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Preface

Nanoelectronics is a field of fundamental and applied science, which is rapidly
progressing as a natural development of microelectronics towards nanoscale
electronics. The modern technical possibilities of science have reached such a
level that it is possible to manipulate single molecules, atoms, and even electrons.
These objects are the building blocks of nanoelectronics, which deals with the
processes taking place in regions of size comparable to atomic dimensions.
However, the physical laws which govern electron behavior in nanoobjects
significantly differ from the laws of classical physics which define the operation
of a large number of complex electronic devices, such as, for example, cathode-
ray tubes and accelerators of charged particles. The laws that govern electron
behavior in nanoobjects, being of quantum-mechanical origin, very often seem
to be very strange from a common-sense viewpoint. The quantum-mechanical
description of electron (or other microparticle) behavior is based on the idea of the
wave–particle duality of matter. The wave properties of the electron, which play
a significant role in its motion in small regions, require a new approach in the
description of the electron’s dynamic state on the nanoscale. Quantum mechanics
has developed a fundamentally new probabilistic method of description of
particle motion taking into account its wave properties. This type of description
is based on the notion of a wavefunction, which is not always compatible with
the notion of a particle’s trajectory. This makes electron behavior harder to
understand.

The main objects of research in nanoelectronics are quantum-dimensional
structures such as quantum wells, quantum wires, and quantum dots, where elec-
tron motion is limited in one, two, and three directions, respectively. The size
of these quantum-mechanical objects is comparable to the electron de Broglie
wavelength. In such structures electronic properties become different from those
of bulk materials: new so-called low-dimensional effects become apparent.
Quantum-mechanical laws govern various processes and define a significant
modification of the energy spectrum, which is the main characteristic of an elec-
tronic system. The energy spectrum which characterizes the electron motion in
the limited region becomes discrete. The structures with such an energy spectrum
are the basis for the development of new types of nanoelectronic devices.

The physics of quantum-dimensional structures is currently developing
rapidly and is beginning to form a separate field with quantum mechanics
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as its basis. Only a small number of undergraduate engineering students take
quantum-mechanics courses. However, there are only a few textbooks that are
simple enough to understand for a wide range of engineering students, who
would like to learn theoretical methods of analysis of the electronic properties
of low-dimensional structures. While writing the current textbook we pursued
two main goals: to present the main low-dimensional structures clearly from the
physical point of view and to teach the reader the basics of quantum-mechanical
analysis of the properties of such structures. Therefore, the experimental and
theoretical material which will help the reader to understand the quantum-
mechanical concepts applied to nanostructures is presented. Special attention
is paid to the physical interpretation of quantum-mechanical notions. Theo-
retical material as well as the mathematical apparatus of quantum mechanics
necessary for carrying out quantum-mechanical calculations independently is
presented.

The book is written in such a way that it can be used by students who
have studied classical physics to a sufficient extent as well as by students who
have not had such an opportunity. The book consists of eight chapters and
three appendices. The appendix material contains the main aspects of classi-
cal physics (particle dynamics, oscillations and waves in crystals, and electro-
magnetic fields and waves) which students can use while studying quantum
mechanics.

In Chapter 1 we give a review of milestones in the development of nanotech-
nology and nanoscience. The main types of nanostructures are described and it
is substantiated why it is necessary to use quantum physics for the description of
their properties.

In Chapter 2 the main experimental facts which required the introduction of
such unusual (for classical physics) notions as wave–particle duality and uncer-
tainty relationships, among others, are described. The main notions and principles
of the quantum-mechanical description are introduced. The Schrödinger equa-
tion – the main equation of non-relativistic quantum mechanics – is discussed in
detail and its validity for the description of nanostructures is presented.

In Chapter 3 the solutions of the stationary Schrödinger equation are obtained
for several important cases of one-dimensional motion. The main peculiarities
of free electron motion as well as confined electron behavior are discussed. The
main advantage of these solutions is in explanation and quantitative definition
of the discrete energy levels of an electron when it moves in potential wells of
various profiles.

In Chapter 4 the peculiarities of electron motion for structures wherein electron
motion is confined in two and three dimensions are considered. It is shown that the
discrete electron energy levels are characteristic for electron motion in potential
wells of particular dimensionalities, in contrast to the continuous energy spectrum
of a free electron. The structure’s dimensionality and potential profile define the
positioning of energy levels in the discrete energy spectrum.
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The calculation of electron quantum states in various types of nanostruc-
tures generally encounters big mathematical difficulties. Therefore, approximate
methods become very important for finding solutions of the Schrödinger equa-
tion. We consider in Chapter 5 several important and widely used approximate
methods for calculation of electron wavefunctions, energy states, and transition
probabilities between quantum states.

Chapter 6 is dedicated to finding wavefunctions, the geometry of electron
clouds corresponding to them, and energy spectra of the simplest atoms and
molecules using approximate methods.

When the size of the potential well is several times larger than the distance
between atoms in a crystal, a fundamental reconstruction of the energy spec-
trum, which leads to a change in the physical properties of nanostructures, takes
place. In Chapter 7 the main peculiarities of the electron energy spectrum in
low-dimensional quantum structures (quantum wells, wires, and dots) as well
as in periodic structures (superlattices) consisting of these low-dimensional
nanostructures are considered.

In the last chapter – Chapter 8 – we consider the main methods of fabrication
and characterization of nanostructures as well as their prospective applications
in modern nanoelectronics.

Practically all chapters and appendices contain a large number of detailed
examples and homework problems, which the authors hope will help students to
acquire a deeper understanding of the material presented.

The authors have many professional colleagues and friends from different
countries who must be acknowledged. Without their contributions and sacri-
fices this work would not have been completed. Special thanks go to the Divi-
sion of Undergraduate Education of the National Science Foundation for the
partial support of this work through its Course, Curriculum and Laboratory
Improvement Program (Program Director Lance Z. Perez). The authors would
like especially to thank Professor Athos Petrou for his editorial efforts in a crit-
ical reading of this book and for many valuable comments and suggestions.
The authors also would like to thank undergraduate student Brian McSkimming
for his thorough reading of the manuscript and helpful comments. We would
like to thank undergraduate student Jonathan Bell for his help in preparation of
figures.

Vladimir Mitin acknowledges the support and active encouragement of the
faculty of the Department of Electrical Engineering and the Dean of the School of
Engineering and Applied Sciences, Harvey G. Stenger Jr., as well as the members
of the Center on Hybrid Nanodevices and Systems at the University at Buffalo,
The State University of New York. He is also grateful to his family and friends
for their strong support and encouragement, as well as for their understanding
and forgiveness that he did not devote enough time to them while working on
the book, and especially to his mother, grandson Anthony, and granddaughter
Christina whom he missed the most.
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Dmitry Sementsov thanks Tatiana Sementsova for her encouragement and
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Notation

Symbols

A – amplitude
Awf – work function
a – lattice constant
a – acceleration
a1, a2, a3 – basis vectors
B – magnetic flux density
C – wrapping vector
C – capacitance
c – speed of light in vacuum
D – superlattice period
D – electric displacement
d – translation vector
E – energy of a particle
Ec – bottom of conduction band
Eg – bandgap
Ei – ionization energy
Ev – bottom of valence band
EF – Fermi energy
E – electric field intensity
e – elementary charge
er – unit vector directed along radius vector r
ex , ey , ez – unit coordinate vectors
Fgr – gravitational force
FL – Lorentz force
Fm – magnetic force
Fe – electric force
g – acceleration due to gravity; density of states
H – magnetic field intensity
Hn – Hermite polynomials
Ĥ – Hamiltonian operator
h – Planck’s constant
h- – reduced Planck constant
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I – current
IT – tunneling current
i, j, k – unit coordinate vectors
K – kinetic energy; superlattice wavenumber
k – spring constant; wavenumber
k – wavevector
kB – Boltzmann’s constant
ke = 1/(4πε0) – coefficient in SI system
l – orbital quantum number
L – angular momentum
Lx , L y, Lz – dimensions of a sample
m – orbital magnetic quantum number
m∗ – effective mass of an electron
m0 – mass of particle at rest
me – electron mass in vacuum
ms – magnetic quantum number
N – number of states
NA – Avogadro constant
n – principal quantum number; concentration
P – Poynting vector
P – pressure
P – probability
p – momentum
q – wavevector
Q – charge
q – charge of a particle
R – universal gas constant
r – magnitude of radius vector
r1 – first Bohr radius
r – coordinate vector
R∞ – Rydberg’s constant
Rc – radius vector of center of mass
S – spin
S – cross-section
t – time
T – time period; ambient temperature
Td – translation operator
U – potential energy; applied voltage
U0 – height of potential barrier
UG – gate voltage
u – displacement of atoms from their equilibrium positions
V – volume
v – velocity
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vgr – group velocity
vph – phase velocity
Vc – velocity of center of mass
W – work done by a force
X (r ) – radial function
x, y, z – spatial coordinates
Yml – spherical harmonics
α – angle; Madelung constant
β – force constant; b/(2m)
γ – gyromagnetic ratio
δ – logarithmic decrement of damping
δ(x) – Dirac’s delta-function
ε – dielectric constant of the medium; relative deformation
ε0 – permittivity of free space
ε – energy
φ – electrostatic field potential
ϕ – azimuthal angle; chiral angle; phase difference
λ – wavelength; parameter in characteristic equation
λBr – de Broglie wavelength
µ – magnetic permeability; magnetic moment
µl – orbital magnetic moment
µB – Bohr magneton

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
– Laplace operator

ψ – stationary wavefunction
 – time-dependent wavefunction
� – angular velocity of a particle
ω – frequency
ωe – frequency of electron oscillations
ωq – frequency of harmonic oscillator
ρ – three-dimensional density
τ – torque
θ – polar angle





Chapter 1
The nanoworld and quantum physics

1.1 A review of milestones in nanoscience

and nanotechnology

It is extremely difficult to write the history of nanotechnology for two reasons.
First, because of the vagueness of the term “nanotechnology.” For example, nano-
technology is very often not a technology in the strictest sense of the term.
Second, people have always experimented with nanotechnology even without
knowing about it. Ironically enough, we can say that the medieval alchemists
were the founding fathers of nanoscience and nanotechnology. They were the
first researchers who tried to obtain gold from other metals. The ancient Greek
philosopher Democritus also can be considered as a father of modern nanotech-
nology, since he was the first to use the name “atom” to characterize the smallest
particle of matter. The red and ruby-red opalescent glasses of ancient Egypt and
Rome, and the stained glasses of medieval Europe, can be considered as the first
materials obtained using nanotechnology. An exhibition at the British Museum
includes the Lycurgus cup made by the ancient Romans. The glass walls of the
cup contain nanoparticles of gold and silver, which change the color of the glass
from dark red to light gold when the cup is exposed to light. In 1661 the Irish
chemist Robert Boyle for the first time stated that everything in the world consists
of “corpuscules” – the tiniest particles, which in different combinations form all
the varied materials and objects that exist.

In modern history the first practical breakthrough in nanotechnology was
made by the American inventor George Eastman, who in 1884 fabricated the
first roll film for a camera. This film contained a photosensitive layer of silver
bromide nanoparticles. In 1931 the German physicists Max Knoll and Ernst
Ruska developed an electron microscope, which for the first time allowed one to
study nanoobjects.

The development of modern optical, microelectronic, material science, chem-
ical, biological, and other technologies, which took into account quantum-
dimensional effects, and, subsequently, the development of the main concepts
and methods for the formation and control of nanoparticles has accelerated at an
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2 The nanoworld and quantum physics

explosive rate. This development was based on the achievements and discoveries
made by researchers in diverse fields of science.

The notion of “nanotechnology” was introduced for the first time by Richard
Feynman in 1959 in his famous Caltech lecture “There’s plenty of room at the
bottom: an invitation to enter a new field of physics.” Richard Feynman imagined
the world of the nanoscale where the fundamental laws of quantum physics
define the behavior of a single atom and control the formation of different
structures from individual atoms. This vision of the great scientist ushered in
the modern era of nanotechnology. The main achievements of this era are the
following.

In 1952, L. V. Radushkevich and V. M. Lukyanovich published the first clear
images of 50-nm-diameter carbon nanotubes. Carbon nanotubes were rediscov-
ered many times after that.

In 1966, Robert Young suggested the use of piezomotors for positioning; these
are currently used to move the tip in scanning-tunneling microscopes (STMs)
and atomic-force microscopes (AFMs) with an accuracy of 10−2−10−3 nm.

In 1968, Alfred Cho and John Arthur developed the theoretical foundations
of nanotechnology for the processing of surfaces.

In 1974, the Japanese physicist Norio Taniguchi in his report “On the basic
concept of nanotechnology” coined the term “nanotechnology,” which he sug-
gested using to name all the processes which take place in objects of size less
than 1 µm.

In 1981, Gerd Binnig and Heinrich Röhrer developed their first STM, which
enabled them to see individual atoms.

In 1985, Robert Curl, Harold Kroto, and Richard Smalley discovered
fullerene – a molecule that resembles a soccer ball and contains 60 carbon
atoms. This discovery accelerated the development of the fabrication technology
of other carbon nanomaterials such as carbon nanotubes.

In 1986, the atomic-force microscope was introduced by Gerd Binnig, Calvin
Quate, and Christoph Gerber. The same year the book Engines of Creation, by
Eric Drexler which has been called the Bible of nanoscience, was published.
Eric Drexler described in his book molecular self-replicating robots, which can
assemble molecules, decompose molecules, record in a nanocomputer’s memory
programs for self-replication, and realize these programs. The predictions for a
20-year period made in this book are incredibly becoming reality. Also in 1986,
the American physicist Arthur Ashkin invented optical tweezers – the device for
manipulation of microobjects and nanoobjects with the help of a focussed laser
beam.

In 1987, the French physicist Jean-Marie Lehn introduced the notions of
“self-organization” and “self-assembly.”

In 1990, Donald Eigler showed that it is possible to develop a molecular
automaton. With the help of STM he wrote on one of the crystallographic edges
of nickel the name of his company “IBM” using 35 individual xenon atoms.



1.1 A review of milestones in nanoscience and nanotechnology 3

Further studies showed that it is possible to fix atoms to the surfaces of other
materials. Submolecular assembly became a reality from this moment on.

In 1991, the first artificial metamaterial, which was called by its creator, the
American physicist Eli Yablonovich, “photonic crystal,” was produced.

In 1998, the Dutch physicist Cees Dekker fabricated the first field-effect
nanotransistor, which was based on a carbon nanotube. The technology for fab-
rication of nanotubes of length larger than 300 nm was developed.

In 1999, the American physicists Mark Reed and James Tour formulated the
principles of the manipulation of a single molecule as well as chains of molecules.

In 2000, the principles of nanotomography, i.e., the creation of three-
dimensional images of the inner structure of matter with a resolution of 100 nm,
were developed.

In 2001, IBM researchers developed the first examples of logical circuits
constructed on the basis of carbon-nanotube field-effect transistors.

In 2002, Cees Dekker created the first bionanostructure – a synthesis of a
carbon nanotube and a DNA molecule.

In 2003, an international team of researchers deciphered the sequence of the
human genome.

In 2004, British and Russian scientists obtained the first samples of
graphene – a single layer of graphite, which has a two-dimensional hexagonal
lattice.

In 2001–2005 a team of American scientists deciphered the mechanism of the
replication of genetic information by cells.

In 2007 an international group of physicists from the USA, Germany, and
Holland developed a scanning-electron microscope with subatomic resolution of
0.05 nm. The same year a group of American scientists developed the technology
of scanning nanolithography with a resolution of 12 nm and a recording speed
of more than 1 mm s−1.

At present it is commonly accepted that Nobel laureate Richard Feynman
in his lecture “There’s plenty of room at the bottom” was the first to relate
nanostructures and nanotechnology. In his lecture Feynman suggested that in the
future it will be possible to move individual atoms with the help of devices of the
same size. Using such devices, macroobjects can be assembled atom by atom,
making the fabrication process cheaper by several orders of magnitude. It will
be enough to supply these nanorobots with the necessary amount of molecules
and write a program for the fabrication of the required product. In his lecture
Feynman also mentioned the prospects of nanochemistry for the synthesis of
new materials. As soon as physicists create these devices, which will be able
to operate with individual atoms, most of the traditional methods of chemical
synthesis will be replaced by the methods of atomic assembly. The development
of such a technology at the atomic scale will help to solve many problems of
chemistry and biology. One can only wonder how the great scientist envisioned
the enormous potential of nanotechnology.
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ReconstructedUnreconstructedFigure 1.1 Reconstruction
of Si surface.

1.2 Nanostructures and quantum physics

The prefix “nano” means one billionth part of something. Therefore, from the
formal point of view nanostructures can be any objects with size (at least in one
of the directions) of the order of 100 nm or less. Thus, nanostructures are objects
whose sizes range from individual atoms (the size of an atom is about 0.1 nm)
to large clusters consisting of up to 108 atoms or molecules. The transition of
material structures from macroscale to nanoscale results in sharp changes of their
properties. These changes are due to two reasons. The first reason is the increase
of the proportion of surface atoms in the structure. The surface of the material
can be considered as a special state of matter. The higher the proportion of atoms
on the surface, the stronger are effects connected with the surface of a specimen.
The ratio of the number of atoms located within a thin near-surface layer (∼1 nm)
to the total number of atoms in a specimen increases with decreasing volume
of the specimen. Also the surface atoms are under conditions, which are very
different from the conditions for the bulk atoms, because they are bound to the
neighboring atoms in a different way. Atoms in the surface layer have some of
their chemical bonds broken and therefore they are free to make new bonds. This
results in a tendency of those electrons which do not form a pair to form a bond
either with atoms of some other type that the surface adsorbs or with atoms of
the same type.

If the surface is clean and smooth and there are no other atoms then the
surface atoms establish bonds with each other. In the simplest case neighboring
atoms of a surface layer unite to give so-called dimers (or pairs). The atoms of
each dimer approach each other and at the same time move away from the other
neighboring atoms which have formed dimers. Therefore, the lattice constant
of the surface changes. Such a process is called reconstruction. As a result of
atomic reconstruction a new type of atomic arrangement occurs at the surface
(see Fig. 1.1). Also for those atoms at the edges of monatomic terraces and
cavities, where the number of neighboring atoms is much smaller than that in
the bulk volume, there exist special conditions. For example, the interaction of
electrons with the free surface creates specific near-surface energy states. These
facts lead us to consider the near-surface layer as a new state of matter.

Less clear is the second group of dimensional effects, which can be explained
only by using a quantum-mechanical description. As will be shown further on,
this group of effects is related to a significant increase of quantum effects when
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the size of the region where an electron moves significantly decreases. Therefore,
the properties of nanoparticles strongly change compared with the properties of
macroparticles of the same material. This happens mostly at characteristic sizes
of 10–100 nm. According to quantum mechanics an electron can be presented
as a wave, whose physical meaning will be explained in the following chapters
of the book. The propagation of an electron wave in nanosize structures and its
interaction with the boundary surfaces lead to the effects of energy quantization,
interference of incident and reflected waves, and tunneling through potential
barriers. Such a wave, which corresponds to a freely moving electron in an
ideal crystalline material, can propagate in any direction. The situation radically
changes when an electron is confined within a structure, whose size, L , along
one of the directions of propagation is limited and is comparable to the electron
de Broglie wavelength. In this case the electron cannot propagate in this specific
direction and the electron can be described by a standing wave: only an integer
number of electron half-wavelengths can fit within the structure of length L .
This leads to the existence of non-zero discrete values of energy that an electron
can have in this direction, i.e., the electron energy in this direction is no longer
continuous but instead its spectrum consists of a set of separate energy levels. As a
result, quantum confinement of electron motion increases the electron minimum
energy. In the case of nanometer length of L the distance between energy levels
exceeds the energy of thermal motion of the electron, which allows control of
the electron energy by external fields. If in the two other directions the size of
the structure is not limited, the energy of electron motion in these directions is
not quantized and the electron may have any energy values. All this leads to
the situation when the electric properties of nanosize structures differ from the
well-known bulk properties of the materials from which the nanostructures are
fabricated.

The self-interaction of electron waves in nanosize structures as well as their
interaction with inhomogeneities and interfaces can be accompanied by the phe-
nomenon of interference, which resembles the interference of electromagnetic
waves. The distinctive feature of electron waves is that they are charged waves
because the electron is a charged particle. This allows one to control the prop-
agation of electron waves in nanostructures by the application of electric and
magnetic fields.

The wave nature of microscopic particles, including electrons, is manifested
by their ability to penetrate through an obstacle even when the particle’s energy
is lower than the height of the potential barrier of the corresponding obstacle.
This phenomenon is called tunneling and it is a purely quantum phenomenon.
According to classical mechanics an electron with energy E that encounters an
obstacle with the potential barrier U0 > E on its path will reflect from this
obstacle. However, the electron as a wave is transmitted through the obstacle
(see Fig. 1.2). Quantum confinement in nanostructures specifically affects the
processes of tunneling in them. Thus, the quantization of electron energy in very
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E

U0

Incident wave

Transmitted wave

Figure 1.2 An electron
with energy E tunneling
through the potential
barrier U0(U0 > E).

thin and periodically arranged potential wells leads to the electron tunneling
through these structures only having a certain energy, i.e., tunneling has a reso-
nance character. Another such effect is single-electron tunneling when a charge
is transmitted in an external electric field in portions equal to the charge of a sin-
gle electron. After each tunneling event the system returns to its initial state. The
quantum effects discussed above are widely used in nanoelectronic devices and
elements of informational systems, but applications of electron quantum phe-
nomena are not limited to these systems and devices. Currently active research
is continuing in this direction.

The development of nanotechnology, which includes molecular-beam epitaxy,
modern methods of molecular-beam lithography, diagnostics of nanoobjects,
scanning-electron microscopy, scanning-tunneling microscopy, and atomic-force
microscopy, is providing fundamentally new tools for the development of the ele-
ments of silicon, heterostructure, carbon, and nanomagnetic electronics. Nano-
technology that uses effects of self-organization, and molecular and atomic
self-assembly, has become an alternative to the fabrication of macroobjects.
The elemental basis of nanoelectronics includes a large number of structures and
devices whose operation is based on various physical principles. Considering a
variety of prospective directions, special attention must be paid to three of them:
(1) the direction related to information technologies, (2) carbon nanotubes, and
(3) nanoelectromechanical systems (NEMSs).

When considering any transport process (electric current, thermal conductiv-
ity, etc.), we assign the carriers a certain effective mean-free-path length, l. For a
characteristic size of the structure L � l the scattering of carriers takes place in
the bulk of structure and it does not depend on the geometry and the size of the
object. If, on the other hand, L ≤ l, then the situation radically changes and all
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transport characteristics depend on the size of a specimen. Some of these effects
can be described within the framework of classical physics, but there is a group
of size effects that can be understood only on the basis of quantum mechanics.

Any achievements in nanoscience first of all are considered in terms of how
they can be applied to the information technologies. Despite increasing difficul-
ties, a very high rate of improvement of all significant parameters of electron-
ics has been maintained during the last few decades. The most revolutionary
achievements approach quantum limits when the working elements become a
single electron, a single spin, a single quantum of energy, and so on. This may
increase the speed of operations to close to 1 THz (1012 operations per second)
and the writing density to about 103 Tbit cm−2, which is significantly higher than
the existing values, and energy consumption may be reduced by several orders
of magnitudes. Having such a density of writing, we can store on a disk the size
of a wristwatch a whole library (see Fig. 1.3 for the trends in miniaturization).

Quantum phenomena are currently widely used in nanoelectronic elements
for information systems. However, utilization of the electron quantum properties
is not limited to this. It is important to understand that the nanoscale is not just
the next step in miniaturization. The behavior of nanostructures, in comparison
with individual atoms and molecules, shows important changes, which cannot
be explained by the traditional models and theories. The development of these
new fields of science undoubtedly will lead to further scientific progress.

This book introduces the reader to the main ideas and laws of quantum
mechanics using numerous examples, such as how to calculate energy spectra
and other physical characteristics of certain types of nanostructures. In this book
the authors had no intention to cover all the aspects of modern quantum physics
and nanoelectronics because this task cannot be accomplished without deeper
knowledge of subjects such as solid-state physics, the physics of semiconductors,
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and statistical physics. Nevertheless, the authors hope that this first acquaintance
with quantum physics for most of the readers of this book will be useful in their
future professional careers and will encourage them to study quantum phenomena
at a higher level.

1.3 Layered nanostructures and superlattices

Atoms and molecules until recently were considered the smallest building bricks
of matter. As the latest achievements of nanotechnology show, materials can be
built not only from single elements but also from whole blocks. Clusters and
nanoparticles may serve as such building blocks. Crystalline materials that con-
sist of nanoscale blocks are called bulk nanocrystalline materials. These materials
may have unique properties. For example, from everyday life we know that, if
a material is durable, then it can be simultaneously fragile. The best example
of a very durable but fragile material is glass. It turns out that some nanocrys-
talline materials are especially durable and elastic simultaneously. The unique
mechanical properties of nanocrystalline materials in many respects are con-
nected with the existence of an interface between nanoparticles. Such materials
have properties that differ from those of the corresponding bulk material.

Below we discuss a class of nanocrystalline materials known as superlattices.
There are different types of superlattices. Those of one type – heterostructure
superlattices – can be grown by alternating layers of two different semiconductor
materials, e.g., GaAs and AlGaAs, which have very similar lattice constants.
Therefore, heterostructure superlattices can be referred to as layered structures.
The main elements of the layered structures are two types of layers: (1) the
layer of the so-called narrow-bandgap semiconductor (GaAs) and (2) the layer
of the wide-bandgap semiconductor (AlGaAs). These two elements can be used
to create another layered structure called a quantum well. A thin layer of GaAs
between two layers of AlGaAs creates a potential well for an electron, where its
motion is restricted. In the next chapters of the book we will consider theoretically
the electron motion in such layered structures (see Fig. 1.4).

More generally, superlattices are structures with periodic repetition along
one, two or three directions of regions with different values of some physical
quantity (dielectric or magnetic permeability, the type and mobility of carriers,
the work function, elasticity, and so on). Periodicity along one direction of
such a layered structure results in a one-dimensional superlattice. If there is
a periodicity along two directions, then the superlattice is two-dimensional. An
example of such a superlattice is a two-dimensional system of quantum wires of
a semiconductor formed on the surface of another semiconductor. In such a two-
dimensional material the electric properties of material periodically change along
two directions. In a three-dimensional superlattice the periodicity of physical
properties can be observed along three directions.
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Semiconductor superlattices, which consist of thin semiconductor layers alter-
nating in one direction, i.e., heterostructure superlattices, have a wide range of
applications. The period of such a superlattice usually is much larger than the
lattice constant but is smaller than the electron mean free path. Such a structure
possesses, in addition to a periodic potential of the crystalline lattice, a potential
due to the alternating semiconductor layers. The existence of such a poten-
tial significantly changes the energy bandstructure of the semiconductors from
which the superlattice is formed. A very important peculiarity of a superlattice
is the existence of its own minibands. These peculiarities become apparent when
studying optical and electric properties of semiconductor superlattices. Since
semiconductor superlattices have special physical properties, we can consider
superlattices as a new type of semiconductor materials.

The superlattices can be of several types. The most common are heterostruc-
ture superlattices and modulation-doped superlattices. A heterostructure super-
lattice is a representative of layered nanostructures: it consists of epitaxially
grown alternating layers of different semiconductors, which have similar lattice
constants. Historically the first heterostructure superlattices were grown for the
semiconductor system GaAs/Alx Ga1−x As. The success in the growth of such a
superlattice was due to the fact that Al has the same valence and ionic radius as
Ga, and therefore the incorporation of Al does not cause noticeable distortions
of the crystalline structure of the material. At the same time Al may sufficiently
modulate the amplitude of the superlattice potential. Depending on the relative
position of the semiconductor energy bands, heterostructure superlattices can be
divided into two main types: type I and type II. GaAs/Alx Ga1−x As superlattices
belong to the first type. The conduction-band minimum and the maximum of
the valence band for GaAs are situated inside of the bandgap of Alx Ga1−x As
(see Fig. 1.4). Such band alignment leads to a periodic system of quantum wells
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for current carriers in GaAs, which are separated from each other by potential
barriers created by Alx Ga1−x As. The depth of the quantum wells for electrons
is defined by the difference between the minima of the conduction bands of the
two semiconductor materials, and the depth for quantum wells for holes is given
by the difference between the maxima of the valence bands.

In the type-II heterostructure superlattices the minimum of the conduction
band of one semiconductor is situated in the energy bandgap of the second,
and the maximum of the valence band of the second semiconductor lies in the
bandgap of the first. A representative of this type of superlattice is the system
Inx Ga1−x As/GaSb1−yAsy .

In modulation-doped superlattices the periodic potential is formed by the
alternating layers of n- and p-types of the same semiconductor. These layers can
be separated by undoped layers. The most common material for fabrication of
modulation-doped superlattices is GaAs.

Besides heterostructure and modulation-doped superlattices, other types of
superlattice are possible: they differ by the way in which the modulation poten-
tial is created. In spin superlattices, the semiconductor material is doped with
magnetic impurities. A periodic potential occurs in such superlattices when an
external magnetic field is applied. A superlattice potential can be created also by
periodic deformation of a specimen in the field of a powerful ultrasound wave
and an electromagnetic standing wave. Superlattices have a wide range of appli-
cations in diverse semiconductor devices. The most striking example is their use
in cascade semiconductor lasers.

1.4 Nanoparticles and nanoclusters

Nanoparticles are atomic or molecular structures, whose size is equal to 100 nm
or less. Such nanoobjects consist of 108 or fewer atoms (or molecules). Their
properties differ from the properties of bulk materials consisting of the same
atoms (or molecules). Nanoparticles whose size is equal to 10 nm or less that
contain up to 103 atoms are called nanoclusters or, simply, clusters. Numerous
studies have shown that for a given material there exist clusters having only a
certain number of particles. This means that clusters consisting of these numbers
of particles are the most stable ones. The corresponding numbers are called magic
numbers. The set of magic numbers shows how clusters (from the smallest to
the biggest) are formed from individual particles. An example of this structure
of stable clusters is the closest packing of identical spheres.

The first magic number is 13, which corresponds to the packing when the
internal sphere is surrounded by 12 spheres of the same radius. If subsequent
shells of identical spheres are also filled, then their total number corresponds
to the following magic numbers: 55, 147, 309, 567, and so on. The number of
particles, Nn , in the nth shell can be calculated using the following formula:

Nn = 10n2 + 2. (1.1)
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Figure 1.5 Clusters of 13
and 55 nanoparticles.

Thus, in the first shell there are 12 spheres (N1 = 12) around a single sphere
and, therefore, the magic number is equal to 13. In the second shell there are
42 spheres (N2 = 42) and, by adding this number to 13, we obtain the next
magic number which is equal to 55. In this case the cluster has the form of an
icosahedron and this structure is the most stable. In some cases clusters have the
form of a dodecahedron. Both types of packing of spheres are shown in Fig. 1.5.
Such clusters are formed mostly during growth under vacuum conditions from
liquid or gaseous phases.

Many physical properties of nanoparticles or nanoclusters differ from the
properties of a bulk material consisting of the same type of atoms. Thus, nanopar-
ticles and nanoclusters have a crystalline structure slightly different from the bulk
crystal, which is due to the significant influence of the surface of the specimen.
For example, gold nanoclusters of size 3–5 nm crystallize not having a face-
centered cubic lattice as bulk gold does, but as an icosahedral structure. Let us
estimate the number of surface atoms in a cluster that consists of N atoms and
whose form is close to spherical. The volume of such a cluster is

V ≈ 4π

3
R3 = V0 N , (1.2)

where R is the radius of a sphere and V0 is the volume that corresponds to an
individual atom. Note, it is not the volume of the atom itself! Let us assume that
the volume V0 can be presented as a sphere of radius a. Therefore,

V0 = 4π

3
a3. (1.3)

For the structure’s closest packing the parameter a is almost equal to the radius
of an atom. Then, from Eqs. (1.2) and (1.3), we find that the size of a cluster and
the radius of an individual atom are related as

R = aN 1/3. (1.4)

For most clusters the size of constituent atoms is close to a ≈ 0.1 nm. From
Eq. (1.4) it follows that a cluster that consists of 103 atoms has a size of about
R ≈ 1 nm. For a cluster that consists of molecules this size is significantly larger.
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50 nm
InAs quantum dots

Figure 1.6 A scanning
electron microscope
image of InAs quantum
dots in a GaAs matrix.

The surface area, S, is a very important characteristic of a cluster. Let us
estimate S for a cluster with a spherical surface:

S ≈ 4πR2 = 4πa2 N 2/3. (1.5)

The number of atoms on the surface of a cluster, NS, is connected with the surface
area, S, as

S ≈ S0 NS = 4πa2 NS, (1.6)

where S0 = 4πa2 is the area that corresponds to an individual atom on the surface
of a cluster. Let us find the ratio of the number of atoms, NS, on the surface of a
cluster to the number of atoms, N , in a cluster using Eqs. (1.2) and (1.6):

NS

N
= SV0

S0V
= 3V0

RS0
= a

R
= 1

N 1/3
. (1.7)

As we see from the above expressions, the proportion of atoms on the surface of
a cluster rapidly decreases with increasing cluster size. Noticeable influence of
the surface occurs at a cluster size less than 100 nm.

The formation of energy bands of crystals is manifested by the quantum-
dimensional effects, which become apparent when the size of the region of
electron motion is comparable to the electron de Broglie wavelength in the
material. In metals this wavelength is about 0.5 nm, whereas in semiconductors
this wavelength can be up to 1 µm. Therefore, quantum-dimensional effects
can be observed at much larger sizes of semiconductor nanoparticles than for
metal nanoparticles. In semiconductor clusters called quantum dots electrons are
confined in all three directions. Such individual quantum dots or their arrays are
frequently created in the matrix of some other semiconductor material. In this
case quantum dots are regularly positioned as “islands” of one semiconductor on
the surface of the other semiconductor. Figure 1.6 shows the example of an InAs
quantum-dot array grown on the surface of GaAs.
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The discreteness of electron energy in an individual quantum dot allows
one to call it an artificial atom. On the basis of quantum dots highly-efficient
miniature sources of light can be developed. By varying the size and composition
of quantum dots new light-emitting diodes (LEDs) of different colors may be
fabricated. Owing to the tunneling effect, electron transport along a chain of
quantum dots is possible. This can be used for the development of numerous
electronic devices.

In semiconductor devices of micrometer size it is necessary to control (includ-
ing turn on and turn off) the current, which corresponds to the flux of hundreds of
thousands of electrons. With the help of quantum dots we can control the motion
of single electrons, which opens new possibilities for the further miniaturization
of semiconductor devices and further decrease of power consumption.

Example 1.1. Estimate the size of a spherical nanocluster of water consisting of
100 atoms. Estimate the area and diameter of monomolecular water film that is
formed when the nanocluster is spread over the surface of a sample.
Reasoning. The number of molecules, N , in a water cluster of volume V and
mass m is defined by the following equation:

N = m

µ
NA, (1.8)

where NA = 6.02 × 1023 mol−1 is the Avogadro constant and µ is the molar
mass of a molecule. The volume of one molecule of water, V0, can be estimated
according to the following formula:

V0 = V

N
= Vµ

m NA
= µ

ρNA
= 4

3
πr 3

0 , (1.9)

whereµ = 18 g mol−1 is the molar mass of water and ρ = 1 g cm−3 is the density
of water. From Eq. (1.9) we can find the radius of a molecule, r0:

r0 =
(

3µ

4πρNA

)1/3

≈ 0.2 nm. (1.10)

Let us write the relationship that connects the cluster’s volume, V , and radius,
R, with the radius of a water molecule, r0:

V = 4

3
πR3 = N

4

3
πr 3

0 . (1.11)

From Eq. (1.11) we find the cluster’s radius, R:

R = N 1/3r0 ≈ 0.9 nm. (1.12)

Since the diametral cross-section of a molecule is defined as

S0 = πr 2
0 , (1.13)

the area of the water spot is defined by the following expression:

S = πR2
S = Nπr 2

0 ≈ 12.6 nm2, (1.14)
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Diamond GraphiteFigure 1.7 The crystalline
structures of diamond (a)
and graphite (b).

where RS is the radius of the water spot which occurred after spreading of the
water cluster. From the last expression we find RS:

RS = N 1/2r0 ≈ 2 nm. (1.15)

1.5 Carbon-based nanomaterials

Carbon (C) is an element of group IV of the Periodic Table of the elements.
Therefore, it has four valence electrons. It is widespread and it is the basis
of living matter, but there is only 0.19% of carbon in the Earth’s crust. The
ability of atoms of the same chemical element to combine in different spatial
configurations is called allotropy. Carbon possesses this property in full measure:
there are several allotropic forms of carbon. First of all are diamond and graphite,
which are shown in Fig. 1.7. In the diamond crystal each carbon atom is in the site
of a tetrahedral lattice with average distance between atoms equal to 0.154 nm.
Four valence electrons of each carbon atom form four strong C—C bonds. It is
difficult to break them since there are no conduction electrons: diamond crystal
is a dielectric. For the same reason diamond has exceptional hardness and a high
melting temperature (Tmt = 3277 K).

Another allotropic form of carbon is graphite, which has exceptionally differ-
ent physical properties from those of diamond. Graphite is a soft black substance
consisting of easily flaked layers, which are called graphene sheets. Within the
plane of a graphene sheet carbon atoms have strong covalent bonds with each
other. These bonds form the lattice consisting of regular hexagons. However, in
contrast to the case of diamond, in graphite only three electrons participate in
establishing bonds. The fourth electron of each carbon atom does not participate
in the formation of interatomic bonds and therefore it is free. This makes graphite
such a good conductor. There is only a weak attraction between graphite layers
due to van der Waals forces. The weakness of the attraction between graphite
layers results in their easy sliding with respect to each other. Therefore, they can
be easily flaked apart.
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Figure 1.8 A schematic
model of graphene in the
form of a two-dimensional
hexagonal lattice.

1.5.1 Graphene

Although graphite had been known for a long time, researchers managed to
obtain single graphite layers and study them only in 2004. The material, which
is one gigantic two-dimensional plane carbon molecule of monatomic width,
was called graphene (see Fig. 1.8). Thus, graphene is a two-dimensional crystal,
which consists of a single layer of carbon atoms composed in a hexagonal lat-
tice. The properties of graphene turned out to be amazing. It is well known that
graphite is a semimetal, i.e., it does not have a bandgap. The bandstructure of
graphene also does not have a bandgap. At the points of intersection of valence
band and conduction band the energy spectrum, E(k), of electrons and holes has
a linear dependence. A similar spectrum is possessed by photons, whose mass
at rest is equal to zero. Therefore, it is said that the effective mass of electrons
and holes in graphene near the intersection point is equal to zero. However, let
us note that, despite the fact that photons and massless carriers in graphene have
similarities, there are significant differences between them that make carriers in
graphene unique. First of all, electrons and holes are fermions and they possess
charge. There are no analogs for these massless charged fermions among known
elementary particles. Second, graphene possesses unusual physical and chemi-
cal properties. Since the effective mass of electrons in graphene tends to zero,
they have a high mobility, 100 times larger than the mobility of electrons and
holes in crystalline silicon – the most widely used material in nanoelectronics.
This explains the gigantic thermal conductivity and good electrical conductivity
of graphene. These properties, together with the transparency and outstanding
mechanical properties, make graphene a prospective material for nanotechnol-
ogy. Using graphene as a basis, a new class of materials with extreme consumer
properties can be developed. However, the most interesting effects are the elec-
tronic properties of graphene since their application opens new possibilities for
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Figure 1.9 A three-
dimensional model of a
C60 fullerene molecule (or
buckyball).

the development of elements for nanoelectronics. Thus, depending on the type
of substrate and geometrical dimensions, the electronic properties of graphene
may be either metallic or semiconducting.

1.5.2 Fullerenes

In 1990, one more crystalline modification of carbon called fullerite was dis-
covered. Fullerite has as a structural unit not a carbon atom, as in the case of
graphene or a carbon nanotube, but a molecule of fullerene. Fullerenes are a new
class of carbon material, whose molecules have the form of skeleton structures
reminding one of a soccer ball. In such molecules carbon atoms are at the vertices
of regular pentagons and hexagons, which are placed on the surface of a sphere or
a spheroid (see Fig. 1.9). Different fullerene molecules can consist of 28, 32, 50,
60, 70, 76, and so on carbon atoms. Although there are various geometrical forms
of fullerenes, quantum-mechanical calculations of stable carbon structures show
that their formation obeys certain rules. Stable carbon clusters have the form
of polyhedra. The outer electron shell of an individual carbon atom provides
stable bonds, which result in the formation of carbon pentagons or hexagons.
The most stable fullerene molecule is C60. The skeleton of the C60 molecule con-
sists of 12 regular pentagons and 20 inequilateral hexagons. Each hexagon has
three pentagons and three hexagons as its neighbors, whereas pentagons have
as neighbors only hexagons. Such a structure provides the C60 molecule with
an extraordinary stability. During the formation of closed geometrical figures
pentagons provide the bending of a graphene sheet. The length of C—C bonds
depends on the boundary on which they are located. The length of this bond at
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Figure 1.10

Three-dimensional
models of carbon
nanotubes: (a) open and
(b) closed nanotubes.

the hexagon–hexagon boundary is equal to 0.132 nm and it is a double covalent
bond. The length of the bond on the hexagon–pentagon boundary is equal to
0.144 nm and it is a single covalent bond. Three electrons of each carbon atom
participate in the formation of the fullerene structure. The fourth electron has a
free chemical bond. Therefore, these molecules possess the important property of
adsorbing atoms of other materials (for example, atoms of hydrogen or fluorine).

In the fullerite crystalline structure, C60 fullerene molecules are attracted to
each other by the weak van der Waals forces. In the face-centered cubic lat-
tice the centers of C60 molecules are at a distance of 1 nm from each other.
In the unit cell of fullerite 26% of the volume between spherical molecules
of fullerene is hollow. Atoms of alkali elements can be easily placed in this
empty space. The C60 crystal is a dielectric, but, when it is doped with atoms
of alkali elements, it becomes a conductor. Thus, doping of this crystal with
potassium forms a K3C60 compound. In this compound the potassium is in
an ionized state and each C60 molecule acquires an additional three electrons
weakly connected with the molecule moving around the crystal, which makes
the compound a conductor. On decreasing the temperature to Tcr = 18 K, a
doped K3C60 fullerite undergoes a transition into a superconducting state. The
record temperature for the superconducting transition for CHBr3C60 of Tcr = 117
K has been demonstrated recently by researchers from IBM. In another crys-
tal, CHCl3C60, the critical temperature was Tcr = 80 K. The measured lat-
tice parameters of cr ystalline samples of the above-mentioned fullerites are
14.45 Å and 14.28 Å, respectively.

1.5.3 Carbon nanotubes

After the discovery of fullerenes it was established that graphene sheets can,
under cer tain conditions, roll up into tubes. These objects were called car-
bon nanotubes. Carbon nanotubes are hollow elongated cylindrical structures
of diameter from one to several tens of nanometers. The ideal carbon nanotube
is rolled up into a cylindrical graphene sheet. There are different forms of carbon
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nanotubes. Carbon nanotubes can be classified as single-walled or multiwalled,
chiral and non-chiral, long and short, and so on. Carbon nanotubes can be open
and closed, as shown in Fig. 1.10. Nanotubes are unusually strong with respect
to stretching and flexing. Under high mechanical stress carbon nanotubes can-
not be torn or broken. They just reconstruct their structure. Carbon nanotubes
possess important properties for practical applications: they can sustain electric
high-density currents, change their properties when they adsorb other atoms or
molecules, emit electrons from their ends at low temperatures, and so on. Carbon
is not the only material for the growth of nanotubes. So far nanotubes of boron
nitride, boron and silicon carbides, and silicon oxide have been grown.

The authors recommend the following textbooks on quantum mechanics for
further reading.

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics,

Vol. III (Reading, MA, Addison-Wesley, 1977).

L. Landau and E. Lifshitz, Quantum Mechanics (Oxford, Pergamon Press, 1968).

D. Bohm, Quantum Theory (New York, Prentice Hall, 1951).

P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford, Oxford University

Press, 1958).

L. I. Shiff, Quantum Mechanics (New York, McGraw-Hill, 1968).

D. K. Ferry, Quantum Mechanics (London, IOP Publishing, 1995).

I. I. Gold’man and V. D. Krivchenkov, Problems in Quantum Mechanics (New York,

Dover Publications, 1993).

G. L. Squires, Problems in Quantum Mechanics (Cambridge, Cambridge University

Press, 1995).



Chapter 2
Wave–particle duality and its
manifestation in radiation and
particle behavior

2.1 Blackbody radiation and photon gas

2.1.1 Thermal radiation

Heated bodies emit electromagnetic radiation over a wide frequency range
because a part of their internal energy transforms into radiation energy. This
type of radiation is called thermal radiation and it is caused by the supply of
energy to the radiating body. If we place several bodies, heated to different tem-
peratures, in a closed cavity with perfectly reflecting walls, then after a certain
period of time the whole system will transfer to a state of thermal equilibrium
with all bodies having the same temperature T . The notion of temperature, T , is
introduced to characterize the amount of average kinetic energy, Ekin, of thermal
motion of a body’s particles. Energy in the Système International (SI) units is
measured in joules (J) and temperature in degrees Kelvin (K). The temperature
can be introduced as

T = 2

3

Ekin

kB
, (2.1)

where kB = 1.38 × 10−23 J K−1 is known as Boltzmann’s constant. When the
temperature of all bodies in the system becomes the same, then the energy
emitted by the body becomes equal to the energy absorbed by the same body,
and such a state of the system does not change with time. At the same time
the radiation emitted by the heated bodies and cavity is in thermodynamical
equilibrium, and therefore it is called equilibrium radiation (it is also known
as blackbody radiation). Numerous experimental studies of this radiation have
shown that its spectrum is continuous, i.e., the frequency interval of this radiation
spans the entire electromagnetic spectrum. The distribution of energy of black-
body radiation significantly depends on the temperature of the radiation-emitting
body. With increasing temperature the maximum of this distribution shifts to the
region of higher frequencies and at the same time the total energy emitted by
a body in the entire spectral range increases. Thus, bodies at room temperature

19
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Figure 2.1 A cavity
containing thermal
radiation.

(T = 300 K) emit energy with a maximum in the invisible infrared part of
the spectrum (the wavelength is about λ ≈ 14 µm). The surface of the Sun,
which has the temperature T ≈ 6000 K, has a maximum of radiation in the
region of visible light (λ ≈ 0.5 µm). During a nuclear explosion the tempera-
tures attained are T ≈ 107 K. Therefore, most of the energy of the explosion is
carried away by highly penetrating X-ray radiation (λ ≈ 10−4 µm).

The distribution of blackbody radiation of frequency ω is characterized by the
spectral density uω, which has the dimension [J s m−3]. The magnitude uω dω
defines the energy of the radiation per unit volume in the interval of frequen-
cies from ω to ω + dω. The spectral density, uω(T ), of blackbody radiation is a
universal function of frequency and temperature, and it does not depend on the
nature of the radiation-emitting body. Since this function describes the distribu-
tion of energy of an electromagnetic field, for a long time it was believed that it
could be calculated on the basis of classical concepts. However, all the attempts
to do this did not succeed.

2.1.2 The number of states and density of states

Let us consider a cavity with ideally reflecting walls, which has the form of a
rectangular parallelepiped with edge lengths Lα , where α = x, y, and z. In such
a cavity the blackbody radiation as an electromagnetic field can exist only in the
form of a superposition of standing electromagnetic waves, which have nodes at
the walls of the cavity. Let us define the number of such standing waves which
can be established in the cavity (see Fig. 2.1). The conditions for standing-wave
formation along each of the axes are

Lx = nx
λx

2
, L y = ny

λy

2
, Lz = nz

λz

2
, (2.2)
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where nα are positive integer numbers, i.e., each length Lα between reflecting
walls has to contain an integer number of half-waves with the wavelength λα
along the corresponding direction. For the standing wave which is established in
an arbitrary direction, its wavevector can be presented as

k = kx ex + kyey + kzez . (2.3)

Taking into account that

kα = 2π

λα
(2.4)

(see Eq. (B.58) from Appendix B), the projections of a wavevector k onto each
of the coordinate axes take the form

kα = πnα
Lα

.

As a result the expression for the wavevector of an arbitrarily directed standing
wave can be written in the following form:

k = π

(
nx

Lx
ex + ny

L y
ey + nz

Lz
ez

)
. (2.5)

In wavevector space (k-space) (see Fig. 2.2) the point with projections kx ,
ky , and kz is defined by three numbers (nx , ny , and nz), and corresponds to a
standing wave. As a result we can assign for each standing wave in k-space a
volume, Vk0:

Vk0 = π 3

Lx × L y × Lz
. (2.6)
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This volume is often referred to as a unit or primitive cell. The wavenumber of
such a standing wave, k = |k|, is defined as

k =
√

k2
x + k2

y + k2
z = π

√
n2

x

L2
x

+ n2
y

L2
y

+ n2
z

L2
z

. (2.7)

Blackbody radiation in a rectangular cavity can be considered as a sum of standing
electromagnetic waves with different wavelengths and frequencies. Their values
are defined by the set of numbers nα and Lα . Let us define the number of standing
waves in the cavity with wavenumbers less than the given value of k. For this
purpose let us select in k-space a sphere of radius k with volume Vk :

Vk = 4πk3

3
. (2.8)

Each point inside this sphere, (kx , ky, kz), or more precisely each primitive cell,
corresponds to two independent standing waves with fixed frequencies and with
orthogonal polarizations. For positive numbers nα all three projections of the
wavevector, kα , are positive, i.e., they are within the first octant of the space of
wavenumbers. The number of standing waves, Zk , that correspond to 1/8 of a
sphere, which is the above-mentioned octant, can be defined as 2/8 of the ratio of
Vk and Vk0 (Eqs. (2.8) and (2.6)). The factor of 2 is due to the two polarizations
of waves (more details about waves and their polarizations are discussed in
Appendix B):

Zk = 2

8

4

3

πk3(
π 3/Lx L y Lz

) = Lx L y Lz

3π 2
k3. (2.9)

Taking into account the relation between the wavenumber and frequency,ω = ck,
we can find the number of standing waves, Zω, corresponding to the entire
frequency interval from 0 to ω:

Zω = V

3π 2c3
ω3, (2.10)

where V = Lx L y Lz is the volume of the cavity. We can find the number of
standing waves corresponding to an infinitesimal interval of frequencies from ω

to ω + dω by differentiating Eq. (2.10):

dZω = V
ω2

π 2c3
dω. (2.11)

Let us introduce the density of states, Nω, i.e., the number of standing waves
corresponding to a unit volume of the cavity and to a frequency interval dω:

Nω = 1

V

dZω
dω

= ω2

π 2c3
. (2.12)

Taking into account Eq. (2.12), we can write the expression for the spectral
density of blackbody radiation, uω, defined as

uω(T ) = Nω 〈εω〉 = ω2

π 2c3
〈εω〉, (2.13)
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Figure 2.3 The
dependences of the
spectral density of
blackbody radiation on
frequency. Curve 1
corresponds to the
Rayleigh–Jeans law, curve
2 to Wien’s radiation law,
and curve 3 to
experimental data.

where 〈εω〉 is the average energy, which corresponds to one standing wave with
frequency ω and generally does not depend on temperature and frequency.

2.1.3 The classical limit. The Rayleigh–Jeans law

Let us define the density of energy of an ensemble of standing waves, which exist
inside of a cavity at a temperature T . From the energy point of view each standing
wave can be considered as a harmonic oscillator with one degree of freedom.
According to the classical point of view for a standing wave the average thermal
energy is

〈εω〉 = kBT . (2.14)

This is because the same average kinetic and potential energy corresponds to
one-dimensional motion of the particle. Therefore, the total thermal energy is
equal to

〈εω〉 = 2
kBT

2
. (2.15)

The classical expression for the average thermal energy of each oscillator does not
depend on the oscillation’s frequency. Therefore for blackbody thermal radiation
at temperature T we obtain the following expression for the spectral density, uω:

uω(T ) = ω2

π 2c3
kBT, (2.16)

which is called the Rayleigh–Jeans law. This fits the experimental data suffi-
ciently well in the region of low frequencies (waves with long wavelengths) (see
Fig. 2.3, curve 1). However, with increasing frequency the discrepancy between
the experimental data and expression (2.16) increases significantly (see Fig. 2.3,
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curve 3). The failure of the classical approach to describe correctly the experi-
mental results is seen especially clearly when you calculate the total energy of
blackbody radiation, i.e., the energy of standing waves in the cavity in the entire
frequency interval:

u(T ) =
∫ ∞

0

uω(T )dω = kBT

π 2c3

∫ ∞

0

ω2 dω. (2.17)

The integral of Eq. (2.17) diverges and u(T ) → ∞, which contradicts the simple
fact that the total energy radiated by a heated body is finite. The divergence of
u(T ) to infinity is known in physics as the ultraviolet catastrophe.

2.1.4 Energy quanta and Planck’s equation

The main difference between the classical approach to the blackbody radiation
problem and the quantum approach (which was suggested by Max Planck in
1900) is in the calculation of the average energy of thermal radiation. Accord-
ing to the hypothesis suggested by Planck, the radiation is not emitted and
absorbed continuously by a heated body, but rather is emitted and absorbed
in finite portions of energy with the minimal portion for a given frequency
defined as

ε = hν (2.18)

or

ε = h-ω, (2.19)

where h = 6.62 × 10−34 [J s], which was later called Planck’s constant. Very
often instead of Eq. (2.18) the equation (2.19) is used with the constant, h- , which
is called the reduced Planck constant:

h- = h

2π
= 1.05 × 10−34 J s. (2.20)

Planck postulated that the possible energy states which can have wave oscillators
(standing waves) in the cavity are given by the equation

εn = nh-ω, (2.21)

where n is an arbitrary integer number known as the quantum number. All wave
oscillators at a given temperature are in different energy states.

According to classical concepts, the probability that in the state of thermody-
namical equilibrium at temperature T the wave oscillator will have energy εn is
defined by the expression

Pn = Ce−εn/(kBT ). (2.22)
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The constant C is determined from the condition that the total probability must
be equal to unity, i.e.,

∞∑
n=0

Pn = C

∞∑
n=0

e−εn/(kBT ) = 1, (2.23)

where we obtain

C =
( ∞∑

n=0

e−εn/(kBT )

)−1

. (2.24)

Taking into account the above-mentioned expressions, the average energy of a
wave oscillator has to be calculated as

〈εω〉 =
∞∑

n=0

Pnεn =
∑∞

n=0 nh-ωe−nh-ω/(kBT )∑∞
n=0 e−nh-ω/(kBT )

. (2.25)

After carrying out simple calculations (see Example 2.1), we obtain for the
average energy one of the most important relationships in physics:

〈εω〉 = h-ω

eh-ω/(kBT ) − 1
. (2.26)

On substituting this expression into Eq. (2.13) we obtain the well-known Planck
formula for the spectral density of blackbody radiation:

uω(T ) = h-ω3

π 2c3

1

eh-ω/(kBT ) − 1
. (2.27)

Equation (2.27) is in complete agreement with experimental data over the entire
spectral range of blackbody radiation (see Fig. 2.3, curve 3). In the limit-
ing case of low frequencies (h-ω  kBT , eh-ω/(kBT ) ≈ 1 + h-ω/(kBT )) this for-
mula approaches the Rayleigh–Jeans law: uω ∼ ω2 (see Eq. (2.16)), which was
obtained on the basis of classical concepts. In the region of high frequencies
(h-ω � kBT ) expression (2.27) approaches the experimentally established radi-
ation law of Wilhelm Wien, according to which the spectral density of energy,
uω(T ), exponentially decreases with increasing radiation frequency (see Fig. 2.3,
curve 2).

Example 2.1. Using the expression for the average energy of a wave oscillator,
Eq. (2.25), derive Eq. (2.26) and Planck’s formula, Eq. (2.27).
Reasoning. Let us write Eq. (2.25) in the following form:

〈εω〉 = h-ω

∑∞
n=0 ne−nγ∑∞
n=0 e−nγ

, (2.28)

where we introduced

γ = h-ω

kBT
. (2.29)
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The sum in the denominator of Eq. (2.28) represents a geometric progression:

F(γ ) =
∞∑

n=0

e−nγ = 1

1 − e−γ . (2.30)

After differentiating two different expressions for the function F(γ ) in Eq. (2.30)
and equating them, we will obtain for the numerator in Eq. (2.28)

dF

dγ
= d

dγ

( ∞∑
n=0

e−nγ

)
= −

∞∑
n=0

ne−nγ , (2.31)

dF

dγ
= d

dγ

(
1

1 − e−γ

)
= − e−γ

(1 − e−γ )2 , (2.32)

∞∑
n=0

ne−nγ = e−γ

(1 − e−γ )2 . (2.33)

After the substitution of Eqs. (2.30) and (2.33) into the initial expression (2.28),
we obtain for the average energy of a wave oscillator

〈εω〉 = h-ω
e−γ

1 − e−γ = h-ω

eγ − 1
= h-ω

eh-ω/(kBT ) − 1
, (2.34)

which coincides with Eq. (2.26). On combining Eqs. (2.13) and (2.34) we obtain
Planck’s formula (2.27).

2.1.5 Photon gas

Using Planck’s ideas, Einstein suggested that the quantum properties of electro-
magnetic radiation (light) become apparent not only in the emission and absorp-
tion of radiation by materials, but also during the propagation of electromagnetic
radiation. According to his hypothesis, radiation can be imagined in the form of
a gas, which consists of particles called photons. The photons possess energy
defined as

εph = h-ω = 2πh-c

λ
. (2.35)

The photons move in vacuum with the speed of light, c, and they cannot stay at
rest at any time. If a photon “stops” after some inelastic collision with a surface
or after a collision with another particle, it simply disappears, giving its energy
to the object with which it collided.

For a photon, as for any other real particle, we can define a mass. A photon’s
mass at rest must be equal to zero because a photon has speed equal to c and
only particles with mass equal to zero can move at the speed of light. Using the
relation between a relativistic particle’s energy and its mass, mph, we can write

mphc2 = h-ω, (2.36)
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X-rays Figure 2.4 The scheme of
Bethe’s experiment for
photon registration. By F
we denote metallic foil,
G1 and G2 are detectors
of photons, and L is a
registration device.

or

mph = h-ω

c2
. (2.37)

The photon, which has mass and speed, must also have a momentum, the mag-
nitude of which is defined as

pph = mphc = h-ω

c
= 2πh-

λ
. (2.38)

For a photon considered as a particle and for electromagnetic radiation, whose
quantum is a photon, the directions of propagation coincide and can be defined
by a wavevector k, whose modulus is equal to k = |k| = 2π/λ, i.e.,

pph = h-k (2.39)

(compare this with Eqs. (2.38) and (2.4)). The first direct proof of the existence
of a photon as a particle was provided by the experiment carried out by Hans
Bethe: a metallic foil, F, was exposed to weak X-rays, and it became itself the
source of secondary radiation (see Fig. 2.4). If the radiation were propagating in
the form of spherical waves, then two independent counters, G1 and G2, placed at
the opposite sides of the metallic foil, F, would simultaneously detect the arrival
of waves of secondary radiation. However, when one of the counters detected a
signal the other did not show that the signal had arrived, although the number
of detections of each counter was practically the same. This can be explained
only by the assumption that the radiation from the foil propagated in the form
of separate quanta, which were detected by one or the other counter but not by
both.

Thus, blackbody radiation can be represented in the form of a photon gas,
which fills up the cavity. The particles of this gas – photons – propagate with
equal probability along all directions, just like molecules at thermal equilibrium.


