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Preface

The field of quantum information processing has reached a level of maturity, and spans
such a wide variety of topics, that it merits further specialization. In this book, we consider
quantum information processing with optical systems, including quantum communication,
quantum computation, and quantum metrology. Optical systems are the obvious choice
for quantum communication, since photons are excellent carriers of quantum information
due to their relatively slow decoherence. Indeed, many aspects of quantum communication
have been demonstrated to the extent that commercial products are now available. The
importance of optical systems for quantum communication leads us to ask whether we can
construct integrated systems for communication and computation in which all processing
takes place in optical systems. Recent developments indicate that while full-scale quantum
computing is still extremely challenging, optical systems are one of the most promising
approaches to a fully functional quantum computer.

This book is aimed at beginning graduate students who are starting their research career
in optical quantum information processing, and it can be used as a textbook for an advanced
master’s course. The reader is assumed to have a background knowledge in classical elec-
trodynamics and quantum mechanics at the level of an undergraduate physics course. The
nature of the topic requires familiarity with quantized fields, and since this is not always a
core topic in undergraduate physics, we derive the quantum mechanical formulation of the
free electromagnetic field from first principles. Similarly, we aim to present the topics in
quantum information theory in a self-contained manner.

The book is organized as follows: in Part I, we develop the quantum theory of light,
give an introduction to quantum communication and computation, and we present a num-
ber of advanced quantum mechanical techniques that are essential for the understanding
of optical quantum information processing. In Part II, we consider quantum information
processing using single photons and atoms. We first develop the theory of photodetec-
tion and explore what we mean by photon sources, followed by an exposition of quantum
communication with single photons, quantum computation with single photons and linear
optics, and quantum computing where the information carriers, the qubits, are encoded in
atoms. In Part III, we explore quantum information processing in many-body systems. We
revisit linear optical quantum communication and computation, but now in the context of
quantum continuous variables, rather than qubits. We discuss how atomic ensembles can
be used as quantum memories and repeaters, and we study in detail how to define robust
qubits in solid-state systems such as quantum dots and crystal defects. The last chapter of
the book deals with quantum metrology, where we explore how quantum states of light can
be exploited to attain a measurement precision that outperforms classical metrology. As is
inevitable in a book of this nature, a number of important topics have been omitted due
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to length restrictions. We have not included quantum information processing in ion traps,
photonic band-gap materials, optical lattices, and Bose–Einstein condensates. We have also
omitted the topic of quantum imaging.

We wish to thank a number of colleagues who have made valuable comments, and
suggested many improvements: CharlesAdams, Simon Benjamin, Samuel Braunstein, Earl
Campbell, Jim Franson, Erik Gauger, Dominic Hosler, Nick Lambert, Peter van Loock, Janet
Lovett, Ahsan Nazir, Todd Pittman, Nusrat Rafiq, Andrew Ramsay, Marshall Stoneham,
Joachim Wabnig, David Whittaker, and Marcin Zwierz. We thank Joost Kok for suggesting
the artist Victor Vasarely for the cover image. BWL thanks the Royal Society for financial
support. Finally, we would like to thank Andrew Briggs and the Quantum Information
Processing Interdisciplinary Research Collaboration (QIP IRC) for continued support.



PART I

QUANTUM OPTICS AND
QUANTUM INFORMATION





1 The quantum theory of light

Classically, light is an electromagnetic phenomenon, described by Maxwell’s equations.
However, under certain conditions, such as low intensity or in the presence of certain
nonlinear optical materials, light starts to behave differently, and we have to construct a
‘quantum theory of light’. We can exploit this quantum behaviour of light for quantum
information processing, which is the subject of this book. In this chapter, we develop
the quantum theory of the free electromagnetic quantum field. This means that we do
not yet consider the interaction between light and matter; we postpone that to Chapter 7.
We start from first principles, using the canonical quantization procedure in the Coulomb
gauge: we derive the field equations of motion from the classical Lagrangian density for
the vector potential, and promote the field and its canonical momentum to operators and
impose the canonical commutation relations. This will lead to the well-known creation and
annihilation operators, and ultimately to the concept of the photon.After quantization of the
free electromagnetic field we consider transformations of the mode functions of the field.
We will demonstrate the intimate relation between these linear mode transformations and
the effect of beam splitters, phase shifters, and polarization rotations, and show how they
naturally give rise to the concept of squeezing. Finally, we introduce coherent and squeezed
states.

The first two sections of this chapter are quite formal, and a number of subtleties arise
when we quantize the electromagnetic field, such as the continuum of modes, the gauge
freedom, and the definition of the creation and annihilation operators with respect to the
classical modes. Readers who have not encountered field quantization procedures before
may find these sections somewhat daunting, but most of the subtleties encountered here
have very little bearing on the later chapters. We mainly include the full derivation from
first principles to give the field of optical quantum information processing a proper physical
foundation, and derive the annihilation and creation operators of the discrete optical modes
from the continuum of modes that is the electromagnetic field.

1.1 The classical electromagnetic field

Classical electrodynamics is the theory of the behaviour of electric and magnetic fields in
the presence of charge and current distributions. It was shown by James Clerk Maxwell
(1831–1879) that the equations of motion for electric and magnetic fields, the Maxwell
equations, allow for electromagnetic waves. In vacuum, these waves propagate with a
velocity c = 299 792 458 ms−1, and Maxwell therefore identified these waves in a certain
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frequency range with light. In this section, we define the electric and magnetic fields in
terms of the scalar and vector potentials, and construct the field Lagrangian density in
the presence of charge and current distributions. Variation of the Lagrangian density with
respect to the potentials then leads to Maxwell’s equations. Subsequently, we consider
the Maxwell equations for the vacuum, and derive the wave equation and its plane-wave
solutions. The source-free Lagrangian density is then used to define the canonical momenta
to the potentials, which in turn allow us to give the Hamiltonian density for the free field.
These are the ingredients we need for the canonical quantization procedure in Section 1.2.

The electric and magnetic fields E(r, t) and B(r, t) are related to a scalar and a vector
potential �(r, t) and A(r, t):

E(r, t) = −∇�(r, t)− ∂A(r, t)

∂t
and B(r, t) = ∇×A(r, t) . (1.1)

The most elegant way to construct a classical field theory is via the Lagrangian density. We
can use the potentials as the dynamical variables of our classical field theory, which means
that we can write the Lagrangian density L as a function of the potentials and their time
derivatives

L = L (�, �̇; A, Ȧ) . (1.2)

The equations of motion for the potentials � and A are then given by the Euler–Lagrange
equations

d

dt

δL

δ�̇
− δL
δ�

= 0 (1.3)

and
d

dt

δL

δȦj
− δL
δAj

= 0 . (1.4)

Here δ denotes the functional derivative, since the potentials are themselves functions of
space and time, and each component of A, denoted by Aj , obeys a separate Euler–Lagrange
equation.

In the presence of a charge density ρ(r, t) and a current density J(r, t) the general
Lagrangian density of classical electrodynamics can be written as

L = J(r, t) · A(r, t)− ρ(r, t)�(r, t)+ ε0
2

E2(r, t)− 1

2μ0
B2(r, t) , (1.5)

where E2 ≡ |E|2 and B2 ≡ |B|2 depend on � and A according to Eq. (1.1). When the
Lagrangian density is varied with respect to � we obtain the Euler–Lagrange equation in
Eq. (1.3), which can be written as Gauss’ law

−ε0∇ · E(r, t)+ ρ(r, t) = 0 . (1.6)

When we vary the Lagrangian density with respect to the components of A, we find the
Euler–Lagrange equations in Eq. (1.4). These can be reformulated as the Maxwell–Ampère
law

J(r, t)+ ε0 ∂E
∂t
(r, t)− 1

μ0
∇×B(r, t) = 0 . (1.7)
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The relations in Eq. (1.1) and Eqs. (1.6) and (1.7) are equivalent to Maxwell’s equations,
as can be seen by taking the curl of E in Eq. (1.1):

∇×E = −∂B
∂t

. (1.8)

The last Maxwell equation, ∇ ·B = 0, is implicit in B = ∇×A since the divergence of any
curl vanishes.

It is well known that we have a gauge freedom in defining the potentials � and A that
constitute the fields E and B. Since we are interested in radiation, it is convenient to adopt
the Coulomb, or radiation, gauge

∇ · A = 0 and � = 0 . (1.9)

In addition to the gauge choice, in this chapter we consider only the vacuum solutions of
the electromagnetic fields:

ρ = 0 and J = 0 . (1.10)

When we now write Eq. (1.7) in terms of the potentials, we obtain the homogeneous wave
equation for A

∇2A − ε0μ0
∂2A

∂t2
= 0 . (1.11)

The classical solutions to this equation can be written as

A(r, t) =
∑
λ

∫
dk√
ε0

Aλ(k)ελ(k)eik·r−iωk t√
(2π)32ωk

+ c.c., (1.12)

where Aλ(k) denotes the amplitude of the mode with wave vector k and polarization λ, and
c.c. denotes the complex conjugate. The vector ελ gives the direction of the polarization,
which we will discuss in Section 1.3. The dispersion relation for the free field is given by

|k|2 − ε0μ0 ω
2
k ≡ k2 − ω

2
k

c2
= 0 , (1.13)

where c is the phase velocity of the wave with frequency ωk . Any well-behaved potential
A(r, t) that can be expressed as a superposition of Fourier components is a solution to the
wave equation. This is exemplified by the fact that we can see different shapes, colours,
etc., rather than just uniform plane waves.

Finally, the Lagrangian density can be used to find the Hamiltonian density of the field.
To this end, we define the canonical momenta of � and A as


� ≡ δL
δ�̇

and 
A ≡ δL
δȦ

. (1.14)
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We can now take the Legendre transform of the Lagrangian density with respect to the
dynamical variables �̇ and Ȧ to obtain the Hamiltonian density of the free electromagnetic
field

H(�, ��; A, �A) = ���̇+�A · Ȧ −L . (1.15)

In the Coulomb gauge, the canonical momenta are


� = 0 and 
A = ε0Ȧ . (1.16)

This leads to the Hamiltonian density for the free field

H = 
A · Ȧ − L |ρ=J=0 = ε02 E2 + 1

2μ0
B2 . (1.17)

We now have all the necessary ingredients to proceed with the quantization of the
electromagnetic field.

Exercise 1.1: Derive the homogeneous wave equation in Eq. (1.11) and show that the
solutions are given by Eq. (1.12).

1.2 Quantization of the electromagnetic field

We are now ready to quantize the classical electromagnetic field. First, we have to decide
which of the fields A, E (or B) we wish to quantize. In later chapters, we discuss the coupling
between light and matter, and it is most convenient to express that coupling in terms of the
vector potential A. We therefore apply the quantization procedure to A, rather than to E.
In the quantization procedure we have to ensure that the quantum fields obey Maxwell’s
equations in the classical limit, and this leads to the introduction of a modified Dirac delta
function.After the formal quantization, we explore the properties of the mode functions and
the mode operators that result from the quantization procedure, and establish a fundamental
relationship between them. We then construct eigenstates of the Hamiltonian, and define
the discrete, physical modes. This leads to the concept of the photon. The final part of
this section is devoted to the construction of the quantum mechanical field observables
associated with single modes.

1.2.1 Field quantization

We denote the difference between classical and quantum mechanical observables by writing
the latter with a hat. In the quantum theory of light, A and �A then become operators
satisfying the equal-time commutation relations. In index notation these are written as[

Âj(r, t), Âk(r′, t)
]
=
[

̂

j
A(r, t), 
̂k

A(r
′, t)
]
= 0 . (1.18)
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The field consists of four variables: three from A and one from �. We again work in the
Coulomb gauge, where � = 0 and ∇ · A = 0 ensures that we end up with only two
dynamical variables.

Standard canonical quantization prescribes that, in addition to Eq. (1.18), we impose the
following commutation relation:[

Âi(r, t), 
̂j
A(r

′, t)
]
= i�δij δ

3(r − r′) , (1.19)

where we must remember the difference between upper and lower indices, Aj = −Aj ,
because electrodynamics is, at heart, a relativistic theory. Unfortunately, given that in the
Coulomb gauge
k

A ∝ Ek , this commutation relation is not compatible with Gauss’ law in
vacuum: ∇ · E = 0. If we take the divergence with respect to the variable r′ on both sides
of Eq. (1.19), the left-hand side will be zero, but the divergence of the delta function does
not vanish. We therefore have to modify the delta function such that its divergence does
vanish. For the ordinary Dirac delta function we use the following definition:

δijδ
3(r − r′) ≡

∫
dk

(2π)3
δij eik·(r−r′) . (1.20)

We have included the Kronecker delta δij , because after the redefinition of the delta function
the internal degree of freedom j and the external degree of freedom r may no longer be
independent (in fact, they will not be). Taking the divergence of Eq. (1.20) with respect to
r yields

∑
i

∂ i δij δ
3(r − r′) = i

∫
dk

(2π)3
kje

ik·(r−r′) . (1.21)

Therefore, we have to subtract something like this from the redefined delta function. We
write

�ij(r − r′) =
∫

dk

(2π)3
δij eik·(r−r′) − i

∫
dk

(2π)3
αikje

ik·(r−r′) , (1.22)

and we want to find αi such that ∂ i�ij(r − r′) = 0:

∑
i

∂ i�ij(r − r′) =
∑

i

∂ i

∫
dk

(2π)3
eik·(r−r′) (δij − ikjαi

)
=
∑

i

∫
dk

(2π)3
eik·(r−r′) [ikiδij − (ikj)(iki)αi

]
= 0 . (1.23)

We therefore have that∑
i

(
ikiδij + kikjαi

) = 0 , or αi = −i
ki

|k|2 , (1.24)



8 The quantum theory of light

and the ‘transverse’ delta function �ij(r − r′) becomes

�ij(r − r′) =
∫

dk

(2π)3
eik·(r−r′)

(
δij − kikj

|k|2
)

. (1.25)

Using this modified delta function, we can complete the quantization procedure by imposing
the equal-time canonical commutation relation[

Âi(r, t), 
̂j
A(r

′, t)
]
= i��ij(r − r′) . (1.26)

That this leads to the correct covariant Hamiltonian and momentum is shown, for example,
in Bjorken and Drell (1965). We can now write the three space components of the quantum
field as

Âj(r, t) =
2∑
λ=1

∫
dk

√
�

ε0

[
ελj(k)âλ(k)u(k; r, t)+ ε∗λj(k)â†

λ(k)u
∗(k; r, t)

]
, (1.27)

where the u(k; r, t) are mode functions that are themselves solutions to the wave equation in
Eq. (1.11), and λ again indicates the polarization of the electromagnetic field. The classical
amplitudes Aλ(k) are replaced by the operators âλ(k), and Â is now a quantum field. Note
that Â is now an operator, and unlike its classical counterpart does not directly represent a
particular vector potential. Specific quantum mechanical vector potentials are represented
by quantum states.

The equal-time commutation relation in Eq. (1.26) determines the commutation relation
for âλ(k) and â†

λ(k), given the mode functions u(k; r, t) and u∗(k, r, t). From Eq. (1.12) we
can read off the plane-wave solutions with continuum normalization:

u(k; r, t) = eik·r−iωk t√
(2π)32ωk

, (1.28)

where k is the wave vector of a wave with frequency ωk . Plane waves are of constant
intensity throughout space and time, and are therefore unphysical. However, they are
mathematically very convenient. When the mode functions are the plane waves defined
in Eq. (1.28), we find explicitly that[

âλ(k), â
†
λ′(k

′)
]
= δλλ′δ3(k − k′) , (1.29)

and [
âλ(k), âλ′(k

′)
] = [â†

λ(k), â
†
λ′(k

′)
]
= 0 . (1.30)

The operator âλ(k) and its Hermitian conjugate are the ‘mode operators’ of the quantized
electromagnetic field. In the next section we will see that any operators that obey these
commutation relations are good mode operators.

We are now done with the quantization of the classical electromagnetic field, and the
remainder of this section is devoted to the exploration of the direct consequences of this
procedure.

Exercise 1.2: Derive the commutation relations in Eqs. (1.29) and (1.30).
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1.2.2 Mode functions and mode operators

We will now discuss some of the fundamental properties of the mode functions u(k; r, t) and
u∗(k; r, t), and the mode operators âλ(k) and â†

λ(k). In order to study the mode functions of
the field (its ‘shape’, if you like), we must first define a scalar product that allows us to talk
about orthogonal mode functions. This is given by the ‘time-independent scalar product’

(φ,ψ) ≡ i
∫

dr φ∗
↔
∂ tψ = i

∫
dr
[
φ∗(∂ tψ)− (∂ tφ

∗)ψ
]

. (1.31)

From the general structure of the scalar product in Eq. (1.31) we see that

(φ,ψ)∗ = (ψ ,φ) and (φ∗,ψ∗) = −(ψ ,φ) . (1.32)

This scalar product finds its origin in the continuity equation of the field, which determines
the conserved currents (see Bjorken and Drell, 1965). It is therefore time-independent. The
completeness relation of the mode functions u(k; r, t) is then derived as follows: consider
a function f (r, t) that is a superposition of different mode functions

f =
∫

dk
[
α(k)u(k)+ β(k)u∗(k)] , (1.33)

where we have suppressed the dependence on r and t in f (r, t) and u(k; r, t) for notational
brevity. Using the orthogonality of the mode functions defined by the scalar product, we
can write the coefficients α(k) and β(k) as

α(k) = (u(k), f ) and β(k) = −(u∗(k), f ) . (1.34)

This leads to an expression for f

f =
∫

dk
[
(u(k), f ) u(k)− (u∗(k), f ) u∗(k)] . (1.35)

For a second superposition of mode functions g the scalar product (g, f ) can be written as

(g, f ) =
∫

dk
[
(g, u(k))(u(k), f )− (g, u∗(k))(u∗(k), f )

]
. (1.36)

This constitutes the ‘completeness relation’ for the mode functions u(k; r, t), and it holds
only if the mode functions are, in fact, complete.

Using the definition of the time-independent scalar product, we can show that plane-wave
solutions are orthonormal:

(uk , uk′) ≡ i
∫

dr
e−ik·r+iωk t√
(2π)32ωk

↔
∂ t

eik′·r−iωk′ t√
(2π)32ωk′

=
∫

dr

(2π)3
(ωk + ωk′)e−i(k−k′)·r+i(ωk−ωk′ )t

2
√
ωkωk′

= δ3(k − k′) . (1.37)
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We also find by direct evaluation that (uk , u∗k′) = 0. This can be understood physically as
the orthogonality of waves moving forward in time, and waves moving backwards in time
and in opposite directions. The plane waves therefore form a complete orthonormal set of
mode functions.

We can define a new set of mode functions v(κ ; r, t), which are a linear combination of
plane waves

v(κ ; r, t) =
∫

dk V (κ , k)u(k; r, t) =
∫

dk V (κ , k)
eik·r−iωk t√
(2π)32ωk

. (1.38)

Two symbols are needed for wave vectors here, namely k and κ . We emphasize that we will
normally reserve k for describing wave vectors. When V (κ , k) is unitary, the new mode
functions v(κ ; r, t) are also orthonormal. When we express Â in terms of the new mode
functions, we should also change the operators âλ(k) to b̂λ′(κ), since the mode operators
depend on k and will generally change due to the transformation V (κ , k). The field operator
then becomes

Âj(r, t) =
2∑

λ′=1

∫
dκ

√
�

ε0

[
ελ′j(κ) b̂λ′(κ)v(κ ; r, t)+ ε∗λ′j(κ) b̂†

λ′(κ)v
∗(κ ; r, t)

]
. (1.39)

Note that here we have also included a possible change in the polarizarion degree of freedom
λ′, which can be incorporated straightforwardly in the time-independent scalar product.

Exercise 1.3: Prove the orthonormality of v(κ ; r, t) if V is unitary.

We next explore the precise relationship between mode functions and mode operators.The
mode operators âλ(k) and â†

λ(k) are related to the mode functions u(k; r, t) and u∗(k; r, t)
via the time-independent scalar product

âλ′(k) ≡
√
ε0

�

(
u(k)ελ′ , Â

)
= i

√
ε0

�

∫
dr u∗(k; r, t)

↔
∂ tε

∗
λ′(k) · Â(r, t) . (1.40)

We can then extract the operator b̂λ′(κ), associated with the mode function v(κ ; r, t), using
the procedure

b̂λ′(κ) ≡
√
ε0

�

(
v(κ)ελ′ , Â

)
= i

√
ε0

�

∫
dr v∗(κ ; r, t)

↔
∂ tε

∗
λ′(κ) · Â(r, t) . (1.41)

This is a definition of the operator b̂λ′(κ), and is completely determined by the mode function
v(κ) and polarization vector ελ′(κ). Now suppose that we have an expression for Â(r, t) in
terms of mode functions u(k), mode operators âλ(k), and polarization vectors ελ(k) given
in Eq. (1.27). The mode operator b̂λ′(κ) then becomes

b̂λ′(κ) =
∑
λ

∫
dk
[
ε∗λ′(κ) · ελ(k) (v, u) âλ(k)+ ε∗λ′(κ) · ε∗λ(k)

(
v, u∗
)

â†
λ(k)
]

, (1.42)
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where we express the mode operator b̂ in terms of mode operators â and â†. The spatial
integration in the scalar products (v, u) and (v, u∗)must be evaluated before the integration
over k in order to make the scalar product of the two polarization vectors ελ′(κ) · ελ(k)
definite. This demonstrates that the mode operators have a notion of orthogonality that is
directly inherited from the orthogonality of the mode functions. Up to addition of a complex
constant, Eq. (1.42) is the most general linear transformation of the mode operators, and
is called the ‘Bogoliubov transformation’. In principle it can mix the mode operators with
their adjoints when the scalar product (v, u∗) is non-zero.

Exercise 1.4: Using Eq. (1.42), show that[
b̂λ(κ), b̂

†
λ′(κ

′)
]
= δλλ′ δ3(κ − κ ′) , (1.43)

and [
b̂λ(κ), b̂λ′(κ

′)
]
=
[
b̂†
λ(κ), b̂

†
λ′(κ

′)
]
= 0 (1.44)

These are the expected commutation relations for the mode operators.

1.2.3 Photons as excitations of the electromagnetic field

The revolutionary aspect of the quantum mechanical description of the electromagnetic
field is the notion that the field can deliver its energy only in discrete amounts. This leads
to the concept of the ‘photon’. In order to derive this from the quantum theory, we first
consider the Hamiltonian and momentum operators for the quantum field. We then con-
struct energy eigenstates, and regularize them to obtain well-behaved physical states of the
electromagnetic field.

From the quantum mechanical version of Eq. (1.17) we can formally derive the
Hamiltonian operator H of the free field as

H =
∑
λ

∫
dk

�ωk

2

[
â†
λ(k)âλ(k)+ âλ(k)â

†
λ(k)
]

≡
∑
λ

∫
dk Hλ(k) , (1.45)

where Hλ(k) will be called the ‘single-mode Hamiltonian operator’. Similarly, the ‘field
momentum operator’ is

P̂ =
∑
λ

∫
dk

�k

2

[
â†
λ(k)âλ(k)+ âλ(k)â

†
λ(k)
]

. (1.46)

This operator is similar to H, but ωk is replaced by k. Therefore, the properties we derive
for the Hamiltonian can easily be translated into properties for the momentum. The field
momentum can be formally derived from Maxwell’s stress tensor, but this is beyond the
scope of this book.
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The Hamiltonian and the operators âλ(k) and â†
λ(k) obey the following commutation

relations: [
H, âλ(k)

] = −�ωk âλ(k) and
[
H, â†

λ(k)
]
= �ωk â†

λ(k) . (1.47)

We can define |ψn〉 as an eigenstate of the Hamiltonian H such that

H |ψn〉 = En |ψn〉 , (1.48)

with En the corresponding energy eigenvalue (which depends onωk). From the commutation
relations in Eq. (1.47) we find

Hâ†
λ(k) |ψn〉 = â†

λ(k) (H+ �ωk) |ψn〉 = (En + �ωk) â
†
λ(k) |ψn〉 . (1.49)

This means that â†
λ(k) |ψn〉 is again an eigenstate of the HamiltonianHwith energy En+�ωk .

Similarly, âλ(k) |ψn〉 is again an eigenstate of the Hamiltonian H with energy En − �ωk .
The eigenvalues of H must be bounded from below, and there is therefore a ground state
|ψ0〉 for which âλ(k) |ψ0〉 = 0 for any k and λ. We call this state the ‘vacuum state’ for
that mode. This leads to the vacuum energy

H |ψ0〉 = �

2

∑
λ

∫
dk ωk âλ(k)â

†
λ(k) |ψ0〉 . (1.50)

Using the commutation relation in Eq. (1.29), we find that this expression diverges. The
vacuum energy is therefore infinite, and needs to be subtracted in all practical calculations
of energy expectation values. However, we cannot completely ignore the vacuum energy,
since it leads to so-called vacuum fluctuations. It has observable consequences, such as the
Lamb shift and vacuum noise. This will become important in certain applications of optical
quantum information processing, e.g., in Chapters 8 and 9.

For every mode denoted by k and λ, we can construct a set of basis states that are
eigenstates of the Hamiltonian by repeatedly applying the operator â†

λ(k) to the ground
state |ψ0〉. After removing the infinite vacuum energy, we can find the relative energy of
each mode:

En(k) = n �ωk , (1.51)

and we can write the energy eigenstate of mode {k, λ} as |n〉k,λ or |nk,λ〉. These states are
commonly known as ‘Fock states’.

We can similarly define the operator

n̂ =
∑
λ

∫
dk â†

λ(k)âλ(k) . (1.52)

The Fock states are clearly also eigenstates of n̂:

n̂|n〉k′,λ = n|n〉k′,λ , (1.53)
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and for obvious reasons n̂ is called the number operator. We have seen that a†
λ(k) and aλ(k)

move us up and down the ladder of Fock states, and are therefore called the ‘creation’ and
‘annihilation’ operators, respectively.

However, the state created by applying the creation operator â†
λ(k), associated with a

plane wave, to the vacuum is not normalizable, and therefore unphysical. For example, the
scalar product of two single-excitation Fock states is

〈1k′,λ′ |1k,λ〉 = δλ,λ′ δ(k − k′) . (1.54)

In order to define physical states, we must construct well-behaved mode functions. Earlier,
we have seen that we can superpose plane waves

f (r, t) =
∫

dk
[
α∗(k) u(k; r, t)+ β∗(k) u∗(k; r, t)

]
, (1.55)

which can be normalized according to

(f , f ) = 1 ⇒
∫

dk
[
|α(k)|2 − |β(k)|2

]
= 1 . (1.56)

In general, f can be any well-behaved function, but in practice we often assume that f is
sharply peaked around a central wave vector k0. This can then be considered a normalizable
frequency mode, even though it is strictly an approximation.

Using the definition of the mode operators in Eq. (1.40), we can then write the mode
operator for the mode f with polarization λ as

b̂f λ =
√
ε

�

(
ελ f , Â

)
=
∫

dk
[
α(k) âλ(k)+ β(k) â†

λ(k)
]

. (1.57)

By definition, the mode operators b̂f λ and b̂†
f λ obey the commutation relation

[
b̂f λ, b̂

†
f λ′
]
= δλλ′ , (1.58)

and if f is part of an orthonormal set of mode functions {f1, f2, . . .}, the commutation
relations become[

b̂jλ, b̂
†
kλ′
]
= δλλ′ δjk and

[
b̂jλ, b̂kλ′

]
=
[
b̂†

jλ, b̂
†
kλ′
]
= 0 , (1.59)

where the subscripts j and k indicate the mode functions fj and fk , respectively. In the
remainder of this book, we will mostly consider these well-behaved, discretized mode
functions with their associated mode operators.

Assuming that β(k) = 0, a single excitation in mode fj with polarization λ can be
written as ∣∣1jλ

〉 = b̂†
jλ |0〉 =

∫
dk α∗j (k) â

†
λ(k) |0〉 , (1.60)
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where αj(k) is associated with fj , c.f., Eq. (1.55). This is the state of a ‘wave packet’, albeit
of infinite duration. It follows that

jλ〈1 |1〉jλ′ = δλ,λ′
∫

dk dk′ α∗j (k)αj(k
′)âλ(k)â†

λ′(k
′)

= δλ,λ′
∫

dk |αj(k)|2 ≡ δλ,λ′ , (1.61)

where we used Eq. (1.56). Wave packets with higher numbers of excitations are easily
generated by applying the discrete creation operator to the vacuum several times

|n〉jλ =
(b̂†

jλ)
n

√
n! |0〉 . (1.62)

The factor
√

n! is found by normalizing the states and using the commutation relations. We
can now be precise about the action of the discrete operators as follows

b̂jλ |n〉jλ =
√

n |n− 1〉f λ
b̂†

jλ |n〉jλ =
√

n+ 1 |n+ 1〉jλ . (1.63)

These relations strongly suggest an interpretation of |n〉jλ as a state of ‘n particles’. The

particle is created by the action of b̂†
jλ and annihilated by the action of b̂jλ, and is called

the ‘photon’. Photons in sharply peaked frequency modes have well-defined energy and
momentum.

The interpretation of |1〉jλ as a physical particle is not without problems. The photon is
massless, and is therefore the ultimate relativistic particle, travelling at the speed of light.As
a consequence, there is no position operator for the photon, unlike for traditional particles.
Another subtlety is that the superposition f can in principle be chosen with non-zero β(k),
which means that b̂ is a superposition of annihilation and creation operators â(k) and â†(k).
The concept of a photon therefore depends on the mode functions and the coordinate system.
We will encounter this mixing of creation and annihilation operators later in this chapter,
when we describe optical squeezing.

1.2.4 Quadrature operators

We now return to the continuous mode operators â(k) and â†(k), and momentarily suppress
the polarization degree of freedom λ for notational brevity. The creation and annihilation
operators are not Hermitian, and are therefore not associated directly with physical observ-
ables. However, they can be used to construct Hermitian operators. For example, for any
operator F̂ we can construct a Hermitian operator F̂†F̂ , and with F̂ = â this led to the
number operator â†â. We can also construct the Hermitian operator F̂ + F̂†. Including an
extra phase freedom, this leads us to define the ‘quadrature operator’ x̂ζ of the general form

x̂ζ (k) = e−iζ â(k)+ eiζ â†(k)√
2

, (1.64)
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for a particular mode k.The natural observables associated with x̂ζ (k) are not dimensionless,
and in order to find the constant of proportionality, we use the well-known fact that the free
field single-mode Hamiltonian operator is formally identical to the Hamiltonian of the
simple harmonic oscillator. It can therefore be written as

Hλ(k) = ω2
k q̂2
λ(ωk)+ p̂2

λ(ωk) . (1.65)

This must be of the same form as the definition in Eq. (1.45). It is not difficult to show that

q̂λ(k) =
√

�

2ωk

[
âλ(k)+ â†

λ(k)
]

(1.66)

and

p̂λ(k) = −i

√
�ωk

2

[
âλ(k)− â†

λ(k)
]

. (1.67)

These operators obey the commutation relation[
q̂λ(k), p̂λ′(k

′)
] = i� δλλ′ δ

3(k − k′) , (1.68)

and the operators q̂ and p̂ are therefore often called the ‘position’ and ‘momentum’ quadra-
tures. They are not really associated with the position and momentum of a particle; they
merely have the same commutation relations.

The quadratures are Hermitian by construction, and this therefore raises the question as
to how these observables should be interpreted physically. To answer this, consider a single
mode of the quantum field Â given in Eq. (1.27):

Âk(r, t) =
√

�

2(2π)3ε0ωk

[
â(k) eik·r−iωk t + â†(k) e−ik·r+iωk t

]
, (1.69)

where we have suppressed the polarization degree of freedom λ by considering just one
linear polarization direction. At a given time t and position r, we can write ζ = ωkt−k · r,
and the field becomes

Âk =
√

�

(2π)3ε0ωk

[
â(k) e−iζ + â†(k) eiζ

√
2

]
=
√

�

(2π)3ε0ωk
x̂ζ (k) . (1.70)

Similarly, the canonically conjugate momentum to Âk is 
Â = ε0∂ t Âk , which can be
written as


̂Âk
= −i

√
�ε0ωk

(2π)3

[
â(k) e−iζ − â†(k) eiζ

√
2

]
=
√

�ε0ωk

(2π)3
x̂ζ+π/2(k) . (1.71)

So the quadratures correspond to the physical observables that are the single-mode field
amplitudes of A and E ∝ �A.
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Exercise 1.5: Show that the commutation relations of the quadrature operators are[
x̂ζ (k), x̂ζ+π/2(k′)

] = iδ3(k − k′) and
[
x̂ζ (k), x̂ζ (k

′)
] = 0 . (1.72)

For any discrete mode, the expectation values of the quadrature operators x̂ζ (k) are
dimensionless, whereas the expectation values of position and momentum quadratures q̂
and p̂ have dimensions

√
ML and

√
MLT−1, respectively.

1.3 Mode functions and polarization

In this section we study in more detail some aspects of the mode functions and the polar-
ization. This is essentially a classical study, since the mode functions and the polarization
are inherited directly from classical electrodynamics. We first describe the structure of the
polarization of the field, and subsequently derive the orthonormal transverse mode functions
in terms of Hermite–Gaussian and Laguerre–Gaussian mode shapes.

1.3.1 Polarization

One of the most popular degrees of freedom for quantum information processing with
light is polarization. Usually, the polarization is defined in terms of the vector behaviour
of the electric field E. Here, however, we treat the vector potential Â as the fundamental
quantized field. Since the electric field is proportional to the canonical momentum of the
vector potential, and the time derivative of Â does not change the vector behaviour, we can
define the polarization based on the vector potential without problems.

We already established that polarization is closely related to the vector character of Â(r, t),
carried by the vector ελ, and we will now explore this in more detail. Using the plane-wave
expansion and the Coulomb gauge condition that ∇ · Â = 0, it follows that

ελ(k) · k = 0 for each λ . (1.73)

This means that the vectors ελ point transversely to the direction of propagation k. Fur-
thermore, since the two dynamical variables indicated by λ are independent, we can
choose

ελ(k) · ε∗λ′(k) = δλλ′ . (1.74)

The vectors ελ have unit length, and are now identified with the polarization of the field.
They may in general have complex components, since the vector potential will still be
Hermitian if the term with the creation operator contains the complex conjugate of ελ.

Suppose, without loss of generality, that the direction of propagation of the light is in the
z direction: k = k ẑ. We can then immediately construct two orthogonal vectors ε1 and ε2
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according to

ε1 =
⎛⎝1

0
0

⎞⎠ and ε2 =
⎛⎝0

1
0

⎞⎠ . (1.75)

Furthermore, we can rotate these vectors around the z axis over an angle θ to find a new set
of orthonormal vectors. In addition, the third component of the vector is always zero, and
we therefore omit it from the description. The two independent polarization vectors then
become

ε1 =
(

cos θ
sin θ

)
and ε2 =

(− sin θ
cos θ

)
. (1.76)

These are real vectors, and they are associated with ‘linear polarization’ since they point in
an unambiguous spatial direction.

What happens when the vectors ελ have complex components? Two possible orthonormal
polarization vectors are

εL = 1√
2

(
1
i

)
and εR = 1√

2

(
1
−i

)
. (1.77)

Due to the imaginary entries ±i, it is not straightforward to interpret the spatial direction
of these polarization vectors. It turns out that the imaginary entries cause a rotation of the
polarization in time. The polarization vectors in Eq. (1.77) therefore describe ‘circular’
polarization, and the two orthonormal vectors correspond to left-handed and right-handed
rotations. When the magnitudes of the real and imaginary components become unequal, we
speak of ‘elliptical polarization’. We will discuss the polarization of single photons in detail
in Chapter 5.

1.3.2 Transverse mode functions

The mode functions of the electromagnetic field, or in this case the vector potential, are
intrinsically a continuum, which has associated difficulties of normalization and precision in
addressing. For quantum information processing purposes it is essential that we have good
control over all possible degrees of freedom. We will derive an expression for properly
confined modes in the transverse direction, instead of infinitely extending plane waves, and
we then construct complete orthonormal sets of transverse mode functions. Finally, we use
these sets to construct the quantum mechanical creation and annihilation operators via the
procedure in Eq. (1.40).

First, we return to plane waves. The exact translational symmetry in the transverse plane
of the plane wave means that the propagation of the plane wave in the z direction is exact. In
reality, however, beams of light do not stretch out to infinity in the transverse directions. As
a result, translational invariance is lost, and the direction of propagation is no longer strictly
in the z direction. One way to understand this intuitively is to note that the localization of
the intensity at the position x = x0 and y = y0 requires some uncertainty in the transverse
momentum kx and ky. We next introduce the paraxial wave approximation, and then find
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the minimum uncertainty localized transverse mode. These modes can, in turn, be used as
a generating function when we construct the Hermite–Gaussian and Laguerre–Gaussian
transverse modes.

When the transverse momentum is small we can treat the beam in the ‘paraxial approxi-
mation’. We start with the Helmholtz equation for the jth spatial component of the classical
vector potential in the frequency domain Aj(r,ω), given by the Fourier transform

Aj(r, t) =
∫ ∞

0
dω Aj(r,ω)e−iωt . (1.78)

Using ω = ck , this leads to the wave equation for the Fourier components(
∇2 + k2

)
Aj(r,ω) = 0 . (1.79)

This is the Helmholtz equation. For a wave propagating in the z direction, we use the
following ‘Ansatz’ for Aj:

Aj(r,ω) = �j(r,ω) eikz . (1.80)

The differential operator acting on Aj can then be written as

∇2Aj = ∂2
x�j eikz + ∂2

y�j eikz + ∂z

[(
∂z�j + ik�j

)
eikz
]

. (1.81)

Substituting into Eq. (1.79), this leads to

∂2
x�j + ∂2

y�j + 2ik∂z�j + ∂2
z�j = 0 . (1.82)

Our discussion has been exact up to this point. We can now make the paraxial approxi-
mation when 2ik∂z�j  ∂2

z�j , that is, when the variation of the field in the direction of
propagation z is much smaller than the wavelength of the light. In addition, we require
∂2

z�j � ∂2
x�j , ∂2

y�j . The second derivative with respect to z can be dropped, leading to
the ‘paraxial wave equation’:

∂2

∂x2
�j + ∂2

∂y2
�j = −2ik

∂

∂z
�j . (1.83)

We will almost exclusively use the paraxial approximation in this book.
We note something interesting about the paraxial wave equation: when we treat z as a time

variable, Eq. (1.83) is formally identical to the Schrödinger equation. Consequently, we can
use well-known results from quantum mechanics in our discussion of the transverse mode
functions. In particular, it will allow us to derive the orbital angular momentum properties
of paraxial light beams.

Gaussian modes

Rather than constructing solutions to the paraxial wave equation directly, we will instead
derive a complete set of orthonormal mode functions for the classical case, and subsequently
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show that they are solutions to Eq. (1.83). We first derive the mode function of the lowest-
order Gaussian mode, and only then make the paraxial approximation.

In the scalar field approximation1 (where the polarization degree of freedom has been
suppressed, and A has become a scalar) we can write the transverse components for an
arbitrary solution of the wave equation with frequency ω in Cartesian coordinates

A(r,ω) =
∫

dk

√
�

ε0
δ

(
ω2

c2
− k2
)
α(k) eik·r + c.c.

=
∫

dk

√
�

ε0

δ
(
kz −
√

k2 − |k⊥|2
)

|2√k2 − |k⊥|2|
α(k) eik·r + c.c.

=
∫

dk⊥

√
�

ε0
f (k⊥) e

ikxx+ikyy+i
√

k2−k2
x−k2

y z + c.c.. (1.84)

In the first line the delta function is introduced to constrain the k vector to the ‘dispersion
shell’ k2 = ω2/c2. In the second line we have simplified the delta function according to

δ (h(x)) = δ(x0)

|h′(x0)| , (1.85)

where h′ is the derivative of h with respect to x, and x0 is defined by h(x0) = 0. There
are two solutions x0 in the above case, and we have selected the term that corresponds to
propagation in the positive z direction. In the last line of Eq. (1.84) we evaluated the integral
over kz and absorbed the factor |2√k2 − |k⊥|2|−1 into the amplitude function f , yielding

f (k⊥) ≡
α
(
k⊥,
√

k2 − |k⊥|2
)

2
∣∣∣√k2 − |k⊥|2

∣∣∣ , (1.86)

where k⊥ = (kx, ky) and dk⊥ = dkx dky. For convenience we define the mode function u as

u(k, r) = f (k⊥) exp

(
ik⊥ · r⊥ + i

√
k2 − k2⊥ z

)
. (1.87)

Even though this expression is still completely general, it will be most useful when we
consider propagation in the z direction, such that f (k⊥) becomes small very quickly when
|k⊥| becomes large.

The beam defined by the mode functions f (k⊥)will have a certain divergence, or ‘spread’
of the amplitudes f (k⊥) in k-space. This means that the transverse mode area of the beam
will become larger (or smaller) with increasing z. The divergence is given by the variance
in the transverse wave vector

(�k⊥)2 =
∫

dk⊥
(2π)2

(
k2

x + k2
y

)
|f (k⊥)|2 , (1.88)

1 We will often call A a field, rather than a potential, because we do not want to call A the scalar potential (which
strictly means �), and in the scalar approximation it is inappropriate to call A a vector potential.
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where the domain of integration is now taken as the entire transverse wave vector space
−∞ < kx, ky <∞.At the same time, the transverse extension in real space can be written as

(�r⊥)2 = ε0
�

∫
dx dy

(
x2 + y2

)
|A(r)|2 =

∫
dk⊥
(2π)2

(∣∣∣∣ ∂f∂kx

∣∣∣∣2 + ∣∣∣∣ ∂f∂ky

∣∣∣∣2
)

, (1.89)

where the last equality follows from Eq. (1.84) and integrating over x and y. We use the
Cauchy–Schwarz inequality for square-integrable complex functions g and h:∫

|g(a)|2 da ·
∫
|h(a)|2 da ≥

∣∣∣∣∫ da g(a) · h∗(a)
∣∣∣∣2 (1.90)

to obtain the classical ‘uncertainty relations’

�kx�x ≥ ‖f ‖
2

4π
and �ky�y ≥ ‖f ‖

2

4π
, (1.91)

where ‖f ‖2 is the norm of the mode function:

‖f ‖2 =
∫

dk⊥ |f (k⊥)|2 . (1.92)

For the minimum uncertainty in the beam (maximum transverse localization and minimum
divergence) the equality in Eq. (1.91) holds. This can only happen when kif and ∂f /∂ki

differ by a constant factor. It is straightforward to verify that in this case f must be a Gaus-
sian function of ki. The (exact) minimum uncertainty mode function u(ex)

0 (k, r) therefore
becomes

u(ex)
0 (k, r) = f (k⊥) eik·r = exp

(
ik⊥ · r⊥ + ikzz − w2

0

4
|k⊥|2

)
, (1.93)

for some real number w0. Indeed, it is clear that f (k⊥) drops to zero exponentially fast as
|k⊥| becomes large. We now make the paraxial approximation that |k⊥| is small compared
to k , and that led to the paraxial wave equation in Eq. (1.83):

kz =
√

k2 − |k⊥|2 � k − |k⊥|
2

2k
. (1.94)

This leads to the following expression for the approximate mode function u0(k, r):

u0(k, r) = exp

[
ik⊥ · r⊥ + ikz −

(
w2

0

4
+ iz

2k

)
|k⊥|2

]

= exp

[
ik⊥ · r⊥ + ikz − s2(z)

4
|k⊥|2

]
. (1.95)

The parameter w0 is the beam waist and we have defined the complex parameter s:

s2(z) ≡ w2
0 +

2iz

k
, (1.96)
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Fig. 1.1. The mode shape of a beam of light localized in the transverse direction. The beam waist is w0 and
the Rayleigh length is zR. The angle of divergence is θ , which must be small for the paraxial
approximation to hold.

which can be interpreted as the curvature of the wave front. Since the divergence of the beam
is non-zero, the surfaces of constant phase are no longer planes of constant z extending in
the xy direction; they are curved surfaces. The surfaces of constant phase can be extracted
by writing the complex mode function u0(k, r) in polar notation and setting the phase equal
to a constant. The mode has a characteristic length in the direction of propagation, called
the ‘Rayleigh length’:

zR = kw2
0

2
= πw2

0

λ
, (1.97)

which is the distance along the beam in which the waist becomes twice as large (in linear
dimensions), as shown in Fig. 1.1. Here, λ = 2π/k is the wavelength of the light. The
(scalar) field A0(r,ω) in the fundamental Gaussian transverse mode can now be written as
(ω = ck)

A0(r,ω) =
∫

dk⊥√
ε0

u0(k, r)+ c.c.

= 4π√
ε0 s2(z)

exp

(
ikz − x2 + y2

s2(z)

)
+ c.c. . (1.98)

Exercise 1.6: Show that Eq. (1.98) is a solution to the paraxial wave equation.

In the quantum theory, the single-field mode in Eq. (1.98) is associated with the annihila-
tion operator â(k). The Gaussian function then describes the appropriate amplitude function
in the transverse to the beam direction. A physical state of a photon would require a fur-
ther regularization of the continuum of modes in the direction of propagation. For a mode
function strongly peaked around wave vector k0 we can then assign the photon a frequency
ω0 = ck0.

Hermite–Gaussian modes

The Gaussian beam is only one possible transverse mode shape. In particular, we expect
that we can construct basis functions that can be used to describe any transverse amplitude
distribution. For example, such a basis can be given in terms of Hermite polynomials.
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We can write a general transverse mode shape of a field mode with (central) frequency
ω as a power expansion in kx and ky:

u(k, r) =
∞∑

n,m=0

cnmkn
x km

y u0(k, r). (1.99)

Suppose that a particular cnm = 1, and all the other coefficients are zero. The higher-order
mode Anm of the field can then be written as

Anm(r,ω) =
∫

dk⊥√
ε0
(ikx)

n(iky)
mu0(k, r)+ c.c.

=
∫

dk⊥√
ε0

∂n+m

∂xn∂ym
u0(k, r)+ c.c.

= ∂n+m

∂xn∂ym
A0(r,ω) . (1.100)

Given Eq. (1.98), it is clear that the field can be written in terms of Hermite polynomials:

Hq(x) = (−1)q ex2 dq

dxq
e−x2

. (1.101)

This leads to a frequency component of the field in mode n, m

Anm(r,ω) = 4π(−1)n+m

√
ε0 sn+m+2(z)

Hn

(x

s

)
Hm

(y

s

)
exp

[
ikz − x2 + y2

s2(z)

]
+ c.c. . (1.102)

If we take the Fourier transform in the frequency domain again, we find that the real scalar
field becomes

Anm(r, t) =
∫

dk uhg
nm(k; r, t)+ c.c., (1.103)

with

uhg
nm(k; r, t) = 4π(−1)n+m

sn+m+2(z)
Hn

(x

s

)
Hm

(y

s

)
exp

[
ikz − iωk t − x2 + y2

s2(z)

]
, (1.104)

the Hermite–Gaussian mode functions.
We can now construct the quantum theory by associating an annihilation operator ânm(k)

with the functions uhg
nm(k; r, t) using Eq. (1.40)

Â(r, t) =
√

�

ε0

∞∑
n,m=0

∫
dk
[
ânm(k) u

hg
nm(k; r, t)+ â†

nm(k) u
hg∗
nm (k; r, t)

]
. (1.105)

The modes uhg
nm(k; r, t) are complete and orthonormal (see Hochstadt, 1971), and depend

intrinsically on the waist dimension w2
0 (or, equivalently, the wave-front curvature s2(z)).

Some of the lower-order modes are shown in Fig. 1.2.



23 1.3 Mode functions and polarization

The argument of the Hermite polynomials in uhg
nm(k; r, t) is complex because s2(z) is

complex.These are the so-called elegant Hermite–Gaussian modes.There are also ‘standard’
Hermite–Gaussian modes, in which the argument of the Hermite polynomials is real. The
elegant modes can be written in terms of the standard modes, and the imaginary part is
then captured by a phase factor, called the ‘Gouy phase’. Most lasers create fields that are
near standard Hermite–Gaussian modes. For the translation from the elegant to the standard
modes, we refer the reader to Enderlein and Pampaloni (2004).

Laguerre–Gaussian modes

The Hermite–Gaussian functions were found using a power expansion of the wave vectors
kx and ky of the transverse mode function in Cartesian coordinates. We can also choose a
rotated coordinate system x′ and y′ and expand the transverse mode functions in terms of
kx′ and ky′ , which leads simply to rotated Hermite–Gaussian modes. However, instead of
Cartesian coordinates in the transverse plane, we can also use ‘polar’ coordinates (r,φ):

x = r cosφ and y = r sin φ or

x + iy = reiφ ≡ σ and x − iy = re−iφ ≡ σ̄ . (1.106)

The transverse mode function can then be expanded as

u(k, r) ∝
∞∑

l,m=0

dlmkl+kl+m− u0(k, r) , (1.107)

with k± = kx ± iky. We have chosen the powers l and l + m such that our equations will
simplify later on. In polar coordinates the fundamental Gaussian mode becomes

A0(r,ω) = 1

s2(z)
exp

(
ikz − σ σ̄

s2(z)

)
. (1.108)

We can then write for the field with a particular l and m:

Alm(r,ω) ∝
∫

dk⊥ (ik+)l(ik−)l+m u0(k, r)

=
∫

dk⊥
∂2l+m

∂σ l∂σ̄ l+m
u0(k, r)

= ∂2l+m

∂σ l∂σ̄ l+m
A0(r,ω) . (1.109)

Using the definition of the generalized Laguerre polynomials

Lm
l (ξ) =

eξ ξ−m

l!
dl

dξ l

(
eξ ξ l+m

)
(1.110)
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this leads, after some algebra, to the elegant Laguerre–Gaussian mode functions

Alm(r,ω) = 4π(−1)l+ml!√
ε0 s2(l+m+1)(z)

r|m|eimφLm
l

(
r2

s2(z)

)
exp

(
ikz − r2

s2(z)

)
+ c.c. . (1.111)

Taking the Fourier transform over the frequency domain, this leads to the classical field

Alm(r, t) =
∫

dk ulg
lm(k; r, t)+ c.c., (1.112)

with

ulg
lm(k; r, t) = 4π(−1)l+ml!

s2(l+m+1)(z)
r|m|eimφLm

l

(
r2

s2(z)

)
exp

(
ikz − iωk t − r2

s2(z)

)
. (1.113)

Analogous to the Hermite–Gaussian case, we can now construct the quantum field for the
elegant Laguerre–Gaussian modes:

Â(r, t) =
√

�

ε0

∞∑
l,m=0

∫
dk
[
âlm(k) u

lg
lm(k; r, t)+ â†

lm(k) u
lg∗
lm (k; r, t)

]
. (1.114)

The Laguerre–Gaussian mode functions are orthogonal and complete (see, for example,
Hochstadt, 1971), and the lowest-order modes are shown in Fig. 1.2.

As noted before, the paraxial wave equation has a similar form to the Schrödinger
equation, where the time parameter is replaced with z. This allows us to use key results
from quantum mechanics. Specifically, we can construct an angular momentum operator
L̂z using the transverse position and momentum operators:

L̂z = x̂p̂y − ŷp̂x = �

i

∂

∂φ
. (1.115)

Fig. 1.2. The lowest-order transverse mode functions.
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It is immediately clear from Eq. (1.113) that the Laguerre–Gaussian mode functions ulg
lm

are eigenfunctions of L̂z:

L̂z ulg
lm(k, r) = m� ulg

lm(k, r) . (1.116)

The Laguerre–Gaussian modes therefore carry orbital angular momentum in that the beam
exerts a torque on the medium it travels through. These are sometimes also called ‘helical’
modes. The angular momentum is quantized (with quantum numbers l and m) such that
each photon carries an orbital angular momentum of m�. This effect is different from
the spin angular momentum, or polarization of the light. In particular, the orbital angular
momentum is not restricted to ±�. In some circumstances it is difficult to separate spin
and orbital angular momentum, since both are determined by the direction and phase of the
electric and magnetic fields in the beam.

1.4 Evolution of the field operators

So far, we have concentrated mostly on the spatial aspects of the electromagnetic quantum
field. However, it is important for all physical applications, and for quantum information
processing in particular, to find the time evolution of the quantum fields. There are two
equivalent ways of achieving this. We can either take the time dependence into account
when we give a description of the quantum state (the Schrödinger picture), or we can
describe the time dependence in terms of the operators (the Heisenberg picture). Later
in the book we will adopt a hybrid approach, where the free evolution of the systems is
described in the state, and the deviation from this is described by the interaction Hamiltonian
(the interaction picture). For now, we will use the Heisenberg picture.

1.4.1 The Heisenberg equations of motion

In the Heisenberg picture an arbitrary Hermitian operator A evolves in time under the
influence of a unitary operator U (t) such that

A(t) = U (t)AU †(t) with U (t) = exp

(
− i

�
Ht

)
, (1.117)

where t is the time and H the Hamiltonian. In the exponential form of U (t), the Hamiltonian
is often called the ‘generator’ of U . For convenience, we define μ = −it/�, such that we
have

A(μ) = exp(μH)A exp(−μH) . (1.118)

A general Taylor expansion of A(μ) around μ = 0 can be written as

A(μ) = A(0)+ μ dA

dμ

∣∣∣∣
μ=0

+ μ
2

2!
d2A

dμ2

∣∣∣∣
μ=0

+ · · · (1.119)
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Next, we evaluate the derivatives of A to μ in Eq. (1.119) using Eq. (1.118) and

i�
dU (t)

dt
= HU (t) . (1.120)

In terms of the commutators with H the derivatives of A become:

dA

dμ
= [H, A] and

d2A

dμ2
= [H, [H, A]] , (1.121)

and so forth. This leads to the Baker–Campbell–Hausdorff relation

A(μ) = A(0)+ μ[H, A(0)] + μ
2

2! [H, [H, A(0)]]+ · · · (1.122)

This equation is true for all Hermitian operators H and complex parameters μ. Hermiticity
of A is not required. In compact notation it reads

eμBAe−μB = A+ μ[B, A] + μ
2

2! [B, [B, A]] + · · · , (1.123)

where B is Hermitian. Taking the time derivative of Eq. (1.117) we find the Heisenberg
equation of motion for the operator A(t):

dA(t)

dt
= i

�
[H, A(t)]+ ∂A(t)

∂t
. (1.124)

The Heisenberg equations of motion for the creation and annihilation operators are then

dâλ(k)

dt
= i

�

[
H, âλ(k)

]
and

dâ†
λ(k)

dt
= i

�

[
H, â†

λ(k)
]

, (1.125)

where we have exploited the fact that the annihilation and creation operators do not have an
explicit time dependence. Using the expression in Eq. (1.47) we can solve the differential
equations for the creation and annihilation operators to get

âλ(k, t) = âλ(k) e
−iωk t and â†

λ(k, t) = â†
λ(k) e

iωk t . (1.126)

The time-dependent annihilation operator is obtained by integrating over all wave vectors k:

âλ(t) =
∫

dk âλ(k) e
−iωk t , (1.127)

and the time-dependent number operator can be written as

n̂λ(t) = â†
λ(t)âλ(t) =

∫
dk
∫

dk′ â†
λ(k) âλ(k

′) e−i(ωk′−ωk)t . (1.128)

Exercise 1.7: Derive the Heisenberg equations of motion in Eq. (1.124).
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As an example, suppose we have a wave packet containing exactly one photon with
polarization λ, defined in Eq. (1.60)

|1j,λ〉 =
∫

dk αj(k)â
†
λ(k)|0〉 , (1.129)

where, as in Section 1.2 the state is normalized according to a mode function αj(k) and |0〉
is the global vacuum state (i.e., no excitations in any mode). The number density 〈n̂〉 at time
t is readily calculated to be

〈1j,λ|n̂λ(t)|1j,λ〉 =
∣∣∣∣∫ dk αj(k) e

−iωk t
∣∣∣∣2 . (1.130)

This is a function in t that depends on the amplitudes αj(k). We can construct temporally
localized, single-photon wave packets by choosing a suitable αj(k) in Eq. (1.129). For
example, a Lorentzian wave packet is defined by

αL(k) = 1√
π

√
γ

γ + i(ωk − ω0)
(1.131)

with median ω0, and γ parameterizes the width of the distribution. Alternatively, Gaussian
wave packets can be written as

αG(k) = 1
4
√

2πσ 2
exp

[
− (ωk − ω0)

2

4σ 2

]
, (1.132)

which amounts to a wave packet with central frequency ω0 and spectral width 2σ . These
modes must be broadband, and when we speak of ‘the frequency’ of the wave packet, we
mean the central (mean) frequency, or median in the case of the Lorentzian.

The evolution of the quadrature operators is similarly determined by the Heisenberg
equation of motion

dx̂ζ (k)

dt
= i

�

[
H, x̂ζ (k)

]
, (1.133)

the solution of which is given by

x̂ζ (k, t) = e−i(ζ+ωk t) â(k)+ ei(ζ+ωk t) â†(k)√
2

. (1.134)

Integrating over all wave vectors then yields the time-dependent quadrature operator:

x̂ζ (t) = e−iζ â(t)+ eiζ â†(t)√
2

. (1.135)

The position and momentum quadratures are then given by

q̂(t) =
√

�

2ωk

[
â(t)+ â†(t)

]
and p̂(t) = −i

√
�ωk

2

[
â(t)− â†(t)

]
. (1.136)
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1.4.2 Time-bin mode operators

We have shown how to construct temporally localized mode functions, with the Lorentzian
and Gaussian wave packets as examples. Here, we will construct mode operators that
create and annihilate photons in finite time intervals, or ‘time bins’, which are important
in quantum communication. It is most convenient to construct the time-bin operators from
discrete, one-dimensional plane-wave operators ân in a cavity of length L. The index n
relates to the discrete frequency ωn = nπc/L, and the corresponding wave number is
kn = nπ/L. The field operator in terms of discrete modes is then given by

Â = 1√
N + 1

√
�

ε0

N∑
n=0

[
ânun(r, t)+ â†

nu∗n(r, t)
]

, (1.137)

where we have suppressed the polarization for notational simplicity, and we cut off the
frequency at some sufficiently high value.

The finite time interval τ is determined by the cut-off frequency ωN , above which the
modes are unoccupied. This allows us to truncate the plane-wave expansion, and set

τ = 2L

c(N + 1)
and ωnτ = 2πn

N + 1
. (1.138)

We define the time-bin annihilation operator as

b̂μ = 1√
N + 1

N∑
n=0

e−iμωnτ ân , (1.139)

which has the inverse

ân = 1√
N + 1

N∑
μ=0

eiμωnτ b̂μ . (1.140)

The integer μ indicates the time bin. To see that this can really be interpreted as a time-bin
operator, we relate b̂μ to the annihilation operator â(t) in the time domain

â(t) =
∞∑

n=0

e−iωnt ân = 1√
N + 1

∞∑
n=0

N∑
μ=0

e−iωn(t−μτ) b̂μ

=
N∑
μ=0

(
1√

N + 1

∞∑
n=0

e−iωn(t−μτ)
)

b̂μ

=
N∑
μ=0

αμ(t) b̂μ , (1.141)

where, using ω = πc/L

αμ(t) = 1√
N + 1

[
1− e−iω(t−μτ)]−1

(1.142)
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are the time-bin expansion functions. They depend only on t − μτ and are discrete trans-
lations of αμ(0) with period τ : this is the requirement for b̂μ to be a time-bin operator.
Since we constructed the time-bin operators from (a discrete set of) infinite plane waves,
the αμ(t) are highly singular when t → μτ . Discrete mode functions, which have localized
transverse and longitudinal profiles and a regularized frequency distribution, can be used
to remove the singularity. The time-bin expansion function that is most natural for a given
application depends on the mode functions that describe the photon source.

We still need to verify if the operator b̂μ and its Hermitian adjoint b̂†
μ are valid mode

operators. In other words, we need to verify that the commutation relations hold. Assuming
that [ân, â†

m] = δnm, we can write

[
b̂μ, b̂†

ν

]
= 1

N + 1

N∑
n,m=0

e−iμωnτ+iνωmτ
[
ân, â†

m

]

= 1

N + 1

N∑
n=0

e−i(μ−ν)ωnτ

= 1

N + 1

N∑
n=0

e−2π i(μ−ν)n/(N+1)

= δμν , (1.143)

which is indeed the correct commutation relation for photons. The last equation can be
regarded as a definition of the Kronecker delta symbol. The remaining commutation
relations are also satisfied by the time-bin operators.

1.4.3 Mode transformations and optical elements

We have seen that the mode operators are defined with respect to mode functions, and that
linear mode transformations lead to Bogoliubov transformations of the mode operators. The
question is then how we generate Bogoliubov transformations. Since they are unitary, they
must be generated by Hermitian Hamiltonians. This will lead to a physical interpretation
of these Hamiltonians in terms of ideal beam splitters and phase shifters. In the remainder
of this chapter we will use discrete physical modes.

Let us assume that the mode functions are sharply peaked such that the discrete modes are
labelled with j, and can be associated with central wave vectors kj , and label the operators

âjλ and â†
jλ. The time evolution of a discrete single-mode operator depends only on the

discrete free-field Hamiltonian Hjλ = �ωk â†
jλâjλ, and this generates the natural ‘phase

shift’ exp(−iωj t) accumulated by the free evolution. This gives us a clue how to describe
lossless phase shifts in optical modes that are induced by materials with a refractive index
nr . When a dielectric of length � is inserted in the optical beam, the phase shift is φ = nrk�,
where k = |k| is the wave number of the optical mode. We can construct a dimensionless
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Fig. 1.3. Graphical representations of optical elements: (a) the phase shifter; (b) the beam splitter; and (c)
the polarization rotation.

single-mode ‘interaction’ Hamiltonian2 Hjλ

Hjλ(φ) ≡ �φ â†
jλâjλ and U (φ) = exp

[
− i

�
Hjλ(φ)

]
. (1.144)

To stress that this is not ordinary time evolution, we have removed the parameter t from the
unitary operator and replaced it with φ. This will induce the transformation

b̂jλ = exp

[
− i

�
Hjλ(φ)

]
âjλ exp

[
i

�
Hjλ(φ)

]
= âjλ e−iφ . (1.145)

The interaction Hamiltonian in Eq. (1.144) can be written in terms of the number operator
for mode kj , and the number operator is therefore the generator of phase shifts. See Fig.
1.3a for a graphical representation of the phase shift.

Similarly, we can construct an interaction Hamiltonian for two modes kj and kl and fixed
polarization λ

Hjl(ζ ,ϕ) = �ζeiϕ â†
jλâlλ + �ζe−iϕ âjλâ

†
lλ . (1.146)

Both terms must be present to ensure that Hjl(ζ ,ϕ) is Hermitian. If we interpret Hjl(ζ ,ϕ)
physically, it describes the creation of a photon in mode {kj , λ} and the annihilation of a
photon in mode {kl , λ}, and vice versa. We therefore expect that Hjl(ζ ,ϕ) is the interaction
Hamiltonian for a beam splitter mixing modes kj and kl . Indeed, when we calculate the
transformations of âjλ and âlλ using the Baker–Campbell–Hausdorff relation, we find that

b̂jλ = e
i
�

Hjl âjλe
− i

�
Hjl = cos ζ âjλ − ieiϕ sin ζ âlλ ,

b̂lλ = e
i
�

Hjl âlλe
− i

�
Hjl = −ie−iϕ sin ζ âjλ + cos ζ âlλ . (1.147)

2 It is not an interaction Hamiltonian in the standard sense of interactions, since we are considering free fields.
There is a microscopic interaction of the field with the dielectric, but the details are averaged out in this
Hamiltonian.
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This can be expressed in terms of a unitary matrix:(
b̂jλ

b̂lλ

)
=
(

cos ζ −ieiϕ sin ζ
−ie−iϕ sin ζ cos ζ

)(
âjλ

âlλ

)
. (1.148)

A physical beam splitter is typically described with ϕ = 0 or ϕ = π/2. When ζ = π/4,
we have a 50:50 beam splitter. The two-mode transformation given here is therefore a
generalized beam-splitter transformation. The beam-splitter and phase-shifter elements are
shown in Fig. 1.3b.

In the above example of a beam splitter we chose two modes with identical polarization λ,
but different wave vectors kj and kl . However, we can also vary the polarization (λ ∈ {1, 2})
and keep the wave vector constant:

Hj(θ) = �θeiϕ â†
j1âj2 + �θe−iϕ âj1â†

j2 . (1.149)

This will lead to a polarization rotation(
b̂1

b̂2

)
=
(

cos θ −ieiϕ sin θ
−ie−iϕ sin θ cos θ

)(
â1

â2

)
, (1.150)

where we have suppressed the dependence on kj for notational brevity. The graphical
representation of a polarization rotation is given in Fig. 1.3c.

If we also include a relative phase shift φ in the two modes a1 and a2, the corresponding
matrix

U (φ, θ ,ϕ) =
(

eiφ/2 cos θ −ieiϕ sin θ
−ie−iϕ sin θ e−iφ/2 cos θ

)
(1.151)

is the most general two-mode unitary transformation. In other words, any 2 × 2 unitary
matrix can be written as a particular trio of angles (φ, θ ,ϕ).

The beam splitter and the polarization rotation described here are lossless, and are there-
fore idealizations of real beam splitters and polarization rotations, as implemented by e.g.,
half-silvered mirrors and quarter wave plates. Nevertheless, we will see later that we can
account for photon loss quite easily in this formalism, and considering that the losses must
be low for quantum information processing anyway, this is an excellent approximation.

As a practical example of linear mode transformations, consider the Mach–Zehnder
interferometer (Fig. 1.4). It consists of two input and output modes, two 50:50 beam splitters
BS1 and BS2, and a relative phase shift φ between the internal arms in the interferometer.
Suppose the input modes are â1 and â2, and the output modes are b̂1 and b̂2. The mode
transformations are (

b̂1

b̂2

)
= 1

2

(
1 1
−1 1

)(
1 0
0 eiφ

)(
1 −1
1 1

)(
â1

â2

)
,
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Fig. 1.4. The Mach–Zehnder interferometer.

where the first matrix represents BS2, the second is the phase shift, and the third represents
BS1. The intensities (proportional to the number operators of the modes) in the output can
be related to the intensities in the input:

b̂†
1b̂1 − b̂†

2b̂2 = cosφ
(
â†

1â1 + â†
2â2

)
− i sin φ

(
â†

1â2 + â†
2â1

)
,

b̂†
1b̂1 + b̂†

2b̂2 = â†
1â1 + â†

2â2 . (1.152)

Taking the expectation values on the right-hand side with respect to the input state gives
the expectation value of the intensity sum and difference in the output modes. The second
equality expresses photon number conservation in the Mach–Zehnder interferometer. Mea-
suring the intensity difference of the output modes gives information about the (unknown)
phase shift φ. We will return to this topic in Chapter 13.

1.4.4 Normal modes

A beam splitter is an example of the mixing of two optical modes. Often, we can think
of the modes as two Gaussian beams that have near-perfect overlap on the beam splitter.
It is then a good approximation to treat the system as an ‘interferometer’ of two discrete
modes, described by a unitary 2 × 2 matrix. This can be generalized to many modes. For
N discrete modes, the transformation is an N × N unitary matrix. The physical system is
sometimes called an ‘N -port interferometer’ (Fig. 1.5). The question is now whether we
can create any conceivable N -port interferometer out of regular beam splitters and phase
shifters, or whether we need more arbitrary M -point beam splitters (2 < M ≤ N ) that are
not reducible to beam splitters and phase shifters.

Reck et al. (1994) proved that every N -mode unitary transformation can be constructed
from at most N (N − 1)/2 beam splitters and phase shifters. A sketch of their proof runs as
follows: let’s denote the unitary transformation that describes the N -port interferometer by
U (N ). In addition, we define the matrix Tnm as the N -dimensional identity operator I(N )
with the elements Inn, Inm, Imn, and Imm replaced by the four elements of a 2 × 2 unitary
matrix. We can then use the Tnm to reduce the size of U (N ):

U (N ) · TN ,N−1 · TN ,N−2 · · ·TN ,1 = U (N − 1)⊕ eiφ . (1.153)



33 1.4 Evolution of the field operators

Fig. 1.5. The N-port interferometer in terms of generalized beam splitters.

In block schematics this is⎛⎜⎜⎜⎜⎜⎝ U (N )

⎞⎟⎟⎟⎟⎟⎠ · TN ,N−1 · · ·TN ,1 =

⎛⎜⎜⎜⎝ U (N − 1) 0

0 eiφN

⎞⎟⎟⎟⎠ . (1.154)

We therefore need N −1 matrices T to reduce the unitary U (N ) to U (N −1). We can repeat
this procedure to reduce U (N − 1) to U (N − 2), and so on. In total, we have to use at most
N (N − 1)/2 matrices T to reduce U (N ) to a diagonal matrix with only phases as non-zero
elements:

U (N ) · TN ,N−1 · TN ,N−2 · · ·T2,1 =
⎛⎜⎝eiφ1 0

. . .

0 eiφN

⎞⎟⎠ . (1.155)

Since the T matrices are unitary (and therefore invertible), we can write U (N ) as a series
of N (N − 1)/2 matrices acting on the diagonal matrix in Eq. (1.155). Because every Tnm

matrix is associated with a beam splitter and phase shift on modes n and m, this means that
any N -port interferometer can be constructed with only beam splitters and phase shifters.

Since U (N ) can be deconstructed into a series of beam splitters and phase shifters on
discrete modes an, we can write its generator in terms of a Hamiltonian

H1...N (B) = �

N∑
n,m=1

â†
n Bnm âm , (1.156)

where B is a Hermitian matrix. In the following argument, we will suppress the subscripts
and argument of H for brevity. Under the influence of this Hamiltonian a mode operator ân

becomes

ân → b̂n = e
i
�

H ân e−
i
�

H =
N∑

m=1

Unmâm . (1.157)
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The Unm are elements of the unitary matrix U (N ). We can diagonalize H by diagonalizing
B using a unitary matrix V :

VHV † = �

N∑
j,n,m=1

Vjnâ†
nV ∗nj VjnBnmV ∗mj VjmâmV ∗mj

= �

N∑
j=1

b̂†
j Djj b̂j , (1.158)

where D is a diagonal matrix. This gives us the ‘normal modes’ b̂n given in Eq. (1.157)
with Unm = VnmV ∗mn. By construction, these modes diagonalize the Hamiltonian, which
in turn describes a set of non-interacting modes. Since beam splitters can be transformed
away using linear Bogoliubov transformations, their operation does not constitute a real
interaction between modes (and by implication between photons). This will have profound
implications for optical quantum information processing.

1.4.5 Non-photon-number-preserving transformations

So far, the ‘interaction’Hamiltonians have generated transformations of annihilation opera-
tors into other annihilation operators (and creation operators into other creation operators).
However, we have seen in Eq. (1.42) that the most general mode transformations allow
for the transformation of annihilation operators into creation operators, and vice versa. The
question is therefore which Hamiltonian can generate such Bogoliubov transformations.

There is one type of quadratic Hamiltonian that we have not yet considered, namely the
Hamiltonians that are proportional to â2 and â†2. First, we consider the Hamiltonian

Hj(ξ ,ϕ) = �ξeiϕ â2
jλ + �ξe−iϕ â†2

jλ . (1.159)

We use the Baker–Campbell–Hausdorff relation from Eq. (1.123) to calculate the trans-
formed mode operators

b̂jλ = cosh(2ξ) âjλ − ie−iϕ sinh(2ξ) â†
jλ

b̂†
jλ = ieiϕ sinh(2ξ) âjλ + cosh(2ξ) â†

jλ . (1.160)

In matrix form this is(
b̂jλ

b̂†
jλ

)
=
(

cosh(2ξ) −ie−iϕ sinh(2ξ)
ieiϕ sinh(2ξ) cosh(2ξ)

)(
âjλ

â†
jλ

)
. (1.161)

We now observe that the quadratic Hamiltonian in Eq. (1.159) mixes the creation and
annihilation operators of the mode ajλ. This is called ‘single-mode squeezing’.
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Alternatively, we can define ‘two-mode squeezing’ as the mode transformation that is
induced by the Hamiltonian

Hjl(ξ ,ϕ) = �ξeiϕ âjλâlλ′ + �ξe−iϕ â†
jλâ

†
lλ′ . (1.162)

The mode transformation then becomes

b̂jλ = cosh ξ âjλ − ieiϕ sinh ξ â†
lλ′

b̂lλ′ = −ie−iϕ sinh ξ â†
jλ + cosh ξ âlλ′ . (1.163)

In terms of the matrix representation this transformation can be written as⎛⎜⎜⎜⎝
b̂jλ

b̂†
jλ

b̂lλ′

b̂†
lλ′

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎝

cosh ξ 0 0 −ieiϕ sinh ξ
0 cosh ξ ie−iϕ sinh ξ 0
0 ieiϕ sinh ξ cosh ξ 0

−ie−iϕ sinh ξ 0 0 cosh ξ

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

âjλ

â†
jλ

âlλ′

â†
lλ′

⎞⎟⎟⎟⎠ .

We now have all the ingredients for a general theory of discrete linear mode transforma-
tions: a general Bogoliubov transformation is given by

b̂i =
∑

j

Aij âj + Bij â†
j

b̂†
i =
∑

j

B∗ij âj + A∗ij â†
j , (1.164)

where the labels i and j include the polarization degree of freedom. The operators b̂i and b̂†
i

must again be proper annihilation and creation operators, which means they have to obey
the commutation relations[

b̂i, b̂
†
j

]
= δij and

[
b̂i, b̂j

]
=
[
b̂†

i , b̂†
j

]
= 0 . (1.165)

This leads to the following restrictions on A and B:

ABT =
(
ABT
)T

and AA† = BB† + Î. (1.166)

The second equation indicates that AA† and BB† are simultaneously diagonalized, for exam-
ple by a matrix U . The matrices A and B are then diagonalized according to the singular
value decomposition theorem:

A = UADV † and B = UBDW †, (1.167)

where AD and BD are diagonal matrices. To determine the relation between V and W , we
consider the inverse transformation:

âi =
∑

j

A∗ij b̂j − B∗ij b̂†
j . (1.168)
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Following the same argumentation as before, we find the restriction

A†B =
(
A†B
)T

and A†A =
(
B†B
)T + Î. (1.169)

This leads to the relation V ∗ = W , and

A = UADV † and B = UBDV T . (1.170)

When we write the Bogoliubov transformation in matrix notation with �a = (â1, . . . , âN )

and �b = (b̂1, . . . , b̂N ), we obtain( �b
�b†

)
=
(

U 0
0 U ∗

)(
AD BD

B∗D A∗D

)(
V † 0
0 V T

)( �a
�a†

)

=
(

A B
B∗ A∗

)( �c
�c†

)
, (1.171)

which agrees with Eq. (1.170). The three matrices in the top line are three successive
components in a nonlinear optical interferometer. The two block-diagonal matrices in the
first line do not mix creation and annihilation operators, and therefore describe linear optical
interferometers. The central matrix does mix creation and annihilation operators. However,
the components AD, BD, A∗D, and B∗D are themselves diagonal matrices, and the entire
matrix therefore corresponds to a set of single-mode squeezers. This procedure is called the
‘Bloch–Messiah reduction’, and is shown in Fig. 1.6.

The generator that is responsible for the Bogoliubov transformation in Eq. (1.164) is, in
terms of the normal modes,

H = �

2

∑
i

b̂†
i b̂i . (1.172)

Fig. 1.6. The Bloch–Messiah reduction: (a) a general multi-port interferometer including multi-mode
squeezing; (b) the reduction of the interferometer in two linear optical interferometers U and V†,
and a set of single-mode squeezers S.
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We can now substitute the mode transformation in Eq. (1.164) into H in order to obtain

H = �

2

∑
ijk

[(
Aij âj + Bij â†

j

) (
B∗ik âk + A∗ik â†

k

)]
= �

2

∑
ijk

[
âjAijB

∗
ik âk + â†

j BijA
∗
ik â†

k + âjAijA
∗
ik â†

k + â†
j BijB

∗
ik âk

]
= �

2

∑
jk

[
âjFjk âk + 2â†

j Gjk âk + â†
j F∗jk â†

k

]
, (1.173)

where

Fjk =
∑

i

AijB
∗
ik (1.174)

and

Gjk = 1

2

∑
i

(
AijA

∗
ik + B∗ijBik

)
+ δjk

2
=
∑

i

AijA
∗
ik . (1.175)

The last equation follows from Eq. (1.166). The Hamiltonian in Eq. (1.173) is the most
general quadratic Hamiltonian. It governs the dynamics of free fields, where the mix-
ing of modes is given by the Bogoliubov transformations. These transformations can be
implemented with beam splitters and phase shifters, as well as single-mode squeezers.

At this point we should mention a possible source of confusion in the nomenclature. The
Bogoliubov transformation in Eq. (1.42) is linear, since it transforms a mode operator into a
linear combination of other mode operators. As we have seen, these linear transformations
are induced by generators (Hamiltonians) that are quadratic in the mode operators. In
particular, both (generalized) beam-splitter and squeezing transformations are generated by
quadratic Hamiltonians. On the other hand, when people mention linear optics, they often
refer specifically to optical elements that are described by generalized beam-splitters, and
not squeezers. The reason is that beam-splitters and phase-shifters are implemented with
linear dielectric media, whereas squeezing requires a nonlinear dielectric medium. When
using the term linear, we must therefore always give its context, namely either the mode
transformations of optical elements or the physical implementation.

1.5 Quantum states of the electromagnetic field

We have seen how the creation and annihilation operators produce and destroy photons
in their respective optical modes. In this section we study how linear and quadratic func-
tions of the mode operators can be used to define two important classes of states of the
electromagnetic field. Linear Hamiltonians give rise to ‘coherent states’, while quadratic
Hamiltonians produce ‘squeezed states’.


