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Foreword

Most modern algebra texts devote a few pages (but no more) to finite
fields. So at first it may come as a surprise to see an entire book on the
subject, and even more for it to appear in the Encyclopedia of Mathematics
and Its Applications. But the reader of this book will find that the authors
performed the very timely task of drawing together the different threads of
development that have emanated from the subject. Foremost among these
developments is the rapid growth of coding theory which already has been
treated in R. J. McEliece's volume in this series. The present volume deals
with coding theory in the wider context of polynomial theory over finite
fields, and also establishes the connection with linear recurring series and
shift registers.

On the pure side there is a good deal of number theory that is most
naturally expressed in terms of finite fields. Much of this—for example,
equations over finite fields and exponential sums—can serve as a paradigm
for the more general case; and the authors have gone as far in their
treatment as is reasonable, using elementary algebraic methods only. As a
result the book can also serve as an introduction to these topics.

But finite fields also have properties that are not shared with other types
of algebra; thus they (like finite Boolean algebras) are functionally com-
plete. This means that every mapping of a finite field can be expressed as a
polynomial. While the proof is not hard (it is an immediate consequence of
the Lagrange interpolation formula), practical questions arise when we try
to find polynomials effecting permutations. Such permutation polynomials



xii Foreword

are useful in several contexts, and methods of obtaining them are discussed
here. True to its nature as a handbook of applications, this volume also
gives various algorithms for factorizing polynomials (over both large and
small finite fields).

The lengthy notes at the end of each chapter contain interesting historical
perspectives, and the comprehensive bibliography helps to make this volume
truly the handbook of finite fields.

P. M. COHN



Preface

The theory of finite fields is a branch of modern algebra that has come to
the fore in the last 50 years because of its diverse applications in combina-
torics, coding theory, and the mathematical study of switching circuits,
among others. The origins of the subject reach back into the 17th and 18th
century, with such eminent mathematicians as Pierre de Fermat (1601-1665),
Leonhard Euler (1707-1783), Joseph-Louis Lagrange (1736-1813), and
Adrien-Marie Legendre (1752-1833) contributing to the structure theory of
special finite fields—namely, the so-called finite prime fields. The general
theory of finite fields may be said to begin with the work of Carl Friedrich
Gauss (1777-1855) and Evariste Galois (1811-1832), but it only became of
interest for applied mathematicians in recent decades with the emergence of
discrete mathematics as a serious discipline.

In this book, which is the first one devoted entirely to finite fields, we
have aimed at presenting both the classical and the applications-oriented
aspect of the subject. Thus, in addition to what has to be considered the
essential core of the theory, the reader will find results and techniques that
are of importance mainly because of their use in applications. Because of
the vastness of the subject, limitations had to be imposed on the choice of
material. In trying to make the book as self-contained as possible, we have
refrained from discussing results or methods that belong properly to alge-
braic geometry or to the theory of algebraic function fields. Applications are
described to the extent to which this can be done without too much
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digression. The only noteworthy prerequisite for the book is a background
in linear algebra, on the level of a first course on this topic. A rudimentary
knowledge of analysis is needed in a few passages. Prior exposure to
abstract algebra is certainly helpful, although all the necessary information
is summarized in Chapter 1.

Chapter 2 is basic for the rest of the book as it contains the general
structure theory of finite fields as well as the discussion of concepts that are
used throughout the book. Chapter 3 on the theory of polynomials and
Chapter 4 on factorization algorithms for polynomials are closely linked
and should best be studied together. A similar unit is formed by Chapters 5
and 6. Chapters 7 and 8 can be read independently of each other and
depend mostly on Chapters 2 and 3. The applications presented in Chapter
9 draw on various material in the previous chapters. Chapter 10 supple-
ments parts of Chapters 2 and 3.

Each chapter starts with a brief description of its contents, hence it
should not be necessary to give a synopsis of the book here. As this volume
is part of an encyclopedic series, we have attempted to provide as much
information as possible in a limited space, which meant, in particular, the
omission of a few cumbersome proofs. Bibliographical references have been
relegated to the notes at the end of each chapter so as not to clutter the
main text. These notes also provide the researcher in the field with a survey
of the literature and a summary of further results. The bibliography at the
end of the volume collects all the references given in the notes.

In order to enhance the attractiveness of this monograph as a
textbook, we have inserted worked-out examples at appropriate points in
the text and included lists of exercises for Chapters 1-9. These exercises
range from routine problems to alternative proofs of key theorems, but
contain also material going beyond what is covered in the text.

With regard to cross-references, we have numbered all items in the
main text consecutively by chapters, regardless of whether they are defini-
tions, theorems, examples, and so on. Thus, "Definition 2.41" refers to item
41 in Chapter 2 (which happens to be a definition) and "Remark 6.28"
refers to item 28 in Chapter 6 (which happens to be a remark). In the same
vein, "Exercise 5.31" refers to the list of exercises in Chapter 5.

It is with great pleasure that we express our gratitude to Professor
Gian-Carlo Rota for inviting us to write this book and for his patience in
waiting for the result of our effort. We gratefully acknowledge the help of
Mrs. Melanie Barton, who typed the manuscript with great care and
efficiency. The staff of Addison-Wesley deserves our thanks for its profes-
sionalism in the production of the book.

R. LIDL

H. NlEDERREITER



Chapter 1

Algebraic Foundations

This introductory chapter contains a survey of some basic algebraic con-
cepts that will be employed throughout the book. Elementary algebra uses
the operations of arithmetic such as addition and multiplication, but
replaces particular numbers by symbols and thereby obtains formulas
that, by substitution, provide solutions to specific numerical problems. In
modern algebra the level of abstraction is raised further: instead of dealing
with the familiar operations on real numbers, one treats general operations
—processes of combining two or more elements to yield another element—in
general sets. The aim is to study the common properties of all systems
consisting of sets on which are defined a fixed number of operations
interrelated in some definite way—for instance, sets with two binary
operations behaving like + and • for the real numbers.

Only the most fundamental definitions and properties of algebraic
systems—that is, of sets together with one or more operations on the
set—will be introduced, and the theory will be discussed only to the extent
needed for our special purposes in the study of finite fields later on. We
state some standard results without proof. With regard to sets we adopt the
naive standpoint. We use the following sets of numbers: the set M of natural
numbers, the set Z of integers, the set Q of rational numbers, the set IR of
real numbers, and the set C of complex numbers.



Algebraic Foundations

1. GROUPS

In the set of all integers the two operations addition and multiplication are
well known. We can generalize the concept of operation to arbitrary sets.
Let S be a set and let S X S denote the set of all ordered pairs (s,t) with
^ G 5 , t e S. Then a mapping from S XS into S will be called a (binary)
operation on S. Under this definition we require that the image of (s, t) e
S X S must be in 5; this is the closure property of an operation. By an
algebraic structure or algebraic system we mean a set S together with one or
more operations on S.

In elementary arithmetic we are provided with two operations,
addition and multiplication^that have associativity as one of their most
important properties. Of the various possible algebraic systems having a
single associative operation, the type known as a group has been by far the
most extensively studied and developed. The theory of groups is one of the
oldest parts of abstract algebra as well as one particularly rich in applica-
tions.

1.1. Definition. A group is a set G together with a binary operation * on
G such that the following three properties hold:

1. * is associative; that is, for any o , J , c e G,

a*(b*c) = (a*b)*c.

2. There is an identity (or unity) element e in G such that for all

a* e = e* a = a.
3. For each aeG, there exists an inverse element a~x e G such that

If the group also satisfies
4. For all a, b e <?,

a* b = b* a,
then the group is called abelian (or commutative).

It is easily shown that the identity element e and the inverse element
a~x of a given element a^G are uniquely determined by the properties
above. Furthermore, (a * b)~l = b~x * a~l for all a, b e G. For simplicity,
we shall frequently use the notation of ordinary multiplication to designate
the operation in the group, writing simply ab instead of a * b. But it must be
emphasized that by doing so we do not assume that the operation actually is
ordinary multiplication. Sometimes it is also convenient to write a + b
instead of a * b and - a instead of a" \ but this additive notation is usually
reserved for abelian groups.



1. Groups 3

The associative law guarantees that expressions such as axa2 • • • an

with a^G, l^j^n, are unambiguous, since no matter how we insert
parentheses, the expression will always represent the same element of G. To
indicate the rt-fold composite of an element a^G with itself, where n e N ,
we shall write

a" = aa- • • a (n factors a)

if using multiplicative notation, and we call an the «th power of a. If using
additive notation for the operation * on G, we write

na = a + a+---+a (n summands a).

Following customary notation, we have the following rules:

Multiplicative Notation Additive Notation

na + ma = (n + m)a
(a")m = anm m(na) = (mn)a

For n = 0 e Z, one adopts the convention a0 = e in the multiplicative
notation and Oa = 0 in the additive notation, where the last "zero" repre-
sents the identity element of G.

1.2. Examples

(i) Let G be the set of integers with the operation of addition. The
ordinary sum of two integers is a unique integer and the
associativity is a familiar fact. The identity element is 0 (zero),
and the inverse of an integer a is the integer — a. We denote
this group by Z.

(ii) The set consisting of a single element e, with the operation *
defined by e * e = e, forms a group.

(iii) Let G be the set of remainders of all the integers on division by
6—that is, G = (0,1,2,3,4,5}—and let a * b be the remainder
on division by 6 of the ordinary sum of a and b. The existence
of an identity element and of inverses is again obvious. In this
case, it requires some computation to establish the associativity
of *. This group can be readily generalized by replacing the
integer 6 by any positive integer n. •

These examples lead to an interesting class of groups in which every
element is a power of some fixed element of the group. If the group
operation is written as addition, we refer to "multiple" instead of "power"
of an element.

1.3. Definition. A multiplicative group G is said to be cyclic if there is an
element O G G such that for any b e G there is some integer j with b = aj.
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Such an element a is called a generator of the cyclic group, and we write
G = (a).

It follows at once from the definition that every cyclic group is
commutative. We also note that a cyclic group may very well have more
than one element that is a generator of the group. For instance, in the
additive group Z both 1 and - 1 are generators.

With regard to the "additive" group of remainders of the integers on
division by n, the generalization of Example 1.2(iii), we find that the type of
operation used there leads to an equivalence relation on the set of integers.
In general, a subset R of S X S is called an equivalence relation on a set S if
it has the following three properties:

(a) (s, s) e R for all s e S (reflexivity).
(b) If (s, t) G R, then (/, s) e R (symmetry).
(c) If (s, f), (U w) e R, then (s, w) e R (transitivity).

The most obvious example of an equivalence relation is that of equality. It is
an important fact that an equivalence relation R on a, set 5 induces a
partition of S—that is, a representation of S as the union of nonempty,
mutually disjoint subsets of S. If we collect all elements of S equivalent to a
fixed s e S, we obtain the equivalence class of s, denoted by

The collection of all distinct equivalence classes forms then the desired
partition of S. We note that [s] = [t] precisely if (s, t) e R. Example 1.2(iii)
suggests the following concept.

1.4. Definition. For arbitrary integers a, b and a positive integer «, we
say that a is congruent to b modulo «, and write a = 6modn, if the
difference a - b is a multiple of n —that is, if a = b -I- kn for some integer k.

It is easily verified that "congruence modulo n" is an equivalence
relation on the set Z of integers. The relation is obviously reflexive and
symmetric. The transitivity also follows easily: if a = b + kn and b = c + In
for some integers k and /, then a = c + (/: + l)n, so that a = bmod n and
b = cmod n together imply a = cmod n.

Consider now the equivalence classes into which the relation of
congruence modulo n partitions the set Z. These will be the sets

[1] = {...,-2/i + l , - f l + l , l , / i + 1,2/1 + 1,...),

[/!-1] = { . . . , - / ! - 1 , - 1 , / ! - 1 , 2 / ! - 1 , 3 / ! - 1 , . . . ) .

We may define on the set {[0],[!],...,[/! - 1]} of equivalence classes a binary
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operation (which we shall again write as +, although it is certainly not
ordinary addition) by

H + [ 6 ] - [ f l + 6], (1.1)

where a and b are any elements of the respective sets [a] and [b] and the
sum a + b on the right is the ordinary sum of a and b. In order to show that
we have actually defined an operation—that is, that this operation is well
defined—we must verify that the image element of the pair ([a]9 [b]) is
uniquely determined by [a] and [b] alone and does not depend in any way
on the representatives a and b. We leave this proof as an exercise. Associa-
tivity of the operation in (1.1) follows from the associativity of ordinary
addition. The identity element is [0] and the inverse of [a] is [ — a]. Thus the
elements of the set {[0],[l ],...,[« — 1]} form a group.

1.5. Definition. The group formed by the set {[0], [ 1 ],...,[« — 1 ]} of equiv-
alence classes modulo n with the operation (1.1) is called the group of
integers modulo n and denoted by Zn.

Zn is actually a cyclic group with the equivalence class [1] as a
generator, and it is a group of order n according to the following definition.

1.6. Definition. A group is called finite (resp. infinite) if it contains
finitely (resp. infinitely) many elements. The number of elements in a finite
group is called its order. We shall write |G| for the order of the finite
group G.

There is a convenient way of presenting a finite group. A table
displaying the group operation, nowadays referred to as a Cay ley table, is
constructed by indexing the rows and the columns of the table by the group
elements. The element appearing in the row indexed by a and the column
indexed by b is then taken to be ab.

1.7. Example. The Cayley table for the group Z6 is:

+

[0]
[1]
[2]
[3]
[4]
[5]

[0]

[0]
[1]
[2]
[3]
[4]
[5]

[1]

[1]
[2]
[3]
[4]
[5]
[0]

[2]
[2]
[3]
[4]
[5]
[0]
[1]

[3]
[3]
[4]
[5]
[0]
[1]
[2]

[4]
[4]
[5]
[0]
[1]
[2]
[3]

[5]
[5]
[0]
[1]
[2]
[3]
[4] •

A group G contains certain subsets that form groups in their own
right under the operation of G. For instance, the subset {[0], [2], [4]} of Z6 is
easily seen to have this property.
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1.8. Definition. A subset H of the group G is a subgroup of G if i / is itself
a group with respect to the operation of G. Subgroups of G other than the
trivial subgroups {e} and G itself are called nontrivial subgroups of G.

One verifies at once that for any fixed a in a group G, the set of all
powers of a is a subgroup of G.

1.9. Definition. The subgroup of G consisting of all powers of the ele-
ment a of G is called the subgroup generated by a and is denoted by (a).
This subgroup is necessarily cyclic. If (a) is finite, then its order is called
the order of the element a. Otherwise, a is called an element of infinite order.

Thus, a is of finite order k if k is the least positive integer such that
ak = e. Any other integer m with am = e is then a multiple of k. If 5 is a
nonempty subset of a group G, then the subgroup H of G consisting of all
finite products of powers of elements of S is called the subgroup generated
by S, denoted by H = (S). If (S) = G, we say that 5 generates G, or that G
is generated by S.

For a positive element « of the additive group Z of integers, the
subgroup (n) is closely associated with the notion of congruence modulo n,
since a = femod w if and only if a — b& (n). Thus the subgroup (n) defines
an equivalence relation on Z. This situation can be generalized as follows.

/./ft Theorem. If H is a subgroup of G, then the relation RH on G
defined by (a,b)e RH if and only ifa = bh for some A G if, is an equivalence
relation.

The proof is immediate. The equivalence relation RH is called left
congruence modulo H. Like any equivalence relation, it induces a partition
of G into nonempty, mutually disjoint subsets. These subsets ( = equivalence
classes) are called the left cosets of G modulo H and they are denoted by

aH={ah:h<=H)

(or a + H = {a + h: h e i /} if G is written additively), where a is a fixed
element of G. Similarly, there is a decomposition of G into rzg/rt cosete
modulo H, which have the form Ha = {ha: / iE i /} . If G is abelian, then the
distinction between left and right cosets modulo H is unnecessary.

1.11. Example. Let G = Z12 and let H be the subgroup {[0],[3],[6],[9]}.
Then the distinct (left) cosets of G modulo H are given by:

D

1.12. Theorem. If H is a finite subgroup of G, then every {left or
right) coset of G modulo H has the same number of elements as H.
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1.13. Definition. If the subgroup H of G only yields finitely many
distinct left cosets of G modulo if, then the number of such cosets is called
the index of H in G.

Since the left cosets of G modulo H form a partition of G, Theorem
1.12 implies the following important result.

1.14. Theorem. The order of a finite group G is equal to the product
of the order of any subgroup H and the index of H in G. In particular, the
order of H divides the order of G and the order of any element a^G divides
the order of G.

The subgroups and the orders of elements are easy to describe for
cyclic groups. We summarize the relevant facts in the subsequent theorem.

1.15. Theorem

(i) Every subgroup of a cyclic group is cyclic.
(ii) In a finite cyclic group (a) of order m, the element ak generates a

subgroup of order m/gcd(k,m), where gcd(/c, m) denotes the
greatest common divisor of k and m.

(iii) / / d is a positive divisor of the order m of a finite cyclic group (a),
then (a) contains one and only one subgroup of index d. For any
positive divisor f of m, (a) contains precisely one subgroup of
order f.

(iv) Let f be a positive divisor of the order of a finite cyclic group (a).
Then (a) contains 4>(f) elements of order f. Here <#>(/) is Euler's
function and indicates the number of integers n with 1 < n < /
that are relatively prime to f.

(v) A finite cyclic group (a) of order m contains <j>(m)
generators — that is, elements ar such that (ar) = (a). The gen-
erators are the powers ar with gcd(r, m) = 1.

Proof, (i) Let H be a subgroup of the cyclic group (a) with
H =*= {e}. If a" G H, then a~n e if; hence H contains at least one power of a
with a positive exponent. Let d be the least positive exponent such that
ad e H, and let as e H. Dividing s by d gives s = qd + r, 0 < r < d, and
q,r G Z . Thus as(a~d)q = are H, which contradicts the minimality of d,
unless r = 0. Therefore the exponents of all powers of a that belong to H are
divisible by d, and so H= (ad).

(ii) Put d = gcd(k, m). The order of (ak) is the least positive
integer n such that akn = e. The latter identity holds if and only if m divides
kn, or equivalently, if and only if m/d divides n. The least positive n with
this property is n = m/d.

(iii) If d is given, then (ad) is a subgroup of order m/d, and so of
index d, because of (ii). If (ak) is another subgroup of index d, then its
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order is m/d, and so d = gcd(/c, m) by (ii). In particular, d divides A:, so that
ak e (0^) and (a*) is a subgroup of ( a J ) . But since both groups have the
same order, they are identical. The second part follows immediately because
the subgroups of order/are precisely the subgroups of index m/f.

(iv) Let | (a) \ = m and m = df. By (ii), an element ak is of order/if
and only if gcd(&, m) = d. Hence, the number of elements of order/is equal
to the number of integers k with 1 < k < m and gcd(fc, m) = d. We may
write k = dh with 1 < h < / , the condition gcd(A:, m) = d being now equiva-
lent to gcd(A, / ) = 1. The number of these h is equal to <H/).

(v) The generators of (a) are precisely the elements of order m, so
that the first part is implied by (iv). The second part follows from (ii). •

When comparing the structures of two groups, mappings between the
groups that preserve the operations play an important role.

1.16. Definition. A mapping/: G -» H of the group G into the group H is
called a homomorphism of G into H if/preserves the operation of G. That is,
if * and • are the operations of G and //, respectively, then / preserves the
operation of G if for all a.b^G we have f(a* b) = f(a)-f(b). If, in
addition, / is onto H, then / is called an epimorphism (or homomorphism
"onto") and H is a homomorphic image of G. A homomorphism of G into G
is called an endomorphism. If/is a one-to-one homomorphism of G onto H,
then / is called an isomorphism and we say that G and H are isomorphic. An
isomorphism of G onto G is called an automorphism.

Consider, for instance, the mapping / of the additive group Z of the
integers onto the group Zn of the integers modulo n, defined by f(a) = [a].
Then

and / is a homomorphism.
If / : G -+ H is a homomorphism and e is the identity element in G,

then ee = e implies f(e)f(e) = f(e\ so that f(e) = e\ the identity element
in //. From aa"! = e we get f(a~l) = (f(a))~l for all a e G.

The automorphisms of a group G are often of particular interest,
partly because they themselves form a group with respect to the usual
composition of mappings, as can be easily verified. Important examples of
automorphisms are the inner automorphisms. For fixed a^G, define fa by
fa(b) = aba~l for b^G. Then fa is an automorphism of G of the indicated
type, and we get all inner automorphisms of G by letting a run through all
elements of G. The elements b and aba~l are said to be conjugate, and for a
nonempty subset S of G the set aSa~l = {asa~l: s e S} is called a conjugate
of S. Thus, the conjugates of 5 are just the images of S under the various
inner automorphisms of G.
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1.17. Definition. The kernel of the homomorphism/: G -> H of the group
G into the group H is the set

where e' is the identity element in H.

1.18. Example. For the homomorphism / : Z -» Zn given by f(a) = [a],
ker/ consists of all a e Z with [a] = [0]. Since this condition holds exactly
for all multiples a of n, we have ker /= (AZ), the subgroup of Z generated
by H. •

It is easily checked that ker/ is always a subgroup of G. More-
over, ker/ has a special property: whenever a e G and £ e ker/, then

e ker/. This leads to the following concept.

1.19. Definition. The subgroup H of the group G is called a normal
subgroup olGiiaha~x^H for all a e G and all heH.

Every subgroup of an abelian group is normal since we then have
aha~x = aa~xh = eh = h. We shall state some alternative characterizations of
the property of normality of a subgroup.

1.20. Theorem

(i) The subgroup H of G is normal if and only if H is equal to its
conjugates, or equivalently, if and only if H is invariant under all
the inner automorphisms of G.

(ii) The subgroup H of G is normal if and only if the left coset aH is
equal to the right coset Ha for every

One important feature of a normal subgroup is the fact that the set
of its (left) cosets can be endowed with a group structure.

/.21. Theorem. If H is a normal subgroup of G, then the set of (left)
cosets of G modulo H forms a group with respect to the operation (aH)(bH) =
(ab)H.

1.22. Definition. For a normal subgroup H of G, the group formed by
the (left) cosets of G modulo H under the operation in Theorem 1.21 is
called the factor group (or quotient group) of G modulo H and denoted by
G/H.

If G/H is finite, then its order is equal to the index of H in G. Thus,
by Theorem 1.14, we get for a finite group G,

Each normal subgroup of a group G determines in a natural way a
homomorphism of G and vice versa.
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1.23. Theorem (Homomorphism Theorem). Let f: G -» f(G) = G,
be a homomorphism of a group G onto a group Gx. Then ker / is a normal
subgroup of G, and the group Gx is isomorphic to the factor group G/kerf.
Conversely, if H is any normal subgroup of G, then the mapping \p: G -* G/H
defined by 4>(a) = aH for a^G is a homomorphism of G onto G/H with
ker *// = # .

We shall now derive a relation known as the class equation for a
finite group, which will be needed in Chapter 2, Section 6.

1.24. Definition. Let 5 be a nonempty subset of a group G. The normal-
izer of S in G is the set N(S) = {a^G: aSa~l = S).

1.25. Theorem. For any nonempty subset S of the group G, N(S) is
a subgroup of G and there is a one-to-one correspondence between the left
cosets of G modulo N(S) and the distinct conjugates aSa~l of S.

Proof We have e^N(S), and if a, b e N(S), then a~l and ab are
also in N(S\ so that N(S) is a subgroup of G. Now

aSa~l = bSb~l <* S = a~lbSb-la = (a-lb)S(a-lb)~l

Thus, conjugates of S are equal if and only if they are defined by elements
in the same left coset of G modulo N(S)9 and so the second part of the
theorem is shown. •

If we collect all elements conjugate to a fixed element a, we obtain a
set called the conjugacy class of a. For certain elements the corresponding
conjugacy class has only one member, and this will happen precisely for the
elements of the center of the group.

1.26. Definition. For any group G, the center of G is defined as the set
C = {c e G: ac = ca for all a e G).

It is straightforward to check that the center C is a normal subgroup
of G. Clearly, G is abelian if and only if C = G. A counting argument leads
to the following result.

1.27. Theorem (Class Equation). Let G be a finite group with
center C. Then

1 - 1

where each nt is ^ 2 and a divisor of \G\. In fact, nx,n2,...,nk are the
numbers of elements of the distinct conjugacy classes in G containing more than
one member.
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Proof. Since the relation "0 is conjugate to b" is an equivalence
relation on G, the distinct conjugacy classes in G form a partition of G.
Thus, \G\ is equal to the sum of the numbers of elements of the distinct
conjugacy classes. There are \C\ conjugacy classes (corresponding to the
elements of C) containing only one member, whereas nx,n2,...,nk are
the numbers of elements of the remaining conjugacy classes. This yields the
class equation. To show that each ni divides |G|, it suffices to note that nt is
the number of conjugates of some G G G and so equal to the number of left
cosets of G modulo N({a}) by Theorem 1.25. •

2. RINGS AND FIELDS

In most of the number systems used in elementary arithmetic there are two
distinct binary operations: addition and multiplication. Examples are pro-
vided by the integers, the rational numbers, and the real numbers. We now
define a type of algebraic structure known as a ring that shares some of the
basic properties of these number systems.

1.28. Definition. A ring ( / £ , + , ) is a set R, together with two binary
operations, denoted by + and •, such that:

1. R is an abelian group with respect to 4-.
2. • is associative—that is, (a • b)-c = a • (b • c) for all a, b, c e R.
3. The distributive laws hold; that is, for all fl,i,ce R we have

a - ( b + c) = a - b + a - c a n d ( b + c ) - a = b - a + c - a .

We shall use R as a designation for the ring ( / ? ,+ , - ) and stress that
the operations + and • are not necessarily the ordinary operations with
numbers. In following convention, we use 0 (called the zero element) to
denote the identity element of the abelian group R with respect to addition,
and the additive inverse of a is denoted by — a; also, a +(— b) is abbrevi-
ated by a — b. Instead of a • b we will usually write ab. As a consequence of
the definition of a ring one obtains the general property a0 = Oa = 0 for all
a^ R. This, in turn, implies ( - a)b = a( - b)= - ab for all a, b e R.

The most natural example of a ring is perhaps the ring of ordinary
integers. If we examine the properties of this ring, we realize that it has
properties not enjoyed by rings in general. Thus, rings can be further
classified according to the following definitions.

1.29. Definition

(i) A ring is called a ring with identity if the ring has a multiplica-
tive identity—that is, if there is an element e such that ae = ea
= a for all a& R.

(ii) A ring is called commutative if • is commutative.
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(iii) A ring is called an integral domain if it is a commutative ring
with identity e =* 0 in which ab = 0 implies a = 0 or b = 0.

(iv) A ring is called a division ring (or skew field) if the nonzero
elements of R form a group under •.

(v) A commutative division ring is called a field.

Since our study is devoted to fields, we emphasize again the defini-
tion of this concept. In the first place, afield is a set F on which two binary
operations, called addition and multiplication, are defined and which con-
tains two distinguished elements 0 and e with 0 =*= e. Furthermore, F is an
abelian group with respect to addition having 0 as the identity element, and
the elements of F that are =*= 0 form an abelian group with respect to
multiplication having e as the identity element. The two operations of
addition and multiplication are linked by the distributive law a(b + c) = ab
+ ac. The second distributive law (b + c)a = ba + ca follows automatically
from the commutativity of multiplication. The element 0 is called the zero
element and e is called the multiplicative identity element or simply the
identity. Later on, the identity will usually be denoted by 1.

The property appearing in Definition 1.29(iii)—namely, that ab = 0
implies a = 0 or 6 = 0—is expressed by saying that there are no zero
divisors. In particular, a field has no zero divisors, for if ab = 0 and a =*= 0,
then multiplication by a~l yields b = a~ ]0 = 0.

In order to give an indication of the generality of the concept of ring,
we present some examples.

1.30. Examples

(i) Let R be any abelian group with group operation +. Define
ab = 0 for all a, b e R; then R is a ring.

(ii) The integers form an integral domain, but not a field.
(iii) The even integers form a commutative ring without identity.
(iv) The functions from the real numbers into the real numbers

form a commutative ring with identity under the definitions for
/ + g and fg given by ( / + g)(x) = / (*)+ g(x) and (fg)(x) =
f(x)g(x) for x en.

(v) The set of all 2 X 2 matrices with real numbers as entries forms
a noncommutative ring with identity with respect to matrix
addition and multiplication. •

We have seen above that a field is, in particular, an integral domain.
The converse is not true in general (see Example 1.30(ii)), but it will hold if
the structures contain only finitely many elements.

1.31. Theorem. Every finite integral domain is a field.

Proof. Let the elements of the finite integral domain R be
a,,a2,...,<V F°r a fixed nonzero element a^R, consider the products
aau aa2,...,aan. These are distinct, for if aat = aaj9 then a(ai — aj) = 0, and
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since a^Owe must have at — ctj = 0, or at = cij. Thus each element of R is
of the form aai9 in particular, e = aa( for some i with 1 < / < «, where e
is the identity of R. Since R is commutative, we have also ata = e, and so ai

is the multiplicative inverse of a. Thus the nonzero elements of R form a
commutative group, and R is a field. •

1.32. Definition. A subset S of a ring R is called a subring of /? provided
S is closed under + and • and forms a ring under these operations.

1.33. Definition. A subset / of a ring R is called an ideal provided / is a
subring of R and for all a e / and rEi^we have ar e J and ra e / .

1.34. Examples

(i) Let R be the field Q of rational numbers. Then the set Z of
integers is a subring of Q, but not an ideal since, for example,
l e Z , i e Q , b u t ±-l = ±«Z.

(ii) Let R be a commutative ring, a^ R, and let / = {ra: /* e ft),
then / is an ideal.

(iii) Let R be a commutative ring. Then the smallest ideal contain-
ing a given element a e R is the ideal (a) = {ra + nf l : rG^,
« e Z}. If /£ contains an identity, then (a) = {ra: r e R). •

1.35. Definition. Let R be a commutative ring. An ideal / of R is said to
be principal if there is an a e R such that J= (a). In this case, / is also
called the principal ideal generated by a.

Since ideals are normal subgroups of the additive group of a ring, it
follows immediately that an ideal J of the ring R defines a partition of R
into disjoint cosets, called residue classes modulo / . The residue class of the
element a of R modulo / will be denoted by [a] = a + / , since it consists of
all elements of R that are of the form a 4- c for some C G / . Elements
a, be R are called congruent modulo / , written a = bmod J, if they are in
the same residue class modulo / , or equivalently, if a — b e / (compare with
Definition 1.4). One can verify that a = bmod J implies a + r = b + rmod J,
ar = br mod / , and ra = rb mod J for any r e R and na = nb mod J for any
n e Z. If, in addition, r = smodJ, then a + r = b + smod./ and ar =
bsmodJ.

It is shown by a straightforward argument that the set of residue
classes of a ring R modulo an ideal / forms a ring with respect to the
operations

/ ) = (* + b)+J, (1.2)

/ ) = aZ> + ./. (1.3)

1.36. Definition. The ring of residue classes of the ring R modulo the
ideal / under the operations (1.2) and (1.3) is called the residue class ring (or
factor ring) of R modulo J and is denoted by R/J.
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1.37. Example (The residue class ring Z/(n)). As in the case of groups
(compare with Definition 1.5), we denote the coset or residue class of the
integer a modulo the positive integer n by [a], as well as by a + (H) , where
(n) is the principal ideal generated by n. The elements of Z/(n) are

[ 0 ] = 0 + ( / I ) , [ 1 ] = 1 + ( / I ) , . . . , [ / I - 1 ] = / I - 1 + ( « ) . •

1.38. Theorem. Z/(/>), the ring of residue classes of the integers
modulo the principal ideal generated by a prime p, is a field.

Proof By Theorem 1.31 it suffices to show that Z/(p) is an
integral domain. Now [1] is an identity of Z/(p), and [a][b] = [ab] = [0] if
and only if ab = kp for some integer k. But since p is prime, p divides ab if
and only if p divides at least one of the factors. Therefore, either [a] = [0] or
[b] = [0], so that Z/(p) contains no zero divisors. •

1.39. Example. Let p = 3. Then Z/(p) consists of the elements [0], [1],
and [2]. The operations in this field can be described by operation tables
that are similar to Cayley tables for finite groups (see Example 1.7):

-1-

[0]
[1]
[2]

[0]
[0]
[1]
[2]

[1]

[1]
[2]
[0]

[2]

[2]
•[01

[1]

[0]
[1]
[2]

[0]
[0]
[0]
[0]

[1]
[0]
[1]
[2]

[2]
[0]
[2]
[1]

The residue class fields Z/(p) are our first examples of finite fields
—that is, of fields that contain only finitely many elements. The general
theory of such fields will be developed later on.

The reader is cautioned not to assume that in the formation of
residue class rings all the properties of the original ring will be preserved in
all cases. For example, the lack of zero divisors is not always preserved, as
may be seen by considering the ring Z / (« ) , where n is a composite integer.

There is an obvious extension from groups to rings of the definition
of a homomorphism. A mapping <p: R-> S from a ring R into a ring S is
called a homomorphism if for any a,b& Rwe have

<p(a + b) = q>(a) + cp(b) and y(ab) = cp(a)<p(b).

Thus a homofnorphism <p: R-+ S preserves both operations + and • of R
and induces a homomorphism of the additive group of R into the additive
group of 5. The set

ker<p = {a^R:cp(a) = 0<=S}

is called the kernel of <p. Other concepts, such as that of an isomorphism, are
analogous to those in Definition 1.16. The homomorphism theorem for
rings, similar to Theorem 1.23 for groups, runs as follows.

1.40. Theorem (Homomorphism Theorem for Rings). / / <p is a
homomorphism of a ring R onto a ring S, then kerip is an ideal of R and S is
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isomorphic to the factor ring R/ker<p. Conversely, if J is an ideal of the ring
R, then the mapping \p: R -» R/J defined by \p(a) = a + J for a e R is a
homomorphism of R onto R/J with kernelJ.

Mappings can be used to transfer a structure from an algebraic
system to a set without structure. For instance, let R be a ring and let <p be a
one-to-one and onto mapping from R to a set S\ then by means of cp one
can define a ring structure on S that converts <p into an isomorphism. In
detail, let sx and s2 be two elements of 5 and let rx and r2 be the elements of
R uniquely determined by <p(rx) = sx and <p(r2) = s2. Then one defines
sx + s2 to be <p(rx 4- r2) and sxs2 to be (p(rxr2), and all the desired properties
are satisfied. This structure on S may be called the ring structure induced by
<p. In case R has additional properties, such as being an integral domain or a
field, then these properties are inherited by 5. We use this principle in order
to arrive at a more convenient representation for the finite fields Z/(/>).

1.41. Definition. For a prime /?, let ¥p be the set {0,1,...,/? — 1} of
integers and let q>:Z/(p)->!fp be the mapping defined by <p([a]) = a for
a = 0,1,...,/? — 1. Then F^, endowed with the field structure induced by <p, is
a finite field, called the Galois field of order p.

By what we have said before, the mapping <p: Z/(/?) -> fp is then an
isomorphism, so that <p([fl] + [b]) = <p([a])+ <p([6]) and <p([a][b]) =
<p([a])(p([b]). The finite field F^ has zero element 0, identity 1, and its
structure is exactly the structure of Z/(p). Computing with elements of F^
therefore means ordinary arithmetic of integers with reduction modulo p.

1.42. Examples

(i) Consider Z/(5), isomorphic to F5 = (0,1,2,3,4}, with the iso-
morphism given by: [0 ] -0 , [1]->1, [2]->2, [3]->3, [4]->4.
The tables for the two operations 4- and • for elements in F5

are as follows:

+
0
1
2
3
4

0
0
1
2
3
4

1
1
2
3
4
0

2
2
3
4
0
1

3
3
4
0
1
2

4
4
0
1
2
3

0
1
2
3
4

0
0
0
0
0
0

1
0
1
2
3
4

2
0
2
4
1
3

3
0
3
1
4
2

4
0
4
3
2
1

(ii) An even simpler and more important example is the finite field
F2. The elements of this field of order two are 0 and 1, and the
operation tables have the following form:

+
0
1

0
0
1

1
1
0

•
0
1

0
0
0

1
0
1

In this context, the elements 0 and 1 are called binary elements. •
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If b is any nonzero element of the ring Z of integers, then the
additive order of b is infinite; that is, nb = Q implies n = 0. However, in the
ring //(/?),/> prime, the additive order of every nonzero element b is/?; that
is, pb = 0, and p is the least positive integer for which this holds. It is of
interest to formalize this property.

1.43. Definition. If R is an arbitrary ring and there exists a positive
integer n such that nr = 0 for every r e R, then the least such positive
integer n is called the characteristic of R and R is said to have (positive)
characteristic n. If no such positive integer n exists, R is said to have
characteristic 0.

1.44. Theorem. A ring R^{0) of positive characteristic having an
identity and no zero divisors must have prime characteristic.

Proof. Since R contains nonzero elements, R has characteristic
n > 2. If n were not prime, we could write n = km with k, m e Z, 1 < k9 m
< n. Then 0 = ne = (km)e = (ke)(me), and this implies that either ke = 0
or me = 0 since R has no zero divisors. It follows that either kr = (ke)r = 0
for all r ̂  R or mr = (me)r = 0 for all r ̂  R, in contradiction to the
definition of the characteristic «. •

1.45. Corollary. A finite field has prime characteristic.

Proof. By Theorem 1.44 it suffices to show that a finite field F has a
positive characteristic. Consider the multiples e,2e,3e,... of the identity.
Since F contains only finitely many distinct elements, there exist integers k
and m with 1 < k < m such that ke = me, or (m — k)e = 0, and so F has a
positive characteristic. D

The finite field Z/(p) (or, equivalently, F^) obviously has character-
istic /?, whereas the ring Z of integers and the field Q of rational numbers
have characteristic 0. We note that in a ring R of characteristic 2 we have
2a = a + 0 = 0, hence a = — a for all a e /£. A useful property of commuta-
tive rings of prime characteristic is the following.

1.46. Theorem. Let R be a commutative ring of prime characteristic
p. Then

(a + b)p" = apn+ bpn and (a - b)p" = ap"- bp"

for a.b^R andn G N .

Proof. We use the fact that

for all / G Z with 0 < i < p, which follows from (p) being an integer and the
observation that the factor p in the numerator cannot be cancelled. Then by
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the binomial theorem (see Exercise 1.8),

P\ap-xb+ ••• + ( P_ j )abp~l + bp = ap + bp,

and induction on /? completes the proof of the first identity. By what we
have shown, we get

ap
n= ((a - b) + b)p" = (a - b)pn + bp\

and the second identity follows. •

Next we will show for the case of commutative rings with identity
which ideals give rise to factor rings that are integral domains or fields. For
this we need some definitions from ring theory.

Let R be a commutative ring with identity. An element a e R is
called a divisor of b e R if there exists c e R such that ac = b. A unit of R is
a divisor of the identity; two elements a,be R are said to be associates if
there is a unit e of R such that a = be. An element c e 2£ is called a /?nme
element if it is no unit and if it has only the units of R and the associates of
c as divisors. An ideal P =*= R of the ring l£ is called a /?nme z<fetf/ if for
0, 6 e # we have 06 e P only if either a G P o r i G P . A n ideal M* Rof R
is called a maximal ideal of I* if for any ideal J of R the property M e /
implies / = R or / = M. Furthermore, # is said to be a principal ideal
domain if I* is an integral domain and if every ideal / of R is principal—that
is, if there is a generating element a for / such that J= (a) = {ra: r e R).

1.47. Theorem. Let R be a commutative ring with identity. Then:

(i) An ideal M of R is a maximal ideal if and only if R /M is a field.
(ii) An ideal P of R is a prime ideal if and only if R/P is an integral

domain.
(iii) Every maximal ideal of R is a prime ideal.
(iv) / / R is a principal ideal domain, then R/(c) is a field if and only

if c is a prime element of R.

Proof

(i) Let M be a maximal ideal of R. Then for a £ M, a e R, the set
/ = {ar + wi:rGi?,»iG M) is an ideal of R properly containing
M, and therefore J=R. In particular, ar + m = l for some
suitable r e R9 me My where 1 denotes the multiplicative iden-
tity element of R. In other words, if a + M*=0+M is an
element of R/M different from the zero element in R/M, then
it possesses a multiplicative inverse, because (a + M)(r + M) =
ar + M = (1 - m)+ M = 1 + M. Therefore, R/M is a field. Con-
versely, let R/M be a field and let / D M, / =*= M, be an ideal of
R. Then for a e J, a £ Af, the residue class a + M has a multi-
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plicative inverse, so that (tf + M)(r + M) = l + Mfor some r e
R. This implies ar + m = 1 for some m e M. Since / is an ideal,
we have 1 e / and therefore (1) = R c / , hence J= R. Thus M is
a maximal ideal of R.

(ii) Let P be a prime ideal of R; then i*/P is a commutative ring
with identity 1 + P *= 0 + P. Let (a + P)(ft + P) = 0 + P, hence
aft G P. Since P is a prime ideal, either a G ? o r / ) E ? ; that is,
either a + P = 0+ P or ft + P = 0+ P. Thus, # / P has no zero
divisors and is therefore an integral domain. The converse
follows immediately by reversing the steps of this proof.

(iii) This follows from (i) and (ii) since every field is an integral
domain.

(iv) Let ce / J . If c is a unit, then (c) = R and the ring R/(c)
consists only of one element and is no field. If c is neither a unit
nor a prime element, then c has a divisor a e R that is neither a
unit nor an associate of c. We note that a =*= 0, for if a = 0, then
c = 0 and a would be an associate of c. We can write c = ab with
be R. Next we claim that a £ (c). For otherwise a = cd = cM
for some d €  R, or a(l — bd) = 0. Since a =*= 0, this would imply
bd = 1, so that d would be a unit, which contradicts the fact that
a is not an associate of c. It follows that (c) c (a) c /*, where all
containments are proper, and so R/(c) cannot be a field be-
cause of (i). Finally, we are left with the case where c is a prime
element. Then (c) =*= R since c is no unit. Furthermore, if / 3 (c)
is an ideal of Z£, then J=(a) for some o e i ? since /? is a
principal ideal domain. It follows that C G ( 4 and so a is a
divisor of c. Consequently, a is either a unit or an associate of c,
so that either / = R or J = (c). This shows that (c) is a maximal
ideal of R. Hence / i /(c) is a field by (i). •

As an application of this theorem, let us consider the case R = Z. We
note that Z is a principal ideal domain since the additive subgroups of Z are
already generated by a single element because of Theorem 1.15(i). A prime
number p fits the definition of a prime element, and so Theorem 1.47(iv)
yields another proof of the known result that Z/(p) is a field. Conse-
quently, (p) is a maximal ideal and a prime ideal of Z. For a composite
integer «, the ideal («) is not a prime ideal of Z, and so Z/(«) is not even
an integral domain. Other applications will follow in the next section when
we consider residue class rings of polynomial rings over fields.

3. POLYNOMIALS

In elementary algebra one regards a polynomial as an expression of the
form a0 + axx 4- • • • + anx

n. The a/s are called coefficients and are usually
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real or complex numbers; x is viewed as a variable: that is, substituting an
arbitrary number a for x, a well-defined number a0 + axa + • • • + ana

n is
obtained. The arithmetic of polynomials is governed by familiar rules. The
concept of polynomial and the associated operations can be generalized to a
formal algebraic setting in a straightforward manner.

Let R be an arbitrary ring. A polynomial over R is an expression of
the form

n

f(X) = E aixl = a0 + a\X + • * • + anX">
i = 0

where n is a nonnegative integer, the coefficients ai9 0 < / < «, are elements
of R, and x is a symbol not belonging to R, called an indeterminate over i£.
Whenever it is clear which indeterminate is meant, we can use / as a
designation for the polynomial/(JC). We adopt the convention that a term
atx

l with ai = 0 need not be written down. In particular, the polynomial
f(x) above may then also be given in the equivalent form f(x) = a0 + axx
+ • • • + anx

n +0xn+x + • • • +0xn+h
9 where h is any positive integer. When

comparing two polynomials/(JC) and g(x) over R, it is therefore possible to
assume that they both involve the same powers of x. The polynomials

/(*)= £>/*' and g(*)= £>,*'
/ - 0 i: - 0

over R are considered equal if and only if at = bi for 0 < / < ?i. We define
the 5MW of/(x) and

To define the product of two polynomials over i?, let
« m

/(*)- !«/*' and g(x)= I
/ - 0 jr - 0

and set

/(x)g(x)= E ^^^^ where c^=
A: = 0 i

It is easily seen that with these operations the set of polynomials over R
forms a ring.

1.48. Definition. The ring formed by the polynomials over R with the
above operations is called the polynomial ring over R and denoted by R[x].

The zero element of R[x] is the polynomial all of whose coefficients
are 0. This polynomial is called the zero polynomial and denoted by 0. It
should always be clear from the context whether 0 stands for the zero
element of R or the zero polynomial.
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1.49. Definition. Let f(x) = JL"=oaix
i be a polynomial over R that is not

the zero polynomial, so that we can suppose an =*= 0. Then an is called the
leading coefficient of f(x) and a0 the constant term, while « is called the
degree of /(x), in symbols « = deg(/(*)) = deg(/). By convention, we set
deg(0) = — oo. Polynomials of degree < 0 are called constant polynomials. If
R has the identity 1 and if the leading coefficient of f(x) is 1, then/(x) is
called a monic polynomial.

By computing the leading coefficient of the sum and the product of
two polynomials, one finds the following result.

1.50. Theorem. Letf,g<= R[x]. Then

deg(/ + g) < max(deg(/),deg(g)),

deg(/g)<deg(/) + deg(g).

If R is an integral domain, we have

deg(/g) = deg(/)+deg(g). (1.4)

If one identifies constant polynomials with elements of R, then R can
be viewed as a subring of R[x]. Certain properties of R are inherited by
R[x]. The essential step in the proof of part (iii) of the subsequent theorem
depends on (1.4).

1.51. Theorem. Let R be a ring. Then:

(i) R[x] is commutative if and only if R is commutative.
(ii) R[x] is a ring with identity if and only if R has an identity.

(iii) R[x]is an integral domain if and only if R is an integral domain.

In the following chapters we will deal almost exclusively with poly-
nomials over fields. Let F denote a field (not necessarily finite). The concept
of divisibility, when specialized to the ring F[x], leads to the following. The
polynomial g^F[x] divides the polynomial / e F[x] if there exists a
polynomial he F[x] such that/ = gh. We also say that g is a divisor of/, or
that/is a multiple of g, or that/is divisible by g. The units of F[x] are the
divisors of the constant polynomial 1, which are precisely all nonzero
constant polynomials.

As for the ring of integers, there is a division with remainder in
polynomial rings over fields.

1.52. Theorem (Division Algorithm). Let g =*= 0 be a polynomial in
F[x]. Then for any f e F[x] there exist polynomials q, r e F[x] such that

where deg(r) < deg(g).

1.53.
l e F

Example. Consider f(x) = 2x5 + x4 +4* +3 e F5[x], g(x) = 3x2 +
[x]. We compute the polynomials q, r e F5[x] with/ = qg + r by using
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long division:

3x2 +

4x3

•ll 2x5

- 2 x 5

+ 2x2 + 2x

+ x4

- 4 x3

x4 + x3

- x 4

X3

- x 3

+ 1

- 2 x 2

+ 3x2

-3x 2

+ 4x + 3

-2x

- 1
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Thus 4(JC) = 4JC34-2JC2+2;C + 1, r(x) = 2x+2, and obviously deg(r) <
deg(g). D

The fact that F[x] permits a division algorithm implies by a standard
argument that every ideal of F[x] is principal.

1.54. Theorem. F[x] is a principal ideal domain. In fact, for every
ideal J =*= (0) of F[x] there exists a uniquely determined monic polynomial
g^F[x] withJ=(g).

Proof F[x] is an integral domain by Theorem 1.51(iii). Suppose
J =*= (0) is an ideal of F[x]. Let h(x) be a nonzero polynomial of least degree
contained in / , let b be the leading coefficient of h{x), and set g(x) =
b~lh(x). Then g^J and g is monic. If / G J is arbitrary, the division
algorithm yields q, r G F[x] with /' = qg + r and deg(r) < deg(g) = deg(/z).
Since / is an ideal, we get / - qg = r G 7, and by the definition of /* we must
have r = 0. Therefore, / is a multiple of g, and so J = (g). If gj e F[x] is
another monic polynomial with / = (g,), then g = c,gj and g\ = c2g with
c , ,c 2 eF[x] . This implies g = clc2g, hence c,c2

 = l, and c, and c2 are
constant polynomials. Since both g and g1 are monic, it follows that g = g,,
and the uniqueness of g is established. •

1.55. Theorem. Let fx,...Jn be polynomials in F[x] not all of which
are 0. Then there exists a uniquely determined monic polynomial d G F[x]
with the following properties: (i) d divides each fj9 1 ^ j ^ n\ (//) any
polynomial c^ F[x] dividing each fj, 1 < j < «, divides d. Moreover, d can be
expressed in the form

d = bxfx+--'+bJn withbx,...,bneF[x]. (1.5)

Proof The set / consisting of all polynomials of the form c,/,
4- • • • 4- cnfn with c,,...,cw G F[x] is easily seen to be an ideal of F[x].
Since not all fy are 0, we have J * (0), and Theorem 1.54 implies that J = (d)
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for some monic polynomial d e F[x]. Property (i) and the representation
(1.5) follow immediately from the construction of d. Property (ii) follows
from (1.5). If dx is another monic polynomial in F[x] satisfying (i) and (ii),
then these properties imply that d and dx are divisible by each other, and so
(d) = (dx). An application of the uniqueness part of Theorem 1.54 yields
d = dx. •

The monic polynomial d appearing in the theorem above is called the
greatest common divisor of fx,...,fn, in symbols d = gcd(/i ,...,/„). If
gcd(/,,...,/ll) = l, then the polynomials/^...,/, are said to be relatively
prime. They are called pairwise relatively prime if gcd(/, fj) = 1 for 1 < i < j
< « .

The greatest common divisor of two polynomials/, g e F[x] can be
computed by the Euclidean algorithm. Suppose, without loss of generality,
that g =*= 0 and that g does not divide / . Then we repeatedly use the division
algorithm in the following manner:

0 < deg(r,) < deg(g)

2 0 < deg(r2) < deg^)

3 0 < deg(r3) < deg(r2)

rs-2 = 4sr*-\ + rs 0 ^ deg(r5) < deg(r5_,)

rs-\ = 4s+\rs-

Here ql9...,qs+ x and rx,...9rs are polynomials in F[x], Since deg(g) is finite,
the procedure must stop after finitely many steps. If the last nonzero
remainder rs has leading coefficient b, then gcd(/, g) = b~lrs. In order to
find gcd(/l5...,/w) for n > 2 and nonzero polynomials/, one first computes
gcd(/,,/2), then gcd(gcd(/!,/2),/3), and so on, by the Euclidean algorithm.

1.56. Example. The Euclidean algorithm applied to

f(x) = 2^6 + jc3 + j c 2 + 2 e F3[JC], g(x) = JC4 + J C 2 + 2 X £ F3[JC]

yields:

2x6 + x3 + x2 +2 = (2x2 + l)(x4 + x2 +2JC) + X 4-2

JC4 + JC24-2;C= (x3 + x2

Therefore gcd(/, g) = 1 and / and g are relatively prime. •

A counterpart to the notion of greatest common divisor is that of
least common multiple. Let/,,...,/„ be nonzero polynomials in F[x]. Then
one shows (see Exercise 1.25) that there exists a uniquely determined monic
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polynomial m e F[x] with the following properties: (i) m is a multiple of
each/^, 1 < j< n\ (ii) any polynomial be F[x] that is a multiple of each/^,
1 < J< n, is a multiple of m. The polynomial m is called the feasf common
multiple of/l5...,/n and denoted by m = lcm(/,,...,/„). For two nonzero
polynomials / , g E F [ x ] w e have

a-1/g = lcm(/,g)gcd(/,g), (1.6)

where a is the leading coefficient of fg. This relation conveniently reduces
the calculation of lcm(/, g) to that of gcd(/, g). There is no direct analog of
(1.6) for three or more polynomials. In this case, one uses the identity
lcm(/i,...,/„) = lcm(lcm( fx,...,/„_}), /„) to compute the least common mul-
tiple.

The prime elements of the ring F[x] are usually called irreducible
polynomials. To emphasize this important concept, we give the definition
again for the present context.

1.57. Definition. A polynomial p e F[x] is said to be irreducible over F
(or irreducible in F[x], or prime in F[x]) if p has positive degree and/? = be
with fr,c£ F[x] implies that either b or c is a constant polynomial.

Briefly stated, a polynomial of positive degree is irreducible over F if
it allows only trivial factorizations. A polynomial in F[x] of positive degree
that is not irreducible over F is called reducible over F. The reducibility or
irreducibility of a given polynomial depends heavily on the field under
consideration. For instance, the polynomial x2 —2eQ[x] is irreducible
over the field Q of rational numbers, but x2 -2 = (x + \/2)(* -yfl) is
reducible over the field of real numbers.

Irreducible polynomials are of fundamental importance for the struc-
ture of the ring F[x] since the polynomials in F[x] can be written as
products of irreducible polynomials in an essentially unique manner. For
the proof we need the following result.

1.58. Lemma. If an irreducible polynomial p in F[x] divides a
product S\'"Sm of polynomials in F[x], then at least one of the factors fj is
divisible by p.

Proof Since p divides fx •••/„,, we get the identity (/!+(/?))•••
(fm +(/>)) = 0 + (/>) in the factor ring F[x]/(p). Now F[x]/(p) is a field
by Theorem 1.47(iv), and so fj+(p) = 0 + (/?) for some j ; that is, p divides

fj- °
1.59. Theorem (Unique Factorization in /'[A:]). Any polynomial

f G F[x] of positive degree can be written in the form

f = apV'-Pekk> (1.7)
where a^ F, pu...,pk are distinct monic irreducible polynomials in F[x], and
eu...,ek are positive integers. Moreover, this factorization is unique apart
from the order in which the factors occur.
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Proof. The fact that any nonconstant / e F[x] can be represented
in the form (1.7) is shown by induction on the degree of / . The case
deg(/) = 1 is trivial since any polynomial in F[x] of degree 1 is irreducible
over F. Now suppose the desired factorization is established for all noncon-
stant polynomials in F[x] of degree < n. If deg(/) = n and / is irreducible
over F, then we are done since we can write / = a(a~xf\ where a is the
leading coefficient of/and a"1/is a monic irreducible polynomial in F[x].
Otherwise,/allows a factorization/ = gh with 1 < deg(g) < n9 1 < deg(A) <
Ai, and g, h e F[x]. By the induction hypothesis, g and h can be factored in
the form (1.7), and so/can be factored in this form.

To prove uniqueness, suppose / has two factorizations of the form
(1.7), say

f = apV--pe
k
k = bq^--q?'. (1.8)

By comparing leading coefficients, we get a — b. Furthermore, the irreduc-
ible polynomial px in F[x] divides the right-hand side of (1.8), and so
Lemma 1.58 shows that px divides qj for some j91 < j < r. But qj is also
irreducible in F[x]9 so that we must have qJ = cpl with a constant poly-
nomial c. Since qj and px are both monic, it follows that <?y = px. Thus we
can cancel px against qj in (1.8) and continue in the same manner with the
remaining identity. After finitely many steps of this type, we obtain that the
two factorizations are identical apart from the order of the factors. •

We shall refer to (1.7) as the canonical factorization of the polynomial
/ i n F[x], If F = Q , there is a method due to Kronecker for finding the
canonical factorization of a polynomial in finitely many steps. This method
is briefly described in Exercise 1.30. For polynomials over finite fields,
factorization algorithms will be discussed in Chapter 4.

A central question about polynomials in F[x] is to decide whether a
given polynomial is irreducible or reducible over F. For our purposes,
irreducible polynomials over Fp are of particular interest. To determine all
monic irreducible polynomials over ¥p of fixed degree n, one may first
compute all monic reducible polynomials over ¥p of degree n and then
eliminate them from the set of monic polynomials in ¥p[x] of degree n. If p
or n is large, this method is not feasible, and we will develop more powerful
methods in Chapter 3, Sections 2 and 3.

1.60. Example. Find all irreducible polynomials over F2 of degree 4 (note
that a nonzero polynomial in F2[*] is automatically monic). There are
24 = 16 polynomials in F2[x] of degree 4. Such a polynomial is reducible
over F2 if and only if it has a divisor of degree 1 or 2. Therefore, we
compute all products (a0 4* axx + a2x

2 + x3)(b0 + x) and (a0 + axx +
x2)(b0 + bxx + x2) with ai,bje¥2 and obtain all reducible polynomials
over F2 of degree 4. Comparison with the 16 polynomials of degree 4 leaves
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us with the irreducible polynomials fx{x) = x4 + x + 1, f2(x) = x4 + x3 + 1,
/3(.x) == JC4 + JC3 4- x2+ x + 1 in F2[JC]. D

Since the irreducible polynomials over a field F are exactly the prime
elements of F[x], the following result, one part of which was already used in
Lemma 1.58, is an immediate consequence of Theorems 1.47(iv) and 1.54.

1.61. Theorem. For f Gf[x] , the residue class ring F[x]/(f) is a
field if and only iff is irreducible over F.

As a preparation for the next section, we shall take a closer look at
the structure of the residue class ring F[x]/(/), where / is an arbitrary
nonzero polynomial in F[x]. We recall that as a residue class ring F[x]/(f)
consists of residue classes g + ( / ) (also denoted by [g]) with g^F[x],
where the operations are defined as in (1.2) and (1.3). Two residue classes
g + ( / ) and h + ( / ) are identical precisely if g = hmod/—that is, precisely
if g — h is divisible by / . This is equivalent to the requirement that g and h
leave the same remainder after division by / . Each residue class g + ( / )
contains a unique representative r^F[x] with deg(r) < deg(/), which is
simply the remainder in the division of g by/. The process of passing from g
to r is called reduction mod/. The uniqueness of r follows from the
observation that if rx e g + ( / ) with deg(rj) < deg(/), then r — rx is divisible
by / and deg(r — /*,) < deg(/), which is only possible if r = rv The distinct
residue classes comprising F[x]/(f) can now be described explicitly;
namely, they are exactly the residue classes r + ( /) , where r runs through all
polynomials in F[x] with deg(r) < deg(/). Thus, if F= ¥p and deg(/) = n
> 0, then the number of elements of fp[x]/(f) is equal to the number of
polynomials in ¥p\x\ of degree < n, which is pn.

1.62. Examples

(i) Let /(JC) = JCGF2[X]. The pn = 21 polynomials in F2[x] of
degree < 1 determine all residue classes comprising F2[;c]/(*).
Thus, F2[x]/(x) consists of the residue classes [0] and [1] and
is isomorphic to F2.

(ii) Let/(;c) = X2 + X + 1EF2[JC]. Then F 2 [ JC] / ( / ) has the/?" = 22

elements [0], [1], [x], [x + l]. The operation tables for this
residue class ring are obtained by performing the required
operations with the polynomials determining the residue classes
and by carrying out reduction mod/if necessary:

+
[0]
[1]
[x]

[x + l]

[0]
[0]
[1]
M

[x + l]

[1]
[1]
[0]

[x + l]
[x]

[x]
[x]

[x + l]

[0]
[1]

[x + l]

[x + l]

[*]
[1]
[0]
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[0]
[1]
[x]

[x + 1]

[0]
[0]
[0]
[0]
[0]

[1]
[0]
[1]
M

[x + 1]

W
[0]
[x]

[x + 1]
[1]

[x + 1]
[0]

[x + 1]
[1]
[x]

By inspecting these tables, or from the irreducibility of / over
F2 and Theorem 1.61, it follows that F2 [*] / ( / ) is a field. This
is our first example of a finite field for which the number of
elements is not a prime.

(iii) Let f(x) = J C 2 + 2 G F3[JC]. Then F3[x]/(f) consists of the/?" =
32 residue classes [0], [1], [2], [JC], [JC + 1], [x+2] , [2JC], [2X + 1],
[2JC+2]. The operation tables for F 3 [ J C ] / ( / ) are again pro-
duced by performing polynomial operations and using reduc-
tion mod/whenever necessary. Since F 3 [ x ] / ( / ) is a commuta-
tive ring, we only have to compute the entries on and above the
main diagonal.

4-

[0]
[i]
[2]
[*]

[x + 1]
[x + 2]
[2x]

[2x + l]
[2x+2]

to]
[0]

[1]

[1]
[2]

[2]

[2]
[0]
[1]

[x] [x + 1]
[x] [x + 1]

[x + 1] [x+2]
[x+2] [x]
[2x] [2x + l]

[2x+2]

[x+2]
[x+2]

[x]
[x + 1]
[2x+2]

[2x]
[2x + l]

[2x]
[2x]

[2x + l]
[2x + 2]

[0]
[1]
[2]
[x]

[2x + l]
[2x + l]
[2x+2]

[2x]
[1]
[2]
[0]

[x + 1]
[x+2]

[2x+2]
[2x+2]

[2x]
[2x + l]

[2]
[0]
[1]

[x+2]
[x]

[x + 1]

[0]
[1]
[2]
[*]

[x + 1]
[x+2]
[2x]

[2x + l]
[2x+2]

[0]

[0]

[1]

[0]
[>]

[2]

[0]
[2]
[•]

[*]

[0]
[*]
[2x]
[1]

[x +
[0]

[x +
[2x +
[x +
[2x +

I]

']
2]
1]
2]

[x+2]
[0]

[x+2]
[2x + l]
[2x+l]

[0]
[x+2]

[2x]
[0]

[2x]
[*}
[2]

[2x+2]
[x+2]

[1]

[2x + l]
[0]

[2x + l]
[x + 2]
[x + 2]

[0]
[2x + l]
[2x + l]
[x+2]

[2x+2]
[0]

[2x+2]
[x + 1]
[2x+2]
[x + 1]

[0]
[x + 1]

[0]
[2x+2]

Note that F3 [*] / ( / ) is not a field (and not even an integral
domain). This is in accordance with Theorem 1.61 since JC2 + 2
= (x + l)(x + 2) is reducible over F3. •

If F is again an arbitrary field and f(x) e F[x], then replacement of
the indeterminate x in f(x) by a fixed element of F yields a well-defined
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element of F. In detail, if f(x) = a0 + axx + • • • + anx
n e F[x] and b^F,

then replacing x by ft we get f(b) = ao + axb + • • • + anb
n e F. In any

polynomial identity in F\x\ we can substitute a fixed 6 e F for * and obtain
a valid identity in F {principle of substitution).

1.63. Definition. An element b e i7 is called a roof (or a zero) of the
polynomial/ e F[x] if /(Z>) = 0.

An important connection between roots and divisibility is given by
the following theorem.

1.64. Theorem. An element b e F is a root of the polynomial f ^
F[x] if and only if x — b divides f(x).

Proof We use the division algorithm (see Theorem 1.52) to write
/(•*) ^ <l(x)(x ~ *)+ c with Q G F[x] anc* c G F- Substituting b for JC, we get
/(fc) = c, hence / (x) = ^(X)(JC — b)-\- f(b). The theorem follows now from
this identity. •

1.65. Definition. Let b e Fbe a root of the polynomial/ e F[x]. If A: is a
positive integer such that f(x) is divisible by (x — b)k, but not by(x — b)k+\
then A: is called the multiplicity of b. If A: = 1, then fc is called a simple root (or
a simple zero) of/, and if A: ^ 2, then b is called a multiple root (or a multiple
zero) off.

1.66. Theorem. Let f ^ F[x] with d e g / = n > 0. If bl9...9bm<= F
are distinct roots of f with multiplicities kv...,km9 respectively, then (x—
b\)kl • - - (x — bm)km divides f(x). Consequently, kx+ • • • + km < n, and f can
have at most n distinct roots in F.

Proof We note that each polynomial x — bj9 1 < j < m, is irreduc-
ible over F9 and so (x - bj)kj occurs as a factor in the canonical factoriza-
tion of/. Altogether, the factor (x - bx)

k* • • • (JC - bm)km appears in the
canonical factorization of/and is thus a divisor off. By comparing degrees,
we get kx + • • • + km < «, and m < kx + • • • + &m < n shows the last state-
ment. •

1.67. Definition. If f(x) = a0 + ^ x 4- a2x2 + • • • 4- anx" e F[x], then
the derivative f of/is defined by / ' = / ' (^) = Q\ + 2a2^ + - • • + «fl *"~! e

/.(J& Theorem. The element b^F is a multiple root of f e F[;c] //
and only if it is a root of both f and ff.

There is a relation between the nonexistence of roots and irreducibil-
ity. I f / is an irreducible polynomial in F[x] of degree.^ 2, then Theorem
1.64 shows that/has no root in F. The converse holds for polynomials of
degree 2 or 3, but not necessarily for polynomials of higher degree.
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1.69. Theorem. The polynomial f e F[x] of degree 2 or 3 is irre-
ducible in F[x] if and only if f has no root in F.

Proof The necessity of the condition was already noted. Con-
versely, if / has no root in F and were reducible in F[x]9 we could write
f = gh with g9heF[x] and 1 < deg(g)<deg(/i). But deg(g)+deg(/i) =
deg(/) < 3, hence deg(g) = 1; that is, g(x) = ax + b with a,b^F, a*0.
Then - ba~x is a root of g, and so a root of/in F9 a contradiction. •

1.70. Example. Because of Theorem 1.69, the irreducible polynomials in
¥2[x] of degree 2 or 3 can be obtained by eliminating the polynomials with
roots in F2 from the set of all polynomials in F2[JC] of degree 2 or 3. The
only irreducible polynomial in F2[x] of degree 2 is f(x) = x2 + x + \, and
the irreducible polynomials in F2[x] of degree 3 are fx{x) = JC3 + x + 1 and
/2(x) = *3 + ;c2 + l. D

In elementary analysis there is a well-known method for constructing
a polynomial with real coefficients which assumes certain assigned values
for given values of the indeterminate. The same method carries over to any
field.

1.71. Theorem (Lagrange Interpolation Formula). For «>0 , let
ao,...,an be n + 1 distinct elements of F, and let bo,...,bn be n + \ arbitrary
elements of F. Then there exists exactly one polynomial f e F[x] of degree
< n such that /(#,) = bt for i = 0,...,«. This polynomial is given by

ir - 0 k = 0

One can also consider polynomials in several indeterminates. Let R
denote a commutative ring with identity and let x,,...,xn be symbols that
will serve as indeterminates. We form the polynomial ring R\xx\ then the
polynomial ring R[xl9 x2] = R[xx][x2], and so on, until we arrive at
R[xx,...,xn] = R[xx,...,xn_x][xn]. T h e elements of R[xl9...9xn] are then
expressions of the form

f=f(xi x) = Ya x\]"'Xin

with coefficients at ...f. e /*, where the summation is extended over finitely
many w-tuples (il9...9in) of nonnegative integers and the convention xj = 1
(1 < j < n) is observed. Such an expression is called a polynomial in xx,...,xn

over /£. Two polynomials / , g e R[xl9...9xn] are equal if and only if all
corresponding coefficients are equal. It is tacitly assumed that the inde-
terminates x,,...,xn commute with each other, so that, for instance, the
expressions xxx2x3xA and xAxxx3x2 are identified.

1.72. Definition. Let / e R[xx,...,*J be given by
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If air..in* 0, then aiv..inx\x • • • xlj is called a term of/and ix + • • • + in is the
degree of the term. For/ =*= 0 one defines the degree of/, denoted by deg(/),
to be the maximum of the degrees of the terms of / . For / = 0 one sets
deg(/) = - oo. If / = 0 or if all terms of / have the same degree, then / is
called homogeneous.

Any / e R[xX9...,x J can be written as a finite sum of homogeneous
polynomials. The degrees of polynomials in R[x,,...,xn] satisfy again the
inequalities in Theorem 1.50, and if R is an integral domain, then (1.4) is
valid and R[xl9...9xn] is an integral domain. If F is a field, then the
polynomials in F[xX9... ,xn] of positive degree can again be factored uniquely
into a constant factor and a product of "monic" prime elements (using a
suitable definition of "monic"), but for w > 2 there is no analog of
the division algorithm (in the case of commuting indeterminates) and
F[xp...,xn] is not a principal ideal domain.

An important special class of polynomials in n indeterminates is that
of symmetric polynomials.

1.73. Definit ion. A p o l y n o m i a l / e R[xl9...9xn] is ca l led symmetric if
f(xi,...,xi ) = / ( x 1 , . . . , x n ) for a n y p e r m u t a t i o n iX9...9in of t h e in t ege r s
1, . . . , / i .

1.74. Example. Let z be an indeterminate over R[xl9...9xn]9 and let
g(z) = (z - xx)(z -x2)--(z- xn). Then

g ( z ) = z " - a 1 2 " - 1 + a 2 z ' I - 2 + ••• + ( - l ) w a w

with

<** = o ^ i * •••>•**) = E * / , • • ' * « * ( f c ^ U 2 , . . . , « ) .
1 < / , < • • • < /^ < n

Thus:

X\Xn + JC2JC3 + ' * ' + X2Xn

As g remains unaltered under any permutation of the xt, all the ak are
symmetric polynomials; they are also homogeneous. The polynomial ok =
ok (x j , . . . , xn) e R [x j , . . . , xn ] is called the A: th elementary symmetric poly-
nomial in the indeterminatesxl9...,xn over R. The adjective "elementary" is
used because of the so-called "fundamental theorem on symmetric poly-
nomials," which states that for any symmetric polynomial/ e R[xl9...9xn]
there exists a uniquely determined polynomial h e R[x,,...,xn] such that

...,aj. •

1.75. Theorem (Newton's Formula). Let ox,...,on be the elemen-
tary symmetric polynomials in xx,...9xn over R, and let s0 = n e Z and
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sk = sk(x]9...9xn) = x*f + • • • 4- x% G R[xx,...,xn] for k ^ 1. Then the for-
mula

holds for k^\, where m = min(A:, n).

1.76. Theorem (Waring's Formula). With the same notation as in
Theorem 1.75, we have

1 2 *

/ o r A: ^ 1, where the summation is extended over all n-tuples (il9...Jn) of
nonnegative integers with ix +2i2 + * * * + nin = k. The coefficient ofo\xo[2- • •
a^ is always an integer.

4. FIELD EXTENSIONS

Let Fbe a field. A subset Koi F that is itself a field under the operations of
F will be called a subfield of i \ In this context, F is called an extension
{field) of K.UK* F, we say that # is a proper subfield of F.

If AT is a subfield of the finite field F^, p prime, then K must contain
the elements 0 and 1, and so all other elements of ¥p by the closure of K
under addition. It follows that F^ contains no proper subfields. We are thus
led to the following concept.

1.77. Definition. A field containing no proper subfields is called a prime
field.

By the above argument, any finite field of order />, p prime, is a
prime field. Another example of a prime field is the field Q of rational
numbers.

The intersection of any nonempty collection of subfields of a given
field F is again a subfield of F. If we form the intersection of all subfields of
F, we obtain the prime subfield of F. It is obviously a prime field.

1.78. Theorem. The prime subfield of a field F is isomorphic to
either ¥p or Q, according as the characteristic of F is a prime p or 0.

1.79. Definition. Let K be a subfield of the field F and M any subset of
F. Then the field K(M) is defined as the intersection of all subfields of F
containing both K and M and is called the extension (field) of K obtained
by adjoining the elements in M. For finite M = {#,,... ,0n) we write K(M) =
K(0l9...,0n).UMconsists of a single element S E F , then L = K(0) is said
to be a simple extension of K and 0 is called a defining element of L over K.
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Obviously, K(M) is the smallest subfield of F containing both K and
M. We define now an important type of extension.

1.80. Definition. Let K be a subfield of F and 0 e F. If 0 satisfies
a nontrivial polynomial equation with coefficients in K, that is, if
an0

n + • • • 4- ax0 + 0O = 0 with at e AT not all being 0, then 0 is said to be
algebraic over K. An extension L of K is called algebraic over Â  (or an
algebraic extension of A') if every element of L is algebraic over K.

Suppose 0 e F is algebraic over A', and consider the set / =
{/ e JC[JC]: /(0) = 0}. It is easily checked that / is an ideal of K[x], and we
have J =* (0) since 0 is algebraic over K. It follows then from Theorem 1.54
that there exists a uniquely determined monic polynomial g^K[x] such
that / is equal to the principal ideal (g-J. It is important to note that g is
irreducible in K[x]. For, in the first place, g is of positive degree since it has
the root 0; and if g = hxh2 in K[x] with 1 < deg(/i,) < deg(g) (/ = 1,2), then
0 = g(0) = h\(0)h2(0) implies that either hx or h2 is in / and so divisible by
g, which is impossible.

1.81. Definition. If 0 e F is algebraic over K, then the uniquely de-
termined monic polynomial ge K[x] generating the ideal / = { / E I [ X ] :

f(0) = 0} of K[x] is called the minimal polynomial (or defining polynomial, or
irreducible polynomial) of 0 over A\ By the degree of 0 over A' we mean the
degree of g.

1.82. Theorem. If 0 ^ F w algebraic over K, then its minimal
polynomial g over K has the following properties:

(i) g w irreducible in K[x].
(ii) For / ^ A^*] we have f(0) = 0 // <zm/ 0«/y / / g divides f.

(iii) g /5 the monic polynomial in K[x] of least degree having 0 as a
root.

Proof Property (i) was already noted and (ii) follows from the
definition of g. As to (iii), it suffices to note that any monic polynomial in
K[x] having 0 as a root must be a multiple of g, and so it is either equal to g
or its degree is larger than that of g. •

We note that both the minimal polynomial and the degree of an
algebraic element 0 depend on the field K over which it is considered, so
that one must be careful not to speak of the minimal polynomial or the
degree of 0 without specifying AT, unless the latter is amply clear from the
context.

If L is an extension field of K, then L may be viewed as a vector
space over K. For the elements of L ( = " vectors") form, first of all, an
abelian group under addition. Moreover, each "vector" a^L can be
multiplied by a "scalar" r G ^ s o that ra is again in L (here ra is simply the
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product of the field elements r and a of L) and the laws for multiplication
by scalars are satisfied: r(a + /$) = ra + rfi, (r + s)a = ra + sa, (rs)a =
r(sa), and la = a, where r, s e K and a,j8EL.

1.83. Definition. Let L be an extension field of K. If L, considered as a
vector space over K, is finite-dimensional, then L is called a ///iite extension
of A\ The dimension of the vector space L over K is then called the degree
of L over AT, in symbols [L: K].

1.84. Theorem. If L is a finite extension of K and M is a finite
extension of L, then M is a finite extension of K with

K] = [M:L][L:K].

Proof Put [Af:L] = m, [L:K] = n, and let {aX9...,am} be a basis
of M over L and {/?!,...,/?„} a basis of L over K. Then every a G M i s a
linear combination a = yxax + • • • + ymam with y, e L for 1 < / < m, and
writing each y, in terms of the basis elements fy we get

m m I n \ m n

a= V r a . = V V rR a = V V r B a
i - 1 i - 1 \ 7 - 1 / / = 1 j - 1

with coefficients rueK. If we can show that the #m elements fl,ay,
•y J l

1 < i < w, 1 < y < /i, are linearly independent over A', then we are done. So
suppose we have

with coefficients stj e K. Then

and from the linear independence of the a, over L we infer

m I n

But since the 8̂y are linearly independent over K, we conclude that all stj are
0. n

1.85. Theorem. Every finite extension of K is algebraic over K.

Proof Let L be a finite extension of K and put [L: A'] = m. For
0 e L, the w + 1 elements 1,0,...,0m must then be linearly dependent over
A', and so we get a relation ao + a{0 + - - + am6m = 0 with a^K not all
being 0. This just says that 0 is algebraic over K. •
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For the study of the structure of a simple extension K(0) of K
obtained by adjoining an algebraic element, let F be an extension of K and
let S G F be algebraic over K. It turns out that K(6) is a finite (and
therefore an algebraic) extension of K.

1.86. Theorem. Let 0 e F be algebraic of degree n over K and let g
be the minimal polynomial of 0 over K. Then:

(i) K(6) i5 isomorphic to K[x]/(g).
(ii) [K(0): K] = n and(1,0,....fl""1} is a basis of K(8) over K.

(iii) Every aG K(0) is algebraic over K and its degree over K is a
divisor of n.

Proof (i) Consider the mapping T: K[X] -* K(0), defined by T ( / )
= f(d) for / e K[x], which is easily seen to be a ring homomorphism. We
have kerr = { / £ K[x]: / (^) = 0} = (g) by the definition of the minimal
polynomial. Let S be the image of T; that is, S is the set of polynomial
expressions in $ with coefficients in K. Then the homomorphism theorem
for rings (see Theorem 1.40) yields that S is isomorphic to K[x]/(g). But
K[x]/(g) is a field by Theorems 1.61 and 1.82(i), and so S is a field. Since
KQSQK(O) and fleS, it follows from the definition of K(0) that
S = K(0), and (i) is thus shown.

(ii) Since S = K(8), any given a e K(6) can be written in the form
a = f(0) for some f GLK[X]. By the division algorithm, f = qg + r with
q9reK[x] and deg(r)<deg(g) = «. Then a = f(0) = q(0)g(d)+r(0) =
r{6\ and so a is a linear combination of 1,0,...,0n~l with coefficients in K.
On the other hand, if a0 + ax0 + • • • + an_xB

n~x = 0 for certain ai e K,
then the polynomial h(x) = ao + axx + • • • 4- an_xx

n~x e K[x] has 0 as a
root and is thus a multiple of g by Theorem 1.82(ii). Since deg(A) < n =
deg(g), this is only possible if h = 0—that is, if all at = 0. Therefore, the
elements 1,0,...,0n~x are linearly independent over K and (ii) follows.

(iii) K(0) is a finite extension of K by (ii), and so a^K(O) is
algebraic over K by Theorem 1.85. Furthermore, K(a) is a subfield of K(0).
If J is the degree of a over K, then (ii) and Theorem 1.84 imply that
n = [K(6):K] = [K(6): K(a)][K(a): K] = [K(0): K(a)]d, hence d di-
vides n. D

The elements of the simple algebraic extension K(6) of K are
therefore polynomial expressions in 0. Any element of K{0) can be uniquely
represented in the form ao + ax6 + • • • + an_ x0

n~l with at e K for 0 < i' <
w - 1 .

It should be pointed out that Theorem 1.86 operates under the
assumption that both K and 0 are embedded in a larger field F. This is
necessary in order that algebraic expressions involving 0 make sense. We
now want to construct a simple algebraic extension ab ovo—ih&t is, without
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reference to a previously given larger field. The clue to this is contained in
part (i) of Theorem 1.86.

1.87. Theorem. Let f e K[x] be irreducible over the field K. Then
there exists a simple algebraic extension of K with a root of f as a defining
element.

Proof Consider the residue class ring L = K [ x ] / ( / ) , which is a
field by Theorem 1.61. The elements of L are the residue classes [h] = h + ( / )
with h e K[x]. For any a G ^ w e can form the residue class [a] determined
by the constant polynomial a, and if a9 b e K are distinct, then [a] *= [b]
since / has positive degree. The mapping a -> [a] gives an isomorphism
from K onto a subfield K' of L, so that K' may be identified with K. In
other words, we can view L as an extension of K. For every h(x) =
a0 + axx + • • • + amxm e K[x] we have [h] = [a0 + axx + • • • -I- amxm) =
[ao]+[ajx] + * • • Ham][x]m = a0 + *,[*]+ • • • + am[x]m by the rules for
operating with residue classes and the identification [«;] = «,-. Thus, every
element of L can be written as a polynomial expression in [JC] with
coefficients in K. Since any field containing both K and [x] must contain
these polynomial expressions, L is a simple extension of K obtained by
adjoining [x]. If f(x) = b0 + bxx + • • • + bnx

n, then f([x]) = bo +bx[x]
+ * * * + b

nl
XV = [*0 + b\X + * * ' + *«*"] = [/] = [°L SO t h a t M i s a rOOt Of

/ and L is a simple algebraic extension of K. •

1.88. Example. As an example of the formal process of root adjunction
in Theorem 1.87, consider the prime field F3 and the polynomial/(x) = x2

+ X + 2 E F3[x], which is irreducible over F3. Let 0 be a "root" of/; that is,
0 is the residue class j c + ( / ) i n L = F 3 [ JC] / ( / ) . The other root of / i n L is
then 20+2, since f(20 +2) = (20 +2)2 +(20 +2)+2 = 02 4- 0 + 2 = 0. By
Theorem 1.86(ii), or by the known structure of a residue class field, the
simple algebraic extension L = F3(0) consists of the nine elements
0,1,2,0,0 + 1,0+2,20,20 + 1,20+2. The operation tables for L can be
constructed as in Example 1.62. •

We observe that in the above example we may adjoin either the root
0 or the root 20+2 of / and we would still obtain the same field. This
situation is covered by the following result, which is easily established.

1.89. Theorem. Let a and /? be Wo roots of the polynomial f e K[x]
that is irreducible over K. Then K(a) and K(fi) are isomorphic under an
isomorphism mapping a to ft and keeping the elements of K fixed.

We are now asking for an extension field to which all roots of a given
polynomial belong.

1.90. Definition. Let / e K[x] be of positive degree and F an extension
field of K. Then / is said to split in F if f can be written as a product of
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linear factors in F[x]—that is, if there exist elements ax, a2,...,<*„ e F such
that

f(x) = a(x-ax)(x-a2)--(x-an),

where a is the leading coefficient of/. The field F is a splitting field of / over
K if f splits in F and if, moreover, F = K(<xx, a2,..., an).

It is clear that a splitting field F of /over A' is in the following sense
the smallest field containing all the roots of / : no proper subfield of F that
is an extension of K contains all the roots of / . By repeatedly applying the
process used in Theorem 1.87, one obtains the first part of the subsequent
result. The second part is an extension of Theorem 1.89.

1.91. Theorem (Existence and Uniqueness of Splitting Field). If K
is a field and f any polynomial of positive degree in K[x\, then there exists a
splitting field of f over K. Any two splitting fields of f over K are isomorphic
under an isomorphism which keeps the elements of K fixed and maps roots of f
into each other.

Since isomorphic fields may be identified, we can speak of the
splitting field of / over K. It is obtained from K by adjoining finitely many
algebraic elements over K, and therefore one can show on the basis of
Theorems 1.84 and 1.86(ii) that the splitting field of / over K is a finite
extension of K.

As an illustration of the usefulness of splitting fields, we consider the
question of deciding whether a given polynomial has a multiple root
(compare with Definition 1.65).

1.92. Definition. Let f^K[x] be a polynomial of degree « > 2 and
suppose that f(x) = ao(x — ax)• • • (x — an) with ax,...9an in the splitting
field of/over K. Then the discriminant D(f) of / i s defined by

D(f) = a2
0"-2 El (a,-a,)2.

1 < i < j< n

It is obvious from the definition of D(f) that / h a s a multiple root if
and only if />( / ) = 0. Although D(f) is defined in terms of elements of an
extension of K9 it is actually an element of K itself. For small n this can be
seen by direct calculation. For instance, if n = 2 and f(x) = ax2 + bx + c =
a(x - ax)(x - a2), then />( / ) = a2(ax - <x2)

2 = tf2((a, + a2)
2 -Aaxa2) =

a2(b2a~2-4ca~l), hence

D(ax2 + bx + c) = b2 -4ac9

a well-known expression from the theory of quadratic equations. If n = 3
and f{x) = ax3 + bx2 + cx + d = a(x - ax)(x - a2)(x - a3), then D(f) =
aA(ax - a 2 ) 2 ( a i ~ a3)2(«2 ~ a3)2> anc* a m o r e involved computation yields

D(ax3 + bx2 + ex + d) = b2c2 -4b3d-4ac3 -21a2d2 + \%abcd. (1.9)
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In the general case, consider first the polynomial s e K[xx,...,xn] given by

s(xx,...yxn) = aln-2 n (Xi-Xj)2-
1 < / < j< n

Then s is a symmetric polynomial, and by a result in Example 1.74 it can be
written as a polynomial expression in the elementary symmetric polynomi-
als a,,...,an—that is, s = h(ol9...9on) for some h e K[xx,...9xn]. If/(*) =
aox

n + axx
n~x + • • • + an = tfo(.x — ax)• • • (x — aw), then the definition of

the elementary symmetric polynomials (see again Example 1.74) implies that
ok(al9...,<*„) = (-l)kakaQl e K for 1 < & < "• Thus,

Since D(f)&K9 it should be possible to calculate D(f) without
having to pass to an extension field of K. This can be done via the notion of
resultant. We note first that if a polynomial/ G ^ [ X ] is given in the form
f(x) = aox

n + axx
n~x 4- ••• + an and we accept the possibility that a0 = 0,

then n need not be the degree of/. We speak of n as the formal degree of/;
it is always greater than or equal to deg(/).

1.93. Definition. Let f(x) = aox
n + axx

n~x + • • • + an e K[x] and g(x)
= box

m 4- bxx
m~x + • • • + bm G K[x] be two polynomials of formal degree

n resp. m with « ,m£N. Then the resultant R(f, g) of the two polynomials
is defined by the determinant

a 0 ax ••• a n 0 0
0 a n a , ••• am 0 ••• 0

*(/,*)'

m rows

0 0 a 0 ax an

b0 bx ••• 6 W 0 ••• 0
0 fe0 6 , ••• bm ••• 0

0 ••• 0 60

rows

of order m + n.

If deg(/) = « (i.e., if a0 * 0) and f(x) = ao(x -ax)--(x- an) in
the splitting field of/over K, then /* ( / , g) is also given by the formula

In this case, we obviously have R(f9 g) = 0 if and only if / and g have a
common root, which is the same as saying that / and g have a common
divisor in K[x] of positive degree.
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Theorem 1.68 suggests a connection between the discriminant D(f)
and the resultant /*(/, / ')• Let / <= K[x] with deg(/) = n > 2 and leading
coefficient a0. Then we have, in fact, the identity

D ( / ) - ( - l ) " ( " - 1 ) / 2 f l o ^ ( / . / ' ) , (1-11)

where/' is viewed as a polynomial of formal degree n — 1. The last remark is
needed since we may have deg(/') < n - 1 and even / ' = 0 in case K has
prime characteristic. At any rate, the identity (1.11) shows that we can
obtain D(f) by calculating a determinant of order 2n — \ with entries in K.

NOTES

1. The definitions and theorems in this chapter can be found in
nearly any of the introductory books on modern algebra. To mention a few:
Birkhoff and MacLane [1], Fraleigh [1], Herstein [4], Kochendorffer [1],
Lang [4], Redei [10], van der Waerden [2].

There are various alternative definitions of a group; for example, a
group may be defined as a nonempty set G together with an associative
binary operation such that for all a,b&G the equations ax = b and ya = b
have solutions in G. Apart from the examples already given, important
illustrations of the group concept are furnished by matrix groups—that is,
sets of matrices with entries in a field that form groups under matrix
multiplication. Such groups will occur in Chapter 8. For many other
examples of groups we refer to the textbooks mentioned above.

A square table such that in every row and in every column each
element of a certain set occurs exactly once is called a latin square. Hence,
the Cayley table for any finite group forms a latin square. However, not
every latin square may be regarded as a Cayley table since the associative
law need not hold. See Chapter 9, Section 4, and Denes and Keedwell [1] for
more information on latin squares.

In connection with cyclic groups one can prove easily that any
infinite cyclic group is isomorphic to the additive group Z of the integers
and any cyclic group of order n is isomorphic to Zw.

We mention the definitions of algebraic systems that are even
simpler than groups, insofar as only a part of the group axioms is assumed.
A set with a binary operation is called a groupoid; if, in addition, associativ-
ity is assumed, then we speak of a semigroup. A semigroup with an identity
element is called a monoid.

2. There are various definitions of a ring. For instance, some
authors drop the associativity of multiplication and call the structure
introduced in Definition 1.28 an associative ring. The requirement of the
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existence of a multiplicative identity in an integral domain is sometimes
omitted.

The first abstract definition of a field was given by Weber [3]. The
finite fields Fp, p prime, were already studied extensively by Gauss [1] in the
context of congruences in Z with respect to prime moduli.

The characteristic of a field is equal to the characteristic of its prime
subfield. There are fields of prime characteristic that are not finite. To get
examples, consider suitable extensions of fp9 such as the field of rational
functions over ¥p or the algebraic closure of ¥p (compare with the notes on
Section 4).

Many properties of the integers can be translated into properties of
the corresponding principal ideals in the ring Z. This is based on the fact
that the integer a divides the integer b if and only if the principal ideal (a)
contains the principal ideal (b). Of particular interest are the prime num-
bers. According to the usual definition, a prime is an integer > 1 that has no
nontrivial divisors. Alternatively, one could define a prime as an integer > 1
that divides a product of integers only if it divides at least one of the factors.
Phrased in terms of ideals, these characterizations lead to the definition of
maximal and prime ideals.

3. In the usual definition of a polynomial as an expression of the
form a0 + axx + • • • 4- anxn, the question of how the coefficients at and the
indeterminate x are connected is glossed over or altogether avoided. There
is, however, a way of giving a rigorous definition of a polynomial as an
element of a polynomial ring.

For this definition of a polynomial ring, we consider the set S of all
infinite sequences of the form

(aO9al9...,an,...),

where the components at are elements of a commutative ring R with identity
1 and at most finitely many at are allowed to be different from 0. One can
easily show that the set S forms a commutative ring with identity with
respect to the following operations of addition and multiplication:

the (n + l)st component in the product being aobn + axbn_ ! + • • • + an_ xbx

+ anb0. The zero element of this ring S is obviously (0 ,0 , . . . ) and the
identity is the sequence (1 ,0 ,0 , . . . ) .

The set P of special sequences ( a o , 0 , 0 , . . . ) , where at most the first
component is different from 0, forms a subring of S. This subring P and the
given ring R are isomorphic via the mapping (0o,O,O,. . .)->tfo from P onto
R. Thus we identify these two rings and write ( a 0 , 0 , 0 , . . . ) = a0. Hence R
can be regarded as a subring of 5, and S is an extension ring of R.
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We introduce the notation x = (0,1,0,...) for this special sequence
and verify that

where 1 is the (w + l)st component. If we define x° = (1,0,0,...) = 1, we
have

= a0 + axx + a2x
2 + • • • + anx

n

for any sequence belonging to S. Thus the elements of the ring S are the
polynomials f(x) e R[x]9 defined as infinite sequences with only finitely
many components at =* 0.

We emphasize again that the reason for this kind of definition of
polynomials / (x ) over R is to clarify the relation between the elements of R
and the new element x. The process of passing from R to the ring S of
polynomials in x is called ring adjunction of x to R. The polynomial ring
R[x] can also be regarded as a subring of the ring of formal power series
over R, which will be introduced in Chapter 8.

By considering the properties of the ring of integers and of poly-
nomial rings over fields, one soon notices similarities. Actually, both types
of rings belong to the same special class of Euclidean rings. A Euclidean ring
is a commutative ring R with at least two elements, that has no zero divisors,
and for which there exists a mapping v from the set of nonzero elements of
R to the set of nonnegative integers such that: (i) if a, b e R with ab =*= 0,
then v(ab) > v(a)\ (ii) for a, be R with b =*= 0, there exist elements q,r^R
with a = qb + r and either r = 0 or v(r) < v(b). The mapping v is often
called a {Euclidean) valuation on the ring R. We see at once that the integers
form a Euclidean ring with "absolute value" as a valuation, and a poly-
nomial ring over a field is a Euclidean ring with "degree" as a valuation. As
a general result, one shows that any Euclidean ring is a principal ideal
domain.

The property stated in Theorem 1.59 also holds in more general
contexts and leads to the following definition. An integral domain in which
a unique factorization theorem holds—that is, in which every nonunit =* 0
can be expressed uniquely (up to units and the order of the factors) as a
product of prime elements—is called a unique factorization domain. Thus,
put succinctly, Theorem 1.59 says that F[x] is a unique factorization
domain. More generally, any principal ideal domain is also a unique
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factorization domain. The Chinese remainder theorem for F[x] (see Ex-
ercise 1.37) is a special case of a general result of this type shown in Lang
[4, Ch. 2].

Good sources for facts about polynomials in one and several inde-
terminates are Redei [10] and van der Waerden [2]. A more advanced
monograph on polynomials is Lausch and Nobauer [1].

4. In this section, Theorems 1.86 and 1.87 are the key theorems. In
fact, one could say that Theorem 1.87 constitutes one of the most funda-
mental results in the theory of fields. For this result, due to Kronecker [8],
assures us that given any nonconstant polynomial over any field, there must
be an extension field in which the polynomial has a root. Moreover, the
proof of the theorem does more than merely prove existence, as it also
provides a method for constructing the required field.

One can classify the elements in an extension F of a field K
according to their relation to K. If 0 e F, then either K(0) is isomorphic to
AT(x), the field of rational functions over K (also called the quotient field of
AT[x]), or 0 is a root of an irreducible polynomial g in K[x] and K(0) is
isomorphic to K[x]/(g), as stated in Theorem 1.86. In the first case, 0 is
called transcendental over K, in the second case 0 is algebraic over K, as we
already know. Extensions F of K that are not algebraic extensions are called
transcendental extensions of K. Examples of transcendental elements exist in
abundance. For instance, most real numbers (such as e, TT, 2^, . . . ) are
transcendental over the field Q of rationals.

Splitting fields not only exist for a single nonconstant polynomial in
K[x], but for any collection of nonconstant polynomials over K. The
splitting field over K of the collection of all nonconstant polynomials in
K[x] is called the algebraic closure K of K. It is an algebraic extension of K
with the_additional property that any nonconstant polynomial in K[x]
splits in K. For K = Q and K = Fp, the algebraic closure Kis an example of
an algebraic extension that is not a finite extension of K.

The abstract theory of field extensions was developed in the funda-
mental paper of Steinitz [1]. Earlier investigations in this direction were
carried out by Kneser [1], Kronecker [5], [8], and Weber [3].

EXERCISES

1.1. Prove that the identity element of a group is uniquely determined.
1.2. For a multiplicative group G, prove that a nonempty subset H of G

is a subgroup of G if and only if a, £ e H implies ab~x e H. If if is
finite, then the condition can. be replaced by: a,b^H implies
ab^H.

1.3. Let a be an element of finite order k in the multiplicative group G.
Show that for w G Z we have am = e if and only if k divides m.
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1.4. For mel^l, Euler's function <t>(m) is defined to be the number of
integers k with l < / c < m and gcd(/c, m) = l. Show the following
properties for m, n, s ^ 1̂1 and a prime /?:

(a) <f>(ps) = p s \ 1 I;

(b) <j>(mn) = <t>(m)(j>(n) if gcd(m, /?) = 1;

(c) <Km) = m ( l - - M - - - ( l - - M , where m =/?f - - pe/ is the
\ />1 / \ PrJ

prime factor decomposition of m.
1.5. Calculate <f>(49Q) and </>(768).
1.6. Use the class equation to show the following: if the order of a finite

group is a prime power/?5, p prime, .s > 1, then the order of its center
is divisible by /?.

1.7. Prove that in a ring R we have (— a)(— b) = ab for all a, b ^ R.
1.8. Prove that in a commutative ring /£ the formula

holds for all a,be R and «Gl^l. (Binomial Theorem)
1.9. Let p be a prime number in Z. For all integers a not divisible by /?,

show that/? divides ap~l — 1. (Fermat's Little Theorem)
1.10. Prove that for any prime p we have (/? - 1)! = - 1 mod /?. (Wilson's

Theorem)
(p-\\

1.11. Prove: if /? is a prime, we have I . \ = ( - l)ymod/? for 0 < y <
/?-l,7GZ.

1.12. A conjecture of Fermat stated that for all n ^ 0 the integer 22"+ 1 is
a prime. Euler found to the contrary that 641 divides 232 + l.
Confirm this by using congruences.

1.13. Prove: if m,,...,mk are positive integers that are pairwise relatively
prime—that is, gcd(m,, my) = 1 for 1 < / < j < A:—then for any in-
tegers al9...,ak the system of congruencesy = aimodm,-, / = 1,2,...,
k, has a simultaneous solution y that is uniquely determined modulo
m = m, • • • mk. (Chinese Remainder Theorem)

1.14. Solve the system of congruences 5x = 20 mod 6, 6x = 6 mod 5, 4x =
5 mod 77.

1.15. For a commutative ring R of prime characteristic/?, show that

(ax + • • • + as)
p" = af+ • • • + af

for all a,,. . . ,a5 e /* and
1.16. Deduce from Exercise 1.11 that in a commutative ring R of prime

characteristic p we have
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1.17. Let F be a field and / e F[x]. Prove that {g(f(x)):g e F[x]} is
equal to F[x] if and only if deg(/) = 1.

1.18. Show thatp2(x)- xq2(x) = xr2(x) for p,q, r e U[x] implies/? = q =
r = 0.

1.19. Show that if/, g e F[JC], then the principal ideal ( / ) is contained in
the principal ideal (g) if and only if g divides/.

1.20. Prove: if/, g e F[x] are relatively prime and not both constant, then
there exist a, b^F[x] such that af + bg = \ and deg(tf) < deg(g),
deg(Z>)<deg(/).

1.21. Let /„. . . , /„ €=/•[* ] with gcd(/1,. . . , /J = ^, so that / ,= rfg,. with
g7 G F[x] for 1 < / < n. Prove that g,,... ,gn are relatively prime.

1.22. Prove that gcd(/,,...,/„) = gcd(gcd(/„...,/„_,),/„) for « > 3.
1.23. Prove: if f,g9h^ F[x], f divides g/z, and gcd(/, g) = 1, then / di-

vides h.
1.24. Use the Euclidean algorithm to compute gcd(/, g) for the polynomi-

als / and g with coefficients in the indicated field F:
(a) F=Q, /(*) = x1 + 2x5 +2x2 - x +2, g(x) = x6 -2x5 - x4 +

x2 +2JC 4-3

(b) F = F 2 , / ( x ) = x 7 + l , g ( x ) = x5 + x3 + x + l
(c) F = F2, / (JC) = x5 + x + 1, g(x) = JC6 + x5 + x4 4-1
(d) F = F 3 , / ( x ) = x 8 5 3 2 6 5 3

1.25. Let / j , . . . , / w be nonzero polynomials in F[x]. By considering the
intersection ( / , )n • • • n(/w) of principal ideals, prove the existence
and uniqueness of the monic polynomial m e F[x] with the proper-
ties attributed to the least common multiple of / , , . . . , /„ .

1.26. Prove (1.6).
1.27. I f / , , . . . , / n Gf [x ] are nonzero polynomials that are pairwise rela-

tively prime, show that lcm(/1,...,/l) = a""1/1 •••/„, where a is the
leading coefficient of/ ,-••/„.

1.28. Prove that lcm(/,,...,/„) = lcm(lcm(/„...,/„_,),/„) for « > 3.
1.29. Let / , , . . . , /w e Ffjc] be nonzero polynomials. Write the canonical

factorization of each/, 1 < / < «, in the form

where a^ F, the product is extended over all monic irreducible
polynomials p in F[x], the et(p) are nonnegative integers, and for
each / we have ei(p)> 0 for only finitely many p. For each p set
m(p) = min(ex(p)9...9en(p)) and
Prove that
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1.30. Kronecker's method for finding divisors of degree < s of a noncon-
stant polynomial/ E Q [ X ] proceeds as follows:
(1) By multiplying/by a constant, we can assume/ e Z[x].
(2) Choose distinct elements ao,...,as^Z that are not roots of/

and determine all divisors of f(at) for each «,0 < / < J.
(3) For each (s 4- l)-tuple (bo,...9bs) with bt dividing f(at) for

0</< .s , determine the polynomial g^Q[x] with deg(g)<s
and g{ai) = bi for 0< /< . s (for instance, by the Lagrange
interpolation formula).

(4) Decide which of these polynomials g in (3) are divisors of / .
If deg(/) = n ^ l and s is taken to be the greatest integer
<n/2, then/is irreducible in Q[x] in case the method only yields
constant polynomials as divisors. Otherwise, Kronecker's method
yields a nontrivial factorization. By applying the method again to
the factors and repeating the process, one eventually gets the
canonical factorization off. Use this procedure to find the canonical
factorization of

f(x) = \x6 - f x5 + 2JC4 - x3 4- 5x2 - ^x - 1 e Q[x].

1.31. Construct the addition and multiplication table for F2[x]/
(JC3 + X2 + X). Determine whether or not this ring is a field.

1.32. Let [x + 1] be the residue class of x + 1 in ¥2[x]/(x* +1). Find
the residue classes comprising the principal ideal ([x + 1]) in F2[x]/
(x4 + l).

1.33. Let f be a field and a,b,g<=F[x] with g*=0. Prove that the
congruence a/ = 6modg has a solution / e F[x] if and only if
gcd(a, g) divides b.

1.34. Solve the congruence (x2 4- \)f(x) = 1 mod(x3 4-1) in F3[x], if possi-
ble.

1.35. Solve (x4 + x3 + x2 4- 1)/(JC) = (x2 + l)mod(x3 + 1) in F2[x], if pos-
sible.

1.36. Prove that R[x]/(x4 + x3 + x 4-1) cannot be a field, no matter what
the commutative ring R with identity is.

1.37. Prove: given a field F, nonzero polynomials fl9... Jk ^ F[x] that are
pairwise relatively prime, and arbitrary polynomials gl5... ,gk e F[x],
then the simultaneous congruences h = g; mod / , / = 1,2,..., A:, have a
unique solution / iGf[x] modulo f = f\ - — fk. (Chinese Remainder
Theorem for F[x])

1.38. Evaluate/(3) for f(x) = x2]4+ 3x]52+2x41 + 2 GF 5 [X] .

1.39. Letp be a prime and ao,...,an integers with/? not dividing an. Show
that a0 4- a ^ 4- • • • 4- any

n = Omod/? has at most n different solu-
tions y modulo p.

1.40. If p > 2 is a prime, show that there are exactly two elements a^fp

such that a2 = 1.
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1.41. Show: if/ e Z[x] and/(0) = / ( l ) = Imod2, then/has no roots in Z.
1.42. Let p be a prime and / e Z[x]. Show: f(a) = Omod/? holds for all

a e Z if and only if f(x) = (xp - x)g(x)+ ph(x) with g, A e Z[JC].

1.43. Let /? be a prime integer and c an element of the field F. Show that
xp - c is irreducible over F if and only if xp — c has no root in F.

1.44. Show that for a polynomial/ ^ F[x]of positive degree the following
conditions are equivalent:
(a) / is irreducible over F;
(b) the principal ideal ( / ) of F[x] is a maximal ideal;
(c) the principal ideal ( / ) of F[x] is a prime ideal.

1.45. Show the following properties of the derivative for polynomials in
F[x]:

( a ) ( / , + • • • + / m ) ' = / i ' + • • • + £ ;
( b )

/ l

1.46. For / e F[x] and F of characteristic 0, prove that / ' = 0 if and only
if / is a constant polynomial. If F has prime characteristic /?, prove
that / ' = 0 if and only if f(x) = g(xp) for some g e F[JC].

1.47. Prove Theorem 1.68.
1.48. Prove that the nonzero polynomial/ e F[x] has a multiple root (in

some extension field of F) if and only if / and / ' are not relatively
prime.

1.49. Use the criterion in the previous exercise to determine whether the
following polynomials have a multiple root:
(a) f(x) = x4-5x3+6x2+4x-%<=Q[x]
(b) /(JC) = X6 + JC5 + X 4 + JC3 + 1 G F 2 W

1.50. The nth derivative/(w) of / e F[x] is defined recursively as follows:
= f^ fin) = (f(n- \)y f o r n > l ?TQyQ t h a t f Q r ^ g e ^ ^ j w

/ = 0

1.51. Let F be a field and k a positive integer such that k < p in case F has
prime characteristic/?. Prove: b e F is a root of / e F[x] of multipl-
icity k if and only if f(i)(b) = 0 for 0 ̂  i < k - 1 and /(A:)(6) *= 0.

1.52. Show that the Lagrange interpolation formula can also be written in
the form

/(*)= L fe/(^(«/))~17irf withg(x)= fl (*~O-

1.53. Determine a polynomial / EF5[JC] with/(0) = / ( l ) = /(4) = 1 and

1.54. Determine a polynomial / e Q[JC] of degree < 3 such that / ( - 1) =
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1.55. Express s5(xu x2, x3, x4) = xf + x2 + xf + x\ e F ^ X ^ X2, X3, X4] in
terms of the elementary symmetric polynomials a,, a2, a3, a4.

1.56. Prove that a subset AT of a field F is a subfield if and only if the
following conditions are satisfied:
(a) K contains at least two elements;
(b) if 0, b e #, then a-b^K;
(c) if 0, 6 e # and fc * 0, then ab~l e AT.

1.57. Prove that an extension L of the field AT is a finite extension if and
only if L can be obtained from K by adjoining finitely many
algebraic elements over K.

1.58. Prove: if 0 is algebraic over L and L is an algebraic extension of K,
then 0 is algebraic over K. Thus show that if F is an algebraic
extension of L, then F is an algebraic extension of K.

1.59. Prove: if the degree [L: K] is a prime, then the only fields F with
K c F c L are F = tf and F = L.

1.60. Construct the operation tables for the field L = F3(0) in Example
1.88.

1.61. Show that / (x) = x4 + x-h 1 GF 2 [X] is irreducible over F2. Then
construct the operation tables for the simple extension F2(0), where
0 is a root of / .

1.62. Calculate the discriminant D(f) and decide whether or not / has a
multiple root:
(a) / (x) = 2x 3 -3x 2 + x + l eQ[x]
(b) / (x) = 2x4 + x3 + x2+2x+2eF3[x ]

1.63. Deduce (1.9) from (1.11).
1.64. Prove that / , g e K[x] have a common root (in some extension field

of A') if and only if / and g have a common divisor in A [̂x] of
positive degree.

1.65. Determine the common roots of the polynomials x 7 -2x 4 - x3 +2
and x5 - 3x4 - x + 3 in Q[x].

1.66. Prove: if / and g are as in Definition 1.93, then R(f,g) =

1.67. Let / , g^K[x] be of positive degree and suppose that f(x)
^ ( x - a ^ ' - ^ x - a j , ao*0, and g(x) = bo(x -£,)• • • (x - / 3 m

b0 * 0, in the splitting field of fg over K. Prove that

j ,
y - l 1 - I 7 - I

where n and m are also taken as the formal degrees of / and g,
respectively.

1.68. Calculate the resultant R(f, g) of the two given polynomials / and g
(with the formal degree equal to the degree) and decide whether or
not / and g have a common root:
(a) /(x) = x3 + x + 1, g(x) = 2x5 + x2 + 2 e F3[x]
(b) /(x) = x4 + x3 + 1, g(x) = x4 + x2 + x + 1 e F2[x]
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1.69. For / e K[x},...,xn], n > 2, an H-tuple (a , , . . . ,a w ) of elements a,
belonging to some extension L of K may be called a zero of / if
/ ( a , , . . . , a n ) = 0. Now let / , g e A^x, , . . . , .^] with xn actually ap-
pearing in / and g. Then / and g can be regarded as polynomials
f(xn) and g(xn) in K[xl,...,xn_l][xn] of positive degree. Their
resultant with respect to xn (with formal degree = degree) is R(f,g)
= RXn(f,g), which is a polynomial in JC 1 , . . . , *„_ , . Show that / and g
have a common zero ( a , , . . . , ^ . , , ^ ) if and only if (a],...,an_l) is
a zero of R(f, g) .

1.70. Using the result of the previous exercise, determine the common
zeros of the polynomials /(JC, y) = x(y2 — x)2 + y5 and g(x, y) =
y4 + y3 - x2 in Q[x, y].



Chapter 2

Structure of Finite Fields

This chapter is of central importance since it contains various fundamental
properties of finite fields and a description of methods for constructing
finite fields.

The field of integers modulo a prime number is, of course, the most
familiar example of a finite field, but many of its properties extend to
arbitrary finite fields. The characterization of finite fields (see Section 1)
shows that every finite field is of prime-power order and that, conversely,
for every prime power there exists a finite field whose number of elements is
exactly that prime power. Furthermore, finite fields with the same number
of elements are isomorphic and may therefore be identified. The next two
sections provide information on roots of irreducible polynomials, leading to
an interpretation of finite fields as splitting fields of irreducible polynomi-
als, and on traces, norms, and bases relative to field extensions.

Section 4 treats roots of unity from the viewpoint of general field
theory, which will be needed occasionally in Section 6 as well as in Chapter
5. Section 5 presents different ways of representing the elements of a finite
field. In Section 6 we give two proofs of the famous theorem of Wedderburn
according to which every finite division ring is a field.

Many discussions in this chapter will be followed up, continued, and
partly generalized in later chapters.

47
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1. CHARACTERIZATION OF FINITE FIELDS

In the previous chapter we have already encountered a basic class of finite
fields—that is, of fields with finitely many elements. For every prime p the
residue class ring Z/(/?) forms a finite field with/? elements (see Theorem
1.38), which may be identified with the Galois field ¥p of order p (see
Definition 1.41). The fields F^ play an important role in general field theory
since every field of characteristic p must contain an isomorphic copy of ¥p

by Theorem 1.78 and can thus be thought of as an extension of ¥p. This
observation, together with the fact that every finite field has prime char-
acteristic (see Corollary 1.45), is fundamental for the classification of finite
fields. We first establish a simple necessary condition on the number of
elements of a finite field.

2.1. Lemma. Let F be a finite field containing a subfield K with q
elements. Then F has qm elements, where m = [F: K].

Proof F is a vector space over K, and since F is finite, it is
finite-dimensional as a vector space over K. If [F: K] = w, then F has a
basis over Kconsisting of m elements, say bvb2,...,bm. Thus every element
of F can be uniquely represented in the form axbx + a2b2 + • • • + ambm,
where aua2,...,am& K. Since each at can have q values, F has exactly qm

elements. •

2.2. Theorem. Let F be a finite field. Then F has pn elements, where
the prime p is the characteristic of F and n is the degree of F over its prime
subfield.

Proof Since F is finite, its characteristic is a prime p according to
Corollary 1.45. Therefore the prime subfield K of F is isomorphic to F^ by
Theorem 1.78 and thus contains/? elements. The rest follows from Lemma
2.1. •

Starting from the prime fields ¥p, we can construct other finite fields
by the process of root adjunction described in Chapter 1, Section 4. If
/ e ¥p[x] is an irreducible polynomial over ¥p of degree n9 then by adjoining
a root o f / t o F^ we get a finite field with/?" elements. However, at this stage
it is not clear whether for every positive integer n there exists an irreducible
polynomial in ¥p[x] of degree n. In order to establish that for every prime/?
and every w e N there is a finite field with/?" elements, we use an approach
suggested by the following results.

2.3. Lemma. If F is a finite field with q elements, then every a^F
satisfies aq — a.

Proof. The identity aq = a is trivial for a = 0. On the other hand,
the nonzero elements of F form a group of order q — 1 under multiplication.
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Thus aq ] = 1 for all a e F with a =*= 0, and multiplication by a yields the
desired result. •

2.4. Lemma. If F is a finite field with q elements and K is a sub field
of F9 then the polynomial xq — x in K[x] factors in F[x] as

xq-x = ]~I (x-a)

and F is a splitting field of xq — x over K.

Proof The polynomial xq — x oi degree q has at most q roots in F.
By Lemma 2.3 we know q such roots—namely, all the elements of F. Thus
the given polynomial splits in F in the indicated manner, and it cannot split
in any smaller field. •

We are now able to prove the main characterization theorem for
finite fields, the leading idea being contained in Lemma 2.4.

2.5. Theorem (Existence and Uniqueness of Finite Fields). For
every prime p and every positive integer n there exists a finite field with pn

elements. Any finite field with q — pn elements is isomorphic to the splitting
field of xq — x over ¥p.

Proof (Existence) For q = pn consider xq — x in ¥p[x], and let F
be its splitting field over F^. This polynomial has q distinct roots in F since
its derivative is qxq~l — 1 = — 1 in ¥p[x] and so can have no common root
with xq — x (compare with Theorem 1.68). Let S = {a& F: aq — a = 0).
Then S is a subfield of F since: (i) S contains 0 and 1; (ii) a.b^S implies
by Theorem 1.46 that (a- b)q = aq - bq = a- b, and so a - b e 5; (iii) for
fl,6E5andfc*0we have (ab~x)q = aqb~q = ab~\ and so ab~l e S. But,
on the other hand, xq - x must split in S since S contains all its roots. Thus
F= S, and since S has q elements, F is a finite field with q elements.

(Uniqueness) Let F be & finite field with q = pn elements. Then F has
characteristic p by Theorem 2.2 and so contains ¥p as a subfield. It follows
from Lemma 2.4 that F is a splitting field of xq — x over ¥p. Thus the
desired result is a consequence of the uniqueness (up to isomorphisms) of
splitting fields, which was noted in Theorem 1.91. •

The uniqueness part of Theorem 2.5 provides the justification for
speaking of the finite field (or the Galois field) with q elements, or of the
finite field (or the Galois field) of order q. We shall denote this field by F^,
where it is of course understood that q is a power of the prime characteristic
P of F,.

2.6. Theorem (Subfield Criterion). Let ¥q be the finite field with
q = pn elements. Then every subfield of¥q has order pm, where m is a positive
divisor ofn. Conversely, if m is a positive divisor ofn, then there is exactly one
subfield of ¥q with pm elements.
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Proof. It is clear that a subfield K of F^ has order pm for some
positive integer m < n. Lemma 2.1 shows that q = pn must be a power of pm,
and so m is necessarily a divisor of n.

Conversely, if m is a positive divisor of n, then/?"1 - 1 divides/?" — 1,
and so xpm~] — 1 divides xp"~] — 1 in ¥p[x]. Consequently, xpm — x divides
xp" — x = xq — x in fp[x]. Thus, every root of xpm — x is a root of xq — x
and so belongs to ¥q. It follows that ¥q must contain as a subfield a splitting
field of xpm — x over F^, and as we have seen in the proof of Theorem 2.5,
such a splitting field has order pm. If there were two distinct subfields of
order pm in F^, they would together contain more than pm roots of xp"' — x
in F^, an obvious contradiction. D

The proof of Theorem 2.6 shows that the unique subfield of ¥pn of
order pm, where m is a positive divisor of «, consists precisely of the roots of
the polynomial xpm — x e ¥p[x] in ¥pn.

2.7. Example. The subfields of the finite field F23o can be determined by
listing all positive divisors of 30. The containment relations between these
various subfields are displayed in the following diagram.

/1 \
F96 ll~->IO ¥-y\5

IK2 IK3 IT25

By Theorem 2.6, the containment relations are equivalent to divisibility
relations among the positive divisors of 30. •

For a finite field F^ we denote by F* the multiplicative group of
nonzero elements of F^. The following result enunciates a useful property of
this group.

2.8. Theorem. For every finite field ¥q the multiplicative group F* of
nonzero elements of ¥q is cyclic.

Proof We may assume q>3. Let h = p\xpr
2
2 • • - p%p be the prime

factor decomposition of the order h = q — \ of the group F*. For every /,
l^i^m, the polynomial xh/Pi — 1 has at most h/pi roots in F^. Since
h/pt <h,ii follows that there are nonzero elements in F^ that are not roots
of this polynomial. Let at be such an element and set bt = a^/p^. We have
bf1 = 1, hence the order of bi is a divisor of pp and is therefore of the form
/?/' with 0 < ^ < rt. On the other hand,

bp
rr' = ah/P,*\^

and so the order of bi is pp. We claim that the element b = bxb2- • • bm has
order h. Suppose, on the contrary, that the order of b is a proper divisor of h
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and is therefore a divisor of at least one of the m integers h/pt, 1 < / < m,
say of h/pv Then we have

1 = b^/Pi = b\/p'bhJPx' • • bh/p\

Now if 2 < / < w , then p'* divides h/px, and hence bf/Pl = \. Therefore
bh

l
/Pi = \. This implies that the order of bx must divide h/p}, which is

impossible since the order of bx is p\l. Thus, F* is a cyclic group with
generator b. •

2.9. Definition. A generator of the cyclic group F * is called a primitive
element of F^.

It follows from Theorem 1.15(v) that F^ contains <f>(q - 1) primitive
elements, where <f> is Euler's function. The existence of primitive elements
can be used to show a result that implies, in particular, that every finite field
can be thought of as a simple algebraic extension of its prime subfield.

2.10. Theorem. Let ¥q be a finite field and ¥r a finite extension field.
Then ¥r is a simple algebraic extension of ¥q and every primitive element of ¥r

can serve as a defining element of ¥r over ¥q.

Proof Let f be a primitive element of ¥r. We clearly have F^(f) c Fr.
On the other hand, ¥q(£) contains 0 and all powers of f, and so all elements
of Fr. Therefore Fr = F^(f). •

2.11. Corollary. For every finite field ¥q and every positive integer
n there exists an irreducible polynomial in ¥q[x] of degree n.

Proof Let ¥r be the extension field of F^ of order q'\ so that
[Fr: ¥q] = n. By Theorem 2.10 we have ¥r = ¥q(^) for some f e Fr. Then the
minimal polynomial of f over F^ is an irreducible polynomial in FJJC] of
degree w, according to Theorems 1.82(i) and 1.86(ii). •

2. ROOTS OF IRREDUCIBLE POLYNOMIALS

In this section we collect some information about the set of roots of an
irreducible polynomial over a finite field.

2.12. Lemma. Let f ^¥q[x] be an irreducible polynomial over a
finite field ¥q and let a be a root of f in an extension field of ¥q. Then for a
polynomial h e ¥q[x] we have h(a) = 0 if and only iff divides h.

Proof Let a be the leading coefficient of / a n d set g(x) = a"'/(x).
Then g is a monic irreducible polynomial in ¥q[x] with g(a) = 0 and so it is
the minimal polynomial of a over F^ in the sense of Definition 1.81. The rest
follows from Theorem 1.82(ii). D
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2.13. Lemma. Let f e¥q[x]be an irreducible polynomial over ¥q of
degree m. Thenf(x) divides xq" — x if and only if m divides n.

Proof Suppose f(x) divides xq" — x. Let a be a root of / in the
splitting field of / over F .̂ Then aq"=<x, so that a G F f It follows that
¥q(a) is a subfield of F^ . But since [¥q(a):¥q] = m and [Fq*:¥q] = n,
Theorem 1.84 shows that m divides n.

Conversely, if m divides «, then Theorem 2.6 implies that ¥q*
contains Fqm as a subfield. If a is a root of / in the splitting field of/over ¥q,
then [¥q(a):¥q] = m, and so ¥q(a) = ¥qm. Consequently, we have aeF ? « ,
hence aq" = a, and thus a is a root of xq"- x e ¥q[x]. We infer then from
Lemma 2.12 that/(x) divides xq"-x. •

2.14. Theorem. If f is an irreducible polynomial in ¥q[x] of degree
m, then f has a root a in ¥qm. Furthermore, all the roots of fare simple and are
given by the m distinct elements a,aq,aq , . . . , aqm of ¥qm.

Proof Let a be a root o f / i n the splitting field of/over F .̂ Then
[¥q(a):¥q] = m, hence ¥q(a) = ¥qm, and in particular a^¥qm. Next we
show that if /? e ¥qm is a root of/, then >8̂  is also a root of/. Write/(x) =
amxm + • • • + axx + a0 with at e F̂  for 0 < i < m. Then, using Lemma 2.3
and Theorem 1.46, we get

Therefore, the elements a,aq,aq\...,aqm"' are roots of / . It remains to
prove that these elements are distinct. Suppose, on the contrary, that
aqJ = aq for some integersj and k with 0 < y < f c < / w — 1. By raising this
identity to the power #m~*, we get

m-k+j m

aq = aq = a.
It follows then from Lemma 2.12 that/(x) divides xqm~k+J - x. By Lemma
2.13, this is only possible if m divides m — k + j . But we have 0 < m — k + j
< m, and so we arrive at a contradiction. •

2.15. Corollary. Let f be an irreducible polynomial in ¥q[x] of
degree m. Then the splitting field of f over ¥q is given by ¥qm.

Proof. Theorem 2.14 shows that / splits in ¥qm. Furthermore,
¥q(a,aq,aq ,...,aqm~l) = ¥q(a) = ¥qm for a root a of / in ¥qm, where the
second identity is taken from the proof of Theorem 2.14. •

2.16. Corollary. Any two irreducible polynomials in ¥q[x] of the
same degree have isomorphic splitting fields.
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We introduce a convenient terminology for the elements appearing in
Theorem 2.14, regardless of whether a e F ? m is a root of an irreducible
polynomial in ¥q[x] of degree m or not.

2.17. Definition. Let ¥qm be an extension of ¥q and let a e ¥qm. Then the
elements a, aq, <xq , . . . , aqm are called the conjugates of a with respect to F^.

The conjugates of a e ¥qm with respect to F^ are distinct if and only if
the minimal polynomial of a over F^ has degree m. Otherwise, the degree d
of this minimal polynomial is a proper divisor of m, and then the conjugates
of a with respect to F^ are the distinct elements a,aq,. . . ,aq ', each
repeated m/d times.

2.18. Theorem. The conjugates of aGF* with respect to any sub-
field of ¥q have the same order in the group F*.

Proof Since F* is a cyclic group by Theorem 2.8, the result follows
from Theorem 1.15(ii) and the fact that every power of the characteristic of
¥q is relatively prime to the order q — 1 of F*. •

2.19. Corollary. If a is a primitive element of ¥q, then so are all its
conjugates with respect to any subfield of¥q.

2.20. Example. Let a e F16 be a root of f(x) = x4 + x 4-1 e F2[>]. Then
the conjugates of a with respect to F2 are a, a2, a4 = a 4-1, and a8 = a2 4-1,
each of them being a primitive element of F16. The conjugates of a with
respect to F4 are a and a4 = a 4-1. •

There is an intimate relationship between conjugate elements and
certain automorphisms of a finite field. Let ¥qm be an extension of ¥q. By an
automorphism a of ¥qm over F^ we mean an automorphism of ¥qm that fixes
the elements of F^. Thus, in detail, we require that a be a one-to-one
mapping from ¥qm onto itself with o(a + /?) = a(a)4-a(/?) and o(a/5) =
o(a)o(fi) for all a,j8e¥qm and o(a) = a for all a e¥q.

2.21. Theorem. The distinct automorphisms of ¥qm over ¥q are
exactly the mappings a0,a1$...9om_ l5 defined by Oj(a) = aqJ for a^¥qm and
0 < 7 < m - 1.

Proof For each ay and all a,j8e¥qm we obviously have Oj(afi) =
<jj(a)Oj(/5), and also c^(a + /?) = c^(a)+ay.(/J) because of Theorem 1.46, so
that ay is an endomorphism of ¥qm. Furthermore, ay(a) = 0 if and only if
a = 0, and so ay is one-to-one. Since ¥qm is a finite set, oj is an epimorphism
and therefore an automorphism of ¥qm. Moreover, we have <jj(a) = a for all
a^¥qby Lemma 2.3, and so each Oj is an automorphism of ¥qm over F^.
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The mappings o0,ol9...,om_x are distinct since they attain distinct values
for a primitive element of ¥qm.

Now suppose that a is an arbitrary automorphism of ¥qm over ¥q. Let
/? be a primitive element of ¥qm and let f(x) = xm + am_xx

m~x + • • • +
#0 G ^ M be *ts minimal polynomial over F^. Then

so that a(/J) is a root of / in ¥qm. It follows from Theorem 2.14 that
°(P)= PqJ f°r some y, 0 < y < /w — 1. Since a is a homomorphism, we get
then a(a) = aqJ for all a e F^-.. D

On the basis of Theorem 2.21 it is evident that the conjugates of
a e ¥qm with respect to F^ are obtained by applying all automorphisms of
¥qm over F^ to the element a. The automorphisms of ¥qm over ¥q form a
group with the operation being the usual composition of mappings. The
information provided in Theorem 2.21 shows that this group of automor-
phisms of ¥qm over F^ is a cyclic group of order m generated by a,.

3. TRACES, NORMS, AND BASES

In this section we adopt again the viewpoint of regarding a finite extension
F = ¥qm of the finite field K = F^ as a vector space over K (compare with
Chapter 1, Section 4). Then F has dimension m over K, and if {a,,... ,am} is
a basis of Fover K9 each element a e f can be uniquely represented in the
form

a = cxax + • • • + cmam with cJ ^ K for 1 < y < m.

We introduce an important mapping from F to K which will turn out to be
linear.

2.22. Definition. For aEF=F( ? m and K = ¥q, the trace TxF/K(a) of a
over K is defined by

If K is the prime subfield of F, then TrF/K(a) is called the absolute trace of
a and simply denoted by TrF(a).

In other words, the trace of a over K is the sum of the conjugates of
a with respect to K. Still another description of the trace may be obtained
as follows. Let/ e K[x] be the minimal polynomial of a over K\ its degree
d is a divisor of m. Then g(x) = f(x)m/d e K[x] is called the characteristic
polynomial of a over K. By Theorem 2.14, the roots of / in F are given by
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a,aq
9...,aqd~\ and then a remark following Definition 2.17 implies that the

roots of g in F are precisely the conjugates of a with respect to K. Hence

= ( Y — n\( r — nq\ Cv-/v^m"^ (1 \\

and a comparison of coefficients shows that

In particular, TrF/^(a) is always an element of AT.

2.23. Theorem. Let K = ¥q and F = ¥qm. Then the trace function
TxF/K satisfies the following properties:

(i) TrF/K(a + P) = TrF/*(a)+TrF/*( 0) /or a// a, jB e F;
(ii) TrF/*(ca) = cTrF/A:(a) /or allc<EK,a<= F;
(iii) TrF/Jr w fl /mear transformation from F onto K, where both F

and K are viewed as vector spaces over K;
(iv) TrF/K(a) = ma for all aeK;
(v) TrF/K(a<*) = TrF/K(a)forallaeF

Proof

(i) For a, /? e F we use Theorem 1.46 to get

-Tr f / j r (a)+TrF / j r ( i8) .

(ii) For c e ^ w e have c*y = c for ally > 0 by Lemma 2.3. Therefore
we obtain for aGf,

= cTrF/K(a).

(iii) The properties (i) and (ii), together with the fact that TrF/K(a)
G K for all a e F9 show that TrF/J^ is a linear transformation
from F into A\ To prove that this mapping is onto, it suffices
then to show the existence of an a e F with TrF/^(a) * 0. Now
TrF/^(a) = 0 if and only if a is a root of the polynomial
xq

m + . . . + XR + x e K[x] in F. But since this polynomial
can have at most qm~x roots in F and F has qm elements, we
are done.

(iv) This follows immediately from the definition of the trace
function and Lemma 2.3.

(v) For a e F we have aqm = a by Lemma 2.3, and so TrF/K(aq) =
q2+ ••• +a«M=TrF/A:(a). •
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The trace function TrF/A: is not only in itself a linear transformation
from F onto K, but serves for a description of all linear transformations
from F into K (or, in an equivalent terminology, of all linear functionals on
F) that has the advantage of being independent of a chosen basis.

2.24. Theorem. Let F be a finite extension of the finite field K, both
considered as vector spaces over K. Then the linear transformations from F
into Kare exactly the mappings L ^ j S e F , where Lp(a) = TrF/i^(/?a) for all
aG F. Furthermore, we have Lp =*= Ly whenever /? and y are distinct elements
ofF.

Proof Each mapping Lp is a linear transformation from F into K
by Theorem 2.23(iii). For j8 ,yGf with /J*=y, we have Lp(a)-Ly(a) =
TrF/K(fi<x)'-TTF/K(ya) = TTF/K((l3-y)a)*0 for suitable a G f since
TTF/K maps F onto K, and so the mappings Lp and Ly are different. If
K = fq and F = ¥qm, then the mappings Lp yield qm different linear transfor-
mations from F into K. On the other hand, every linear transformation from
F into K can be obtained by assigning arbitrary elements of K to the m
elements of a given basis of F over K. Since this can be done in qm different
ways, the mappings Lp already exhaust all possible linear transformations
from F into K. •

2.25. Theorem. Let F be a finite extension of K = ¥q. Then for
a G F we have TxF/K{a) = 0 if and only if a = flq — /? for some /? e F.

Proof The sufficiency of the condition is obvious by Theorem
2.23(v). To prove the necessity, suppose a e F = F?« with TrF/K(a) = 0 and
let /? be a root of xq — x — a in some extension field of F. Then Pq — /? = a
and

so that /J e F. •

In case a chain of extension fields is considered, the composition of
trace functions proceeds according to a very simple rule.

2.26. Theorem (Transitivity of Trace). Let K be a finite field, let F
be a finite extension of K and E a finite extension of F. Then

( ) ) foralla^E.
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Proof. Let K = F^, let [F: K] = m and [E: F] = n, so that [E: K] =
m« by Theorem 1.84. Then forae i? we have

m-\ m-\ I n-\ \ *'

a))= £ '
m — 1 « — 1 m « — 1

= £ £«^+'= £ ««' =
/ = 0 y = 0 k - 0

Another interesting function from a finite field to a subfield is
obtained by forming the product of the conjugates of an element of the field
with respect to the subfield.

2.27. Definition. For aGF=F ? m and K = Fq, the norm NF/K(a) of a
over K is defined by

By comparing the constant terms in (2.1), we see that NF/A-(a) can
be read off from the characteristic polynomial g of a over K—namely,

NF /*(«) = ( - l ) m a 0 . (2.3)

It follows, in particular, that NF/^(a) is always an element of K.

2.28. Theorem. Let K = JFq and F=fqm. Then the norm function
NF/K satisfies the following properties:

(i) NF / i t (a0) = NF/K(a)NF/K(fi) for all a, fi e F;
(ii) NF/A: maps F onto K and F* onto K*\

(iii) NF/K(a) = am for all a^K\
(iv) Nf/jr(a«)-Nf/ir(a)/ora//F

(i) follows immediately from the definition of the norm. We
have already noted that NF/A: maps F into K. Since NF/A-(a) = 0 if and only
if a = 0, NF/A: maps F* into K*. Property (i) shows that NF/A: is a group
homomorphism between these multiplicative groups. Since the elements of
the kernel of NF/A: are exactly the roots of the polynomial x(qm~ X)Aq~X) -1
G K[x] in F, the order d of the kernel satisfies d < (#m - \)/(q - 1). By
Theorem 1.23, the image of NF/A: has order (qm - l)/d, which is ^ q-\.
Therefore, NF /^ maps F* onto i^* and so F onto # . Property (iii) follows
from the definition of the norm and the fact that for a e K the conjugates of
a with respect to K are all equal to a. Finally, we have NF/Ar(a*) =
NF/K(a)q = NF/A:(a) because of (i) and NF/Ar(a) e A', and so (iv) is shown.

•
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2.29. Theorem (Transitivity of Norm). Let K be a finite field, let F
be a finite extension of K and E a finite extension of F. Then

)) foralla^E.

Proof With the same notation as in the proof of Theorem 2.26, we
have for a e E,

If (a,,...,am) is a basis of the finite field F over a subfield K, the
question arises as to the calculation of the coefficients Cj(a)eK, 1 < j < m,
in the unique representation

of an element aGf. We note that Cj\a*-^Cj(a) is a linear transformation
from F into K, and thus, according to Theorem 2.24, there exists a /?, e F
such that ^(a) = TrF/^(/?ya) for all aGF, Putting a = a,., 1 < i < w, we see
that TrF/K(pjai) = 0 for / * y and 1 for i = y. Furthermore, {/?!,...,/?„,} is
again a basis of F over # , for if

d\P\ + " " + ^m^m = 0 with d^ K for 1 < i < m,

then by multiplying by a fixed a, and applying the trace function TrF/A:, one
shows that dt = 0.

2.30. Definition. Let A' be a finite field and F a finite extension of K.
Then two bases {a,,...,am} and {/?!,...,/?„,} of Fover K are said to be dual
(or complementary) bases if for 1 < 1,7 < #t we have

f 0 for 1 * 7,

In the discussion above we have shown that for any basis {a1,...,am)
of F over K there exists a dual basis {/?,,...,/?m}. The dual basis is, in fact,
uniquely determined since its definition implies that the coefficients Cj(a)9

1 < j< w, in (2.4) are given by Cj(a) = TrF/Ar(/Jya) for all aGF, and by
Theorem 2.24 the element $j e F is uniquely determined by the linear
transformation cy.

2.31. Example. Let aEF 8 be a root of the irreducible polynomial
x3 + x2 + 1 in F2[x]. Then (a, a2,1 + a + a2} is a basis of F8 over F2. One
checks easily that its uniquely determined dual basis is again {a, a2,1 + a +
a2}. Such a basis that is its own dual basis is called a self-dual basis. The
element a5 e F8 can be uniquely represented in the form a5 = c]a + C2OL2 +



3. Traces, Norms, and Bases 59

c3(l + <x + a2) with c,, c2, c3 e F2, and the coefficients are given by

so that a5 = a2 + (1 + a + a2). •

The number of distinct bases of F over K is rather large (see Exercise
2.37), but there are two special types of bases of particular importance. The
first is a polynomial basis {l,a, a2,...,am~1}, made up of the powers of a
defining element a of F over K. The element a is often taken to be a
primitive element of F (compare with Theorem 2.10). Another type of basis
is a normal basis defined by a suitable element of F.

2.32. Definition. Let K = fq and F = ¥qm. Then a basis of F over K of the
form {a9a

q
9...9a

qm'l}9 consisting of a suitable element a £ f and its con-
jugates with respect to K9 is called a normal basis of F over JC.

The basis {a, a2,1 + a + a2} of F8 over F2 discussed in Example 2.31
is a normal basis of F8 over F2 since 1 + a + a2 = a4. We shall show that a
normal basis exists in the general case as well. The proof depends on two
lemmas, one on a kind of linear independence property of certain group
homomorphisms and one on linear operators.

2.33. Lemma (Artin Lemma). Let ^ , , . . . , ^m be distinct homomor-
phisms from a group G into the multiplicative group F* of an arbitrary field F,
and let ax,...,ambe elements of F that are not all 0. Then for some g&G we
have

Proof We proceed by induction on w. The case m = 1 being trivial,
we assume that m>\ and that the statement is shown for any m — 1 distinct
homomorphisms. Now take \pl9...,\pm and av...,am as in the lemma. If
a, = 0, the induction hypothesis immediately yields the desired result. Thus
let ax * 0. Suppose we had

« i* i (g )+• • •+«**«(*) = 0 for all g e G . (2.5)
Since \pY * \pm, there exists A G G with $\(h)=* \pm(h). Then, replacing g by
hg in (2.5), we get

After multiplication by ^m(A)"! we obtain

ftl*l(g)+"-+*m-l*m-l(g) + flm*m(«)-0 for all g

where b]•, = a$i(h)$m(h)~x for 1 < i < m - 1. By subtracting this identity
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from (2.5), we arrive at

* i* i (g )+ ••• +c m _ 1 ^ w _ 1 (g ) = 0 f o r a l l g e G ,

where c, = ai — bt for 1 < i < m — 1. But cx = ax — ax\px(h)\pm(h)~x =*= 0, and
we have a contradiction to the induction hypothesis. •

We recall a few concepts and facts from linear algebra. If T is a
linear operator on the finite-dimensional vector space V over the (arbitrary)
field K, then a polynomial f(x) = anx

n + • • • + axx + a0 fe K[x] is said to
annihilate T if anT

n + • • • + axT+ aol = 0, where / is the identity operator
and 0 the zero operator on V. The uniquely determined monic polynomial
of least positive degree with this property is called the minimal polynomial
for T. It divides any other polynomial in K[x] annihilating T. In particular,
the minimal polynomial for T divides the characteristic polynomial g(x) for
T (Cayley-Hamilton theorem), which is given by g(x) = det(x/ — 7") and is
a monic polynomial of degree equal to the dimension of V. A vector a e V is
called a cyclic vector for T if the vectors Tka, A: = 0 ,1 , . . . , span V. The
following is a standard result from linear algebra.

2.34. Lemma. Let T be a linear operator on the finite-dimensional
vector space V. Then T has a cyclic vector if and only if the characteristic and
minimal polynomials for T are identical.

2.35. Theorem (Normal Basis Theorem). For any finite field K and
any finite extension F of K, there exists a normal basis of F over K.

Proof Let K = ¥q and F = ¥qm with m > 2. From Theorem 2.21 and
the remarks following it, we know that the distinct automorphisms of F over
K are given by e,a ,a2 , . . . ,am~1, where e is the identity mapping on F,
a(a) = aq for a e F, and a power aj refers to the>fold composition of a
with itself. Because of o(a + /?) = a(a)+a(^8) and a(ca) = a(c)a(a) =
ca(a) for a, /? e F and c e K, the mapping a may also be considered as a
linear operator on the vector space F over K. Since om = c, the polynomial
xm — 1 e K[x] annihilates a. Lemma 2.33, applied to c, a, a2,. . . , a m " * viewed
as endomorphisms of F*, shows that no nonzero polynomial in K[x] of
degree less than m annihilates a. Consequently, xm — 1 is the minimal
polynomial for the linear operator a. Since the characteristic polynomial for
a is a monic polynomial of degree m that is divisible by the minimal
polynomial for a, it follows that the characteristic polynomial for a is also
given by xm — 1. Lemma 2.34 implies then the existence of an element a G f
such that a , a (a ) , a 2 (a ) , . . . span F. By dropping repeated elements, we see
that a, a(a), o2(a),... ,am~ l (a) span F and thus form a basis of F over # .
Since this basis consists of a and its conjugates with respect to AT, it is a
normal basis of F over AT. •
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An alternative proof of the normal basis theorem will be provided in
Chapter 3, Section 4, by using so-called linearized polynomials.

We introduce an expression that allows us to decide whether a given
set of elements forms a basis of an extension field.

2.36. Definition. Let K be a finite field and F an extension of K of degree
m over K. Then the discriminant AF/#(a,,...,am) of the elements a,,...,am

e F is defined by the determinant of order m given by

Tl>/K ( «2«1) TrF/K ( «2«2 ) * * * TTF/K ( «2«m )

T r F / * ( «m«l ) Tl>/tf ( «m«2 ) • ' • TTF/K ( «m«m )

It follows from the definition that AF/Ar(a,,...,aw) is always an
element of K. The following simple characterization of bases can now be
given.

2.37. Theorem. Let K be a finite field, F an extension of K of degree
m over K, and a l r . . , a m E F . Then {a,,...,am} is a basis of F over K if and
onlyifbF/K(ax,...,am)*0.

Proof Let {a,,...,am) be a basis of F over K. We prove that
AF/^(a1,...,am)=^0 by showing that the row vectors of the determinant
defining kF/K(ax,...9am) are linearly independent. For suppose that

c,TrF/jC(o,oy) + • • • + cJrF/K{amaj) = 0 for 1 < j < w,

where c,,...,cm e # . Then with /? = Cja, + • • • + cmam we get TrF/Ar(j8ay)
= 0 for 1 < y < m, and since a,,...,am span F, it follows that TrF/A:( J3a) = 0
for all a £ F. However, this is only possible if /? = 0, and then c]ax+ • • +
cmam = 0 implies c, = • • • = cm = 0.

Conversely, suppose that AF/^(a1,...,am)=^0 and c1a1 + • • •+
cmam = ° f o r s o m e c,,...,cm e JC. Then

0,0,0, + • • • + cmam<xj - 0 f o r l < y < w ,

and by applying the trace function we get
c,TrF/iC(o,oy)+ • • • + cmTrF/*(amay) = 0 f o r U ) < « .

But since the row vectors of the determinant defining AF/^(a1,...,am) are
linearly independent, it follows that c, = • • • = cm = 0. Therefore, aj,...,am

are linearly independent over K. •

There is another determinant of order m that serves the same
purpose as the discriminant AF/^(a,,... ,am). The entries of this determi-
nant are, however, elements of the extension field F. For a,,...,am e F, let


