. Singh, which was used so
extensively in Chapter 13. Dr. Singh worked closely with the late Professor
A. B. Bhatia, with whom I was also fortunate enough to collaborate over
a decade or so.

This leads to acknowledgments of my indebtedness to numerous other
people. First, colleagues from my Sheffield University days, Drs. T. Gaskell,
W. Jones, J. S. Rousseau and J. C. Stoddart, provided much stimulation
and help, while my research students R. C. Brown, G. K. Corless and
M. D. Johnson notably influenced my outlook on the subject, the latter two
in the general area of effective interionic interactions mediated by conduc-
tion electrons. Later, at Imperial College, London University, S. Cusack,
through his Ph.D. thesis studies, aided considerably my own understanding



xii Preface

of electronic correlation functions; C. M. Sayers strongly influenced the
work in the area of magnetic properties. After moving to Oxford in 1977,
my research students J. A. Ascough, R. G. Chapman, A. Ferraz and J. S.
McCaskill and my colleague D. P. J. Grout are to be thanked for much
help, particularly with transport in strong scattering systems, which has
been made the basis for the whole discussion of electrical conductivity in
the present volume; leaving T. E. Faber's account of weak scattering theory
as the right source of that topic, as has already been mentioned. Though
the present book is in the Mathematical Physics Series, I must add that
I have been extremely lucky in also having close contact with the experi-
mental groups of Professors J. E. Enderby and P. A. Egelstaff and later
with Drs. D. I. Page and M. W. Johnson at Harwell and Rutherford
Laboratories.

I owe the greatest debt to Professors M. P. Tosi (MPT) and W. H. Young
(WHY) for the strong interactions with them and their research groups over
two and three decades, respectively. To both of them I offer my warmest
thanks for all the stimulation our group has received from them and also
for their readiness to allow me to draw extensively on their own writings
(e.g., WHY's 1987 article in Chapters 3 and 13 and my two books with
MPT). The influence of them and their colleagues in visiting our group
frequently has been of the utmost importance for us. Drs. M. Parrinello
and G. Senatore from MPT's group spent extended periods of time with us
and, deriving from WHY's influence, Professor J. A. Alonso and Dr. M.
Ginoza also paid most valuable visits. It has been a pleasure to be involved
with so many fine scientists and to have forged numerous firm friendships
in the process.

In a work on this scale and with, at times, considerable theoretical detail,
as in Chapter 14, it is almost inevitable that some errors will have crept in.
I am, of course, solely responsible for any such, and I trust these will be, at
worst, of detail and not of principle. But I shall count it a favour if readers
who find my book either useful or interesting, and who spot places where
I ought to do better, will write and tell me.

Finally, it is a pleasure to thank Cambridge University Press through
the person of Rufus Neal, who gave much friendly and wise advice in seeing
this work through to fruition.

NORMAN H. MARCH



1
Outline

This book is about the theory of liquid metals. The interplay between
electronic and ionic structure is a major feature of such systems. This should
occasion no suprise, as even a pure liquid metal is a two-component system:
positive ions and conduction electrons. Therefore, as in a binary liquid
mixture such as argon and krypton, where three partial structure factors
5ArAr, SKrKr, and SArKr are required to describe the short-range atomic
order, so in liquid metal Na, for instance, one needs SNa+Na+, SNa+e, and 5ee

for a structural characterization.
For a very fundamental treatment, the preceding description would be

the correct starting point to treat liquid metal Na. Indeed, the theory of
liquid metals has been developed in this manner. However, it is still true
that, for many important purposes, a simpler picture suffices. Thus, in the
chapter following this outline, attention will be focused on the ion-ion
structure factor, which will simply be written as S(k); k = An sin 6/k9 with
26 the angle of scattering of X rays or neutrons and I the wavelength of the
radiation. It will be emphasized that it is indeed S(k) that is measured in
suitable neutron-scattering experiments.

Then, in the following chapter, the use of this knowledge of structure
will be considered in relation to the thermodynamics of liquid metals.
Following this, electron screening of ions will be treated with the theme
stressed above, the interplay between electronic and ionic structure, leading
to a treatment of effective interionic forces. This theory will then be con-
fronted with an approach based on the so-called inverse problem—namely,
that of extracting an effective ion-ion interaction from the measured struc-
ture factor S(k). Following this study of interatomic forces, in which the
Ornstein-Zernike direct correlation function c(r) plays an important role,
this same tool will be employed to treat the theory of freezing, following
pioneering work of Kirkwood and Monroe (1941) and of Ramakrishnan
and Yussouff(1977, 1979). A full discussion of electronic and also atomic
transport then follows. This is closely linked to the study of liquids by
inelastic neutron scattering; essentially described by the dynamical gener-
alization S(k9 co) of the static structure factor S(k). The frequency-dependent
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dielectric function and its use in treating optical properties will also be
briefly considered.

The treatment of critical phenomena in liquid metals follows, this leading
into a more detailed study of electron states plus some discussion of
magnetism. Then, inhomogeneous systems are considered: the liquid-vapor
surface, followed by surface segregation in binary alloys, the bulk prop-
erties of which are briefly treated in the penultimate chapter, which also
focuses on phase diagrams of binary liquid alloys. This leads into the final
chapter, which is concerned with the relevance of liquid metal theory to the
hydrogen-helium mixtures in the giant planets, Jupiter and Saturn.
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Pair correlation function and
structure factor of ions

The most important single tool for dealing with the structural problem
of liquid short-range order is the pair correlation function g(r). If the bulk
liquid number density is denoted by p = N/Q, for N atoms in volume Q,
then g(r) is defined such that if one sits on an atom at the origin r = 0, then
the probability of finding a second atom at distance between r and r + dr
is given by g(r)4nr2 dr and the density of atoms is found by multiplying
this by p.

2.1. Liquid structure factor

The pair function is accessible via diffraction experiments, as will now be
outlined. Let I(k) be the intensity of, say, X rays of wavelength A, incident
on a liquid sample and scattered through an angle 20, with

^ (2.1)

Then if N is the number of atoms in the sample, the intensity I(k) is related
to the liquid structure factor S(k) by

I(k) = Nf2(k)S(k) (2.2)

where f(k) is the atomic scattering factor, given in terms of the electron
density p(r) in the atom (say, argon) by

/(fc)= fp(r)exp(ik-r)dr. (2.3)

In turn, S(k) is related to the pair function g(r) by

S(k) = 1 + p f lg(r) - 1] exp(ik • r) dr. (2.4)
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Figure 2.1 shows measured data on liquid Na, K, and Cs at the melting
point from the work of Huijben and van der Lugt (1979; see also Greenfield,
Wellendorf, and Wiser, 1971).

It is worth considering a number of features of this curve. First, the long
wavelength limit of S(/c), i.e., 5(0), can be related to fluctuations {AN2}
in the number of particles and thereby to the isothermal compressibility
KT, the relation being

5(0) = pkBTKT, (2.5)

which is proved in Appendix 2.1. For liquid argon near its triple point,
5(0) ~ 0.06, whereas for the liquid metal K shown in Figure 2.1,5(0) ~ 0.02.
This is in sharp contrast to a gas, where 5(0) ~ 1 except near the critical
point (see Section 9.2), where 5(0) diverges. In dense liquids the message is
that 5(0) « 1, which will later be seen to have important implications.

The second point to be made is that, as is clear from Figure 2.1, 5(/c)
has pronounced oscillations at large k. These come primarily from the

Figure 2.1. Measured structure factor S(k) for liquid metals Na, K and Cs just
above the melting point against scaled wave number (Huijben and van der Lugt,
1979; see also March and Tosi, 1984; Greenfield, Wellendorf and Wiser, 1971).
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2.2. Ornstein-Zernike direct correlation function

Figure 2.2. Schematic form of g(r), which is related to S(k) in Figure 2.1 by the
Fourier transform result (2.4). rmax shows position of first coordination shell.

"hardness" of the core. In Figure 2.2 g(r) is depicted schematically, and
the important point is that there is a region inside the core diameter o for
which g(r) is practically zero; then g(r) rises steeply to its first peak. It is this
steep rise that leads to the oscillations at large k in S(k% from a basic
property of Fourier transforms. The third point to be noted at this stage is
that S(k) reaches a first peak height of about 3.0 for the case plotted in
Figure 2.1, where the temperature T is quite near the melting temperature
Tm. This point will be taken up in the discussion of the theory of freezing
in Chapter 6 (see also Ferraz and March, 1980).

Of course, a complete theory will eventually have to reproduce the
structure factor S(k) as measured by diffraction experiments (for neutrons,
f(k) in (2.2) is replaced by an appropriate scattering length) from a force
field: a route that allows this, at least in principle, is set out in Chapters 3
and 4.

Before going on to deal with the relation between structure and forces,
there is a further correlation function of central importance for liquid-state
theory, namely, the Ornstein-Zernike correlation function c(r).

2.2. Ornstein-Zernike direct correlation function

At this point, it will be useful to give the formal definition of c(r); the
definition will then be reexamined later in order to gain deeper insight
into the reasons for its important status in liquid-state theories. The pair
function g(r) minus its asymptotic limiting value 1 at large r is called the
total correlation function h{r\ i.e.,
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h(r) = g(r) - 1. (2.6)

h(r\ the total correlation function, is now divided into two parts, a direct
part described by c(r) and an indirect part. Following Ornstein and Zernike,
the indirect part is expressed as a convolution; their definition of c(r)
being

h(r) = c(r) /j(|r-r'|)c(r')dr'. (2.7)

The convolution is readily removed by Fourier transform, and (2.7) is then
simply equivalent to

Figure 2.3. Schematic form of the Ornstein-Zernike direct correlation function in
/c-space, denoted by c(k). This is related to S(k) in Figure 2.1 by c(k) = [S(/c) - l]/S(/c)
(Curve 1 resembles Ar; curve 2, Pb).
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2.2. Ornstein-Zernike direct correlation function

where c(k) is the Fourier transform of c(r). One consequence of (2.8) follows
from the small value of S(0) for argon near its triple point or for liquid
metals just above their freezing points. It is that for argon, c(0) ~ —16,
whereas for liquid metals c(0) ~ —40 as a typical value. On the other hand,
at the peak of S(/c), having the value from Figure 2.1 of about 2.9, c(k) ~ 0.6.
Thus, c(k) has the schematic form shown in Figure 2.3: it is seen to put much
greater emphasis on the region of small /c, i.e., small-angle scattering, than
does Figure 2.1, which is largely dominated by the first peak of S(k). Since,
as will be seen shortly, c(r) is more closely related to the microscopic
force law than g(r\ one must expect small-angle scattering data to be of
considerable importance when one wishes to draw conclusions about the
force field from liquid structure factor measurements. However, before
enquiring as to the precise form of this relation between liquid structure
and interatomic forces, let us turn to consider in some detail the thermo-
dynamics of liquid metals.



3
Thermodynamics

The thermodynamic properties of simple s-p bonded liquid metals under
normal conditions will be discussed in this chapter. By restricting the range
of systems in this way, one is permitted to focus only on those electronic
aspects that are describable by nearly free electron (NFE) methods. Some
of the theoretical methods and techniques used will by reviewed, and
a selection of the results obtained will be presented.

The work of Stroud and Ashcroft (1972) on the melting of sodium
indicated how the techniques of classical liquid theory might be combined
with the pseudopotential method of calculating interionic forces in metals
to produce a successful description of the thermodynamics. It is probably
true to say that this problem is understood, albeit in a semiquantitative
way; this "solution" is reviewed in this chapter, which follows rather closely
the work of Young (1987).

3.1. Simple monatomic fluids

In this section, by way of an introduction, let us leave the problems specific
to metals and, instead, consider the statistical mechanics appropriate to
a monatomic fluid such as Ar. Many of the results that will be obtained can
be applied to simple metals with little or no modification. Such changes as
are necessary are dealt with in Section 3.3.

3.1.1. Basic features

Consider a simple classical monatomic fluid of N particles in a volume K,
so that the number density is p = N/V. The Hamiltonian is taken to be
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where T is the kinetic energy and v is a potential energy function independent
of density p.

Central to the statistical mechanical description afforded by (3.1) is the
radial distribution function g(r\ which has been defined in Chapter 2 so
that pg(r) dr is the probability of finding an atomic nucleus in the volume
element dr around r given that there is one at the origin. In terms of this
function, application of general theory leads to the expression

( v(r)g(r)dr (3.2)

for the internal energy per atom and

[ ( 3 . 3 )- l-p2 [rjrv(

for the pressure. Other results follow from these, of course, by the application
of the various thermodynamic identities.

The structure factor S(q)* may be defined in terms of g(r) by (2.4), which
by Fourier inversion yields

9(r) = 1 + p ^ J{S(q) - l}e""-'di|. (3.4)

For example, (3.2) and (3.3) may be rewritten in terms of S(q) and the
(assumed) Fourier transform v(q) oiv(r) in (3.1) as

E=\k*T+\pm + 2(hf \m{s{q) ~l}dq (3-5)
and

P = pkBT + \p2m + ̂ 3 |{%) + I d~^f\ {S(q) ~ 1} dq (3.6)

where

v(q)=!v(r)^'rdr. (3.7)

As discussed in the previous chapters, S(q) is measurable using neutron
and other spectroscopies, and such data can be used in (3.5) and (3.6), for
example, if v(r) is specified. Such a procedure is of limited value, however,
primarily because one wishes to investigate such expressions for varying
thermodynamic states T, V9 etc. Under such circumstances sufficient experi-

* k and q will be used interchangeably for wave numbers throughout this volume.
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mental information is seldom available. What one needs, and what theory
provides, are S(g)'s and g(r)'s compatible, in some approximation, with
a given v(r).

An important area of uncertainty with S(q) measurements remains at low
q, where, typically, there may be significant error below about 0.5 A"1.
It is, therefore, worth stressing again that the limit S(0) is known from
density fluctuation theory (of Appendix 2.1) to be determined through (2.5),
where the isothermal compressibility KT is given by

S(0) is thus accessible from thermodynamics and provides a "target" for
the low-argument radiation measurements of S(q).

Integration of (3.8) yields

which is the so-called compressibility equation of state. This is to be
compared with the virial pressure equation of state given by (3.3). In an
exact theory of g(r) and S(q), these equations of state will be completely
equivalent. In practice, however, one has to use approximate theories; thus
discrepancies arise (see Appendix 5.2).

3.1.2. Structure factor S(q) as response function

Physical insight into the character of S(q) is obtained by noting its role as
a response function (see Young, 1987, whose account is followed closely
below). Suppose the fluid atoms are exposed to a small external potential
d(p(q)cosq*r (i.e., a perturbation <5(p(g)£cosq*rf is added to (3.1)). Then,
to first order, the density becomes p + (5p(g)cosq#r, where

E (3.10)

At long wavelengths (small q) this tells us about the ability of the particles
to clump, and this process will be assisted by attractions between the
particles and hindered by repulsions. This discussion is compatible with the
well-known general result (see (2.5)) that KT diverges at a critical point, for
the existence of which attractive interactions are essential (see Chapter 9
for details).
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Returning briefly to the direct correlation function c(r) introduced in
Chapter 2, it is to be stressed that c(r) is a particularly suitable starting
point for theories because of its direct link with the interatomic forces. In
fact, statistical mechanics yields the exact result (far from the critical point)

c ( r ) ~ T r ^ (larger)* (311)

This relation will be of considerable importance in what follows.

3.2. Approximate methods

As has been seen, the problem is to estimate g(r\ S(q) in some way for use,
for example, in such formulae as (3.3) and (3.9). It is, therefore, appropriate
to examine next the character of typical interatomic potentials that establish
these functions. Possible forms are shown schematically in Figure 3.1, and

Figure 3.1. Possible schematic forms of effective interionic potentials v{r) in liquid
metals. It is to be noted that the r axis is broken; there is generally an impenetrable
core. The parameters r0 and vmin play a role in the Weeks-Chandler-Andersen
approximation to structure (see Appendix 3.2). In the third part of the figure, to the
right, vmin and r0 are measured at the (assumed) point of inflection (after Young,
1987).

(i)
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it is evident that in a zeroth approximation the atoms behave as though
there is a quite well defined hard sphere diameter. One approach, therefore,
is to try to establish a suitable hard sphere reference system and then to
incorporate further details of v(r) by suitable "corrections."

3.2.1. Hard sphere fluids

A good deal is known about hard sphere fluids because of their relative
mathematical simplicity. Computer simulation studies (Alder and Wain-
wright, 1957) have established that they freeze at a packing fraction
rj = (n/6)pa3 (G = diameter) of about 0.45-0.46. In the liquid state, their
structural and thermodynamic properties have been similarly investigated
and found to be quite well reproduced in the Percus-Yevick (1958; PY)
approximation, for which analytical results are available (see Appendix 3.1).
For example, the Helmholtz free energy per particle of a hard sphere fluid
is jkBT — TShs where machine results are well fitted by (Carnahan and
Starling, 1969) an excess entropy (relative to the ideal gas value Sgas) of

4 S^-S 2 I
s 3 ^

kB kB (1 -rj) (1 - rj)2

This is plotted in Figure 3.2. The Percus-Yevick entropy expressions
(differing according to whether the virial or compressibility route is used)
are

^ = -21n(l - n) + 6^1 - —?—) (PY) (3.13)
KB \ 1 — Y\ J

or

ocomp /

(PY) (3.14)

the latter being the more accurate, as direct substitution shows.
Double differentiation of these expressions with respect to volume and

use of (2.5) yields

Shs(0) = ri , } \ ~ n ) \ A 3 (CS) (3.15)

and using the more accurate form (3.14) only, one finds
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(1 + 2r,)2
(PY). (3.16)

Relationship (3.15) is also plotted in Figure 3.2.
Actually, the whole of Shs(q) is known analytically in the PY approxima-

tion (Thiele, 1963; Wertheim, 1963), and this is a major reason for its
popularity as a substitute for "exact" machine-generated numerical output.
The direct correlation function is obtained in the form

a + b(r/a) + d(r/<r)3 (r < o)

0 (r >o)
(PY) (3.17)

where the coefficients are recorded in terms off/ in Appendix 3.1. The corre-
sponding structure factor follows using (2.8). The height of the principal
peak of this structure factor is also shown in Figure 3.2 as a function of rj.
The derivation of (3.17) is such that the corresponding structure factor at
q = 0 agrees with the form (3.16).

Figure 3.2. Three different quantities (given in (3.12), (3.16), (2.8) and (3.14)). These
are, respectively, (i) the excess entropy per particle 5^, (ii) the principal peak height
Speak °f the structure factor, and (iii) S{k) at k = 0. All are calculated from
(approximate) hard sphere theory and are plotted as functions of the packing

fraction r\ defined by r\ = — pe3, where p is the number density and a the hard sphere
6

diameter.
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Two approximate methods have proved particularly useful for proceeding
beyond the hard sphere picture to a description of fluids represented by
potentials such as are sketched in Figure 3.1. Each of these is reviewed
next. The first takes the virial route to the thermodynamics; the second,
the compressibility alternative.

GIBBS-BOGOLIUBOV (GB) METHOD

The method outlined below is commonly called the Gibbs-Bogoliubov
method (Isihara, 1968; Lukes and Jones, 1968) but is alternatively known
as the variational, or high-temperature, method, for reasons that will
emerge in the discussion.

Let us begin (see Young, 1987) by writing the interatomic potential in
the form

v(r) = i>0(r) + t>i(r) (3.18)

where vo(r) is a core part and the remaining contribution vx(r) is "small."
Then the system with interactions vo(r) becomes the unperturbed, reference
system on which the perturbation

W = iE«>i(|r<-^l) (3-19)

acts. To first order in W/kBT, one obtains a Helmholtz free energy

(3.20)

where < W}0 denotes (3.19) averaged over the reference system. Explicitly,

<WX=%p\v1(r)g0{r)<\r (3.21)

or, equivalently, when v(r) is Fourier transformable,

1 1 f
t3- »i(«){Sofa)-l}dq. (3-22)

To the first order indicated, (3.20) is always an upper bound to the exact
value. Thus, if vo(r) contains parameters, these can be varied so as to
minimize (3.20) and hence to achieve a "best" free energy estimate.

It is common to take a core of a hard sphere form (i?0 = t>hs). Then, the
diameter a is the only variable and one requires that

(r
\dG

When (3.23) applies, one finds (Edwards and Jarzynski, 1972) that (3.20)
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yields

S = Shs(cr), (3.24)

i.e., the entropy estimate is given by the hard sphere expression (e.g., (3.12)
or (3.13)) with the optimizing diameter inserted. Furthermore (Watabe and
Young, 1974) (3.2) and (3.3) apply with g replaced by ghs(cr) (or, equivalently,
(3.5) and (3.6) apply with S replaced by Shs(<r)).

For hard spheres, ghsvhs = 0, since the first factor vanishes when r < a
and the second, when r > a. Thus, (3.21) can be rewritten, in this case, as

v(r)ghs(r)4nr2dr (3.25)

and solutions using (3.25) then conform quite well to the empirical rule
(see Young, 1987)

v(o)- vmin »ffeBT (3.26)

where vmin is the principal minimum of v(r) (Figure 3.1).
A limitation of this method (at least when used in conjunction with

a hard sphere reference system) is its relatively crude treatment of the tail.
The latter affects the size of the diameter through its contribution to (3.25)
but not the detailed shape of the radial distribution function, which always
remains of hard sphere form. A method that rectifies this deficiency is
discussed fully by Young (1987). Instead, the approximation

(3.27)

will be employed. This provides an approach to the thermodynamics by
the compressibility route (cf. (3.9)).

3.3. Simple liquid metals

A simple liquid metal such as Na is more complicated than, say, Ar, to
which the theory so far can be immediately applied. As in Chapter 1, one
should really consider liquid Na to be a mixture of Na+ ions and electrons
and proceed by a two-component formalism (see Chapter 14) similar, in
many general respects, to that to be given in Section 13.1. Under such
circumstances, the g(r) used so far still describes the ion-ion correlations,
and (2.4) continues to define the corresponding structure factor, S(q). Now,
however, these quantities need to be calculated in the presence of the free
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electrons, which must be treated quantum-mechanically. It is interesting to
note one simple general result (see Young, 1987) namely, that the require-
ment of charge neutrality leads to S(0) given by (2.5), where p is, as before,
the ion number density and KT is the isothermal compressibility of the
entire system of ions and electrons. It follows that observed thermodynamic
data can continue to augment radiation measurements of S(q).

3.3.1. Generalities

Notwithstanding the preceding remarks, a fruitful treatment (see also
Chapter 1) is to convert the problem into one in which the ions move in an
effective force field established by the electron gas (the Born-Oppenheimer
approximation). Such a procedure is possible because the electron-ion
coupling (the pseudopotential) is weak and can be regarded as merely
perturbing the electron gas, assumed to be uniform in zeroth order. To
second order, one calculates the energy for a given "frozen" configuration
of ions and this acts as the potential energy function for the N ions alone.
The resulting Hamiltonian has the form (Hasegawa and Watabe, 1972; see
also Corless and March, 1961; Worster and March, 1964)

H = T + Nvo(n) + i £ Kir,- - r,-|, n) (3.28)

where n is the mean electron density (= zp, where z is the valence). In this
equation vo(n\ the volume term, is independent of the ionic positions {rj,
and the pair interaction v is density-dependent. Many (^ 3) body potential
energy terms in (3.28) are absent in this approximation.

On comparing (3.28) with (3.1) it is clear that the previous formalism is
easily modified, (3.2) and (3.3) becoming, respectively,

E = fkB T + vo(n) + i p f v(r, n)g(r) dr (3.29)

and

Further differentiation leads, via (3.8), to a rather complicated expression
for the compressibility, KT. This, as has been noted, is the virial equation
route to the thermodynamics.

Alternatively, the compressibility route, as one has seen, requires that
5(0) be inserted into (2.5). At constant volume, any standard method of
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calculating g(r) requires knowledge of v(r,n) but not of the volume term,
vo(n). Thus, at first sight, (2.4), with k = 0 inserted, appears to be incompat-
ible with (3.30), which explicitly depends on the volume term. A resolution
of this point is to note (see Young, 1987) that structure-independent 0(Q-1)
terms in g(r), invisible when graphed, can be integrated in (2.4) to produce
0(1) contributions to 5(0), thus restoring compatibility.

The pseudopotential theory of v0 and v will not be presented in detail at
this point. Nevertheless, it will be useful to indicate the form the results take
for a local electron-ion pseudopotential interaction, which, in free space,
can be written

vps(r) = vc
pr(r)-Z^r- (3.31)

The core part represents a weak short-range-effective interaction between
the electron and ion core; outside the core region, only the electrostatic
attraction remains. Particularly simple is the Ashcroft (1966) empty core
form

Vps(r) \-ze2/r (r>rc)
(3.32)

4nz2e2

vPs(<l) = 1—cos qrc {q # 0)

where rc is a measure of the ionic radius.
For the ionic array in situ in the electron gas, linear response theory

yields a pairwise interaction that can be written in inverse space as: (4.20)

4nz2e2 a2 f 1 } ,
v(q, n) = —j- + f 4 { - — - 1 \ v2

pM (333)
q2 4ne2 [s(q,n) J p

The first term is clearly the direct coulomb interaction between the ions,
whereas the second is the indirect electron-mediated term. In the latter, the
dielectric screening function e(q, n) appears. This function has been much
investigated over three decades, and a variety of forms for it have appeared
in the literature (see Chapter 4). Asymptotically, it behaves like

^ ., _ J(K/K/)W<7)2 + 1 (3 3 4 )

where q^ is the Thomas-Fermi screening length,* K/Kf is the ratio of the
compressibilities of the associated uniform interacting and noninteracting
electron gases, and 1 — G is the radial distribution function of the former,
evaluated at contact.

* See Section 4.1 below.
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The volume term corresponding to the preceding description is

vo(n) = z 1 - 1 K 2 - ^ «,eI + l \^-j - 7 ^ - 1 ^ ) d q (3.35)

where the final term is the self-energy of an ion in the electron gas. The first
term arises from the (perturbed) electron gas only, the expression vel being
the energy per electron of the uniform gas in a neutralizing background.

The results (3.33) and (3.35) for the pair and volume terms are valid to
second order in pseudopotential perturbation theory. Not only would
higher-order terms introduce many ( ^ 3)-body forces (as indicated earlier),
but they would also lead to revised forms of vo(ri) and v(r, ri). There has been
little investigation of this problem at the time of this writing, the expressions
above being almost invariably employed.

3.4. Specifics

In this section, the way in which the above formalism is able to explain
some of the properties of liquid metals will be briefly reviewed. The matter
largely revolves around the roles and character of the volume and pairwise
terms. The former is, in fact, large and is responsible for most of the cohesive
energy, as the results of Finnis (1974), shown in Table 3.1, indicate. These
data are for the solids but make the point quite satisfactorily, since v0

is phase-independent and dominantly large. Finnis noted that the first
(electron gas) term of (3.35) is quite small compared with the second
(self-energy) part and that the latter can be roughly evaluated as

-7— (3-36)4ne2[e(q9n) *J - • " " ' " • 4 r,

where rc is the empty core radius of (3.32). In fact, the results of Table 3.1
were calculated by neglecting the electron gas term and applying the
self-energy part in the approximate form (3.36).

Since the largest term in vo(n) has little density-dependence (see (3.36)),
one finds that the pairwise term plays a more prominent role in determining
the pressure and compressibility derivatives. Any calculation of these quan-
tities requires knowledge not only of vl°s

Te(q) in (3.31) for q # 0, but also of
q = 0. One might plausibly invoke continuity for this purpose, e.g., if the
empty core potential (3.32) is employed, one would write

#psre(0) = lim \ - ^ ^ - cos qrc \ = 2nzr?. (3.37)
«-o { q q J



Table 3.1.

1A

Li

0.512
0.33

Na

0.460
0.31

K

0.388
0.24

Cohesive

2A

Be

1.13
0.90

Mg

0.892
0.78

Ca

0.733
0.60

Ba

0.617
0.47

3.4.

energies [after

2B

Zn

1.05
1.01

Cd

0.993
0.92

Hg

1.10
1.07

Specifics

Finnis (1974); see also

3

Al

1.38
1.39

Ga

1.47
1.52

In

1.36
1.38

Tl

1.43
1.40

4

Si

1.96
2.11

Ge

1.97
2.20

Sn

1.77
1.87

Pb

1.81
2.15

Young,

5

As

2.55
2.79

Sb

2.24
2.5

Bi

2.21
2.34

19

(1987)1

6

Se

3.23
3.57

Te

2.73
3.04

Note: First entry for each element is the observed value. The second is result of
(3.35), calculated using approximation (3.36). The units are Rydbergs per z, where
z is the number of free electrons per atom.

The results so obtained correlate with the experimental data, but it is usual
to regard #£sre(0) a s a n independent parameter to be adjusted to obtain
the observed density at zero pressure.

Hasegawa and Young (1981) used the GB hard sphere method (Section
3.2.1) in conjunction with the Ashcroft pseudopotential description to
calculate the compressibilities at melting by differentiation of (3.30). They
chose rc to yield a packing of rj — 0.45 and t£°re(0) to give zero pressure; the
results are shown in Figure 3.3. Apart from one or two clear failures, these
writers found a rough overall correlation between theory and observation.
The results are quite sensitive to the pseudopotentials and other features
involved, and it is believed (Hasegawa and Young, 1981) that sufficient
refinement of these in any given case can bring theory into agreement with
experiment.
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Table 3.2 shows contributions from the various parts of (3.30) to the total
bulk moduli, Kj1, calculated for Figure 3.3. These and similar calculations
for the other metals suggest that volume and pairwise contributions are of
comparable magnitude but of opposite sign. Furthermore, the volume
dependence of v(r, n) gives rise to only a small fraction of the total pairwise
contribution; but for valence 4 and 5 metals, its effect on the final complete
sum is important.

The alternative method, using (3.27) to calculate 5(0), is more qualitative
but provides some further insight. In this case, one relies on the Weeks-
Chandler-Andersen (WCA) formalism set out in Appendix 3.2 to obtain
iSfts(0). The result is about 0.018. This alone does not explain the variety of
observed results for 5(0), but it is a convenient reference number. For as
one knows quite generally ((3.10) and the discussion following) and as

Figure 3.3. Results of Hasegawa and Young (1981) for compressibilities of liquid
metals at melting. Calculated versus observed values are plotted. The Gibbs-
Bogoliubov hard sphere method, plus the Ashcroft pseudopotential description,
was the basis of the calculation.

O.O3

0.01
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0.01 0.03
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(3.27) shows specifically, attractive (on average) tails will raise this value

and repulsive (on average) ones will lower it.

This brings us to the interatomic potentials of Hafner and Heine (1983)

shown in Figure 3.4. These were calculated to explain the structures of the

Table 3.2. Contributions to calculated bulk moduli near melting

temperature [after Young (1987)].

Kinetic Volume Pair(l) Pair (2) Calculated Experimental

Na
Al
Sn

- 2 8
- 8 8

-498

60
133
598

4

5
87

37
50

188

43
60

150

Note: The kinetic and volume terms arise, respectively, from the application of
pd/dp to the first two terms of (3.30). Similarly, the sum pair (1) -I- pair (2) comes
from the third term, the second contribution being due to the explicit density
dependence of v(r, n).

Figure 3.4. A selection of potentials constructed for solid metals by Hafner and
Heine (1983). The energy unit is z2e2/Ra, with z the number of free electrons per
atom and Ra = (3/4n)1/3p~1/3. The length unit is n/kf9 where 2kf is the diameter of
the Fermi sphere. dcp marked on the figure is the interatomic distance in the
close-packed solid, while the arrows shown denote liquid-state diameters for 45 and
50% packing (scarcely distinguishable on the scale of the figure) (after Young, 1987).

0 . 0 0 5 .

-O.oi -
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solids. The essential point here is that when a pronounced minimum exists,
many atoms take advantage of it, and a fairly close-packed structure is
obtained. On the other hand, when the minimum is lost, closer packing
is no longer an advantage, and only detailed further enquiry can establish
the lowest energy configuration.

These potentials vary a little (with density) when the liquid is considered
(Hafner and Kahl, 1984), but the general characteristics are not altered. In
the liquid state, the corresponding structural phenomena to be explained
are the three S(q) types, according to Waseda. These are defined through
the shape of the principal peaks and are illustrated in Figure 3.5; every
liquid metal seems to fit into one such category, and the distribution
throughout the periodic table is indicated in Table 3.3. Liquids with
well-defined principal minima (Lennard-Jones cases being the prototypes)
belong to category (a) but repulsion in the tail (Silbert and Young, 1976)
can yield type (c) character; all this is consistent with Figure 3.5.

Figure 3.5. Waseda's attempt to classify liquid-structure factors (after Young
1987). The three types shown can be classified as (a) hard sphere (b) skew peak, and
(c) shouldered peak.
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Table 3.3. Solid (room temperature) and liquid (Waseda) structures. S(0) at

melting as deduced from thermodynamic data is also given [after Young

(1987)1

1A 2A 2B 3 4 5

Li BCCa Be HCPb B
0.028

Na BCC Mg HCP Al FCCC Si DIAd P
0.023 a 0.025 a 0.017 c

K BCC Ca FCC Zn HCP Ga ORCe Ge DIA As RHLf

0.023 a 0.035 b 0.014 c 0.005 c

Rb BCC Sr FCC Cd HCP In TETg Sn TET Sb RHL
0.022 a 0.031 b 0.012 a 0.007 c 0.007 c 0.019

Cs BCC Ba BCC Hg RHL Tl HCP Pb FCC Bi RHL
0.024 a 0.036 b 0.005 a 0.011 a 0.009 c 0.010

Note: Some structures in solid change with temperature, but distinction between
closer and looser packing persists.
a BCC: body centred cubic. b HCP: hexagonal close packed.
c FCC: face centred cubic. d DIA: diamond.
e ORC: orthorhombic. f RHL: rhombohedral. 8 TET: tetragonal.

In the present context, however, one is mainly interested in the variations
in S(0) from metal to metal and, for this purpose, Figure 3.5 continues to
be useful. For, as is evident from the diagrams and as is required to explain
the details, S(0) lies above Shs(0) « 0.018 when the tails are (on average)
attractive and below when they are (on average) repulsive.

This account of S(0) bears closer analysis (Young, 1987). For example,
the increasing attractiveness of the tail (Figure 3.4) through the sequence
Hg, Cd, Zn, Mg, Ca, Sr, Ba is reflected in the 5(0) trend shown in Table 3.3
(Sr being, perhaps, an exception). Other correct trends are discernable,
but one should not attempt to read too much into results that might be
sensitive to pseudopotential and screening characterisation.

It is to be noted that the preceding discussion depends on the use of
a WCA diameter. If one had relied on the GB packing fraction of 0.45,
(3.5) would have given 0.028, which is too high to be compatible with
Figure 3.4. However, as discussed by Young (1987), there are good reasons
to take an apparently larger packing for describing S(q) as q -» 0.

The above discussion has been confined to liquids near their triple points.
Before leaving this topic, note that a number of successful calculations have
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been made at elevated temperatures and pressures. Details may be found
in the original papers (see McLaughlin and Young, 1984).

Finally, there are some properties that are mainly dependent on core size.
For example, the GB method of Section 3.2.1, when used with a hard
sphere reference system, leads to the conclusion that the structure factor is
approximately given by a hard sphere form. It has been seen that there are
departures from this result at q = 0 and there are others elsewhere, but,
overall, a hard sphere shape is quite a fair approximation (with rj % 0.45
near the triple point). The corresponding entropy is also given by that
appropriate to hard spheres ((3.24) and (3.12)), and it is the case that there
is reasonable agreement between the packings deduced from the observed
principal peak heights of the structure factors and the measured entropies.

This proposition is illustrated in Figure 3.6(a), where experimentally
inferred entropies are compared with those calculated by obtaining packing
fractions from the measured first peak heights (Figure 3.2) and using them
in (3.12) (Figure 3.2). The calculated values are underestimates presumably

Figure 3.6. (a) Entropies per atom, observed values plotted against the results of
calculations, (b) Heat capacities per atom, again observed versus calculated (after
Young 1987).

to
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because of inadequate treatment of core softness and tail attraction. The
error here diminishes at higher T, since (1) cores become effectively harder
(noting (3.26) and the increasing steepness of v(r) as r falls below r0 in
Figure 3.1)) and (2) the influence of vtslil/kBT on the first peak height
decreases (since, although |t;min|, for instance, may increase, T increases
faster). This is consistent with the behaviour evident in Figure 3.6(a) of
the trajectories approaching a 45° asymptote. This figure also carries
implications for estimates of the specific heat Cp = T(dS/dT)p, and these
are shown in Figure 3.6(b). As expected from the preceding discussion,
the calculated values are overestimates, but there is an overall correlation
(Young, 1977). Further discussion of specific heats occurs later (Chapter 8;
see also Appendix 5.4).

3.5. One-component plasma as reference liquid

Having discussed the basis of a variational approach to the Helmholtz free
energy F afforded by the Gibbs-Bogoliubov inequality, with a detailed
example of the use of hard spheres as a reference liquid, it must be added
that in the work of Ross et al. (1981; see also Mon et al., 1981), a comparison
was made between such results and ones using the one-component plasma
(OCP) as a reference liquid. Their conclusion was that for the alkali metals,
the OCP is the favourable choice of reference liquid because it yields
a lower free energy and better agreement with the Monte Carlo pressures.
However, for polyvalent metals (in particular Al), the situation just described
is reversed. It is also of interest to mention in concluding this section the
calculations of Stroud and Ashcroft (1972) on the melting curve of Na
(see also Stishov et al., 1973).



4

Electron screening and effective ion-ion
interactions

In this chapter the framework of weak electron-ion coupling theory will be
employed to

1. Complete the derivation of effective interactions in liquid metals, discussed in
Chapter 3, and

2. Give a simple theory of the structure factor S{k) for the alkali metals.

A useful starting point is the single-centre problem of a charged impurity
in an electron liquid. In the following section, one takes a static point charge
Ze, with Z sufficiently small (or, alternatively, the electron liquid density
high enough) to use first-order perturbation theory in the screened potential
round the point charge.

4.1. Screening of impurity centre in electron liquid

If one treats the problem by the linearized Thomas-Fermi approximation,
then the self-consistent potential energy V(r) of an electron at distance r
from the test charge is obtained from the equation (Mott, 1936)

V2F(r) = 4nZe2S(r) + q2V(r) (4.1)

where q~l is the Thomas-Fermi screening length /, given by multiplying
a characteristic velocity, which in the degenerate electron liquid in molten
metals is the Fermi velocity vf9 by a characteristic time T. This is the
period of the plasma oscillations of the electron liquid, 2n/a)p, with cop the
(Langmuir) plasma frequency: i.e.,

with fcf the Fermi wavenumber. Equation (4.1) has a solution satisfying the
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physical boundary conditions (1) V(r) -+ —Ze2/r as r -> 0 and (2) V(r) -> 0
faster than 1/r as r -> oo,

K(r)=-^exp(-gr). (4.3)

But the Thomas-Fermi approximation is valid for slowly varying poten-
tials, and, as was shown by March and Murray (1960,1961), one must treat
the diffraction of the electron waves off the test charge. This is correctly
accomplished by writing the nonlocal generalization of (4.1) as

V2K(r) = 4nZe2d(r) + F(rr')K(r')dr' (4.4)

which evidently reduces to (4.1) when the nonlocal response function
F(rr') = F(|r — r'|) in a homogeneous electron liquid is replaced by
q2d(r — r'). It can be shown (March and Tosi, 1984) that F is in fact
given by

n h |r — r |

with jx(x) = (sinx — xcosx)/x2 being the first-order spherical Bessel
function.

Evidently, it is clear from (4.4) and (4.5) that the charge dn(r) displaced
by the introduction of the test charge is given in terms of the scattering
potential F(r) by

™is2 f ; nh i* _ w'\\
(4.6)

To study the form of the displaced charge far from the scattering centre,
consider the example of a very localized scattering potential, i.e., V(r') =
2(5(r'). Inserting this model form into (4.6), one finds

^ r^oo (4.7)

when one makes use of the asymptotic form of the spherical Bessel function.
Though one needs to obtain the scattering potential self-consistently from
(4.4), it turns out that form (4.7) for the asymptotic displaced charge is again
recovered for sufficiently large r.
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4.2. Lindhard dielectric function

As anticipated, the behavior (4.7) reflects the diffraction of the electron de
Broglie waves at the Fermi surface off the test charge, leading to these
so-called Friedel oscillations. Equation (4.4), with F given by (4.5), has been
solved numerically in r space for V(r) for various electron densities (March
and Murray, 1961), but if one Fourier transforms it, then the solution is
obtained immediately in terms of the so-called Lindhard (1954) dielectric
function eL(k) given by

k-2k{

+ 2kt

the Fourier transform V(k) of V(r) then being explicitly

(4.8)

Form (4.8) is established essentially from the form of the Fourier transform
of the response function F in (4.5). In k space, it is the "kink" in eL(fc)
at k equal to the diameter 2/cf of the Fermi sphere that is responsible for
the long-range oscillations (4.7) in r space. (See the further discussion in
Section 10.6.)

Quite briefly, it should be said that the r space oscillations have been
detected in nuclear magnetic resonance experiments on field gradients due
to charged impurities in metals (Rowland, 1960; Kohn and Vosko, 1960).
Direct evidence for the kink in k space is provided by the observation of
the so-called Kohn anomaly in phonon dispersion relations (Kohn, 1959).

It will be seen later, when strong scattering (for example, off a proton in
metallic hydrogen) is treated, that such oscillatory behaviour of the dis-
placed charge persists. The changes are that Sn(r) has now the asymptotic
form A cos(2/cf r + 6)/r3 and the amplitude A is changed from the first-order
value. But as is evident, the most important point is that a phase factor 6
is now introduced into the asymptotic form of Sn(r). In fact A and 6 can be
written explicitly in terms of the phase shifts 8t for scattering of the Fermi
surface electrons off the proton.

To discuss the two-centre problem, leading up to the effective pair
interaction between ions in simple liquid metals, let us consider the model
of two test charges, Zxe and Z2e, separated by a distance R. It turns out
that the most elementary electrostatic model is valid in this case. Thus, if
one adopts the (oversimplified) form (4.3) of the screened potential, then the
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Figure 4.1. Effective ion-ion interaction, with oscillations arising from singularity
in the Lindhard dielectric function (4.8) at the Fermi sphere diameter k = 2/cf.

pair potential (j> follows immediately as

(4.10)

since we can view the charge Z2e as sitting in the screened potential of
charge Zxe (or vice versa). Equation (4.10) is, of course, disappointing, as
it tells us that like charges repel at all separations R, even in an electron
liquid!

But to correct this (Corless and March, 1961), let us return to the Friedel
oscillations. Provided R is taken to be sufficiently large to validate the
asymptotic form (4.7) of the displaced charge, then </>(R) sketched in Figure
4.1 results. This form is, of course, simply the Fourier transform of

47tZ1Z2e2

k2eL(k)

in the Lindhard (= Hartree) approximation.

4.3. Introduction of exchange and correlation

(4.11)

In the presence of exchange and correlation interactions, three modifica-
tions of the preceding argument are required, even at linear response level:
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1. A one-body potential V(r) exists, which generates the correct displaced charge
through (4.6). But (4.4) is restricted to the Hartree approximation.

2. V(r) becomes a functional of the displaced charge, and one may write

> = * H M + I IV(t) = VH(r) + | U(\r - r'|)<5n(r')dr' (4.12)

where the Hartree potential is

^ L f ^ (4.13)

U having subsumed into it exchange and correlation (Jones and March, 1973).
3. The potential (f>(R) felt by a second test charge is determined by Poisson's

equation and hence is given by

</>(R)=-Z2VH(R). (4.14)

From (l)-(3) and writing, for convenience,

Sn(r) = Xo(\r — r'|)K(r')dr' (4.15)

then one finds

4nZtZ2e
2

k2e(k)

and

(4.17)

Here

4ne2

ryi lf\ — 1 *v i LSI ft I f / I L l̂ V I Ifl I iA. I XI

is the usual dielectric function but now corrected, via U(k\ for exchange
and correlation interactions, whereas

ep(k) = 1 - - p - + U(k) \Xo(k). (4.19)

This latter screening function enters, through (4.6), the potential energy V(k)
of an electron round the test charge and therefore differs from s{k) because
of exchange and correlation between such an electron and the electrons
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in the screening cloud. The two screening functions coincide, of course, in
the Lindhard approximation, in which V(x) is taken to satisfy Poisson's
equation (4.4).

Equations (4.16) and (4.17) determine the effective ion-ion interaction
and the effective ion-electron interaction, respectively, in the present case
in which the ionic point charges are treated by linear response theory.

4.4. Effective ion-ion interactions in simple (s-p) metals

At this stage, one needs to introduce modifications to treat simple s-p
liquid metals with ions having core electrons. The procedure adopted is to
introduce pseudopotentials to describe the ion cores, and this is best
implemented in k rather than r space.

Figure 4.2. Components of the effective ion-ion potential in liquid potassium
(in units of e2 A"1). The dot-dash curve is the negative of the direct Coulomb term
e2/R and the dashed curve is the electron-screening contribution. The total potential
</>(R) near its minimum is shown in the inset on an enlarged scale.
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To this end, one introduces bare core potentials vt(k) (cf Chapter 3),
which for point ions are simply — 47rZI-e

2//c2, to describe the interaction
between a bare ion and an electron. The result of (4.16) is then modified to
read (see March and Tosi, 1984)

[ J { }r 1 I
[W)" J

where the first term has been separated out to represent the direct ion-ion
interaction, whereas in the remainder we have replaced the bare coulomb
electron-ion interactions by the core potentials, which give the contribution
due to electron screening. It may be noted that, in principle, the direct
ion-ion term should also be supplemented by ion-core terms, but that
these turn out to be normally negligible in practice for metals like Na or
K.

The k~2 divergence in the direct term in (4.20) is exactly canceled in the
limit k -> 0, where vt(k) -> —4nZie

2/k2. The two components of the effective
ion-ion potential in R space are illustrated for molten K near freezing in
Figure 4.2. This shows the cancellation arising at large R, the oscillations
at intermediate R, and the dominance of the direct term at small R.
These predictions will be confronted in the following chapter with effective
interionic forces extracted using statistical mechanical theory from the
measured ionic structure factor S(k). However, this chapter will conclude
with a brief discussion of the way S(k) for the liquid alkali metals can be
modelled, utilizing the ideas presented above.

4.5. Structure factor of alkali metals modelled in terms of
one-component plasma

As will be discussed in Chapter 6, Ferraz and March (1980) noted the
relevance of the one-component plasma model to the freezing of liquid
Na and K. This model considers classical point ions in a uniform non-
responsive neutralizing background of electrons. The model is characterized
by a single parameter F, measuring the ratio of the mean potential energy
e2/rs to the thermal energy kB T (with rs the mean interionic spacing)

Let us denote the structure factor of the ions in this model by S0(/c), which
clearly depends on the value of F.
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Then the work of Tosi and March (1973) (see also Galam and Hansen,
1976; March and Tosi, 1984) allows the liquid alkali metal structure factors
S(k) to be modelled in terms of (1) S0(k); (2) a model potential representing
the bare electron-ion interaction; and (3) the static dielectric function
s(k) of the homogeneous electron fluid, already discussed in Section 4.3.
Specifically the result takes the form, with nt denoting the ionic density:

S (k)
S(k) = ~,,vAw, T T (4-22)

[1 +nt;(fe)S(/c)//cr]
Here v(k) is related to the bare electron-ion potential v(k) and s(k) by

(4.23)
(4ne2/k2)ls(k)

It is worth noting that (4.22) corresponds to the so-called random phase
approximation of the electron screening, referred to in some detail in
Section 4.2. A comparison of the long wavelength limit of (4.22) with
experiment is worth making as follows (see also Chapter 3). One returns to
the fluctuation theory result (2.5), to find (see Chaturvedi et al., 1981; March
and Tosi, 1984)

lim S(k) = ntkBTKT. (4.24)

This limit can then be taken in (4.22) as follows. For the classical one-
component plasma, it can be shown (see March and Tosi, 1984) that

lim S0(k) = k2l2{\ + k2/k2)~l (4.25)

where k2 = 4ne2/(diii/dn)T with \i the chemical potential and lD the Debye
length. The other result one needs is the expansion

l i m v(k) = = ^ - ( \ - \ k ^ + •••) (4.26)
K 2 ]

Table 4.1. Isothermal compressibility for liquid alkali metals near freezing.

Theory

nikBTKT Expt.

Na
0.0215

0.0236

K
0.0231

0.0236

Rb
0.0236

0.0220

Cs
0.0235

0.0237

Adapted from March and Tosi, 1984.
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for v (/c), introducing the parameter rc which is representative of the core
radius. The result from (4.24) is then (March and Tosi, 1984):

j (4.27)

where k2
D = AnniZ

2e2jkBT, while k2
e and k2

t describe the "compressibilities"
of the bare electronic and ionic components (March and Tosi, 1984). The
first term in this expression (4.27) is essentially the Bohm-Staver result for
the velocity of sound but now k2

e refers to the interacting electron fluid.
The numerical results obtained by Chaturvedi et al. (1981) with values

of rc, the core radius, taken from an analysis of phonon dispersion curves in
solid alkalis are recorded in Table 4.1. The values of k2

e and k2
t were taken

from electron-correlation theory (Vashishta and Singwi, 1972; Singwi and
Tosi, 1981) and from computer simulation data on the free energy of the
classical one-component plasma (Hansen et al., 1977). The quite good
agreement with experiment shows that this simple treatment based on (4.22)
is giving a consistent account of sound waves in the liquid.



5
Interionic forces and structural theories

Consider a situation such as depicted in Figure 5.1, in which attention is
focused on atom 1 at position r1 in an environment in which there is a
second atom 2 at distance r12 = |r2 — rx\. In a classical liquid, one next
writes the pair function g{r) as a Boltzmann factor:

• 1 . ( 5 . 1 )

This can be viewed as the definition of the potential of mean force L/(r),
which in general will depend also on the temperature T. Returning to
Figure 5.1, one can now write the total force acting on atom 1 as
— dU(rl2)/dr1; this can be separated into a direct part —d</>(r12)/dr1 due
to the assumed pair potential energy (f>(r) acting between two atoms at
separation r12 and that due to the rest of the atoms. If, as in Figure 5.1, one
considers a third atom at r3, then clearly one must introduce into the theory
a three-atom correlation function gf3(r1r2r3) that measures the probability
of finding three atoms simultaneously at rl9 r2, and r3.

Figure 5.1. Geometry of three-atom configuration used in setting up the force
equation (5.2). The quantity g3 in that equation measures the probability of finding
three atoms simultaneously at rl9 r2, and r3.
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5.1. Force equation

One can write the so-called force equation:

-dU(r12) d(/>(r12)
3* ( }

The last term has the form shown in (5.2), since one has asserted that there
are certainly atoms at rx and r2 and hence the three-body correlation
function g3 must be divided by g(r12) to take account of this. This con-
ditional probability must be multiplied by the force — d(/>(r13)/dr1 on atom 1
due to atom 3 at r3, and the result must then be integrated over all positions
r3. In (5.2), the total force is evidently expressed as a sum of a direct part,
involving ^(r12) and an indirect part. Equation (2.7) is a corresponding
decomposition for correlation functions, c(r) evidently reflecting somehow
three-body correlations also.

Although the above construction of (5.2) is intuitive, (5.2) is, in fact,
an exact consequence of classical statistical mechanics, given that the total
potential energy <^(r1,..., rN) of the liquid can be expressed solely in terms
of pair potentials by

* = Z *(ru). (5.3)

Here then, in (5.2), is the desired link between structure and forces.
However, it is plain that, since U(r) is related directly to g(r) by (5.1), one
can forge an explicit relation between g(r) and the pair potential (j)(r) only
if one has knowledge of the three-body correlation function g3. This is a
characteristic of many-body theories; they lead to hierarchical equations
relating correlation functions. To calculate g3, one needs to write an
equation involving four-body correlations #4, etc. (see, for example, Hill,
1956, and Appendix 5.4).

So far, while g(r) can be measured, only limited experimental information
can be obtained on the three-particle correlation function ^3(r1r2r3). As
shown in Appendix 5.1, one important result is that integration on g3 can
be related to the density derivative of the pair function. Experiments on
this density derivative have been carried out, particularly by Egelstaff and
his coworkers (1971; 1980). This already provides valuable constraints that
any acceptable theory of g3 must satisfy.
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5.2. Simple structural theories

Following the ideas of Kirkwood, the simplest assumption to make for g3

is that it is given by the product of pair functions, i.e.,

tfafriVa) = g(ri2)g(r23)g(r3l). (5.4)

Inserting this approximation (5.4) into the exact form (5.2) leads to the
so-called Born-Green theory (see Green, 1952) of liquid structure. Though
one must be careful to specify the range of the forces before deciding how
to decouple g3 ((5.4) being a simple example of decoupling), it is now known
that the Born-Green theory is not sufficiently refined to yield a quantitative
theory of liquid structure from a given pair potential </>(r). However, a
refinement of it leads to the so-called hypernetted chain (HNC) theory,
which, as the name implies, had its origins in diagrammatic methods (for
a review, see McDonald and O'Gorman, 1978) of handling the classical
many-body problem posed by a liquid such as argon.

To see how to reach the HNC theory, one notes that, following
Rushbrooke (1960), the Born-Green theory leads to

(5.5)

where

(5.6)

In fact, there is a class of structural theories that have a convolution
representation of (U — (/>)/kBT, as in (5.5). Since g(r) -> 1 far from the critical
point, if one calculates E(r) at large r from (5.6), one has c(r) -» ~</>(r)kBT*
E(r) -» c(r). If, in embracing this class of theories, one replaces E in (5.5) by
G, then the different members of this class are characterized by different
forms of G, as collected in Table 5.1. Included there, in addition to
HNC(G -> c) and Born-Green theories (G -» E\ are the treatments of de
Angelis and March (1976) (G -> h) and a combination of a structural
proposal of Liboff(1986) with Born-Green theory. It must be stressed that

* Though no general proof appears to exist to date, this asymptotic result for large
r is the basis of the so-called mean spherical approximation (see for instance the
book by March and Tosi, 1984), as well as being incorporated in the HNC theory.
It ceases though to be valid on approaching the critical point (see (3.11)).


