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Preface

This is a textbook for an introductory course on linear partial differential equa-
tions (PDEs) and initial/boundary value problems (I/BVPs). It also provides a
mathematically rigorous introduction to Fourier analysis (Chapters 7, 8, 9, 10, and
19), which is the main tool used to solve linear PDEs in Cartesian coordinates.
Finally, it introduces basic functional analysis (Chapter 6) and complex analysis
(Chapter 18). The first is necessary to characterize rigorously the convergence
of Fourier series, and also to discuss eigenfunctions for linear differential opera-
tors. The second provides powerful techniques to transform domains and compute
integrals, and also offers additional insight into Fourier series.

This book is not intended to be comprehensive or encyclopaedic. It is designed
for a one-semester course (i.e. 36–40 hours of lectures), and it is therefore strictly
limited in scope. First, it deals mainly with linear PDEs with constant coefficients.
Thus, there is no discussion of characteristics, conservation laws, shocks, varia-
tional techniques, or perturbation methods, which would be germane to other types
of PDEs. Second, the book focuses mainly on concrete solution methods to specific
PDEs (e.g. the Laplace, Poisson, heat, wave, and Schrödinger equations) on specific
domains (e.g. line segments, boxes, disks, annuli, spheres), and spends rather little
time on qualitative results about entire classes of PDEs (e.g. elliptic, parabolic,
hyperbolic) on general domains. Only after a thorough exposition of these special
cases does the book sketch the general theory; experience shows that this is far
more pedagogically effective than presenting the general theory first. Finally, the
book does not deal at all with numerical solutions or Galerkin methods.

One slightly unusual feature of this book is that, from the very beginning, it
emphasizes the central role of eigenfunctions (of the Laplacian) in the solution
methods for linear PDEs. Fourier series and Fourier–Bessel expansions are intro-
duced as the orthogonal eigenfunction expansions which are most suitable in certain
domains or coordinate systems. Separation of variables appears relatively late in
the exposition (Chapter 16) as a convenient device to obtain such eigenfunctions.

xv



xvi Preface

The only techniques in the book which are not either implicitly or explicitly based
on eigenfunction expansions are impulse-response functions and Green’s functions
(Chapter 17) and complex-analytic methods (Chapter 18).

Prerequisites and intended audience

This book is written for third-year undergraduate students in mathematics,
physics, engineering, and other mathematical sciences. The only prererequisites are
(1) multivariate calculus (i.e. partial derivatives, multivariate integration, changes
of coordinate system) and (2) linear algebra (i.e. linear operators and their
eigenvectors).

It might also be helpful for students to be familiar with the following: (1) the
basic theory of ordinary differential equations (specifically, Laplace transforms,
Frobenius method); (2) some elementary vector calculus (specifically, divergence
and gradient operators); and (3) elementary physics (to understand the physical
motivation behind many of the problems). However, none of these three things are
really required.

In addition to this background knowledge, the book requires some ability at
abstract mathematical reasoning. Unlike some ‘applied math’ texts, we do not
suppress or handwave the mathematical theory behind the solution methods. At
suitable moments, the exposition introduces concepts such as ‘orthogonal basis’,
‘uniform convergence’ vs. ‘L2-convergence’, ‘eigenfunction expansion’, and ‘self-
adjoint operator’; thus, students must be intellectually capable of understanding
abstract mathematical concepts of this nature. Likewise, the exposition is mainly
organized in a ‘definition → theorem → proof → example’ format, rather than
a ‘problem → solution’ format. Students must be able to understand abstract
descriptions of general solution techniques, rather than simply learn by imitating
worked solutions to special cases.

Conventions in the text

∗ in the title of a chapter or section indicates ‘optional’ material which is not part of
the core syllabus.

(Optional) in the margin indicates that a particular theorem or statement is ‘optional’ in the
sense that it is not required later in the text.

E© in the margin indicates the location of an exercise. (Shorter exercises are sometimes
embedded within the exposition.)

� indicates the ends of more lengthy exercises.
� ends the proof of a theorem.
♦ indicates the end of an example.
	 ends the proof of a ‘claim’ within the proof of a theorem.
� ends the proof of a ‘subclaim’ within the proof of a claim.
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What’s good about this book?

This text has many advantages over most other introductions to partial differential
equations.

Illustrations

PDEs are physically motivated and geometrical objects; they describe curves,
surfaces, and scalar fields with special geometric properties, and the way these
entities evolve over time under endogenous dynamics. To understand PDEs and
their solutions, it is necessary to visualize them. Algebraic formulae are just a
language used to communicate such visual ideas in lieu of pictures, and they
generally make a poor substitute. This book has over 300 high-quality illustrations,
many of which are rendered in three dimensions. In the online version of the book,
most of these illustrations appear in full colour. Also, the website contains many
animations which do not appear in the printed book.

Most importantly, on the book website, all illustrations are freely available
under a Creative Commons Attribution Noncommercial Share-Alike License.1

This means that you are free to download, modify, and utilize the illus-
trations to prepare your own course materials (e.g. printed lecture notes or
beamer presentations), as long as you attribute the original author. Please visit
<http://xaravve.trentu.ca/pde>.

Physical motivation

Connecting the math to physical reality is critical: it keeps students motivated, and
helps them interpret the mathematical formalism in terms of their physical intuitions
about diffusion, vibration, electrostatics, etc. Chapter 1 of this book discusses the

1 See http://creativecommons.org/licenses/by-nc-sa/3.0.
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What’s good about this book? xix

physics behind the heat, Laplace, and Poisson equations, and Chapter 2 discusses
the wave equation. An unusual addition to this text is Chapter 3, which discusses
quantum mechanics and the Schrödinger Equation (one of the major applications
of PDE theory in modern physics).

Detailed syllabus

Difficult choices must be made when turning a 600+ page textbook into a feasible
12-week lesson plan. It is easy to run out of time or inadvertently miss something
important. To facilitate this task, this book provides a lecture-by-lecture breakdown
of how the author covers the material (see p. xxv). Of course, each instructor
can diverge from this syllabus to suit the interests/background of their students,
a longer/shorter teaching semester, or their personal taste. But the prefabricated
syllabus provides a base to work from, and will save most instructors a lot of time
and aggravation.

Explicit prerequisites for each chapter and section

To save time, an instructor might want to skip a certain chapter or section, but
worries that it may end up being important later. We resolve this problem in two
ways. First, p. xiv provides a ‘chapter dependency lattice’, which summarizes the
large-scale structure of logical dependencies between the chapters of the book.
Second, every section of every chapter begins with an explicit list of ‘required’
and ‘recommended’ prerequisite sections; this provides more detailed information
about the small-scale structure of logical dependencies between sections. By tracing
backward through this ‘lattice of dependencies’, you can figure out exactly what
background material you must cover to reach a particular goal. This makes the
book especially suitable for self-study.

Flat dependency lattice

There are many ‘paths’ through the 20-chapter dependency lattice on p. xiv
every one of which is only seven chapters or less in length. Thus, an instructor
(or an autodidact) can design many possible syllabi, depending on their inter-
ests, and can quickly move to advanced material. The ‘Suggested 12-week syl-
labus’ on p. xxv describes a gentle progression through the material, covering
most of the ‘core’ topics in a 12-week semester, emphasizing concrete examples
and gradually escalating the abstraction level. The Chapter Dependency Lattice
suggests some other possibilities for ‘accelerated’ syllabi focusing on different
themes.



xx What’s good about this book?

� Solving PDEs with impulse response functions. Chapters 1, 2, 5, and 17 only.
� Solving PDEs with Fourier transforms. Chapters 1, 2, 5, 19, and 20 only. (Pedagogically

speaking, Chapters 8 and 9 will help the student understand Chapter 19, and Chapters
11–13 will help the student understand Chapter 20. Also, it is interesting to see how
the ‘impulse response’ methods of Chapter 17 yield the same solutions as the ‘Fourier
methods’ of Chapter 20, using a totally different approach. However, strictly speaking,
none of Chapters 8–13 or 17 is logically necessary.)

� Solving PDEs with separation of variables. Chapters 1, 2, and, 16 only. (However,
without at least Chapters 12, and 14, the ideas of Chapter 16 will seem somewhat
artificial and pointless.)

� Solving I/BVPs using eigenfunction expansions. Chapters 1, 2, 4, 5, 6, and 15. (It would
be pedagogically better to also cover Chapters 9 and 12, and probably Chapter 14. But,
strictly speaking, none of these is logically necessary.)

� Tools for quantum mechanics. Section 1B, then Chapters 3, 4, 6, 9, 13, 19, and 20
(skipping material on Laplace, Poisson, and wave equations in Chapters 13 and 20, and
adapting the solutions to the heat equation into solutions to the Schrödinger Equation).

� Fourier theory. Section 4A, then Chapters 6, 7, 8, 9, 10, and 19. Finally, Sections 18A,
18C, 18E, and 18F provide a ‘complex’ perspective. (Section 18H also contains some
useful computational tools.)

� Crash course in complex analysis. Chapter 18 is logically independent of the rest of the
book, and rigorously develops the main ideas in complex analysis from first principles.
(However, the emphasis is on applications to PDEs and Fourier theory, so some of the
material may seem esoteric or unmotivated if read in isolation from other chapters.)

Highly structured exposition, with clear motivation up front

The exposition is broken into small, semi-independent logical units, each of which
is clearly labelled, and which has a clear purpose or meaning which is made
immediately apparent. This simplifies the instructor’s task; it is not necessary to
spend time restructuring and summarizing the text material because it is already
structured in a manner which self-summarizes. Instead, instructors can focus more
on explanation, motivation, and clarification.

Many ‘practice problems’ (with complete solutions and
source code available online)

Frequent evaluation is critical to reinforce material taught in class. This book pro-
vides an extensive supply of (generally simple) computational ‘practice problems’
at the end of each chapter. Completely worked solutions to virtually all of these
problems are available on the book website. Also on the book website, the LATEX
source code for all problems and solutions is freely available under a Creative
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Commons Attribution Noncommercial Share-Alike License.2 Thus, an instructor
can download and edit this source code, and easily create quizzes, assignments,
and matching solutions for students.

Challenging exercises without solutions

Complex theoretical concepts cannot really be tested in quizzes, and do not lend
themselves to canned ‘practice problems’. For a more theoretical course with more
mathematically sophisticated students, the instructor will want to assign some
proof-related exercises for homework. This book has more than 420 such exercises
scattered throughout the exposition; these are flagged by an ‘ E©’ symbol in the E©

margin, as shown here. Many of these exercises ask the student to prove a major
result from the text (or a component thereof). This is the best kind of exercise,
because it reinforces the material taught in class, and gives students a sense of
ownership of the mathematics. Also, students find it more fun and exciting to prove
important theorems, rather than solving esoteric make-work problems.

Appropriate rigour

The solutions of PDEs unfortunately involve many technicalities (e.g. different
forms of convergence; derivatives of infinite function series, etc.). It is tempting to
handwave and gloss over these technicalities, to avoid confusing students. But this
kind of pedagogical dishonesty actually makes students more confused; they know
something is fishy, but they can’t tell quite what. Smarter students know they are
being misled, and may lose respect for the book, the instructor, or even the whole
subject.

In contrast, this book provides a rigorous mathematical foundation for all its
solution methods. For example, Chapter 6 contains a careful explanation of L2-
spaces, the various forms of convergence for Fourier series, and the differences
between them – including the ‘pathologies’ which can arise when one is careless
about these issues. I adopt a ‘triage’ approach to proofs: the simplest proofs are
left as exercises for the motivated student (often with a step-by-step breakdown of
the best strategy). The most complex proofs I have omitted, but I provide multiple
references to other recent texts. In between are those proofs which are challenging
but still accessible; I provide detailed expositions of these proofs. Often, when the
text contains several variants of the same theorem, I prove one variant in detail,
and leave the other proofs as exercises.

2 See http://creativecommons.org/licenses/by-nc-sa/3.0.
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Appropriate abstraction

It is tempting to avoid abstractions (e.g. linear differential operators, eigenfunc-
tions), and simply present ad hoc solutions to special cases. This cheats the stu-
dent. The right abstractions provide simple, yet powerful, tools that help students
understand a myriad of seemingly disparate special cases within a single unifying
framework. This book provides students with the opportunity to learn an abstract
perspective once they are ready for it. Some abstractions are introduced in the main
exposition, others are in optional sections, or in the philosophical preambles which
begin each major part of the book.

Gradual abstraction

Learning proceeds from the concrete to the abstract. Thus, the book begins each
topic with a specific example or a low-dimensional formulation, and only later
proceeds to a more general/abstract idea. This introduces a lot of ‘redundancy’
into the text, in the sense that later formulations subsume the earlier ones. So the
exposition is not as ‘efficient’ as it could be. This is a good thing. Efficiency makes
for good reference books, but lousy texts.

For example, when introducing the heat equation, Laplace equation, and wave
equation in Chapters 1 and 2, I first derive and explain the one-dimensional version
of each equation, then the two-dimensional version, and, finally, the general, D-
dimensional version. Likewise, when developing the solution methods for BVPs
in Cartesian coordinates (Chapters 11–13), I confine the exposition to the interval
[0, π ], the square [0, π ]2, and the cube [0, π ]3, and assume all the coefficients in the
differential equations are unity. Then the exercises ask the student to state and prove
the appropriate generalization of each solution method for an interval/rectangle/box
of arbitrary dimensions, and for equations with arbitrary coefficients. The general
method for solving I/BVPs using eigenfunction expansions only appears in Chapter
15, after many special cases of this method have been thoroughly exposited in
Cartesian and polar coordinates (Chapters 11–14).

Likewise, the development of Fourier theory proceeds in gradually escalat-
ing levels of abstraction. First we encounter Fourier (co)sine series on the inter-
val [0, π ] (§7A); then on the interval [0, L] for arbitrary L > 0 (§7B). Then
Chapter 8 introduces ‘real’ Fourier series (i.e. with both sine and cosine terms), and
then complex Fourier series (§8D). Then, Chapter 9 introduces two-dimensional
(co)sine series and, finally, D-dimensional (co)sine series.

Expositional clarity

Computer scientists have long known that it is easy to write software that works, but
it is much more difficult (and important) to write working software that other people
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can understand. Similarly, it is relatively easy to write formally correct mathematics;
the real challenge is to make the mathematics easy to read. To achieve this, I use
several techniques. I divide proofs into semi-independent modules (‘claims’), each
of which performs a simple, clearly defined task. I integrate these modules together
in an explicit hierarchical structure (with ‘subclaims’ inside of ‘claims’), so that
their functional interdependence is clear from visual inspection. I also explain
formal steps with parenthetical heuristic remarks. For example, in a long string of
(in)equalities, I often attach footnotes to each step, as follows:

‘ A
(∗)
B ≤

(†)

C <
(‡)

D. Here, (∗) is because [. . . ]; (†) follows from [. . . ], and (‡) is because [. . . ].’

Finally, I use letters from the same ‘lexicographical family’ to denote objects
which ‘belong’ together. For example: If S and T are sets, then elements of S
should be s1, s2, s3, . . . , while elements of T are t1, t2, t3, . . . . If v is a vector,
then its entries should be v1, . . . , vN . If A is a matrix, then its entries should
be a11, . . . , aNM . I reserve upper-case letters (e.g. J,K,L,M,N, . . .) for the
bounds of intervals or indexing sets, and then use the corresponding lower-case
letters (e.g. j, k, l, m, n, . . .) as indexes. For example, ∀n ∈ {1, 2, . . . , N}, An :=∑J

j=1

∑K
k=1 a

n
jk.

Clear and explicit statements of solution techniques

Many PDE texts contain very few theorems; instead they try to develop the theory
through a long sequence of worked examples, hoping that students will ‘learn
by imitation’, and somehow absorb the important ideas ‘by osmosis’. However,
less gifted students often just imitate these worked examples in a slavish and
uncomprehending way. Meanwhile, the more gifted students do not want to learn
‘by osmosis’; they want clear and precise statements of the main ideas.

The problem is that most solution methods in PDEs, if stated as theorems
in full generality, are incomprehensible to many students (especially the non-
math majors). My solution is this: I provide explicit and precise statements of
the solution method for almost every possible combination of (1) several major
PDEs, (2) several kinds of boundary conditions, and (3) several different domains.
I state these solutions as theorems, not as ‘worked examples’. I follow each of these
theorems with several completely worked examples. Some theorems I prove, but
most of the proofs are left as exercises (often with step-by-step hints).

Of course, this approach is highly redundant, because I end up stating more than
20 theorems, which really are all special cases of three or four general results (for
example, the general method for solving the heat equation on a compact domain
with Dirichlet boundary conditions, using an eigenfunction expansion). However,
this sort of redundancy is good in an elementary exposition. Highly ‘efficient’
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expositions are pleasing to our aesthetic sensibilities, but they are dreadful for
pedagogical purposes.

However, one must not leave the students with the impression that the theory
of PDEs is a disjointed collection of special cases. To link together all the ‘homo-
geneous Dirichlet heat equation’ theorems, for example, I explicitly point out that
they all utilize the same underlying strategy. Also, when a proof of one variant is
left as an exercise, I encourage students to imitate the (provided) proofs of previous
variants. When the students understand the underlying similarity between the var-
ious special cases, then it is appropriate to state the general solution. The students
will almost feel they have figured it out for themselves, which is the best way to
learn something.



Suggested 12-week syllabus

Week 1: Heat and diffusion-related PDEs

Lecture 1: Appendix A–Appendix E Review of multivariate calculus; introduction
to complex numbers.

Lecture 2: §1A–§1B Fourier’s law; the heat equation.
Lecture 3: §1C–§1D Laplace equation; Poisson equation.

Week 2: Wave-related PDEs; quantum mechanics

Lecture 1: §1E; §2A Properties of harmonic functions; spherical means.
Lecture 2: §2B–§2C Wave equation; telegraph equation.
Lecture 3: Chapter 3 The Schrödinger equation in quantum mechanics.

Week 3: General theory

Lecture 1: §4A–§4C Linear PDEs: homogeneous vs. nonhomogeneous.
Lecture 2: §5A; §5B Evolution equations and initial value problems.
Lecture 3: §5C Boundary conditions and boundary value problems.

Week 4: Background to Fourier theory

Lecture 1: §5D Uniqueness of solutions to BVPs; §6A inner products.
Lecture 2: §6B–§6D L2-space; orthogonality.
Lecture 3: §6E(i)–(iii) L2-convergence; pointwise convergence; uniform conver-

gence.

Week 5: One-dimensional Fourier series

Lecture 1: §6E(iv) Infinite series; §6F orthogonal bases; §7A Fourier (co/sine)
series: definition and examples.

Lecture 2: §7C(i)–(v) Computing Fourier series of polynomials, piecewise linear
and step functions.

Lecture 3: §11A–§11C Solution to heat equation and Poisson equation on a line
segment.

xxv
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Week 6: Fourier solutions for BVPs in one and two dimensions

Lecture 1: §11B–§12A Wave equation on line segment and Laplace equation on a
square.

Lecture 2: §9A–§9B Multidimensional Fourier series.
Lecture 3: §12B–§12C(i) Solution to heat equation and Poisson equation on a

square.

Week 7: Fourier solutions for two-dimensional BVPs in Cartesian and polar coordinates

Lecture 1: §12C(ii), §12D Solution to Poisson equation and wave equation on a
square.

Lecture 2: §5C(iv); §8A–§8B Periodic boundary conditions; real Fourier series.
Lecture 3: §14A; §14B(i)–(iv) Laplacian in polar coordinates; Laplace equation on

(co)disk.

Week 8: BVPs in polar coordinates; Bessel functions

Lecture 1: §14C Bessel functions.
Lecture 2: §14D–§14F Heat, Poisson, and wave equations in polar coordinates.
Lecture 3: §14G Solving Bessel’s equation with the method of Frobenius.

Week 9: Eigenbases; separation of variables

Lecture 1: §15A–§15B Eigenfunction solutions to BVPs.
Lecture 2: §15B; §16A–§16B Harmonic bases; separation of variables in Cartesian

coordinates.
Lecture 3: §16C–§16D Separation of variables in polar and spherical coordinates;

Legendre polynomials.

Week 10: Impulse response methods

Lecture 1: §17A–§17C Impulse response functions; convolution; approximations of
identity; Gaussian convolution solution for heat equation.

Lecture 2: §17C–§17F Gaussian convolutions continued; Poisson’s solutions to
Dirichlet problem on a half-plane and a disk.

Lecture 3: §14B(v); §17D Poisson solution on disk via polar coordinates;
d’Alembert solution to wave equation.

Week 11: Fourier transforms

Lecture 1: §19A One-dimensional Fourier transforms.
Lecture 2: §19B Properties of one-dimensional Fourier transform.
Lecture 3: §20A; §20C Fourier transform solution to heat equation; Dirchlet prob-

lem on half-plane.

Week 12: Fourier transform solutions to PDEs

Lecture 1: §19D, §20B(i) Multidimensional Fourier transforms; solution to wave
equation.
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Lecture 2: §20B(ii); §20E Poisson’s spherical mean solution; Huygen’s principle;
the general method.

Lecture 3: (Time permitting) §19G or §19H Heisenberg uncertainty or Laplace
transforms.

In a longer semester or a faster paced course, one could also cover parts of
Chapter 10 (Proofs of Fourier convergence) and/or Chapter 18 (Applications of
complex analysis).





Part I

Motivating examples and major applications

A dynamical system is a mathematical model of a system evolving in time. Most
models in mathematical physics are dynamical systems. If the system has only a
finite number of ‘state variables’, then its dynamics can be encoded in an ordinary
differential equation (ODE), which expresses the time derivative of each state vari-
able (i.e. its rate of change over time) as a function of the other state variables. For
example, celestial mechanics concerns the evolution of a system of gravitationally
interacting objects (e.g. stars and planets). In this case, the ‘state variables’ are vec-
tors encoding the position and momentum of each object, and the ODE describes
how the objects move and accelerate as they interact gravitationally.

However, if the system has a very large number of state variables, then it is no
longer feasible to represent it with an ODE. For example, consider the flow of heat
or the propagation of compression waves through a steel bar containing 1024 iron
atoms. We could model this using a 1024-dimensional ODE, where we explicitly
track the vibrational motion of each iron atom. However, such a ‘microscopic’
model would be totally intractable. Furthermore, it is not necessary. The iron
atoms are (mostly) immobile, and interact only with their immediate neighbours.
Furthermore, nearby atoms generally have roughly the same temperature, and move
in synchrony. Thus, it suffices to consider the macroscopic temperature distribution
of the steel bar, or to study the fluctuation of a macroscopic density field. This
temperature distribution or density field can be mathematically represented as a
smooth, real-valued function over some three-dimensional domain. The flow of
heat or the propagation of sound can then be described as the evolution of this
function over time.

We now have a dynamical system where the ‘state variable’ is not a finite system
of vectors (as in celestial mechanics), but is instead a multivariate function. The
evolution of this function is determined by its spatial geometry – e.g. the local
‘steepness’ and variation of the temperature gradients between warmer and cooler
regions in the bar. In other words, the time derivative of the function (its rate

1
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of change over time) is determined by its spatial derivatives (which describe its
slope and curvature at each point in space). An equation that relates the different
derivatives of a multivariate function in this way is a partial differential equation
(PDE). In particular, a PDE which describes a dynamical system is called an
evolution equation. For example, the evolution equation which describes the flow
of heat through a solid is called the heat equation. The equation which describes
compression waves is the wave equation.

An equilibrium of a dynamical system is a state which is unchanging over time;
mathematically, this means that the time-derivative is equal to zero. An equlib-
rium of an N-dimensional evolution equation satisfies an (N − 1)-dimensional
PDE called an equilibrium equation. For example, the equilibrium equations cor-
responding to the heat equation are the Laplace equation and the Poisson equation
(depending on whether or not the system is subjected to external heat input).

PDEs are thus of central importance in the thermodynamics and acoustics of
continuous media (e.g. steel bars). The heat equation also describes chemical
diffusion in fluids, and also the evolving probability distribution of a particle
performing a random walk called Brownian motion. It thus finds applications
everywhere from mathematical biology to mathematical finance. When diffusion
or Brownian motion is combined with deterministic drift (e.g. due to prevailing
wind or ocean currents) it becomes a PDE called the Fokker–Planck equation.

The Laplace and Poisson equations describe the equilibria of such diffusion pro-
cesses. They also arise in electrostatics, where they describe the shape of an electric
field in a vacuum. Finally, solutions of the two-dimensional Laplace equation are
good approximations of surfaces trying to minimize their elastic potential energy –
that is, soap films.

The wave equation describes the resonance of a musical instrument, the spread
of ripples on a pond, seismic waves propagating through the earth’s crust, and
shockwaves in solar plasma. (The motion of fluids themselves is described by yet
another PDE, the Navier–Stokes equation.) A version of the wave equation arises
as a special case of Maxwell’s equations of electrodynamics; this led to Maxwell’s
prediction of electromagnetic waves, which include radio, microwaves, X-rays,
and visible light. When combined with a ‘diffusion’ term reminiscent of the heat
equation, the wave equation becomes the telegraph equation, which describes the
propagation and degradation of electrical signals travelling through a wire.

Finally, an odd-looking ‘complex’ version of the heat equation induces wave-
like evolution in the complex-valued probability fields which describe the position
and momentum of subatomic particles. This Schrödinger equation is the starting
point of quantum mechanics, one of the two most revolutionary developments in
physics in the twentieth century. The other revolutionary development was relativity
theory. General relativity represents spacetime as a four-dimensional manifold,
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whose curvature interacts with the spatiotemporal flow of mass/energy through yet
another PDE: the Einstein equation.

Except for the Einstein and Navier–Stokes equations, all the equations we have
mentioned are linear PDEs. This means that a sum of two or more solutions to the
PDE will also be a solution. This allows us to solve linear PDEs through the method
of superposition: we build complex solutions by adding together many simple solu-
tions. A particularly convenient class of simple solutions are eigenfunctions. Thus,
an enormously powerful and general method for linear PDEs is to represent the
solutions using eigenfunction expansions. The most natural eigenfunction expan-
sion (in Cartesian coordinates) is the Fourier series.





1

Heat and diffusion

The differential equations of the propagation of heat express the most
general conditions, and reduce the physical questions to problems of

pure analysis, and this is the proper object of theory.

Jean Joseph Fourier

1A Fourier’s law

Prerequisites: Appendix A. Recommended: Appendix E.

1A(i) . . . in one dimension

Figure 1A.1 depicts a material diffusing through a one-dimensional domain X
(for example, X = R or X = [0, L]). Let u(x, t) be the density of the material at
the point x ∈ X at time t > 0. Intuitively, we expect the material to flow from
regions of greater to lesser concentration. In other words, we expect the flow of the
material at any point in space to be proportional to the slope of the curve u(x, t) at
that point. Thus, if F (x, t) is the flow at the point x at time t , then we expect the
following:

F (x, t) = −κ · ∂x u(x, t),

where κ > 0 is a constant measuring the rate of diffusion. This is an example of
Fourier’s law.

1A(ii) . . . in many dimensions

Prerequisites: Appendix E.

Figure 1A.2 depicts a material diffusing through a two-dimensional domain X ⊂ R2

(e.g. heat spreading through a region, ink diffusing in a bucket of water, etc.) We

5



6 Heat and diffusion
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Figure 1A.1. Fourier’s law of heat flow in one dimension.

greyscale temperature 
distribution

isothermal contours heat flow vector field

Figure 1A.2. Fourier’s law of heat flow in two dimensions.

could just as easily suppose that X ⊂ RD is a D-dimensional domain. If x ∈ X is a
point in space, and t ≥ 0 is a moment in time, let u(x, t) denote the concentration at
x at time t . (This determines a function u : X × R�− −→ R, called a time-varying
scalar field.)

Now let �F(x, t) be a D-dimensional vector describing the flow of the material
at the point x ∈ X. (This determines a time-varying vector field �F : RD × R�− −→
RD.)

Again, we expect the material to flow from regions of high concentration to
low concentration. In other words, material should flow down the concentration
gradient. This is expressed by Fourier’s law of heat flow:

�F = −κ · ∇u,
where κ > 0 is a constant measuring the rate of diffusion.

One can imagine u as describing a distribution of highly antisocial people; each
person is always fleeing everyone around them and moving in the direction with
the fewest people. The constant κ measures the average walking speed of these
misanthropes.
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Figure 1B.1. The heat equation as ‘erosion’.

1B The heat equation

Recommended: §1A.

1B(i) . . . in one dimension

Prerequisites: §1A(i).

Consider a material diffusing through a one-dimensional domain X (for example,
X = R or X = [0, L]). Let u(x, t) be the density of the material at the location
x ∈ X at time t ∈ R�−, and let F (x, t) be the flux of the material at the location x
and time t . Consider the derivative ∂x F (x, t). If ∂x F (x, t) > 0, this means that the
flow is diverging1 at this point in space, so the material there is spreading farther
apart. Hence, we expect the concentration at this point to decrease. Conversely, if
∂x F (x, t) < 0, then the flow is converging at this point in space, so the material
there is crowding closer together, and we expect the concentration to increase.
To be succinct: the concentration of material will increase in regions where F

converges and decrease in regions where F diverges. The equation describing this
is given by

∂t u(x, t) = −∂x F (x, t).

If we combine this with Fourier’s law, however, we get:

∂t u(x, t) = κ · ∂x ∂x u(x, t),

which yields the one-dimensional heat equation:

∂t u(x, t) = κ · ∂2
x u(x, t).

Heuristically speaking, if we imagine u(x, t) as the height of some one-dimensional
‘landscape’, then the heat equation causes this landscape to be ‘eroded’, as if it
were subjected to thousands of years of wind and rain (see Figure 1B.1).

1 See Appendix E(ii), p. 562, for an explanation of why we say the flow is ‘diverging’ here.
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tim
e

(a) (b)

Figure 1B.2. Under the heat equation, the exponential decay of a periodic function
is proportional to the square of its frequency. (a) Low frequency, slow decay;
(b) high frequency, fast decay.

Example 1B.1 For simplicity we suppose κ = 1.

(a) Let u(x, t) = e−9t · sin(3x). Thus, u describes a spatially sinusoidal function (with
spatial frequency 3) whose magnitude decays exponentially over time.

(b) The dissipating wave. More generally, let u(x, t) = e−ω2·t · sin(ω · x). Then u is a
solution to the one-dimensional heat equation, and it looks like a standing wave whose
amplitude decays exponentially over time (see Figure 1B.2). Note that the decay rate
of the function u is proportional to the square of its frequency.

(c) The (one-dimensional) Gauss–Weierstrass kernel. Let

G(x; t) := 1

2
√
πt

exp

(−x2

4t

)
.

Then G is a solution to the one-dimensional heat equation, and looks like a ‘bell
curve’, which starts out tall and narrow, and, over time, becomes broader and flatter
(Figure 1B.3). ♦

Exercise 1B.1 Verify that all the functions in Examples 1B.1(a)–(c) satisfy theE©

heat equation. �

All three functions in Example 1B.1 start out very tall, narrow, and pointy,
and gradually become shorter, broader, and flatter. This is generally what the heat
equation does; it tends to flatten things out. If u describes a physical landscape,
then the heat equation describes ‘erosion’.

1B(ii) . . . in many dimensions

Prerequisites: §1A(ii).

More generally, if u : RD × R�− −→ R is the time-varying density of some mate-
rial, and �F : RD × R�− −→ R is the flux of this material, then we would expect the
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Figure 1B.3. The Gauss–Weierstrass kernel under the heat equation.

material to increase in regions where �F converges and to decrease in regions where
�F diverges.2 In other words, we have

∂t u = −div �F.
If u is the density of some diffusing material (or heat), then �F is determined by
Fourier’s law, so we get the heat equation

∂tu = κ · div ∇u = κ �u.

Here, � is the Laplacian operator,3 defined as follows:

�u = ∂2
1 u+ ∂2

2 u+ · · · + ∂2
D u

Exercise 1B.2 (a) If D = 1 and u : R −→ R, verify that div ∇u(x) = u′′(x) = E©

�u(x), for all x ∈ R.
(b) If D = 2 and u : R2 −→ R, verify that div ∇u(x, y) = ∂2

xu(x, y) +
∂2
yu(x, y) = �u(x, y), for all (x, y) ∈ R2.

(c) For any D ≥ 2 and u : RD −→ R, verify that div ∇u(x) = �u(x), for all
x ∈ RD. �

By changing to the appropriate time units, we can assume κ = 1, so the heat
equation becomes

∂t u = �u.
2 See Appendix E(ii), p. 562, for a review of the ‘divergence’ of a vector field.
3 Sometimes the Laplacian is written as ∇2.
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Figure 1B.4. Five snapshots of the function u(x, y; t) = e−25 t · sin(3x) sin(4y)
from Example 1B.2.

For example,

� if X ⊂ R, and x ∈ X, then �u(x; t) = ∂2
x u(x; t);

� if X ⊂ R2, and (x, y) ∈ X, then �u(x, y; t) = ∂2
x u(x, y; t) + ∂2

y u(x, y; t).

Thus, as we have already seen, the one-dimensional heat equation is given by

∂t u = ∂2
x u,

and the the two-dimensional heat equation is given by

∂t u(x, y; t) = ∂2
x u(x, y; t) + ∂2

y u(x, y; t).

Example 1B.2
(a) Let u(x, y; t) = e−25 t · sin(3x) sin(4y). Then u is a solution to the two-dimensional

heat equation, and looks like a two-dimensional ‘grid’ of sinusoidal hills and valleys
with horizontal spacing 1/3 and vertical spacing 1/4. As shown in Figure 1B.4, these
hills rapidly subside into a gently undulating meadow and then gradually sink into a
perfectly flat landscape.

(b) The (two-dimensional) Gauss–Weierstrass kernel. Let

G(x, y; t) := 1

4πt
exp

(−x2 − y2

4t

)
.

Then G is a solution to the two-dimensional heat equation, and looks like a mountain,
which begins steep and pointy and gradually ‘erodes’ into a broad, flat, hill.
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(c) The D-dimensional Gauss–Weierstrass kernel is the function G : RD × R+ −→ R

defined by

G(x; t) = 1

(4πt)D/2
exp

(−‖x‖2

4t

)
.

Technically speaking, G(x; t) is a D-dimensional symmetric normal probability distri-
bution with variance σ = 2t . ♦

Exercise 1B.3 Verify that all the functions in Examples 1B.2(a)–(c) satisfy the E©

heat equation. �

Exercise 1B.4 Prove the Leibniz rule for Laplacians: if f, g : RD −→ R are two E©

scalar fields, and (f · g) : RD −→ R is their product, then, for all x ∈ RD,

�(f · g)(x) = g(x) ·
(

� f (x)
)

+ 2
(
∇f (x)

)
•
(
∇g(x)

)
+ f (x) ·

(
� g(x)

)
.

Hint: Combine the Leibniz rules for gradients and divergences (see Propositions
E.1(b) and E.2(b) in Appendix E, pp. 562 and 564). �

1C The Laplace equation

Prerequisites: §1B.

If the heat equation describes the erosion/diffusion of some system, then an equilib-
rium or steady-state of the heat equation is a scalar field h : RD −→ R satisfying
the Laplace equation:

�h ≡ 0.

A scalar field satisfying the Laplace equation is called a harmonic function.

Example 1C.1
(a) If D = 1, then �h(x) = ∂2

x h(x) = h′′(x); thus, the one-dimensional Laplace equation
is just

h′′(x) = 0.

Suppose h(x) = 3x + 4. Then h′(x) = 3 and h′′(x) = 0, so h is harmonic. More gener-
ally, the one-dimensional harmonic functions are just the linear functions of the form
h(x) = ax + b for some constants a, b ∈ R.

(b) If D = 2, then �h(x, y) = ∂2
x h(x, y) + ∂2

y h(x, y), so the two-dimensional Laplace
equation is given by

∂2
x h+ ∂2

y h = 0,
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(a)
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–2

(b)

−1

(c)

Figure 1C.1. Three harmonic functions. (a) h(x, y) = log(x2 + y2); (b) h(x, y) =
x2 − y2; (c) h(x, y) = sin(x) · sinh(y). In all cases, note the telltale ‘saddle’ shape.

or, equivalently, ∂2
x h = −∂2

y h. For example,

� Figure 1C.1(b) shows the harmonic function h(x, y) = x2 − y2;
� Figure 1C.1(c) shows the harmonic function h(x, y) = sin(x) · sinh(y). ♦

Exercise 1C.1 Verify that these two functions are harmonic. �E©

The surfaces in Figure 1C.1 have a ‘saddle’ shape, and this is typical of harmonic
functions; in a sense, a harmonic function is one which is ‘saddle-shaped’ at every
point in space. In particular, note that h(x, y) has no maxima or minima anywhere;
this is a universal property of harmonic functions (see Corollary 1E.2). The next
example seems to contradict this assertion, but in fact it does not.

Example 1C.2 Figure 1C.1(a) shows the harmonic function h(x, y) = log(x2 +
y2) for all (x, y) �= (0, 0). This function is well-defined everywhere except at (0, 0);
hence, contrary to appearances, (0, 0) is not an extremal point. (Verification that h
is harmonic is Problem 1.3, p. 23.) ♦

When D ≥ 3, harmonic functions no longer define nice saddle-shaped surfaces,
but they still have similar mathematical properties.

Example 1C.3
(a) If D = 3, then �h(x, y, z) = ∂2

x h(x, y, z) + ∂2
y h(x, y, z) + ∂2

z h(x, y, z). Thus, the
three-dimensional Laplace equation reads as follows:

∂2
x h+ ∂2

y h+ ∂2
z h = 0.



1C The Laplace equation 13

For example, let

h(x, y, z) = 1

‖(x, y, z)‖ = 1√
x2 + y2 + z2

for all (x, y, z) �= (0, 0, 0). Then h is harmonic everywhere except at (0, 0, 0). (Verifi-
cation that h is harmonic is Problem 1.4, p. 23.)

(b) For any D ≥ 3, the D-dimensional Laplace equation reads as follows:

∂2
1 h+ · · · + ∂2

D h = 0.

For example, let

h(x) = 1

‖x‖D−2 = 1(
x2

1 + · · · + x2
D

) D−2
2

for all x �= 0. Then h is harmonic everywhere in RD \ {0}. ♦

Exercise 1C.2 Verify that h is harmonic on RD \ {0}. � E©

Harmonic functions have the convenient property that we can multiply together
two lower-dimensional harmonic functions to get a higher dimensional one. For
example,

� h(x, y) = x · y is a two-dimensional harmonic function. (Exercise 1C.3 Verify this.) E©
� h(x, y, z) = x · (y2 − z2) is a three-dimensional harmonic function. (Exercise 1C.4 Ver- E©

ify this.)

In general, we have the following:

Proposition 1C.4 Suppose u : Rn −→ R is harmonic and v : Rm −→ R is
harmonic, and define w : Rn+m −→ R by w(x, y) = u(x) · v(y) for x ∈ Rn and
y ∈ Rm. Then w is also harmonic.

Proof Exercise 1C.5 Hint: First prove that w obeys a kind of Leibniz rule: E©

�w(x, y) = v(y) · �u(x) + u(x) · �v(y). �

The functionw(x, y) = u(x) · v(y) is called a separated solution, and this propo-
sition illustrates a technique called separation of variables. Exercise 1C.6 also
explores separation of variables. A full exposition of this technique appears in
Chapter 16.

Exercise 1C.6 E©
(a) Let μ, ν ∈ R be constants, and let f (x, y) = eμx · eνy . Suppose f is harmonic; what

can you conclude about the relationship between μ and ν? (Justify your assertion.)
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(b) Suppose f (x, y) = X(x) · Y (y), whereX : R −→ R and Y : R −→ R are two smooth
functions. Suppose f (x, y) is harmonic.

(i) Prove that X′′(x)/X(x) = −Y ′′(y)/Y (y) for all x, y ∈ R.
(ii) Conclude that the function X′′(x)/X(x) must equal a constant c independent of

x. Hence X(x) satisfies the ordinary differential equation X′′(x) = c ·X(x).
Likewise, the function Y ′′(y)/Y (y) must equal −c, independent of y. Hence

Y (y) satisfies the ordinary differential equation Y ′′(y) = −c · Y (y).
(iii) Using this information, deduce the general form for the functions X(x) and Y (y),

and use this to obtain a general form for f (x, y). �

1D The Poisson equation

Prerequisites: §1C.

Imagine p(x) is the concentration of a chemical at the point x in space. Suppose
this chemical is being generated (or depleted) at different rates at different regions
in space. Thus, in the absence of diffusion, we would have the generation equation:

∂t p(x, t) = q(x),

where q(x) is the rate at which the chemical is being created/destroyed at x (we
assume that q is constant in time).

If we now include the effects of diffusion, we get the generation–diffusion
equation:

∂t p = κ�p + q.

A steady state of this equation is a scalar field p satisfying the Poisson equation:

�p = Q,

where Q(x) = −q(x)/κ .

Example 1D.1 One-dimensional Poisson equation

IfD = 1, then �p(x) = ∂2
x p(x) = p′′(x); thus, the one-dimensional Poisson equa-

tion is just

p′′(x) = Q(x).

We can solve this equation by twice-integrating the function Q(x). If p(x) =∫ ∫
Q(x) is some double-antiderivative of G, then p clearly satisfies the Poisson

equation. For example:
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p''(x)

p(
x)

p'
(x
)

p'(x) p'(x)

p(x)p
''(
x
)

–

–

–

–
– – –

p′′(x) = Q(x) =
{

1 if 0 < x < 1;
0 otherwise;

p′′(x) = Q(x) = 1/x2;

p′(x) =
{
x if 0 < x < 1;
1 otherwise;

p′(x) = −1/x + 3;

p(x) =
{

x2/2 if 0 < x < 1;
x − 1

2 otherwise.
p(x) = − log |x| + 3x + 5.

(a) (b)

Figure 1D.1. Two one-dimensional potentials.

(a) Suppose

Q(x) =
{

1 if 0 < x < 1;
0 otherwise.

Then define

p(x) =
∫ x

0

∫ y

0
q(z)dz dy =

⎧⎨⎩
0 if x < 0;

x2/2 if 0 < x < 1;
x − 1

2 if 1 < x

(Figure 1D.1(a));
(b) If Q(x) = 1/x2 (for x �= 0), then p(x) = ∫ ∫

Q(x) = − log |x| + ax + b (for x �= 0),
where a, b ∈ R are arbitrary constants (see Figure 1D.1(b)). ♦

Exercise 1D.1 Verify that the functions p(x) in Examples 1D.1 (a) and (b) are E©

both solutions to their respective Poisson equations. �

Example 1D.2 Electrical/gravitational fields

The Poisson equation also arises in classical field theory.4 Suppose, for any
point x = (x1, x2, x3) in three-dimensional space, that q(x) is the charge den-
sity at x, and that p(x) is the electric potential field at x. Then we have the

4 For a quick yet lucid introduction to electrostatics, see Stevens (1995), chap. 3.
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Figure 1D.2. The two-dimensional potential field generated by a concentration of
charge at the origin.

following:

� p(x) = κ q(x) (κ some constant). (1D.1)

If q(x) were the mass density at x and p(x) were the gravitational potential energy,
then we would get the same equation. (See Figure 1D.2 for an example of such a
potential in two dimensions.)

In particular, in a region where there is no charge/mass (i.e. where q ≡ 0),
equation (1D.1) reduces to the Laplace equation �p ≡ 0. Because of this, solutions
to the Poisson equation (and especially the Laplace equation) are sometimes called
potentials. ♦
Example 1D.3 The Coulomb potential

Let D = 3, and let

p(x, y, z) = 1

‖(x, y, z)‖ = 1√
x2 + y2 + z2

.

In Example 1C.3(a), we asserted that p(x, y, z) was harmonic everywhere except
at (0, 0, 0), where it is not well-defined. For physical reasons, it is ‘reasonable’ to
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write the equation

�p(0, 0, 0) = δ0, (1D.2)

where δ0 is the ‘Dirac delta function’ (representing an infinite concentration of
charge at zero).5 Then p(x, y, z) describes the electric potential generated by a
point charge. ♦

Exercise 1D.2 Check that E©

∇ p(x, y, z) = −(x, y, z)

‖(x, y, z)‖3 .

This is the electric field generated by a point charge, as given by Coulomb’s law
from classical electrostatics. �

Exercise 1D.3 E©
(a) Let q : R3 −→ R be a scalar field describing a charge density distribution. If �E :

R3 −→ R3 is the electric field generated by q, then Gauss’s law says div �E = κ q,
where κ is a constant. If p : R3 −→ R is the electric potential field associated with �E,
then, by definition, �E = ∇p. Use these facts to derive equation (1D.1).

(b) Suppose q is independent of the x3 coordinate; that is, q(x1, x2, x3) = Q(x1, x2) for
some function Q : R2 −→ R. Show that p is also independent of the x3 coordi-
nate; that is, p(x1, x2, x3) = P (x1, x2) for some function P : R2 −→ R. Show that
P and Q satisfy the two-dimensional version of the Poisson equation, that is that
�P = κQ.

(This is significant because many physical problems have (approximate) trans-
lational symmetry along one dimension (e.g. an electric field generated by a long,
uniformly charged wire or plate). Thus, we can reduce the problem to two
dimensions, where powerful methods from complex analysis can be applied; see
Section 18B, p. 428.) �

Note that the electric/gravitational potential field is not uniquely defined by
equation (1D.1). If p(x) solves the Poisson equation (1D.1), then so does p̃(x) =
p(x) + a for any constant a ∈ R. Thus we say that the potential field is well-defined
up to addition of a constant; this is similar to the way in which the antiderivative

5 Equation (1D.2) seems mathematically nonsensical but it can be made mathematically meaningful using
distribution theory. However, this is far beyond the scope of this book, so, for our purposes, we will interpret
equation (1D.2) as purely metaphorical.
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Q(x) of a function is only well-defined up to some constant.6 This is an example

of a more general phenomenon.

Proposition 1D.4 Let X ⊂ RD be some domain, and let p : X −→ R and h :
X −→ R be two functions on X. Let p̃(x) := p(x) + h(x) for all x ∈ X. Suppose
that h is harmonic, i.e. �h ≡ 0. If p satisfies the Poisson equation �p ≡ q, then p̃
also satisfies this Poisson equation.

Proof Exercise 1D.4. Hint: Note that �p̃(x) = �p(x) + �h(x). �E©

For example, if Q(x) = 1/x2, as in Example 1D.1(b), then p(x) = − log(x)
is a solution to the Poisson equation p′′(x) = 1/x2. If h(x) is a one-dimensional
harmonic function, then h(x) = ax + b for some constants a and b (see Example
1C.1(a)). Thus p̃(x) = − log(x) + ax + b, and we have already seen that these are
also valid solutions to this Poisson equation.

1E Properties of harmonic functions

Prerequisites: §1C, Appendix H(ii). Prerequisites (for proofs): §2A, §17G, Appendix E(iii).

Recall that a function h : RD −→ R is harmonic if �h ≡ 0. Harmonic functions
have nice geometric properties, which can be loosely summarized as ‘smooth and
gently curving’.

Theorem 1E.1 Mean value theorem

Letf : RD −→ R be a scalar field. Thenf is harmonic if and only iff is integrable,
and

for any x ∈ RD, and any R > 0,f (x) = 1

A(R)

∫
S(x;R)

f (s)ds. (1E.1)

Here, S(x;R) := {
s ∈ RD; ‖s − x‖ = R

}
is the (D−1)-dimensional sphere

of radius R around x, and A(R) is the (D−1)-dimensional surface area
of S(x;R).

Proof Exercise 1E.1.E©
(a) Suppose f is integrable and statement (1E.1) is true. Use the spherical means formula

for the Laplacian (Theorem 2A.1) to show that f is harmonic.

6 For the purposes of the physical theory, this constant does not matter, because the fieldp is physically interpreted
only by computing the potential difference between two points, and the constant a will always cancel out in
this computation. Thus, the two potential fields p(x) and p̃(x) = p(x) + a will generate identical physical
predictions.
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(b) Now suppose f is harmonic. Define φ : R�− −→ R by

φ(R) := 1

A(R)

∫
S(x;R)

f (s)ds.

Show that

φ′(R) = K

A(R)

∫
S(x;R)

∂⊥f (s)ds,

for some constant K > 0. Here, ∂⊥f (s) is the outward normal derivative of f at the
point s on the sphere (see p. 567 for an abstract definition; see §5C(ii), p. 80, for more
information).

(c) Let B (x;R) := {
b ∈ RD ; ‖b − x‖ ≤ R

}
be the ball of radius R around x. Apply

Green’s Formula (Theorem E.5(a), p. 567) to show that

φ′(R) = K

A(R)

∫
B(x;R)

�f (b)db.

(d) Deduce that, if f is harmonic, then φ must be constant.
(e) Use the fact that f is continuous to show that limr→0 φ(r) = f (x). Deduce that φ(r) =

f (x) for all r ≥ 0. Conclude that, if f is harmonic, then statement (1E.1) must be
true. �

Corollary 1E.2 Maximum principle for harmonic functions

Let X ⊂ RD be a domain, and let u : X −→ R be a nonconstant harmonic function.
Then u has no local maximal or minimal points anywhere in the interior of X.

If X is bounded (hence compact), then u does obtain a maximum and minimum,
but only on the boundary of X.

Proof (By contradiction.) Suppose x was a local maximum of u somewhere in the
interior of X. Let R > 0 be small enough that S(x;R) ⊂ X, and such that

u(x) ≥ u(s) for all s ∈ S(x;R), (1E.2)

where this inequality is strict for at least one s0 ∈ S(x;R).

Claim 1 There is a nonempty open subset Y ⊂ S(x;R) such that u(x) > u(y)
for all y in Y.

Proof We know that u(x) > u(s0). But u is continuous, so there must be some
open neighbourhood Y around s0 such that u(x) > u(y) for all y in Y. 	Claim 1

Equation (1E.2) and Claim 1 imply that

f (x) >
1

A(R)

∫
S(x;R)

f (s)ds.
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But this contradicts the mean value theorem. By contradiction, x cannot be a local
maximum. (The proof for local minima is analogous.) �

A function F : RD −→ R is spherically symmetric if F (x) depends only on the
norm ‖x‖ (i.e. F (x) = f (‖x‖) for some function f : R�− −→ R). For example,
the function F (x) := exp(− ‖x‖2) is spherically symmetric.

If h, F : RD −→ R are two integrable functions, then their convolution is the
function h ∗ F : RD −→ R defined by

h ∗ F (x) :=
∫

RD

h(y) · F (x − y)dy, for all x ∈ RD

(if this integral converges). We will encounter convolutions in §10D(ii), p. 215
(where they will be used to prove the L2-convergence of a Fourier series), and
again in Chapter 17 (where they will be used to construct ‘impulse-response’
solutions for PDEs). For now, we state the following simple consequence of the
mean value theorem.

Lemma 1E.3 If h : RD −→ R is harmonic and F : RD −→ R is integrable and
spherically symmetric, then h ∗ F = K · h, where K ∈ R is some constant.

Proof Exercise 1E.2. �E©

Proposition 1E.4 Smoothness of harmonic functions

If h : RD −→ R is a harmonic function, then h is infinitely differentiable.

Proof Let F : RD −→ R be some infinitely differentiable, spherically symmet-
ric, integrable function. For example, we could take F (x) := exp(− ‖x‖2). Then
Proposition 17G.2(f), p. 415, says that h ∗ F is infinitely differentiable. But Lemma
1E.3 implies that h ∗ F = Kh for some constant K ∈ R; thus, h is also infinitely
differentiable.

(For another proof, see Evans (1991), §2.2, Theorem 6.) �

Actually, we can go even further than this. A function h : X −→ R is analytic
if, for every x ∈ X, there is a multivariate Taylor series expansion for h around x
with a nonzero radius of convergence.7

Proposition 1E.5 Harmonic functions are analytic

Let X ⊆ RD be an open set. If h : X −→ R is a harmonic function, then h is
analytic on X.

Proof For the case D = 2, see Corollary 18D.2, p. 456. For the general case
D ≥ 2, see Evans (1991), §2.2, Theorem 10. �

7 See Appendices H(ii) and H(v), pp. 574, 579.
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1F∗ Transport and diffusion

Prerequisites: §1B, §6A.

If u : RD −→ R is a ‘mountain’, then recall that ∇u(x) points in the direction
of most rapid ascent at x. If �v ∈ RD is a vector, then the dot product �v • ∇u(x)
measures how rapidly you would be ascending if you walked in direction �v.

Suppose u : RD −→ R describes a pile of leafs, and there is a steady wind
blowing in the direction �v ∈ RD. We would expect the pile to move slowly in
the direction �v. Suppose you were an observer fixed at location x. The pile is
moving past you in direction �v, which is the same as you walking along the pile
in direction −�v; thus, you would expect the height of the pile at your location
to increase/decrease at a rate −�v • ∇u(x). The pile thus satisfies the transport
equation:

∂t u = −�v • ∇u.
Now suppose that the wind does not blow in a constant direction, but instead
has some complex spatial pattern. The wind velocity is therefore determined by a
vector field �V : RD −→ RD. As the wind picks up leaves and carries them around,
the flux of leaves at a point x ∈ X is then given by the vector �F(x) = u(x) · �V(x).
But the rate at which leaves are piling up at each location is the divergence of the
flux. This results in Liouville’s equation:

∂t u = −div �F = −div (u · �V)
(∗)

− �V • ∇u− u · div �V.
Here, (∗) is by the Leibniz rule for divergence (Proposition E.2(b), p. 564).

Liouville’s equation describes the rate at which u-material accumulates when it
is being pushed around by the �V-vector field. Another example: �V(x) describes the
flow of water at x, and u(x) is the buildup of some sediment at x.

Now suppose that, in addition to the deterministic force �V acting on the leaves,
there is also a ‘random’ component. In other words, while being blown around by
the wind, the leaves are also subject to some random diffusion. To describe this, we
combine Liouville’s equation with the heat equation, to obtain the Fokker–Planck
equation:

∂t u = κ �u− �V • ∇u− u · div �V.

1G∗ Reaction and diffusion

Prerequisites: §1B.

SupposeA,B andC are three chemicals, satisfying the following chemical reaction:

2A+ B =⇒ C.
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As this reaction proceeds, the A and B species are consumed and C is produced.
Thus, if a, b, and c are the concentrations of the three chemicals, we have

∂t c = R(t) = −∂t b = −1

2
∂t a,

where R(t) is the rate of the reaction at time t . The rate R(t) is determined by
the concentrations of A and B, and by a rate constant ρ. Each chemical reaction
requires two molecules of A and one of B; thus, the reaction rate is given by

R(t) = ρ · a(t)2 · b(t).

Hence, we get three ordinary differential equations, called the reaction kinetic
equations of the system:

∂t a(t) = −2ρ · a(t)2 · b(t),
∂t b(t) = −ρ · a(t)2 · b(t),
∂t c(t) = ρ · a(t)2 · b(t).

⎫⎬⎭ (1G.1)

Now suppose that the chemicals A,B, and C are in solution, but are not uniformly
mixed. At any location x ∈ X and time t > 0, let a(x, t) be the concentration of
chemicalA at location x at time t ; likewise, let b(x, t) be the concentration ofB and
c(x, t) be the concentration of C. (This determines three time-varying scalar fields,
a, b, c : R3 × R −→ R.) As the chemicals react, their concentrations at each point
in space may change. Thus, the functions a, b, c will obey equations (1G.1) at each
point in space. That is, for every x ∈ R3 and t ∈ R, we have

∂t a(x; t) ≈ −2ρ · a(x; t)2 · b(x; t),

etc. However, the dissolved chemicals are also subject to diffusion forces. In other
words, each of the functions a, b, and c will also be obeying the heat equation.
Thus, we obtain the following system:

∂t a = κa · �a(x; t) − 2ρ · a(x; t)2 · b(x; t),

∂t b = κb · �b(x; t) − ρ · a(x; t)2 · b(x; t),

∂t c = κc · �c(x; t) + ρ · a(x; t)2 · b(x; t),

where κa, κb, κc > 0 are three different diffusivity constants.
This is an example of a reaction–diffusion system. In general, in a reaction–

diffusion system involvingN distinct chemicals, the concentrations of the different
species are described by a concentration vector field u : R3 × R −→ RN , and the
chemical reaction is described by a rate function F : RN −→ RN . For example, in
the previous example, u(x, t) = (a(x, t), b(x, t), c(x, t)), and

F (a, b, c) = [−2ρa2b,−ρa2b, ρa2b
]
.
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The reaction–diffusion equations for the system then take the form

∂t un = κn �un + Fn(u),

for n = 1, . . . , N .

1H Further reading

An analogy of the Laplacian can be defined on any Riemannian manifold, where it is
sometimes called the Laplace–Beltrami operator. The study of harmonic functions
on manifolds yields important geometric insights (Warner (1983), Chavel (1993)).

The reaction–diffusion systems from §1G play an important role in modern
mathematical biology (Murray (1993)).

The heat equation also arises frequently in the theory of Brownian motion and
other Gaussian stochastic processes on RD (Strook (1993)).

1I Practice problems

1.1 Let f : R4 −→ R be a differentiable scalar field. Show that div ∇f (x1, x2, x3, x4) =
�f (x1, x2, x3, x4).

1.2 Let f (x, y; t) = exp(−34t) · sin(3x + 5y). Show that f (x, y; t) satisfies the two-
dimensional heat equation ∂t f (x, y; t) = �f (x, y; t).

1.3 Let u(x, y) = log(x2 + y2). Show that u(x, y) satisfies the (two-dimensional) Laplace
equation, everywhere except at (x, y) = (0, 0). Remark: If (x, y) ∈ R2, recall that
‖(x, y)‖ :=

√
x2 + y2. Thus, log(x2 + y2) = 2 log ‖(x, y)‖. This function is some-

times called the logarithmic potential.

1.4 If (x, y, z) ∈ R3, recall that ‖(x, y, z)‖ :=
√
x2 + y2 + z2. Define

u(x, y, z) = 1

‖(x, y, z)‖ = 1√
x2 + y2 + z2

.

Show that u satisfies the (three-dimensional) Laplace equation, everywhere except at
(x, y, z) = (0, 0, 0). Remark: Observe that

∇ u(x, y, z) = −(x, y, z)

‖(x, y, z)‖3 .

What force field does this remind you of? Hint: u(x, y, z) is sometimes called the
Coulomb potential.

1.5 Let

u(x, y; t) = 1

4πt
exp

(−‖(x, y)‖2

4t

)
= 1

4πt
exp

(−x2 − y2

4t

)
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be the (two-dimensional) Gauss–Weierstrass kernel. Show that u satisfies the (two-
dimensional) heat equation ∂t u = �u.

1.6 Let α and β be real numbers, and let h(x, y) = sinh(αx) · sin(βy).

(a) Compute � h(x, y).
(b) Suppose h is harmonic. Write an equation describing the relationship between α

and β.
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Waves and signals

There is geometry in the humming of the strings.

Pythagoras

2A The Laplacian and spherical means

Prerequisites: Appendix A, Appendix B, Appendix H(v). Recommended: §1B.

Let u : RD −→ R be a function of D variables. Recall that the Laplacian of u is
defined as follows:

�u = ∂2
1 u+ ∂2

2 u+ · · · + ∂2
D u.

In this section, we will show that �u(x) measures the discrepancy between u(x)
and the ‘average’ of u in a small neighbourhood around x.

Let S(ε) be the D-dimensional ‘sphere’ of radius ε around 0.

� If D = 1, then S(ε) is just a set with two points: S(ε) = {−ε,+ε}.
� If D = 2, then S(ε) is the circle of radius ε: S(ε) = {(x, y) ∈ R2; x2 + y2 = ε2}.
� If D = 3, then S(ε) is the three-dimensional spherical shell of radius ε:

S(ε) = {
(x, y, z) ∈ R3; x2 + y2 + z2 = ε2

}
.

� More generally, for any dimension D,

S(ε) = {
(x1, x2, . . . , xD) ∈ RD; x2

1 + x2
2 + · · · + x2

D = ε2
}
.

Let Aε be the ‘surface area’ of the sphere.

� If D = 1, then S(ε) = {−ε,+ε} is a finite set, with two points, so we say Aε = 2.
� If D = 2, then S(ε) is the circle of radius ε; the perimeter of this circle is 2πε, so we

say Aε = 2πε.
� If D = 3, then S(ε) is the sphere of radius ε, which has surface area 4πε2.

25
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Let

Mε f (0) := 1

Aε

∫
S(ε)

f (s)ds;

then Mε f (0) is the average value of f (s) over all s on the surface of the ε-radius
sphere around 0, which is called the spherical mean of f at 0. The interpretation
of the integral sign ‘

∫
’ depends on the dimension D of the space. For example,‘

∫
’

represents a surface integral if D = 3, a line integral if D = 2, and a simple
two-point sum if D = 1. Thus we have the following.

� If D = 1, then S(ε) = {−ε,+ε}, so that
∫

S(ε) f (s)ds = f (ε) + f (−ε); thus,

Mε f = f (ε) + f (−ε)

2
.

� If D = 2, then any point on the circle has the form (ε cos(θ ), ε sin(θ )) for some angle
θ ∈ [0, 2π ). Thus, ∫

S(ε)
f (s)ds =

∫ 2π

0
f
(
ε cos(θ ), ε sin(θ )

)
ε dθ,

so that

Mε f = 1

2πε

∫ 2π

0
f
(
ε cos(θ ), ε sin(θ )

)
εdθ = 1

2π

∫ 2π

0
f
(
ε cos(θ ), ε sin(θ )

)
dθ.

Likewise, for any x ∈ RD, we define

Mε f (x) := 1

Aε

∫
S(ε)

f (x + s)ds

to be the average value of f over an ε-radius sphere around x. Suppose f : RD −→
R is a smooth scalar field, and x ∈ RD. One interpretation of the Laplacian is as
follows: �f (x) measures the disparity between f (x) and the average value of f
in the immediate vicinity of x. This is the meaning of the following theorem.

Theorem 2A.1
(a) If f : R −→ R is a smooth scalar field, then (as shown in Figure 2A.1), for any x ∈ R,

�f (x) = lim
ε→0

2

ε2

[
Mε f (x) − f (x)

]
= lim

ε→0

2

ε2

[
f (x − ε) + f (x + ε)

2
− f (x)

]
.

(b)1 If f : RD −→ R is a smooth scalar field, then, for any x ∈ RD ,

�f (x) = lim
ε→0

C

ε2

[
Mε f (x) − f (x)

]
= lim

ε→0

C

ε2

[
1

Aε

∫
S(ε)

f (x + s)ds − f (x)

]
.

(Here C is a constant determined by the dimension D.)

1 Part (b) of Theorem 2A.1 is not necessary for the physical derivation of the wave equation which appears
later in this chapter. However, part (b) is required to prove the Mean Value Theorem for harmonic functions
(Theorem 1E.1, p. 18).
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2
Mε f (x) =

Mε f (x)

f (x)

Mε  f(x) − f (x) f (x −  ε)

f (x)

x −  ε

f (x + ε)

x + εx
ε ε

f (x −  ε)  + f ( x + ε)

Figure 2A.1. Local averages: f (x) vs. Mε f (x) := f (x− ε) + f (x+ ε)
2 .

Proof (a) Using Taylor’s theorem (see Appendix H(i), p. 573), we have

f (x + ε) = f (x) + εf ′(x) + ε2

2
f ′′(x) + O(ε3)

and

f (x − ε) = f (x) − εf ′(x) + ε2

2
f ′′(x) + O(ε3).

Here, f ′(x) = ∂x f (x) and f ′′(x) = ∂2
x f (x). The expression ‘O(ε)’ means ‘some

function (we don’t care which one) such that limε→0 O(ε) = 0’.2 Likewise, ‘O(ε3)’
means ‘some function (we don’t care which one) such that limε→0

O(ε3)
ε2 = 0.’

Summing these two equations, we obtain

f (x + ε) + f (x − ε) = 2f (x) + ε2 · f ′′(x) + O(ε3).

Thus,

f (x − ε) − 2f (x) + f (x + ε)

ε2
= f ′′(x) + O(ε)

(because O(ε3)/ε2 = O(ε)). Now take the limit as ε → 0 to obtain

lim
ε→0

f (x − ε) − 2f (x) + f (x + ε)

ε2
= lim

ε→0
f ′′(x) + O(ε) = f ′′(x) = �f (x),

as desired.

2 Actually, ‘O(ε)’ means slightly more than this – see Appendix H(i). However, for our purposes, this will be
sufficient.
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(b) Define the Hessian derivative matrix of f at x:

D2f (x) =

⎡⎢⎢⎢⎣
∂2

1f ∂1∂2f . . . ∂1∂Df

∂2∂1f ∂2
2f . . . ∂2∂Df

...
...

. . .
...

∂D∂1f ∂D∂2f . . . ∂2
Df

⎤⎥⎥⎥⎦ .
Then, for any s ∈ S(ε), the multivariate Taylor theorem (see Appendix H(v), p. 579)
says:

f (x + s) = f (x) + s • ∇f (x) + 1

2
s • D2f (x) · s + O(ε3).

Now, if s = (s1, s2, . . . , sD), then s • D2f (x) · s = ∑D
c,d=1 sc · sd · ∂c∂d f (x). Thus,

for any ε > 0, we have

Aε · Mε f (x) =
∫

S(ε)
f (x + s)ds

=
∫

S(ε)
f (x)ds +

∫
S(ε)

s • ∇f (x)ds

+ 1

2

∫
S(ε)

s • D2f (x) · s ds +
∫

S(ε)
O(ε3)ds

= Aεf (x) + ∇f (x) •
∫

S(ε)
s ds

+ 1

2

∫
S(ε)

(
D∑

c,d=1

scsd · ∂c∂d f (x)

)
ds + O(εD+2)

= Aεf (x) + ∇f (x) • 0︸ ︷︷ ︸
(∗)

+ 1

2

D∑
c,d=1

(
∂c ∂d f (x) ·

(∫
S(ε)

scsd ds
))

+ O(εD+2)

= Aεf (x) + 1

2

D∑
d=1

(
∂2
d f (x) ·

(∫
S(ε)

s2
d ds

))
︸ ︷︷ ︸

(†)

+O(εD+2)

= Aεf (x) + 1

2
� f (x) · εD+1K + O(εD+2),

where K := ∫
S(1) s

2
1 ds. Here, (∗) is because

∫
S(ε) s ds = 0, because the centre-of-

mass of a sphere is at its centre, namely 0; (†) is because, if c, d ∈ [1 . . . D], and
c �= d, then

∫
S(ε) scsdds = 0 (Exercise 2A.1 Hint: Use symmetry.)E©
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Thus,

Aε · Mε f (x) − Aε f (x) = εD+1K

2
� f (x) + O(εD+2),

so

Mε f (x) − f (x) = εD+1K

2Aε

� f (x) + 1

Aε

O(εD+2)

(∗)

εD+1K

2A1 · εD−1
� f (x) + O

(
εD+2

εD−1

)
= ε2K

2A1
� f (x) + O(ε3),

where (∗) is because Aε = A1 · εD−1. Thus,

2A1

K ε2

(
Mε f (x) − f (x)

)
= �f (x) + O(ε).

Now take the limit as ε → 0 and set C := 2A1/K to prove part (b). �

Exercise 2A.2 Let f : RD −→ R be a smooth scalar field, such that Mε f (x) = E©

f (x) for all x ∈ RD. Show that f is harmonic. �

2B The wave equation

Prerequisites: §2A.

2B(i) . . . in one dimension: the string

We want to describe mathematically vibrations propagating through a stretched
elastic cord. We will represent the cord with a one-dimensional domain X; either
X = [0, L] or X = R. We will make several simplifying assumptions as follows.

(W1) The cord has uniform thickness and density. Thus, there is a constant linear density
ρ > 0, so that a cord segment of length � has mass ρ�.

(W2) The cord is perfectly elastic, meaning that it is infinitely flexible and does not resist
bending in any way. Likewise, there is no air friction to resist the motion of the cord.

(W3) The only force acting on the cord is tension, which is a force of magnitude T pulling
the cord to the right, balanced by an equal but opposite force of magnitude −T pulling
the cord to the left. These two forces are in balance, so the cord exhibits no horizontal
motion. The tension T must be constant along the whole length of the cord. Thus, the
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Figure 2B.1. Bead on a string.

equilibrium state for the cord is to be perfectly straight. Vibrations are deviations from
this straight position.3

(W4) The vibrational motion of the cord is entirely vertical; there is no horizontal compo-
nent to the vibration. Thus, we can describe the motion using a scalar-valued function
u(x, t), where u(x, t) is the vertical displacement of the cord (from its flat equilibrium)
at point x at time t . We assume that u(x, t) is relatively small relative to the length of
the cord, so that the cord is not significantly stretched by the vibrations.4

For simplicity, imagine first a single bead of mass m suspended at the midpoint of
a (massless) elastic cord of length 2ε, stretched between two endpoints. Suppose
we displace the bead by a distance y from its equilibrium, as shown in Figure 2B.1.
The tension force T now pulls the bead diagonally towards each endpoint with force
T . The horizontal components of the two tension forces are equal and opposite,
so they cancel and the bead experiences no net horizontal force. Suppose the cord
makes an angle θ with the horizontal; then the vertical component of each tension
force is T sin(θ ), so the total vertical force acting on the bead is 2T sin(θ ). But θ =
arctan(ε/y) by the geometry of the triangles in Figure 2B.1, so sin(θ ) = y√

y2+ε2
.

Thus, the vertical force acting on the bead is given by

F = 2T sin(θ ) = 2Ty√
y2 + ε2

. (2B.1)

Now we return to our original problem of the vibrating string. Imagine that we
replace the string with a ‘necklace’ made up of small beads of massm separated by
massless elastic strings of length ε as shown in Figure 2B.2. Each of these beads,
in isolation, behaves like the ‘bead on a string’ in Figure 2B.1. However, now

3 We could also incorporate the force of gravity as a constant downward force. In this case, the equilibrium
position for the cord is to sag downwards in a ‘catenary’ curve. Vibrations are then deviations from this curve.
This does not change the mathematics of this derivation, so we will assume for simplicity that gravity is absent
and the cord is straight.

4 If u(x, t) were large, then the vibrations would stretch the cord and a restoring force would act against this
stretching, as described by Hooke’s law. By assuming that the vibrations are small, we are assuming we can
neglect Hooke’s law.
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Figure 2B.2. Each bead feels a negative force proportional to its deviation from
the local average.

the vertical displacement of each bead is not computed relative to the horizontal,
but instead relative to the average height of the two neighbouring beads. Thus,
in equation (2B.1), we set y := u(x) − Mε u(x), where u(x) is the height of bead
x, and where Mε u := 1

2 [u(x − ε) + u(x + ε)] is the average of its neighbours.
Substituting this into equation (2B.1), we obtain

Fε(x) = 2T [u(x) − Mε u(x)]√
[u(x) − Mε u(x)]2 + ε2

. (2B.2)

(The ‘ε’ subscript in ‘Fε’ is to remind us that this is just an ε-bead approximation
of the real string.) Each bead represents a length-ε segment of the original string,
so if the string has linear density ρ, then each bead must have mass mε := ρε.
Thus, by Newton’s law, the vertical acceleration of bead x must be as follows:

aε(x) = Fε(x)

mε

= 2T [u(x) − Mε u(x)]

ρ ε
√

[u(x) − Mε u(x)]2 + ε2

= 2T [u(x) − Mε u(x)]

ρ ε2
√

[u(x) − Mε u(x)]2/ε2 + 1
. (2B.3)

Now we take the limit as ε → 0 to calculate the vertical acceleration of the string
at x:

a(x) = lim
ε→0

aε(x) = T

ρ
lim
ε→0

2

ε2

[
u(x) − Mε u(x)

]
· lim
ε→0

1√
[u(x) − Mε u(x)]2/ε2 + 1

(∗)

T

ρ
∂2
x u(x)

1

limε→0

√
ε2 · ∂2

x u(x)2 + 1 (†)

T

ρ
∂2
x u(x). (2B.4)

Here, (∗) is because Theorem 2A.1(a), p. 26, says that limε→0
2
ε2 [u(x) −

Mε u(x)] = ∂2
x u(x). Finally, (†) is because, for any value of u′′ ∈ R, we have
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Figure 2B.3. One-dimensional standing wave.

limε→0

√
ε2u′′ + 1 = 1. We conclude that

a(x) = T

ρ
∂2
x u(x) = λ2 ∂2

x u(x),

where λ := √
T/ρ. Now, the position (and hence velocity and acceleration) of the

cord is changing in time. Thus, a and u are functions of t as well as x. And of
course the acceleration a(x, t) is nothing more than the second derivative of u with
respect to t . Hence we have the one-dimensional wave equation:

∂2
t u(x, t) = λ2 · ∂2

x u(x, t).

This equation describes the propagation of a transverse wave along an idealized
string, or electrical pulses propagating in a wire.

Example 2B.1 Standing waves
(a) Suppose λ2 = 4, and let u(x; t) = sin(3x) · cos(6t). Then u satisfies the wave equation

and describes a standing wave with a temporal frequency of 6 and a wave number (or
spatial frequency) of 3 (see Figure 2B.3).

(b) More generally, fix ω > 0; if u(x; t) = sin(ω · x) · cos(λ · ω · t), then u satisfies the
wave equation and describes a standing wave of temporal frequency λ · ω and wave
number ω. ♦

Exercise 2B.1 Verify Examples 2B.1(a) and (b). �E©

Example 2B.2 Travelling waves
(a) Suppose λ2 = 4, and let u(x; t) = sin(3x − 6t). Then u satisfies the wave equation and

describes a sinusoidal travelling wave with temporal frequency 6 and wave number 3.
The wave crests move rightwards along the cord with velocity 2 (see Figure 2B.4(a)).

(b) More generally, fix ω ∈ R and let u(x; t) = sin(ω · x − λ · ω · t). Then u satisfies the
wave equation and describes a sinusoidal travelling wave of wave number ω. The wave
crests move rightwards along the cord with velocity λ.
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T = 3

Figure 2B.4. (a) One-dimensional sinusoidal travelling wave. (b) General one-
dimensional travelling wave.

(c) More generally, suppose that f is any function of one variable, and define u(x; t) =
f (x − λ · t). Then u satisfies the wave equation and describes a travelling wave, whose
shape is given by f , and which moves rightwards along the cord with velocity λ (see
Figure 2B.4(b)). ♦

Exercise 2B.2 Verify Examples 2B.2(a)–(c). � E©

Exercise 2B.3 According to Example 2B.2(c), you can turn any function into a E©

travelling wave. Can you turn any function into a standing wave? Why or why
not? �

2B(ii) . . . in two dimensions: the drum

Now suppose D = 2, and imagine a two-dimensional ‘rubber sheet’. Suppose
u(x, y; t) is the vertical displacement of the rubber sheet at the point (x, y) ∈ R2 at
time t . To derive the two-dimensional wave equation, we approximate this rubber
sheet as a two-dimensional ‘mesh’ of tiny beads connected by massless, tense
elastic strings of length ε. Each bead (x, y) feels a net vertical force F = Fx + Fy ,
where Fx is the vertical force arising from the tension in the x direction and Fy is
the vertical force from the tension in the y direction. Both of these are expressed
by a formula similar to equation (2B.2). Thus, if bead (x, y) has mass mε , then
it experiences an acceleration a = F/mε = Fx/mε + Fy/mε = ax + ay , where
ax := Fx/mε and ay := Fy/mε , and each of these is expressed by a formula similar
to equation (2B.3). Taking the limit as ε → 0, as in equation (2B.4), we deduce
that

a(x, y) = lim
ε→0

ax,ε(x, y) + lim
ε→0

ay,ε(x, y) = λ2 ∂2
x u(x, y) + λ2 ∂2

y u(x, y),

where λ is a constant determined by the density and tension of the rubber
membrane. Again, we recall that u and a are also functions of time, and that
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a(x, y; t) = ∂2
t u(x, y; t). Thus, we have the two-dimensional wave equation:

∂2
t u(x, y; t) = λ2 · ∂2

x u(x, y; t) + λ2 · ∂2
y u(x, y; t), (2B.5)

or, more abstractly,

∂2
t u = λ2 · �u.

This equation describes the propagation of wave energy through any medium with
a linear restoring force. For example:

� transverse waves on an idealized rubber sheet;
� ripples on the surface of a pool of water;
� acoustic vibrations on a drumskin.

Example 2B.3 Two-dimensional standing waves
(a) Suppose λ2 = 9, and let u(x, y; t) = sin(3x) · sin(4y) · cos(15t). This describes a

two-dimensional standing wave with temporal frequency 15.
(b) More generally, fix ω = (ω1, ω2) ∈ R2 and let � = ‖ω‖2 =

√
ω2

1 + ω2
2. Then the

function

u(x; t) := sin (ω1x) · sin (ω2y) · cos (λ ·�t)

satisfies the two-dimensional wave equation and describes a standing wave with tem-
poral frequency λ ·�.

(c) Even more generally, fix ω = (ω1, ω2) ∈ R2 and let� = ‖ω‖2 =
√
ω2

1 + ω2
2, as before.

Let

SC1(x) = either sin(x) or cos(x);

let

SC2(y) = either sin(y) or cos(y);

and let

SCt (t) = either sin(t) or cos(t).

Then

u(x; t) = SC1 (ω1x) · SC2 (ω2y) · SCt (λ ·�t)

satisfies the two-dimensional wave equation and describes a standing wave with tem-
poral frequency λ ·�. ♦

Exercise 2B.4 Check Examples 2B.3(a)–(c). �E©


