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NEW DIRECTIONS IN LINEAR ACOUSTICS
AND VIBRATION

The field of acoustics is of immense industrial and scientific importance. The
subject is built on the foundations of linear acoustics, which is widely re-
garded as so mature that it is fully encapsulated in the physics texts of the
1950s. This view was changed by developments in physics such as the study of
quantum chaos. Developments in physics throughout the last four decades,
often equally applicable to both quantum and linear acoustic problems but
overwhelmingly more often expressed in the language of the former, have
explored this. There is a significant new amount of theory that can be used to
address problems in linear acoustics and vibration, but only a small amount
of reported work does so. This book is an attempt to bridge the gap be-
tween theoreticians and practitioners, as well as the gap between quantum
and acoustic. Tutorial chapters provide introductions to each of the major
aspects of the physical theory and are written using the appropriate termi-
nology of the acoustical community. The book will act as a quick-start guide
to the new methods while providing a wide-ranging introduction to the phys-
ical concepts.
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Foreword

Michael Berry

H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK

In the early 1970s, Martin Gutzwiller and Roger Balian and Claude Bloch described
quantum spectra in terms of classical periodic orbits, and in the mid 1970s it became
clear that the random matrix theory devised for nuclear physics would also describe
the statistics of quantum energy levels in classically chaotic systems. It seemed ob-
vious even then that these two great ideas would find application in acoustics, but
it has taken more than three decades for this insight to be fully implemented. The
chapters in this fine collection provide abundant demonstration of the continuing
fertility, in the understanding of acoustic spectra, of periodic orbit theory and the
statistical approach. The editors’ kind invitation to me to write this foreword pro-
vides an opportunity to make a remark about each of these two themes.

First, here is a simple argument for periodic orbit theory being the uniquely
appropriate tool for describing the acoustics of rooms. The reason for confining mu-
sic and speech within auditoriums – at least in climates where there is no need to
protect listeners from the weather – is to prevent sound from being attentuated by
radiating into the open air. But if the confinement were perfect, that is, if the walls of
the room were completely reflecting, sounds would reverberate forever and get con-
fused. To avoid these extremes, the walls in a real room must be partially absorbing.
This has the effect of converting the discrete eigenvalues with perfectly reflecting
walls into resonances. I will argue that for real rooms the width of resonances usu-
ally exceeds their spacing. This is important because it casts doubt on the usefulness
of the concept of an individual mode in assessing the acoustic response of rooms; a
smoothed description of the spectrum seems preferable. But smoothing is precisely
what periodic orbit theory naturally describes. When there is no absorption, the
contributions from the long periodic orbits make the convergence of the sum prob-
lematic, frustrating the direct calculation of individual eigenvalues, for example, in
quantum chaology. Absorption attentuates the long orbits, and the oscillatory con-
tributions from few shortest orbits are sufficient to describe the acoustic response.
But these few orbits are important: the crudest smoothing, based simply on the av-
erage spectral density, obliterates all the spectral oscillations and fails to capture the
characteristics of most real rooms.

To assess the significance of absorption, start from the Weyl counting formula
for the number N of modes with frequencies less than f , for a room of volume L3:

vii
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if the speed of sound is c = 330 ms−1,

N = 4πL3 f 3

3c3
.

In the presence of absorption, modeled approximately by an exponential amplitude
decay time T , that is, intensity ∼ exp(−2t/T), the resonance width corresponds to
a frequency broadening,

� f = 1
2πT

.

Thus, incorporating the reverberation time T60, corresponding to 60-dB intensity
reduction, that is, T = T60/3 loge 10, the number �N of modes smoothed over by
the broadening is

�N = 6 loge 10
L3 f 2

c3T60
.

For estimates, we can choose the frequency middle A ( f = 440 Hz). Then, for
a small auditorium with L= 6 m, and a reverberation time T60 = 0.7 s, �N ∼ 23,
which is unexpectedly large for such a small room. For the Albert Hall in London,
where the effective L∼ 60 m, and taking T60 = 2 s, �N ∼ 8,200. These estimates
strongly suggest that there is little sense in studying individual modes.

Second, here is an unusual application of spectral statistics from 1993, inspired
by a visit to Loughborough University, where I talked about quantum chaos and
mentioned that the ideas could be usefully applied in acoustics. Afterward, Robert
Perrin showed me his measurements (Perrin et al. 1983) of eigenfrequencies of one
English church bell, ranging from 292.72 Hz – the lowest mode, called the hum,
through the first few harmonics, with their traditional names Fundamental, Tierce,
Quint, Nominal, Twister, Superquint – up to the 134th frequency of 9,285 Hz. This
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provided sufficient data to make a first attempt to understand the frequency spacings
distribution.

I did this in two ways. First, taking the whole set of 134 frequencies, unfolding
them by fitting the counting function (spectral staircase) to a cubic function, and
then calculating the 133 spacings, normalized to unit mean. The resulting cumula-
tive spacings distribution C(S) = fraction of spacings less than S, fits the Poisson
distribution 1− exp(−S) reasonably well (the thin and dashed curves in the figure).
This is not surprising because the bell has approximate rotation symmetry, and the
whole set of frequencies conflates subsets with different numbers l of nodal merid-
ians (“angular momentum quantum number”). Fortunately the value of l for each
frequency was given; l ranged from 0 to 28, but only the subsets with 0 ≤ l ≤ 10 in-
cluded sufficient frequencies to generate sensible statistics. In the second procedure,
I unfolded these subsets separately and conflated the spacings afterwards, thereby
generating the heavy curve in the figure. This is better fitted to the Wigner cumula-
tive distribution 1− exp(−S2/4) (the dotted curve in the figure), indicating strong
repulsion of neighboring frequencies in each l-subset. The precise fit is not impor-
tant because the Wigner distribution should apply when the ray geodesics on the
bell – “classical paths” – are chaotic, whereas the vibrations of the bell, regarded as
a thin elastic sheet, are probably integrable, with frequencies given by the modes of
a one-dimensional “radial” equation, albeit of fourth order.

Reference

Perrin, R., Charnley, T. & DePont, L. (1983), “Normal modes of the modern English
church bell,” J. Sound. Vib. 90, 29–49.





Introduction

Matthew Wright and Richard Weaver

This book has some of its genesis in the, possibly apocryphal, story that at an acous-
tics conference in the late 1980s a certain distinguished professor, tiring of the pro-
ceedings, turned to the assembled researchers and announced

Listen! If what you’re doing isn’t nonlinear or transonic, then don’t bother! It’s all been
done!

Certainly it has become easy to think of linear acoustics as essentially completed.
After all, classic texts such as Morse and Feshbach (1953) give admirably thorough
expositions of very general techniques, particularly those based on Green’s func-
tions. Cases described by coordinate systems in which the governing equations are
separable are extensively tabulated and admit analytic solutions. The alternative is
to employ numerical methods, many of them also based on Green’s functions, which
work in arbitrarily complex geometries. There is perhaps a perception that notwith-
standing a host of important applied problems, there are no fundamental issues re-
maining in linear acoustics. Increased understanding of the richness and complexity
of nonlinear problems with the explosion of interest in chaos only serves to make
linear systems seem “done and dusted” in comparison.

And yet this picture is overly dismissive. A solution of a linear differential equa-
tion depends nonlinearly on its coefficients and the shape of the boundary. The
dependence is all the richer if those coefficients are random or if boundary reflec-
tions are defocusing. Developments in physics throughout the last four decades,
often equally applicable to both quantum and linear acoustic problems, but over-
whelmingly more often expressed in the language of the former, have explored this.
More than that they have provided a new way of thinking about such things. We
have been impressed at the significant new body of theory that can be used to ad-
dress problems in linear acoustics and vibration, although also disappointed at the
small amount of reported work that does so. This book is an attempt to bridge the
gap between theoreticians and practitioners, as well as the gap between quantum
and acoustic, a gap that is mostly terminological but should nevertheless not be un-
derestimated. Our hope is that acousticians and vibration engineers who wish to
see what can be done with these new tools will find in this book a comprehensible
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2 Introduction

introduction and that physicists may also learn what problems might usefully be
addressed.

So what is on offer? We would like to take the reader on a short guided tour of
the terrain. We begin with what is known as the semiclassical trace formula (Chap-
ter 1), which expresses the modal density of a closed, lossless enclosure (membrane
or cavity) in terms of its periodic orbits, closed internal ray paths that repeat indef-
initely. As a way to determine eigenvalues (let alone response to arbitrary excita-
tions) it cannot compete with the numerical techniques that have been refined for
use in engineering (such as finite elements) or physics (such as plane-wave decom-
position); its significance lies in the fact that it provides an explicit link between the
shape of an enclosure and its acoustic characteristics, both in an average sense (via
the Weyl series) and at the level of individual eigenvalues, and in a way that doesn’t
depend on separability.

This connection is important because for many shapes the periodic orbits are
unstable and the ray paths are chaotic, the implications of which are explored in
Chapter 2. It can be disconcerting to find chaos having such a profound influence on
linear systems. This is due to the nonlinearity of ray motion in the high-frequency
limit, and the study of the effects of this on the finite-frequency wave motion has
come to be known as quantum chaology or (despite linguistic objections) quantum
chaos. It used to be easy to imagine that almost all ordinary differential equations
had well-behaved, predictable solutions because almost all the ones in books did.
That misapprehension was shattered by the explosion of awareness about chaos. In
the same way it is easy to fall into the trap of thinking that modeshapes and natu-
ral frequencies are as simple and regular in arbitrary shapes as those of the simple
textbook examples used to teach the subject. They are not, and for very similar
reasons.

One of the consequences of chaotic ray motion is that eigenfunctions often re-
semble superpositions of Gaussian random waves, the properties of which are ex-
plored in more detail in Chapter 4. Those that do not are referred to as “scarred
modes”; Chapter 5 presents an ingenious formulation that allows the eigenfunc-
tions to be represented with impressive efficiency in a basis built out of deliberately
constructed scar functions. Of course acousticians rarely encounter truly lossless
systems in practice; so some of the implications of opening the enclosure are ex-
plored in Chapter 6. And in Chapter 7 the central result of the periodic orbit theory
is re-derived in a form suitable for elasticity so as to expand the range of possible
applications.

Before that, however, we introduce the second major theme of this book: ran-
dom matrix theory. The study of the statistics of the eigenvalues of ensembles of
matrices whose elements are random variables and exhibit a particular symme-
try began in nuclear physics as an exploration of the conjecture that a sufficiently
complex system might have properties statistically similar to those of a random
Hamiltonian. Modern computational capabilities have made it easier to test con-
jectures and confirm analytic results. For example, the fact that the normalized
spacings of the eigenvalues of a large Gaussian Orthogonal matrix are close to
the Rayleigh distribution (obeyed exactly by an ensemble of pairs of eigenvalues
of 2× 2 Gaussian orthogonal matrices) can be shown using less than 10 lines of
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MATLAB† and can be computed in a few seconds. Chapter 3 introduces the theory
that allows such predictions and, as its name implies, explores why such an approach
should be so effective in describing the behavior of the wave-bearing and vibrating
systems we are considering here.

Our third theme, complexity does not get a chapter to itself or even an index
entry. Instead it is embedded throughout the book in the richness of the behavior of
simple systems and the diversity of applications in the later chapters. Each reader
will make their own connections between the various topics here, but one striking
example is worth noting here: how in a multitude of contexts “the part contains the
whole.” Just as each cell of an organism contains the DNA of the whole being, a
few short periodic orbits contain information about a large part of the eigenstruc-
ture; in seismology and underwater acoustics a short part of a time history reveals
information about the whole system.

Subsequent chapters survey several applied topics related in varying degrees
to the earlier chapters. Inasmuch as multiple scattering plays such a recurrent and
important role in mesoscopics (the subject of Chapter 8), we also include a review
of the, often too obscure to the non-initiate, diagrammatic methods for the theory
of randomly scattered acoustics in Chapter 9. The surprising and highly applicable
results of the theory of time-reversed waves are explored in Chapter 10 with partic-
ular reference to the themes of this book, which have led to important applications
in ultrasonics.

Chapter 11 shows the relevance of ray chaos for long-range propagation in the
ocean, whereas Chapter 12 demonstrates applications in seismology. Chapter 13
shows how random matrix theory can be applied to structural acoustics and vibra-
tions, whereas Chapter 14 explains an alternative random matrix theory approach
to the problem of estimating the likely variation in response that results from the
inevitable small variations that arise in manufacturing.

It is impossible in a book of practical length to cover all the modern applications
of these ideas that we might have, and we apologize to those who have noted holes
in our coverage. Perhaps there will be a need for another book.

As editors we wish to thank the authors and the publishers for their patience
during the unfortunately long time it has taken to turn their contributions into this
book. We express our gratitude to all the publishers who granted permission for
the chapter authors to reuse figures from their published articles without payment,
and our greater gratitude to those who provided it as a matter of policy without
being asked. We have tried to attribute all reused figures; if we have inadvertently
failed to do so we would be grateful to be informed and will endeavor to correct the

† For the avoidance of doubt they are as follows:

n = 2000;
A = randn(n);
E = eig((A + A’)/2);
s = diff(E).∗real(sqrt(2∗n − E(1:n−1).ˆ2)/pi);
[N,x] = hist(s,40);
bar(x,N/n/(x(2) − x(1)))
hold on
plot(x,(pi/2)∗x.∗exp((−pi/4)∗x.ˆ2),’r’,’LineWidth’,2)
hold off
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oversight in future editions if there are any. We also wish to thank the organizers
of the 2005 Summer School on Chaotic and Random Wave Scattering at the Centro
International de Ciencias A. C. in Cuernavaca, at which the idea for this book was
born when we accidentally got separated from the rest of our party while exploring
the pyramids of Xochicalco and their notable acoustics.

Matthew Wright acknowledges the support provided by an EPSRC Advanced
Research Fellowship during this project and thanks his colleagues at ISVR and in
particular Chris Howls of the School of Mathematics for useful discussions and Car-
olyn and David for their tolerance and understanding. Richard Weaver thanks the
US National Science Foundation for support from grant 28096. Olivier Legrand and
Fabrice Mortessagne thank Valérie Doya for useful criticism and careful reading of
the manuscript. Niels Søndergaard thanks Gregor Tanner for valuable discussions.
Joseph Turner and Goutam Ghoshal gratefully acknowledge the financial support
of the US Department of Energy, the National Science Foundation, and the Fed-
eral Railroad Administration. Steven Tomsovic and Michael Brown thank Javier
Beron-Vera, Nicholas Cerruti, Katherine Hegewisch, Irina Rypina, and Ilya Udovy-
dchenkov for the benefit of many discussions relating to the material presented and
gratefully acknowledge support from the US National Science Foundation, grants
PHY-0555301 (ST) and CMG-0417425 (MB), and Code 321 of the Office of Naval
Research (MB).



1 The Semiclassical Trace Formula

Matthew Wright

Institute of Sound and Vibration Research, University of Southampton, UK

1.1 Introduction

For a two-dimensional enclosure, such as a membrane or the cross section of an in-
finitely long duct, those with the very simplest shapes (circles, rectangles, spheres,
boxes, etc.) with simple uniform boundary conditions, the modes and natural fre-
quencies can be determined analytically. For any other shape they may be de-
termined numerically by a range of mature numerical techniques of which finite
element and boundary element analyses are the best known and the most widely
studied. Knowing how to calculate the modes and natural frequencies for any partic-
ular shape, however, is not the same as understanding how those modes and natural
frequencies depend on the shape. Suppose, for example, that we wish to improve the
design of a component by optimizing some quantity such as weight, while leaving its
natural frequencies unchanged. In the course of such an optimization changes will
be made to the shape, whereupon the process of calculating the modes and natural
frequencies must begin all over again; at best, part of the mesh can be re-used. Such
an analysis cannot tell us where effort can be most or least profitably concentrated.

It turns out that the shapes that can be analyzed are (for good reason) quite
untypical compared with arbitrary shapes. The situation mirrors the one that used
to prevail in the study of dynamical systems, where linear differential equations
were most widely studied because of their solubility, and the fact that other sys-
tems showed radically different qualitative behavior was, for a time, ignored. In
both cases the overlooked feature is chaos, but in the case of acoustic morphology
the phenomenon is known as quantum chaos. Despite its name, this phenomenon
can be exhibited by large-scale systems such as acoustical resonators, whose gov-
erning equations are entirely linear. It arises when a ray path is unstable to small
perturbations and displays strong sensitivity to initial conditions.

Several surveys (Berry 1987, Guhr et al. 1998, Galdi et al. 2005, Kuhl et al. 2005)
and books (Gutzwiller 1990, Ott 1993, Brack & Bhaduri 1997, Stöckmann 1999,
Richter 2000, Haake 2001, Nakamura & Harayama 2004, Reichl 2004, Cvitanović
et al. 2005) on aspects of this subject have become available in recent years, but these
are variously intended for physicists, mathematicians, and electronic engineers. The
theory of periodic orbits, and of quantum chaos, is applicable to a far greater range
of areas than just acoustics, and naturally these texts span that range.

5



6 The Semiclassical Trace Formula

1.2 Introductory Examples

1.2.1 Modes in a Rectangular Enclosure

The rectangle is perhaps the simplest case to study because an explicit formula exists
for its natural frequencies. From here on we shall work with wavenumber rather
than frequency, and so we shall use the equation for the eigenwavenumbers of a
rectangle with sides a1, a2:

kn,m = π
(

n2

a2
1

+ m2

a2
2

)1/2

, (1.1)

where the indices n and m run 0, 1, 2, . . . for Neumann boundary conditions and
1, 2, 3, . . . for Dirichlet conditions. The spectral density of this system is defined as

ρ(k) =
∑
n,m

δ(k − kn,m) (1.2)

and the modecount as

N(k) =
∫ k

0
ρ(k′) dk′ =

∑
n,m

H(k − kn,m), (1.3)

where H is the Heaviside function. We shall now show how alternative, series-form
expressions for ρ(k) and N(k) can be obtained.

The delta functions in (1.2) can be written as the limit of a Gaussian function

δ(k − kn,m) = lim
t→0

1

2
√
π t

e−(k−kn,m)2/4t . (1.4)

We can therefore write the spectral density function in the form

ρ(k) =
∞∑

n=1

∞∑
m=1

lim
t→0

1

2
√
π t

e−
(

k−π
√

n2/a2
1+m2/a2

2

)2
/4t
. (1.5)

The Poisson formula for a double sum,
∞∑

n=0

∞∑
m=0

f (n,m) =
∞∑

M1=−∞

∞∑
M2=−∞

∫∫ ∞
0

f (n1,n2)e2π i(M1n1+M2n2) dn1 dn2

+ 1
2

∞∑
M1=−∞

∫ ∞
0

f (n1, 0)e2π iM1n1 dn1

+ 1
2

∞∑
M2=−∞

∫ ∞
0

f (0,n2)e2π i M2n2 dn2

+ 1
4

f (0, 0),

(1.6)

can be applied to (1.5). We shall take each term separately, denoting them F1, F2,
F3, F4.

The expression for F1 can be integrated by making the substitutions

n1 = a1r
π

cos θ, n2 = a2r
π

sin θ, dn1 dn2 = a1a2

π2
r dr dθ, (1.7)
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giving

F1 =
∞∑

M1=−∞

∞∑
M2=−∞

∫ ∞
0

∫ π/2

0
lim
t→0

a1b1

π2

1

2
√
π t

e−(k−r)2/4t+2i(M1a1 cos θ+M2a2 sin θ)rr dr dθ.

(1.8)
After some manipulation this gives

F1 = a1a2k
2π

∞∑
M1=−∞

∞∑
M2=−∞

J0(kLM1,M2 ), (1.9)

where LM1,M2 = 2
√

M2
1 a2

2 + M2
2 a2

2 and J0 is a Bessel function of zero order.
For F2 we have

F2 = −1
2

∞∑
M1=−∞

lim
t→0

1

2
√
π t

∫ ∞
0

e−(k−πn1/a1)2/4t+2π iM1n1 dn1

= −1
2

∞∑
M1=−∞

lim
t→0

a1

2π
e2M1a1(ik−2M1a1t)

[
1+ erf

(
k + 4iM1a1t

2
√

t

)]

= − a1

2π

∞∑
M1=−∞

e2ikM1a1

= − a1

2π

∞∑
M1=−∞

cos(2kM1a1), (1.10)

and F3 is the same with all subscripts 1 changed to 2 throughout. It can be shown
that taking the sums on the left-hand side of (1.6) from 1 instead of 0, which would
correspond to Neumann, rather than Dirichlet, boundary conditions, would reverse
the sign of F2 and F3.

We therefore have

ρ(k) = a1a2k
2π

∞∑
M1,M2=−∞

J0(kLM1,M2 )±
∑
i=1,2

∞∑
M=−∞

ai

2π
cos(2kMai )+ δ(k)

4
(1.11)

for Dirichlet (Neumann), conditions. Figure 1.1 shows a series of ray paths drawn
in the rectangular domain, which reflect M1 and M2 times from the left and bottom
walls, respectively, before returning to their origin with the initial heading so as to
be able to repeat indefinitely. Such closed paths are called periodic orbits. Their
length is given by LM1,M2 . This is no coincidence, as will be seen. The term 2kMai

that forms the argument of the cosine in the second term can also be interpreted as
the length of a ray path traveling between two parallel sides.

Because ρ(k) is singular for all k = kn, it must be smoothed before evaluation.
In practice, we find it more convenient to work with N(k), its integral with respect
to k. Before evaluating this, however, we shall separate out the terms corresponding
to zero-length orbits as

ρ(k) = a1a2

2π
k ± a1 + a2

2π
+ δ(k)

4
, (1.12)
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a2

a1

(M1, M2) = (0, 0) (0, 2)(0, 1)

(1, 0)

(2, 0) (2, 1) (2, 2)

(1, 1) (1, 2)

Figure 1.1. Periodic orbits for a rectangular enclosure.

leaving the remainder

ρosc(k) = a1a2k
2π

∞∑′

M1,M2=−∞
J0(kLM1,M2 )±

∑
i=1,2

∞∑′

M=−∞

ai

2π
cos(2kMai ), (1.13)

where the primes on the summations indicate that the terms in which all indices are
zero are omitted. The smooth components can be integrated to give

N(k) = a1a2

4π
k2 ∓ a1 + a2

2π
+ 1

4

= A
4π

k2 ∓ L
4π

k + 1
4
,

which is the well-known formula for the average number of modes in a rectangu-
lar enclosure with area A and perimeter L (see, e.g., Morse & Ingard 1968). The
oscillating component can also be integrated to give

Nosc(k) = a1a2k
2π

∞∑′

M1,M2=−∞

J1(kLM1,M2 )
LM1,M2

±
∑

i=1,2

∞∑′

Mi=−∞

sin(2kMi ai )
4πM

, (1.14)

where the second term can be recognized as the Fourier series representation of a
sawtooth wave.

Partial sums of (1.14) plus N(k) are compared with the true modecount, calcu-
lated by evaluating (1.3) explicitly, in Figure 1.2.
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Figure 1.2. Partial sums of the semiclassical approximation to the modecount for a rectangu-
lar membrane with maximum values of Mi in all the summations of 0, 1, 4, and 20 respectively.
After Wright (2001). Copyright 2001, the Acoustical Society of America.

1.2.2 The Length Spectrum of a Circle

Rather than try to derive a similar formula for the circle we will, for now, conjecture
that such a formula exists and that it is of the form

ρ(k) ≈
∑
PO

APO(k) cos(kLPO + φPO), (1.15)

where LPO is the length of a periodic orbit and the sum is over all such orbits. Define
the “length spectrum” R(L) as the Fourier transform of ρ(k). Then, if the conjecture
is correct it ought to display peaks at L= Lj . The periodic orbits in the circle are
shown in Figure 1.3, parameterized by v, the number of vertices, and w, the winding
number about the center. The length of each orbit is given by

Lvw = 2vR sin
πw

v
, (1.16)

where R is the radius of the circle, taken to be unity henceforth.
Because the eigenwavenumbers of the circular membrane are zeros of Bessel

functions, which can be found numerically, the length spectrum can be easily calcu-
lated as

R(L) =
∫ ∞
−∞

∑
m,n

δ(k − jmn)eikL dk =
∑
m,n

ei jmn L. (1.17)
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(2, 1) (3, 1) (4, 1) (5, 1)

(4, 2) (5, 2) (6, 2) (7, 2)

(6, 3) (7, 3) (8, 3) (9, 3)
Figure 1.3. Periodic orbits for a circular domain. After Balian and Bloch (1972).

The absolute value of this is plotted in Figure 1.4. As expected from the preceding
conjecture, it shows peaks at values of L satisfying Equation (1.16) for integer v and
w, that is, 4, 3

√
3, 4
√

2, 10 sinπ/5, and so on.
With this evidence we are ready to sketch the derivation of a formula like Equa-

tion (1.15) for any shape of membrane or cavity. First, however, we will find it help-
ful to review the quantum theory that gave rise to this result, and the analogy be-
tween quantum billiards and acoustical systems.

1.3 The Quantum–Acoustic Analogy

A widely studied problem in quantum physics is that of a scalar particle in a potential
field, which obeys Schrödinger’s equation:

−�
2

2m
∇2ψn + V(r)ψn = Enψn, (1.18)

where 2π� = 6.6× 10−34 Js is Planck’s constant, m is the particle’s mass, V is the
potential at a point r, and En is the nth discrete energy level. The complex wave-
function ψn can then be interpreted so that |ψn(r)|2 dr is the probability of finding
a particle with energy En in the volume dr surrounding the point r. If the potential
takes the form of an infinite well, so that it is zero within a domain B and infinite
outside it, then the boundary condition will be ψn = 0 on ∂B, and the wavefunc-
tions will be normalized such that

∫
B |ψn(r)|2 dr = 1 because the particle must exist
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Figure 1.4. Normalized length spectrum of a circle. Periodic orbits have been sketched next
to the peaks to which they correspond.

somewhere within B. Such a domain–particle system is known as a quantum bil-
liard. The allusion is specifically to billiards (strictly carom billiards) rather than,
say, snooker because in the closed systems studied here there are no pockets by
which the particle can leave the domain. Open systems are considered in Chapter 6.

Because the potential is zero inside B we can rewrite Equation (1.18) as

∇2ψn + 2m
�2

Enψn = 0, (1.19)

which is identical in form to the Helmholtz equation

∇2ψn + k2
nψn = 0. (1.20)

Therefore the problem of quantizing the energy levels of a two-dimensional billiard
is the same as that of finding the modal frequencies of a membrane of the same
shape.

1.3.1 The Semiclassical Limit

Physically, Planck’s constant � determines the scale over which the energy levels are
quantized. It is because it is very small in everyday units that quantum effects are
not observed in everyday motions. Although it is a universal constant, it is conve-
nient to allow it to vary by rescaling other quantities. As � becomes small, quan-
tum effects become less noticeable, and the behavior of the system gets closer to
that predicted by classical physics as �→ 0. The behavior never becomes exactly
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classical, however, because this limit is singular, as can be seen by setting � = 0 in
Equation (1.19). The limiting behavior as �→ 0 is therefore called semiclassical and
corresponds to En →∞ in Equation (1.19) or kn →∞ in the Helmholtz equation.
In this short-wavelength limit, wave motion can be modeled by rays.

1.3.2 How to Read the Quantum Literature

The semiclassical periodic orbit theory may be of interest to acousticians because it
is applicable to the Schrödinger Equation (1.18) and hence to the Helmholtz Equa-
tion (1.20). But in fact it is applicable to a much wider class of systems, namely, any
system described by Hamilton’s equations, that is, any conservative dynamic system.
It has been usefully applied to celestial dynamics, surface science, and much more.
It is only natural, therefore, that the literature is usually couched in these terms of
general Hamiltonian systems, of which billiards are an example, generally consid-
ered useful for illustrating theoretical aspects, and for which numerical results can
be easily computed, rather than objects of interest in their own right.

In order to interpret the quantum billiard literature in terms that are conve-
nient for acousticians the following transformations are useful. Direct comparison
of Equations (1.19) and (1.20) gives

E = �
2k2

2m
(1.21)

in a zero potential. If ρ̃(E) is the spectral density as a function of energy, then

ρ(k) = �
2k
m
ρ̃(E). (1.22)

Because of wave–particle duality the momentum p of the particle is �k. Because the
speed of the particle is the ratio of its momentum to its mass, the time period T of a
path or orbit is given by

T = mL
�k
. (1.23)

Finally, the action S of a path or orbit is

S = pL= �kL. (1.24)

Using these expressions it should be possible to evaluate the expressions appearing
in the quantum billiard literature in such a way as to eliminate S, p, E, m and � and
recover a formula that is applicable to the acoustics of membranes and cavities.

As has been pointed out by van Tiggelen (2005) the quantum–acoustic analogy,
even between a membrane and a two-dimensional billiard, is not perfect. In the
acoustic case the wave functionψ is the directly measurable quantity, whereas in the
quantum case, only |ψ |2 can be observed. In lossless acoustics, energy is conserved,
whereas probability is conserved in the quantum case; that is, the eigenfunctions are
normalized such that ∫

B
|ψ |2 ddx = 1, (1.25)

that is, the particle must be found somewhere in the d-dimensional billiard B.
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The concept of integrability of a shape is important to the subject but hard to
define without reference to the Hamiltonian of a point particle in a billiard of that
shape, in which case it means that there are as many constants of the classical motion
as there are degrees of freedom. In practice it is sufficient but not necessary for the
wave equation to be separable in a particular shape of enclosure for the dynamics
of a particle in it to be integrable. An example of a non-separable but integrable
shape is the equilateral triangle. Other irregular polygons belong to the class known
as pseudo-integrable (Richens & Berry 1981). Shapes that are neither integrable nor
pseudo-integrable may exhibit chaotic ray dynamics, which is discussed in the next
chapter.

1.4 The Semiclassical Trace Formula

The membrane has a Green’s function G satisfying

∇2G+ k2G = δ(r− r0) in B, (1.26)

G(r, r0; k) = 0 r, r0 on ∂B. (1.27)

The Green’s function describes wave propagation from r to r0 and can be related
to G0, the Green’s function for free space, by writing the following double-layer
potential (Filippi et al. 1989):

G(r, r0; k) = G0(r, r0; k)+
∫
∂B

∂G0(r, α)
∂nα

f (α, r0) dσα, (1.28)

where f is to be determined. Balian and Bloch (1972)observed that the solution can
be found by successive approximation as follows:

G(r, r0; k) = G0(r, r0; k)

− 2
∫
∂B

∂G0(r, α)
∂nα

G0(α, r0) dα

+ 22
∫∫

∂B×∂B

∂G0(r, α)
∂nα

∂G0(α, β)
∂nβ

G0(β, r0) dα dβ

− 23
∫∫∫

∂B×∂B×∂B

∂G0(r, α)
∂nα

∂G0(α, β)
∂nβ

∂G0(β, γ )
∂nγ

G0(γ, r0) dα dβ dγ

+ · · · , (1.29)

where each successive integral corresponds to another reflection of waves from the
boundary; because the waves spread in all directions the integrations are around the
entire boundary. In the semiclassical limit the Green’s function will tend to its large
argument asymptote; for example, in two dimensions

G0(r, r0; k) = 1
4i

H(1)
0 (k|r− r0|) ∼ − (1+ i)

4
√
πk|r− r0|

eik|r−r0|, as k→∞, (1.30)

where H(1)
0 is the zero-order Hankel function of the first kind. Whatever the number

of dimensions the Green’s function will behave like a complex exponential at large
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argument, and therefore the integrals in Equation (1.29) will all take the form∫
· · ·

∫
g(r)eik|r−r0| dα · · · dω,

in which case the method of stationary phase (Self 2005) can be used. Under this
approximation, each integral will be dominated by the contribution from specularly
reflecting paths and the semiclassical approximation to the Green’s function will be

G(r, r0) ≈
∑

j

a j (r, r0)eikLj+iφ j , (1.31)

where a j is a geometrical prefactor, which can be obtained from the geometry of
the orbit; Lj is the length of specularly reflecting ray paths; and φ j , known as the
Maslov phase, is related to phase changes undergone by a ray in traversing the path
of length Lj .

Consider now the exact spectral density of the system, defined by

ρ(k) =
∞∑

n=0

δ(k − kn). (1.32)

This can be related to the Green’s function of the system by the trace formula

ρ(k) = − 1
π

lim
ε→0

{∫

B
G(r, r; k + iε) dr

}
, (1.33)

where G(r, r; k) is known as the trace Green’s function, which is singular for k = kn,
necessitating the limiting process. The spectral density can be written as the sum of
a smooth part and an oscillatory part:

ρ(k) = ρ(k)+ ρosc(k), (1.34)

and substituting the semiclassical Green’s function of Equation (1.31) into Equa-
tion (1.33) gives the semiclassical trace formula

ρ(k) ≈ ρ(k)+
∑

j

Aj (k)eikLj+iφ j + · · · , (1.35)

where Lj is the length of the jth periodic orbit, Aj gives the amplitude of its contri-
bution (discussed later), and φ j is the phase change accumulated over one period.
The value of this expression is that it quantifies the effect of the geometry on the
spectrum through Aj and Lj and those of the type of boundary conditions through
φ j . This is, in principle, true for a very wide class of shapes

∗
and in particular does

not depend on separability, though convergence of the series is not guaranteed in
all cases for which such a formula can be obtained. Furthermore the fact that the
geometry and boundary conditions enter the formula through different variables
means that once the periodic orbits have been determined for a particular shape the
approximate spectrum can be determined for any boundary condition type.

∗
When the shape is near to an integrable shape the relevant formula takes a different form (Tomsovic
et al. 1995, Ullmo et al. 1996). For systems with mixed chaoticity the question is still open.
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1.4.1 Smooth Spectral Density and Modecount

The smooth part of the spectral density, and hence the smooth modecount, has been
extensively reviewed by Baltes and Hilf (1976). The relevant results can be briefly
summarized: first for two dimensions,

N(k) = |B|
4π

k2 ± |∂B|
4π

k +
[

1
12π

∫
B

K(s) ds + 1
24π

∑
i

(
π

αi
− αi

π

)]
+ O(k−1),

(1.36)
where |B| and |∂B| are the area and boundary length of the domain, K(s) is the
radius of curvature as a function of distance s along the boundary, and αi is the
included angle of the ith corner. In three dimensions the corresponding expression
is

N(k) = |B|
6π2

k3 ± |∂B|
16π

k2 +
[

1
24π

∑
i

(
π

αi
− αi

π

)
Li

]
k + O(k0), (1.37)

where |B| and |∂B| are now the volume and surface area and Li is the length of the
ith edge with included angle αi . The leading term of these expressions is called the
Weyl law; the full series is often called the Weyl series.

One way to examine how closely the eigenvalues of a particular system adhere
to the predictions of the Weyl series would be to calculate both N and N and plot
one against the other. A similar effect, however, can be obtained with a discrete
set by examining the values of xn = N(kn). This procedure is known as “unfolding
the spectrum.” The expected value of xn is n− (1/2), and a graph of the staircase
obtained from xn (in the same way that N is obtained from kn) has the same form as a
graph of N versus N. In this way it is straightforward to compare the departures from
the average of eigenvalues from different systems with one another and to examine
phenomena such as spectral rigidity, as will be explored in the following chapter.

1.5 The Nature of the Approximation

It is only in very rare circumstances, such as for the rectangle, that an exact ex-
pression in terms of periodic orbits can be found. More usually when rules to find
the amplitude and phase terms (discussed in Section 1.6) are followed, the result is
an approximation. There are two reasons for this approximation: first that only the
leading-order semiclassical approximation to the Green’s function is used (though
this will only be the case in two dimensions) and second that the method of steep-
est descent has been applied. This second source of approximation is the dominant
one and means that only terms to leading order in k are obtained. Furthermore, the
formula is only asymptotically true as k→∞.

It might be thought that this means that the trace formula is only useful at very
high frequencies. However, the number of periodic orbits needed to resolve steps in
the modecount function increases rapidly with wavenumber. This means, as noted
by Fulling (2002), that the trace formula is more useful at low frequencies. This
“proliferation of orbits” is even more marked in the chaotic shapes to be considered
later than it is for the integrable shapes considered so far and in the next section.
Furthermore, convergence of the series is only likely in the case of integrable or
pseudo-integrable shapes.
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Figure 1.5. Two widely studied billiards. The ray dynamics in the circle are integrable, and
all its periodic orbits are marginally stable and lie in continuous families. It was proven by
Bunimovich (1974) that the ray dynamics in the stadium are entirely chaotic. All its periodic
orbits are unstable, and all are isolated with the exception of the “bouncing ball” orbits that
run perpendicularly between the two straight sides.

Boasman (1994) examined the accuracy of the semiclassical approximation
within the context of the boundary integral method and found it to be good.
Primack and Smilansky (1998) showed that the accuracy of the semiclassical trace
formula depends only weakly, if at all, on dimensionality.

1.6 Derivation of Trace Formulas for Given Shapes

A number of methods have been developed to calculate expressions for the ampli-
tude and phase terms in the trace formula. They are as follows:

(i) Gutzwiller’s (1970) method for isolated orbits, which involves determining the
stability matrix for each orbit;

(ii) Balian and Bloch’s (1972) method, based on multiple reflections, which derives
amplitude terms for a wide range of conditions in a three-dimensional billiard;

(iii) Berry and Tabor’s (1976) method for integrable Hamiltonian systems, based on
action-angle variables (these are developed in Chapter 11); and

(iv) Creagh and Littlejohn’s (1991, 1992) generalization of Gutzwiller’s method to
include continuous families of orbits.

We will concentrate on the last of these because of its wide applicability and
because it highlights the geometry of the orbits. Balian and Bloch (1972) gave a
worked example of the application of the first method to a sphere, whereas worked
examples for a circle were given using the second method by Richter et al. (1996),
and using the third method by Creagh (1996).

1.6.1 Billiard Dynamics

The dynamics of billiards is a large subject that was first studied by Birkhoff (1927)
and has since been treated in a number of surveys and monographs (Kozlov &
Treshchëv 1980, Gutkin 2003, Tabachnikov 2005). Here only the elements neces-
sary to the trace formula will be developed. Two widely studied billiards are shown
in Figure 1.5; it is clear that the dynamics in the circle and the stadium are very
different.
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Figure 1.6. A segment of a periodic orbit between two bounces labeled 0 and 1.

The dynamics of any billiard can be characterized by taking its boundary as a
Poincaré surface of section because between bounces the motion of the particle is
completely determined. For some plane billiard B, let s denote the distance around
its boundary from some chosen origin. Let sn be the location of the nth bounce
and αn the angle between the path of the particle/ray and the tangent to the bil-
liard wall at the point of impact. These two discrete variables completely define the
particle/ray path, but we prefer to use pn = cosαn for two reasons: first because it
corresponds to a component of the momentum of a particle that is of physical in-
terest in quantum mechanical problems, and it is convenient for us to follow the
same notation; second because the nonlinear mapping M of the phase space (s, p)T

induced by the billiard and defined by(
sn+1

pn+1

)
= M

(
sn

pn

)
(1.38)

is area preserving. These coordinates define the phase space for the dynamics in
the billiard. To study the dynamics we need to study the stability of rays to small
perturbations, which is governed by the stability matrix.

1.6.2 Stability Matrix

The following procedure for evaluating the stability matrix directly from the orbits
has been given by Berry (1981b) and in appendix C of Brack and Bhaduri (1997).
Consider a part of an orbit that makes two successive bounces with the boundary,
which we can number 0 and 1 without loss of generality (see Figure 1.6). The sta-
bility matrix depends on the stability of the orbit, which can be investigated by
making a small change to point 0 and examining the resulting change in point 1.
In the limit of small changes the transformation will be linear and can be written
as (

δs1

δ cosα1

)
=M1,0

(
δs0

δ cosα0

)
. (1.39)


