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Preface

Linear models are a powerful and useful set of methods in a large number of settings.

Very briefly, there is some outcome measurement that is very important to us and we

want to explain variations in its values in terms of other measurements in the data.

The heights of several trees can be explained in terms of the trees’ ages, for example.

It is not a straight line relationship, of course, but knowledge of a tree’s age offers

us a large amount of explanatory value. We might also want to take into account

the effects of measurements on the amount of light, water, nutrients, and weather

conditions experienced by each tree. Some of these measurements will have greater

explanatory value than others and we may want to quantify the relative usefulness

of these different measures. Even after we are given all of this information, some

trees will appear to thrive and others will remain stunted, when all are subjected to

identical conditions. This variability is the whole reason for statistics existing as a

scientific discipline. We usually try to avoid the use of the word “prediction” because

this assumes that there is a cause-and-effect relationship. A tree’s age does not directly

cause it to grow, for example, but rather, a cumulative process associated with many

environmental factors results in increasing height and continued survival. The best

estimate we can make is a statement about the behavior of the average tree under

identical conditions.

Many of my students go on to work in the pharmaceutical or health-care industry

after graduating with a masters degree. Consequently, the choice of examples has a

decidedly health/medical bias. We expect our students to be useful to their employers

the day they leave our program so there is not a lot of time to spend on advanced

theory that is not directly applicable. Not all of the examples are from the health

sciences. Diverse examples such as the number of lottery winners and temperatures

in various US cities are part of our common knowledge. Such examples do not need

a lengthy explanation for the reader to appreciate many of the aspects of the data

being presented.

How is this book different? The mathematical content and notation are kept to

an absolute minimum. To paraphrase the noted physicist Steven Hawking, who

ix



x Preface

has written extensively for the popular audience, every equation loses half of your

audience. There is really no need for formulas and their derivations in a book of

this type if we rely on the computer to calculate quantities of interest. Long gone are

the days of doing statistics with calculators or on the back of an envelope. Students

of mathematical statistics should be able to provide the derivations of the formulas

but they represent a very different audience. All of the important formulas are

programmed in software so there is no need for the general user to know these.

The three important skills needed by a well-educated student of applied statistics

are

1. Recognize the appropriate method needed in a given setting.

2. Have the necessary computer skills to perform the analysis.

3. Be able to interpret the output and draw conclusions in terms of the original data.

This book gives examples to introduce the reader to a variety of commonly

encountered settings and provides guidance through these to complete these three

goals. Not all possible situations can be described, of course, but the chosen settings

include a broad survey of the type of problems the student of applied statistics is

likely to run into.

What do I ask of my readers? We still need to use a lot of mathematical concepts

such as the connection between a linear equation and drawing the line on X − Y

coordinates. There will be algebra and special functions such as square roots and

logarithms. Logarithms, while we are on the subject, are always to the base e (=2.718)

and not base 10.

We will also need a nodding acquaintance with the concepts of calculus. Many of

us may have taken calculus in college, a long time ago, and not had much need to use it

in the years since then. Perhaps we intentionally chose a course of study that avoided

abstract mathematics. Even so, calculus represents an important and useful tool. The

definition of the derivative of a function (What does this new function represent?)

and integral (What does this new function represent?) are needed although we will

never need to actually find a derivative or an integral. The necessary refresher to

these important concepts is given in Section 1.4.

Also helpful is a previous course in statistics. The reader should be familiar with the

mean and standard deviation, normal and binomial distributions, and hypothesis

tests in general and the chi-squared and t-tests specifically. These important concepts

are reviewed in Chapter 2 but an appreciation of these important ideas is almost a

full course in itself. There is a large reliance on p-values in scientific research so it is

important to know exactly what these represent.

There are a number of excellent general-purpose statistical packages available. We

have chosen to illustrate our examples using SAS because of its wide acceptance and

use in many industries but especially health care and pharmaceutical. Most of the

examples given here are small, to emphasize interpretation and encourage practice.

These datasets could be examined by most software packages. SAS, however, is
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capable of handling huge datasets so the skills learned here can easily be used if and

when much larger projects are encountered later.

The reader should already have some familiarity with running SAS on a computer.

This would include using the editor to change the program, submitting the program,

and retrieving and then printing the output. There are also popular point-and-click

approaches to data analysis. While these are quick and acceptable, their ease of use

comes with the price of not always being able to repeat the analysis because of the

lack of a printed record of the steps that were taken. Data analysis, then, should be

reproducible.

We will review some of the basics of SAS but a little hand-holding will prevent

some of the agonizing frustrations that can occur when first starting out. Running the

computer and, more generally, doing the exercises in this book are a very necessary

part of learning statistics. Just as you cannot learn to play the piano simply by

reading a book, statistical expertise, and the accompanying computer skills, can only

be obtained through hours of active participation in the relevant act. Again, much

like the piano, the instrument is not damaged by playing a wrong note. Nobody will

laugh at you if you try something truly outlandish on the computer either. Perhaps

something better will come of a new look at a familiar setting. Similarly, the reader is

encouraged to look at the data and try a variety of different ways of looking, plotting,

modeling, transforming, and manipulating. Unlike a mathematical problem with

only one correct solution (contrary to many of our preconceived notions), there is

often a lot of flexibility in the way statistics can be applied to summarize a set of data.

As with yet another analogy to music, there are many ways to play the same song.
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Introduction

We are surrounded by data. With a tap at a computer keyboard, we have access

to more than we could possibly absorb in a lifetime. But is this data the same as

information? How do we get from numbers to understanding? How do we iden-

tify simplifying trends – but also find exceptions to the rule? The computers that

provide access to the data also provide the tools to answer these questions. Unfor-

tunately, owning a hammer does not enable us to build a fine house. It takes expe-

rience using the tools, knowing when they are appropriate, and also knowing their

limitations.

The study of statistics provides the tools to create understanding out of raw data.

Expertise comes with experience, of course. We need equal amounts of theory (in

the form of statistical tools), technical skills (at the computer), and critical analysis

(identifying the limitations of various methods for each setting). A lack of one of

these cannot be made up by the other two.

This chapter provides a review of statistics in general, along with the mathematical

and statistical prerequisites that will be used in subsequent chapters. Even more

broadly, the reader will be reminded of the larger picture. It is very easy to learn

many statistical methods only to lose sight of the point of it all.

1.1 What Is Statistics?

In an effort to present a lot of mathematical formulas, we sometimes lose track of

the central idea of the discipline. It is important to remember the big picture when

we get too close to the subject.

Let us consider a vast wall that separates our lives from the place where the

information resides. It is impossible to see over or around this wall, but every now

and then we have the good fortune of having some pieces of data thrown over

to us. On the basis of this fragmentary sampled data, we are supposed to infer the

composition of the remainder on the other side. This is the aim of statistical inference.

1



2 Introduction

The population is usually vast and infinite, whereas the sample is just a handful of

numbers.

In statistical inference we infer properties of the population from the sample.

There is an enormous possibility for error, of course. If all of the left-handed people

I know also have artistic ability, am I allowed to generalize this to a statement that

all left-handed people are artistic? I may not know very many left-handed people. In

this case I do not have much data to make my claim, and my statement should reflect

a large possibility of error. Maybe most of my friends are also artists. In this case we

say that the sampled data is biased because it contains more artists than would be

found in a representative sample of the population.

The population in this example is the totality of all left-handed people. Maybe the

population should be all people, if we also want to show that artistic ability is greater

in left-handed people than in right-handed people. We can’t possibly measure such

a large group. Instead, we must resign ourselves to the observed or empirical data

made up of the people we know. This is called a convenience sample because it is not

really random and may not be representative.

Consider next the separate concepts of sample and population for numerically

valued data. The sample average is a number that we use to infer the value of the

population mean. The average of several numbers is itself a number that we obtain.

The population mean, however, is on the other side of the imaginary wall and is

not observable. In fact, the population mean is almost an unknowable quantity that

could not be observed even after a lifetime of study. Fortunately, statistical inference

allows us to make statements about the population mean on the basis of the sample

average. Sometimes we forget that this inference is taking place and will confuse the

sample statistic with the population attribute.

Statistics are functions of the sampled data. Parameters are properties of the

population.

Often the sampled data comes at great expense and through personal hardship, as

in the case of clinical trials of new therapies for life-threatening diseases. In a clinical

trial involving cancer, for example, costs are typically many thousands of dollars

per patient enrolled. Innovative therapies can easily cost ten times that amount.

Sometimes the most important data consists of a single number, such as how long

the patient lived, recorded only after the patient loses the fight with his or her disease.

Sometimes we attempt to collect all of the data, as in the case of a census. The

U.S. Constitution specifically mandates that a complete census of the population be

performed every ten years.1 The writers of the Constitution knew that in order to

1 Article 1, Section 2 reads, in part: “Representatives and direct Taxes shall be apportioned among the several
States which may be included within this Union, according to their respective Numbers, which shall be
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have a representative democracy and a fair tax system, we also need to know where the

people live and work. The composition of the House of Representatives is based on

the decennial census. Locally, communities need to know about population shifts to

plan for schools and roads. Despite the importance of the census data, there continues

to be controversy on how to identify and count certain segments of the population,

including the homeless, prison inmates, migrant workers, college students, and

foreign persons living in the country without appropriate documentation.

Statistical inference is the process of generalizing from a sample of data to the

larger population. The sample average is a simple statistic that immediately comes

to mind. The Student t-test is the principal method used to make inferences about

the population mean on the basis of the sample average. We review this method in

Section 2.5. The sample median is the value at which half of the sample is above and

half is below. The median is discussed in Chapter 7.

The standard deviation measures how far individual observations deviate from

their average.

The sample standard deviation allows us to estimate the scale of variability in the

population. On the basis of the normal distribution (Section 2.3), we usually expect

about 68% of the population to appear within one standard deviation (above or

below) of the mean. Similarly, about 95% of the population should occur within two

standard deviations of the population mean.

The standard error measures the sampling variability of the mean.

A commonly used measure related to the standard deviation is the standard error,

also called the standard error of the mean and often abbreviated SEM. These two

similar-sounding quantities refer to very different measures. The standard error

estimates the standard deviation associated with the sample average. As the sample

size increases, the standard deviation (which refers to individuals in the population)

should not appreciably change. On the other hand, a large sample size is associated

with a precise estimate of the population mean as a consequence of a small standard

error. This relationship provides the incentive for larger sample sizes, allowing us to

estimate the population mean more accurately. The relationship is

Standard error = Standard deviation√
Sample size

determined by adding to the whole Number of free Persons, including those bound to Service for a Term
of Years, and excluding Indians not taxed, three fifths of all other Persons. The actual Enumeration shall
be made within three Years after the first Meeting of the Congress of the United States, and within every
subsequent Term of ten Years, in such Manner as they shall by Law direct.”
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Consider a simple example. We want to measure the heights of a group of people.

There will always be tall people, and there will always be short people, so changing the

sample size does not appreciably alter the standard deviation of the data. Individual

variations will always be observed. If we were interested in estimating the average

height, then the standard error will decrease with an increase in the sample size (at a

rate of 1/
√

sample size), motivating the use of ever-larger samples. The average will

be measured with greater precision, and this precision is described in terms of the

standard error. Similarly, if we want to measure the average with twice the precision,

then we will need a sample size four times larger.

Another commonly used term associated with the standard deviation is variance.

The relationship between the variance and the standard deviation is

Variance = (Standard deviation)2

The standard deviation and variance are obtained in SAS using proc
univariate, for example. The formula appears often, and the reader should be

familiar with it, even though its value will be calculated using a computer.

Given observed sample values x1, x2, . . . , xn, we compute the sample variance

from

s 2 = sample variance = 1

n − 1

∑
i

(xi − x)2, (1.1)

where x is the average of the observed values.

This estimate is often denoted by the symbol s 2. Similarly, the estimated sample

standard deviation s is the square root of this estimator. Intuitively, we see that (1.1)

averages the squared difference between each observation and the sample average,

except that the denominator is one less than the sample size. The “n − 1” term is

the degrees of freedom for this expression and is described in Sections 2.5 and 2.7.

1.2 Statistics in the News: The Weather Map

Sometimes it is possible to be overwhelmed with too much information. The business

section of the newspaper is filled with stock prices, and the sports section has a wealth

of scores and data on athletic endeavors. The business section frequently has several

graphs and charts illustrating trends, rates, and prices. The sports pages have yet to

catch up with the business section in terms of aids for the reader.

As an excellent way to summarize and display a huge amount of information,

we reproduce the U.S. weather map from October 27, 2008, in Figure 1.1. There

are several levels of information depicted here, all overlaid on top of one another.

First we recognize the geographic-political map indicating the shorelines and state

boundaries. The large map at the top provides the details of that day’s weather. The

large Hs indicate the locations of high barometric pressure centers. Regions with
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Figure 1.1 The U.S. weather map for October 27, 2008: Observed, expected, and residual data. Courtesy

of Pennsylvania State University, Department of Meteorology.
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similar temperatures are displayed in the same colors. The locations of rain and

snow are indicated. An element of time and movement can also be inferred from

this map: A large front has come across the country from the north, bringing cooler

temperatures along with it. This figure represents the fine art of summarizing a huge

amount of information.

The two smaller figures at the bottom provide a different kind of information. The

lower-left map indicates the temperatures that we should expect to see on this date,

based on previous years’ experiences. The general pattern follows our preconception

that southern states are warmer and northern states are cooler at this time of the

year, with bands of constant temperature running east and west.

The figure on the lower right summarizes the differences between the normal

pattern and the temperatures given in the large map at the top. Here we see that

Florida is much cooler than what we would expect for late October. Similarly,

Montana is cold at this time of year but is much warmer than typical.

The aim of statistics is to provide a similar reduction of a large amount of data

into a succinct statement, generalizing, summarizing, and providing a clear message

to your audience.

The goal of statistics is to start with the data and then prepare a concise summary

of it.

1.3 Mathematical Background

We all need to start someplace. Let us decide on the common beginning point.

Many of us chose to study the health or social sciences and shunned engineering

or physics in order to avoid the abstract rigor of mathematics. However, much of the

research in the social and health fields is quantitative. We still need to demonstrate

the benefit of any proposed intervention or social observation.

For example, we all know the role that the ASPCA and other animal shelters

perform in protecting homeless cats and dogs. It only takes a quick visit to their local

facilities to assess the effectiveness of their efforts. We can easily count the number of

charges under their care to quantify and measure what they do. In this example it is

easy to separate the emotional appeal from the quantity of good such an organization

supplies.

In contrast, we are shocked to see the brutality of whales being slaughtered. We

are told about the majesty of their huge size and life under the sea. This is all fine

and plays on our emotions. Before we send money to fund the appropriate charity,

or decide to enforce global bans on whaling, we also should ask how many whales

there are, and perhaps how this number has changed over the past decade. This

information is much harder to get at and is outside our day-to-day experiences. We

need to rely on estimates to quantify the problem. Perhaps we also need to question
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who is providing these estimates and whether the estimates are biased to support a

certain point of view. An objective estimate of the whale population may be difficult

to obtain, yet it is crucial to quantifying the problem.

As a consequence, we need to use some level of mathematics. The computer will

do most of the heavy lifting for us, but we will also need to understand what is going

on behind the scenes. We need to use algebra and especially linear functions. So

when we write

y = a + bx,

we recall that a is referred to as the intercept and b is called the slope. We need to

recognize that this equation represents a straight-line relationship and be able to

graph this relationship.

We will need to use logarithms. Logarithms, or logs for short, are always to the

base e = 2.718 . . . and never to base 10. The exponential function written as ex or

exp(x) is the inverse process of the logarithm. That is,

log(ex) = x

and

elog x = exp(log x) = x.

Sometimes we will use the exponential notation when the argument is not a simple

expression. It is awkward to write

ea+bw+c x+dy,

not to mention that it is difficult to read and that publishers hate this sort of

expression.

It is easier on the reader to write this last expression as

exp(a + bw + c x + dy).

1.4 Calculus

For those who took calculus a long time ago and have not used it since, the memories

may be distant, fuzzy, and perhaps unpleasant. Calculus represents a collection

of important mathematical tools that will be needed from time to time in our

discussion later on in this book. We will need to use several useful results that require

calculus.

Fortunately, there is no need to dig out and dust off long-forgotten textbooks. The

actual mechanics of calculus will be reviewed here, but there will not be a need to

actually perform the mathematics involved. The reader who is fluent in the relevant

mathematics may be able to fill in the details that we will gloss over.
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Figure 1.2 The slope is zero at the minimum of a function (left) and also at the saddle point of a function

(right).

What is the point of calculus? If x and y have a straight-line relationship, we

should be familiar with the concept of the slope of the line. When x changes by one

unit, the slope is the amount of change in y.

For a nonlinear relationship, the concept of the slope remains the same, but it

is a more local phenomenon. The idea of the slope depends on where in the x–y

relationship your interest lies. At any point in a curve, we can still talk about the

slope, but we need to talk about the slope at each point of the curve. You might think

of a curve as a lot of tiny linear segments all sewn together, end to end. In this case,

the concept of slope is the ratio of a small change in y to the resulting small change

in x at a given point on the curve. It still makes sense to talk about the ratio of these

small amounts resulting in a definition of the slope of a curved line at every point x .

In calculus, the derivative is a measure of the (local) slope at any given point in the

function.

The derivative of a function provides its slope at each point.

The derivative is useful for identifying places where nonlinear functions achieve

their minimums or maximums. Intuitively, we can see that a smooth function that

decreases for a while and then increases has to pass through some point where the

slope is zero. Solving for the places where the derivative is zero tells us where the

original function is either maximized or minimized. See Figure 1.2 for an illustration

of this concept.

Some functions also exhibit saddle points where the derivative is also zero. A saddle

point is where an increasing function flattens out before resuming its increase. We

will not concern ourselves with saddle points. Similarly, a zero value of the derivative

may only indicate a local minimum or maximum (that is, there are either larger

maximums or smaller minimums someplace else), but we will not be concerned

with these topics either. A saddle point is illustrated in Figure 1.2.

Although we will not actually obtain derivatives in this book, on occasion we will

need to minimize and maximize functions. When the need arises, we will recognize
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Figure 1.3 The normal density function (left) and its cumulative area (right).

the need to take a derivative and set it to zero in order to identify where the minimum

occurs.

The function achieves a maximum or minimum where the derivative is zero.

Calculus is also concerned with integrals of functions. Briefly, an integral gives us

the area between the function and the horizontal axis. As with the derivative, we will

not actually need to derive one here. Many probabilities are determined according

to the area under a curved function.

The integral of a function provides the area between the curve and the horizontal

x axis.

Specifically, when we examine the normal distribution (Section 2.3), we will often

draw the familiar bell-shaped curve. This curve is illustrated in Figure 1.3. For any

value x on the horizontal axis, the curve on the right gives us the cumulative area

under the left curve, up to x . The total area on the left is 1, and the cumulative area

increases up to this value. The cumulative area under this curve is almost always of

greater interest to us than the bell curve itself. Table A.1 in the appendix provides

this area for us. It is very rare to see a table of the bell curve.

The area can be negative if the function is a negative number. Negative areas may

seem unintuitive, but the example in the following section illustrates this concept.

1.5 Calculus in the News: New Home Sales

Home sales and building starts for new homes are both an important part of the

economy. Builders will not start an expensive project unless they are reasonably

sure that their investment will pay off. Home buyers will usually also purchase new

furniture and carpets and will hire painters and carpenters to remodel as they move
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New-home starts plunge at fastest pace in decades
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Figure 1.4 New home starts and sales. Source: New York Times.

in. Investors, economists, and government policy makers watch this data as a sign of

the current state of the economy as well as future trends.

The graphs in Figure 1.42 depict new single-family home starts (upper left) and

the number of new homes already on the market (lower left) over a period of a

decade. There are always new homes being built and put up for sale, of course, but

it is useful to know whether the trend is increasing or decreasing. The graphs on the

right half of this figure show the trend more clearly in terms of the annual changes.

More specifically, the graphs on the right show the slope of the line on the left at

the corresponding point in time. When the figure on the left is increasing, then the

figure on the right is positive. Decreasing rates on the left correspond to negative

values on the right.

In words, the graphs on the right half of this figure are the derivatives of the graphs

on the left half. Similarly, if we start at the values corresponding to the start of the

year 1990, then the graphs on the left half are obtained by integrating the values on

the right. Areas under the negative values on the right integrate to “negative areas”

so that negative values on the right correspond to declining values on the left.

The times at which the derivatives on the right are zero correspond to turning

points where maximums or minimums occur on the left. Remember that a zero

slope is usually indicative of a change in direction. These maximums or minimums

2 The graphs are available online at http://www.nytimes.com/2007/06/23/business/23charts.html.
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Figure 1.5 Cases of tuberculosis in Eastern Europe. Source: Stuckler et al. (2008).

may be short-lived, of course, and the underlying trend may continue after they end.

The wide swings in the derivative often allow us to anticipate a change in direction

of the underlying trend by a few months.

The upper headline says that there is a big decline in new home starts. But this

decline is also down from the largest value in a decade. Similarly, the graph at the

lower left shows a decline in the number of unsold homes on the market. Is that good

for the economy because homes are selling more quickly, or bad for the economy

because cautious sellers are waiting for a change in the market in order to anticipate

a better price? Exercise 2.1 asks you to argue both cases: that, in the near term, the

economy is improving, and also that the economy is getting worse.

1.6 Statistics in the News: IMF Loans and Tuberculosis

It is possible to learn all about statistics, computing, and data analysis and still come

to an absurd conclusion. This sometimes leads to sensational headlines with often

hilarious results as the story unfolds.

Figure 1.5 is reprinted from an article by Stuckler et al. (2008). A summary of the

original article appeared in the New York Times on July 22, 2008.3

The article is about the relationship between International Monetary Fund (IMF)

loans and the rate of tuberculosis (TB) in various eastern European countries. TB is

an infectious disease that is spread through the air when an affected person sneezes or

coughs. The disease is treated using antibiotics and is frequently fatal if left untreated.

The elderly, those with diabetes, and those with a weakened immune system (such

3 The original article is available online from PLOS Medicine: doi:10.1371/journal.pmed.0050143. A critique
of this article appears at doi:10.1371/journal.pmed.0050162
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as those with human immunodeficiency virus; or HIV) are at high risk for TB. We

frequently see cases of TB in crowded living conditions with poor sanitation.

The IMF (www.imf.org) is an international organization that oversees the global

monetary system, including exchange rates and balance of payments, and sometimes

making loans to foreign governments. Critics of the IMF claim that the conditions

imposed on these loans will cause more harm than good to the population. These

conditions have included forcing a nation to raise taxes or increase exports to the

exclusion of food production needed at home. Critics will be able to point to this

graph and claim that the IMF conditions result in cuts in preventative public health

expenditures and reductions in the availability of necessary vaccines. Imposing these

conditions on the recipient nations has resulted in crowded and unsanitary living

conditions, thereby raising the incidence of TB.

In the original article, the authors performed a large number of statistical analyses

that attempted to take into account differences in the various countries with respect

to percent of the population living in urban settings, an index of democratization,

differences in per capita incomes, whether or not the country was involved in a war,

and population education levels. Most of the methods used in their article will be

clear to the reader by the time we complete the material in Chapter 6.

Even so, not all countries are the same. There may be large differences between

the countries that these analyses fail to correct for. Are there other factors that have

not been taken into account? Could factors such as the age of the population or the

rate of HIV infection result in the differences in TB rates, regardless of whether or

not the nation received IMF loans?

How should we treat countries that applied for IMF loans but did not qualify?

Should these be considered loan recipients? Similarly, some countries may have been

offered loans but ultimately refused the money. Should these countries be considered

as having received loans? What about the size of the loans: Would a large loan have

the same effect as a small loan if few conditions were attached to it?

Even more importantly, this is an example of an observational study. Why did some

countries receive loans while others did not? In what ways do these countries differ?

We will never be able to know the effect on TB rates if a given country that did not

receive a loan had been given one, or vice versa. Consider Exercise 1.1 for another

possible interpretation of Figure 1.5. In an observational study, the subjects (in

this case, individual countries) choose their causal treatment in some nonrandom

fashion. In the present example, we do not know how countries were chosen to

receive loans.

We could not randomly choose the countries that were to receive loans. A ran-

domized study, in contrast to an observational study, allows us to randomly assign

treatments to individuals. Differences in outcomes can then be attributed solely to

the random assignment. In a medical study in which patients are randomly assigned

to two different treatments, for example, any underlying imbalances in the two

patient groups should be minimized by chance alone. Patients bearing a trait that is
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unknown to us at the time of the randomization would be equally likely to appear in

either of the two treatment groups, and then the trait would be averaged out when

we examine the outcome. However, it is not possible to randomly give or withhold

IMF loans to the various countries in the study.

One final comment on this example: Why was TB chosen to illustrate the effects of

IMF loans? Of all the various disease rates that are reported, what is special about TB?

Is it possible that the authors studied many different disease rates, but TB proved to

be the most remarkable? We don’t know how many diseases were compared between

IMF loan and nonloan nations. We can intuit that if many comparisons were made,

then it is virtually certain that some remarkable findings will be uncovered. One

disease rate out of many must appear to have the largest difference between loan and

nonloan nations.

This is the problem with multiple comparisons. If many comparisons are made,

then the largest of these is not representative. We would need to make a correction

for the number of different diseases that were studied. This topic and an appropriate

adjustment for multiple comparisons are discussed again in Section 2.4.

There are many lessons that can be learned from this example. Ultimately, a study

of statistical methods will provide you with a very useful set of tools. This book

shows how these can be used to gain insight into underlying trends and patterns in

your data. These tools, however, are only as good as the data that you provide. Of

course, if you abuse the methods, it is possible to do more damage than good. You

may be using the most sophisticated statistical methods available, but you are still

responsible for the final conclusions that you draw.

Statistics is a useful tool, but it cannot think for you.

The same advice also holds for computers. The software can churn out numbers,

but it cannot tell you whether the methods are appropriate or if the conditions

for that method are valid. For other examples of statistics in action, consider the

exercises at the end of this chapter. As with every chapter in this book, work out as

many as you can.

1.7 Exercises

1.1 Argue that a country with a high rate of TB is more likely to receive an IMF loan.

That is to say, use Figure 1.5 to claim that TB causes loans, rather than the other

way around.

1.2 Do cell phones cause brain cancer? A prominent head of a cancer center sent

an email to his staff urging limited use of cell phones because of a link to

brain cancer. Does ownership and use of a cell phone constitute a randomized

experiment or an observational study? Describe the person who is most likely to

be a big user of cell phones. Is this a fair cross-section of the population?


