JAAN KIUSALAAS

Numerical Methods in Engineering with Python

 SECOND EDITIONThis page intentionally left blank

Numerical Methods in Engineering with Python

Second Edition

Numerical Methods in Engineering with Python, Second Edition, is a text for engineering students and a reference for practicing engineers, especially those who wish to explore Python. This new edition features 18 additional exercises and the addition of rational function interpolation. Brent's method of root finding was replaced by Ridder's method, and the Fletcher-Reeves method of optimization was dropped in favor of the downhill simplex method. Each numerical method is explained in detail, and its shortcomings are pointed out. The examples that follow individual topics fall into two categories: hand computations that illustrate the inner workings of the method and small programs that show how the computer code is utilized in solving a problem. This second edition also includes more robust computer code with each method, which is available on the book Web site (www.cambridge.org/kiusalaaspython). This code is made simple and easy to understand by avoiding complex bookkeeping schemes, while maintaining the essential features of the method.

Jaan Kiusalaas is a Professor Emeritus in the Department of Engineering Science and Mechanics at Pennsylvania State University. He has taught computer methods, including finite element and boundary element methods, for more than 30 years. He is also the co-author of four other books - Engineering Mechanics: Statics, Engineering Mechanics: Dynamics, Mechanics of Materials, and an alternate version of this work with MATLAB ${ }^{\circledR}$ code.

NUMERICAL METHODS IN ENGINEERING

WITH PYTHON

Second Edition

Jaan Kiusalaas
Pennsylvania State University

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York
www.cambridge.org
Information on this title: www.cambridge.org/9780521191326
© Jaan Kiusalaas 2010

This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published in print format 2010
ISBN-13 978-0-511-68592-7 eBook (Adobe Reader)
ISBN-13 978-0-521-19132-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface to the First Edition viii
Preface to the Second Edition X
1 Introduction to Python 1
1.1 General Information 1
1.2 Core Python 3
1.3 Functions and Modules 15
1.4 Mathematics Modules 17
1.5 numpy Module 18
1.6 Scoping of Variables 24
1.7 Writing and Running Programs 25
2 Systems of Linear Algebraic Equations 27
2.1 Introduction 27
2.2 Gauss Elimination Method 33
2.3 LU Decomposition Methods 40
Problem Set 2.1 51
2.4 Symmetric and Banded Coefficient Matrices 54
2.5 Pivoting 64
Problem Set 2.2 73
*2.6 Matrix Inversion 79
*2.7 Iterative Methods 82
Problem Set 2.3 93
*2.8 Other Methods 97
3 Interpolation and Curve Fitting 99
3.1 Introduction 99
3.2 Polynomial Interpolation 99
3.3 Interpolation with Cubic Spline 114
Problem Set 3.1 121
3.4 Least-Squares Fit 124
Problem Set 3.2 135
4 Roots of Equations 139
4.1 Introduction 139
4.2 Incremental Search Method 140
4.3 Method of Bisection 142
4.4 Methods Based on Linear Interpolation 145
4.5 Newton-Raphson Method 150
4.6 Systems of Equations 155
Problem Set 4.1 160
*4.7 Zeroes of Polynomials 166
Problem Set 4.2 174
5 Numerical Differentiation 177
5.1 Introduction 177
5.2 Finite Difference Approximations. 177
5.3 Richardson Extrapolation 182
5.4 Derivatives by Interpolation 185
Problem Set 5.1 189
6 Numerical Integration 193
6.1 Introduction 193
6.2 Newton-Cotes Formulas 194
6.3 Romberg Integration 202
Problem Set 6.1 207
6.4 Gaussian Integration 211
Problem Set 6.2 225
*6.5 Multiple Integrals 227
Problem Set 6.3 239
7 Initial Value Problems 243
7.1 Introduction 243
7.2 Taylor Series Method 244
7.3 Runge-Kutta Methods 249
Problem Set 7.1 260
7.4 Stability and Stiffness 266
7.5 Adaptive Runge-Kutta Method 269
7.6 Bulirsch-Stoer Method 277
Problem Set 7.2 284
7.7 Other Methods 289
8 Two-Point Boundary Value Problems 290
8.1 Introduction 290
8.2 Shooting Method 291
Problem Set 8.1 301
8.3 Finite Difference Method 305
Problem Set 8.2 314
9 Symmetric Matrix Eigenvalue Problems 319
9.1 Introduction 319
9.2 Jacobi Method 321
9.3 Power and Inverse Power Methods 337
Problem Set 9.1 345
9.4 Householder Reduction to Tridiagonal Form 351
9.5 Eigenvalues of Symmetric Tridiagonal Matrices 358
Problem Set 9.2 367
9.6 Other Methods 373
10 Introduction to Optimization 374
10.1 Introduction 374
10.2 Minimization along a Line 376
10.3 Powell's Method 382
10.4 Downhill Simplex Method 392
Problem Set 10.1 399
10.5 Other Methods 406
A1 Taylor Series 407
A2 Matrix Algebra 410
List of Program Modules (by Chapter) 416
Index. 419

Preface to the First Edition

This book is targeted primarily toward engineers and engineering students of advanced standing (juniors, seniors, and graduate students). Familiarity with a computer language is required; knowledge of engineering mechanics (statics, dynamics, and mechanics of materials) is useful, but not essential.

The text attempts to place emphasis on numerical methods, not programming. Most engineers are not programmers, but problem solvers. They want to know what methods can be applied to a given problem, what are their strengths and pitfalls, and how to implement them. Engineers are not expected to write computer code for basic tasks from scratch; they are more likely to utilize functions and subroutines that have been already written and tested. Thus, programming by engineers is largely confined to assembling existing bits of code into a coherent package that solves the problem at hand.

The "bit" of code is usually a function that implements a specific task. For the user the details of the code are unimportant. What matters is the interface (what goes in and what comes out) and an understanding of the method on which the algorithm is based. Since no numerical algorithm is infallible, the importance of understanding the underlying method cannot be overemphasized; it is, in fact, the rationale behind learning numerical methods.

This book attempts to conform to the views outlined above. Each numerical method is explained in detail and its shortcomings are pointed out. The examples that follow individual topics fall into two categories: hand computations that illustrate the inner workings of the method, and small programs that show how the computer code is utilized in solving a problem. Problems that require programming are marked with ■.

The material consists of the usual topics covered in an engineering course on numerical methods: solution of equations, interpolation and data fitting, numerical differentiation and integration, and solution of ordinary differential equations and eigenvalue problems. The choice of methods within each topic is tilted toward relevance to engineering problems. For example, there is an extensive discussion of symmetric, sparsely populated coefficient matrices in the solution of simultaneous equations. In the same vein, the solution of eigenvalue problems concentrates on methods that efficiently extract specific eigenvalues from banded matrices.

An important criterion used in the selection of methods was clarity. Algorithms requiring overly complex bookkeeping were rejected regardless of their efficiency and robustness. This decision, which was taken with great reluctance, is in keeping with the intent to avoid emphasis on programming.

The selection of algorithms was also influenced by current practice. This disqualified several well-known historical methods that have been overtaken by more recent developments. For example, the secant method for finding roots of equations was omitted as having no advantages over Ridder's method. For the same reason, the multistep methods used to solve differential equations (e.g., Milne and Adams methods) were left out in favor of the adaptive Runge-Kutta and Bulirsch-Stoer methods.

Notably absent is a chapter on partial differential equations. It was felt that this topic is best treated by finite element or boundary element methods, which are outside the scope of this book. The finite difference model, which is commonly introduced in numerical methods texts, is just too impractical in handling multidimensional boundary value problems.

As usual, the book contains more material than can be covered in a three-credit course. The topics that can be skipped without loss of continuity are tagged with an asterisk (*).

The programs listed in this book were tested with Python 2.5 under Windows XP and Red Hat Linux. The source code is available on the Web site http://www.cambridge.org/kiusalaaspython.

Preface to the Second Edition

The major change in the second edition is the replacement of NumArray (a Python extension that implements array objects) with NumPy. As a consequence, most routines listed in the text required some code changes. The reason for the changeover is the imminent discontinuance of support for NumArray and its predecessor Numeric. We also took the opportunity to make a few changes in the material covered:

- Rational function interpolation was added to Chapter 3.
- Brent's method of root finding in Chapter 4 was replaced by Ridder's method. The full-blown algorithm of Brent is a complicated procedure involving elaborate bookkeeping (a simplified version was presented in the first edition). Ridder's method is as robust and almost as efficient as Brent's method, but much easier to understand.
- The Fletcher-Reeves method of optimization was dropped in favor of the downhill simplex method in Chapter 10. Fletcher-Reeves is a first-order method that requires knowledge of the gradients of the merit function. Because there are few practical problems where the gradients are available, the method is of limited utility. The downhill simplex algorithm is a very robust (but slow) zero-order method that often works where faster methods fail.

1 Introduction to Python

1.1 General Information

Quick Overview

This chapter is not a comprehensive manual of Python. Its sole aim is to provide sufficient information to give you a good start if you are unfamiliar with Python. If you know another computer language, and we assume that you do, it is not difficult to pick up the rest as you go.

Python is an object-oriented language that was developed in the late 1980s as a scripting language (the name is derived from the British television show Monty Python's Flying Circus). Although Python is not as well known in engineering circles as some other languages, it has a considerable following in the programming community - in fact, Python is used by more programmers than Fortran. Python may be viewed as an emerging language, because it is still being developed and refined. In the current state, it is an excellent language for developing engineering applications Python's facilities for numerical computation are as good as those of Fortran or MATLAB. ${ }^{\circledR}$

Python programs are not compiled into machine code, but are run by an interpreter. ${ }^{1}$ The great advantage of an interpreted language is that programs can be tested and debugged quickly, allowing the user to concentrate more on the principles behind the program and less on programming itself. Because there is no need to compile, link, and execute after each correction, Python programs can be developed in a much shorter time than equivalent Fortran or C programs. On the negative side, interpreted programs do not produce stand-alone applications. Thus, a Python program can be run only on computers that have the Python interpreter installed.

Python has other advantages over mainstream languages that are important in a learning environment:

- Python is open-source software, which means that it is free; it is included in most Linux distributions.

[^0]- Python is available for all major operating systems (Linux, Unix, Windows, Mac OS, etc.). A program written on one system runs without modification on all systems.
- Python is easier to learn and produces more readable code than do most languages.
- Python and its extensions are easy to install.

Development of Python was clearly influenced by Java and C++, but there is also a remarkable similarity to MATLAB (another interpreted language, very popular in scientific computing). Python implements the usual concepts of object-oriented languages such as classes, methods, and inheritance. We will not use object-oriented programming in this text. The only object that we need is the N -dimensional array available in the NumPy module (the NumPy module is discussed later in this chapter).

To get an idea of the similarities between MATLAB and Python, let us look at the codes written in the two languages for solution of simultaneous equations $\mathbf{A x}=\mathbf{b}$ by Gauss elimination. Here is the function written in MATLAB:

```
function x] = gaussElimin(a,b)
n = length(b);
for k = 1:n-1
    for i= k+1:n
        if a(i,k) ~= 0
                lam = a(i,k)/a(k,k);
                a(i,k+1:n) = a(i,k+1:n) - lam*a(k,k+1:n);
                b(i)= b(i) - lam*b(k);
            end
        end
end
for k = n:-1:1
    b(k) = (b(k) - a(k,k+1:n)*b(k+1:n))/a(k,k);
end
x = b;
```

The equivalent Python function is:

```
from numpy import dot
def gaussElimin(a,b):
    n = len(b)
    for k in range(0,n-1):
        for i in range(k+1,n):
            if a[i,k] != 0.0:
                    lam = a [i,k]/a[k,k]
                    a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]
                    b[i] = b[i] - lam*b[k]
```

```
for k in range(n-1,-1,-1):
    b[k] = (b[k] - dot(a[k,k+1:n],b[k+1:n]))/a[k,k]
return b
```

The command from numpy import dot instructs the interpreter to load the function dot (which computes the dot product of two vectors) from the module numpy. The colon (:) operator, known as the slicing operator in Python, works the same way it does in MATLAB and Fortran90 - it defines a slice of an array.

The statement for $\mathrm{k}=1: \mathrm{n}-1$ in MATLAB creates a loop that is executed with $k=1,2, \ldots, n-1$. The same loop appears in Python as for k in range ($\mathrm{n}-1$). Here the function range ($\mathrm{n}-1$) creates the list $[0,1, \ldots, n-2$]; k then loops over the elements of the list. The differences in the ranges of k reflect the native offsets used for arrays. In Python, all sequences have zero offset, meaning that the index of the first element of the sequence is always 0 . In contrast, the native offset in MATLAB is 1 .

Also note that Python has no end statements to terminate blocks of code (loops, subroutines, etc.). The body of a block is defined by its indentation; hence indentation is an integral part of Python syntax.

Like MATLAB, Python is case sensitive. Thus, the names n and N would represent different objects.

Obtaining Python

The Python interpreter can be downloaded from the Python Language Website www. python. org. It normally comes with a nice code editor called Idle that allows you to run programs directly from the editor. For scientific programming, we also need the NumPy module, which contains various tools for array operations. It is obtainable from the NumPy home page http://numpy.scipy.org/. Both sites also provide documentation for downloading. If you use Linux, it is very likely that Python is already installed on your machine (but you must still download NumPy).

You should acquire other printed material to supplement the on-line documentation. A commendable teaching guide is Python by Chris Fehly (Peachpit Press, CA, 2002). As a reference, Python Essential Reference by David M. Beazley (New Riders Publishing, 2001) is recommended. By the time you read this, newer editions may be available. A useful guide to NumPy is found at http://www. scipy.org/Numpy_Example_List.

1.2 Core Python

Variables

In most computer languages the name of a variable represents a value of a given type stored in a fixed memory location. The value may be changed, but not the type. This
it not so in Python, where variables are typed dynamically. The following interactive session with the Python interpreter illustrates this (>>> is the Python prompt):

```
>>> b = 2 # b is integer type
>>> print b
2
>>> b = b*2.0 # Now b is float type
>>> print b
4.0
```

The assignment $\mathrm{b}=2$ creates an association between the name b and the in teger value 2. The next statement evaluates the expression $b * 2.0$ and associates the result with b; the original association with the integer 2 is destroyed. Now b refers to the floating point value 4.0.

The pound sign (\#) denotes the beginning of a comment - all characters between \# and the end of the line are ignored by the interpreter.

Strings

A string is a sequence of characters enclosed in single or double quotes. Strings are concatenated with the plus (+) operator, whereas slicing (:) is used to extract a portion of the string. Here is an example:

```
>>> string1 = 'Press return to exit'
>>> string2 = 'the program,
>>> print string1 + , , + string2 # Concatenation
Press return to exit the program
>>> print string1[0:12] # Slicing
Press return
```

A string is an immutable object - its individual characters cannot be modified with an assignment statement, and it has a fixed length. An attempt to violate immutability will result in TypeError, as shown here:

```
>>> s = 'Press return to exit'
>>> s[0] = 'p'
Traceback (most recent call last):
    File ',<pyshell#1>',, line 1, in ?
        s[0] = 'p'
TypeError: object doesn't support item assignment
```


Tuples

A tuple is a sequence of arbitrary objects separated by commas and enclosed in parentheses. If the tuple contains a single object, a final comma is required; for

1.2 Core Python

example, $x=(2$,$) . Tuples support the same operations as strings; they are also im-$ mutable. Here is an example where the tuple rec contains another tuple ($6,23,68$):

```
>>> rec = ('Smith','John',(6,23,68)) # This is a tuple
>>> lastName,firstName,birthdate = rec # Unpacking the tuple
>>> print firstName
John
>>> birthYear = birthdate[2]
>>> print birthYear
68
>>> name = rec[1] + , ' + rec[0]
>>> print name
John Smith
>>> print rec[0:2]
('Smith', 'John')
```


Lists

A list is similar to a tuple, but it is mutable, so that its elements and length can be changed. A list is identified by enclosing it in brackets. Here is a sampling of operations that can be performed on lists:

```
>>> a = [1.0, 2.0, 3.0] # Create a list
>>> a.append(4.0) # Append 4.0 to list
>>> print a
[1.0, 2.0, 3.0, 4.0]
>>> a.insert(0,0.0) # Insert 0.0 in position 0
>>> print a
[0.0, 1.0, 2.0, 3.0, 4.0]
>>> print len(a) # Determine length of list
5
>>> a[2:4] = [1.0, 1.0, 1.0] # Modify selected elements
>>> print a
[0.0, 1.0, 1.0, 1.0, 1.0, 4.0]
```

If a is a mutable object, such as a list, the assignment statement $\mathrm{b}=$ a does not result in a new object b, but simply creates a new reference to a. Thus any changes made to b will be reflected in a. To create an independent copy of a list a, use the statement c = a[:], as shown here:

```
>>> a = [1.0, 2.0, 3.0]
>>> b = a # 'b' is an alias of 'a'
>>> b[0] = 5.0 # Change 'b'
>>> print a
[5.0, 2.0, 3.0] # The change is reflected in 'a'
>>> c = a[:] # 'c' is an independent copy of 'a'
```

```
>>> c[0] = 1.0 # Change 'c'
>>> print a
[5.0, 2.0, 3.0] # 'a' is not affected by the change
```

Matrices can be represented as nested lists with each row being an element of the list. Here is a 3×3 matrix a in the form of a list:

```
>>> a = [[1, 2, 3], \
    [4, 5, 6], \
    [7, 8, 9]]
>>> print a[1] # Print second row (element 1)
[4, 5, 6]
>>> print a[1][2] # Print third element of second row
6
```

The backslash (\backslash) is Python's continuation character. Recall that Python sequences have zero offset, so that a [0] represents the first row, a[1] the second row, and so forth. With very few exceptions, we do not use lists for numerical arrays. It is much more convenient to employ array objects provided by the NumPy module. Array objects are discussed later.

Arithmetic Operators

Python supports the usual arithmetic operators:

+	Addition
-	Subtraction
$*$	Multiplication
$/$	Division
$* *$	Exponentiation
$\%$	Modular division

Some of these operators are also defined for strings and sequences as illustrated here:

```
>>> s = 'Hello ,
>>> t = 'to you'
>>> a = [1, 2, 3]
>>> print 3*s # Repetition
Hello Hello Hello
>>> print 3*a # Repetition
[1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> print a + [4, 5] # Append elements
[1, 2, 3, 4, 5]
>>> print s + t # Concatenation
Hello to you
>>> print 3 + s # This addition makes no sense
```

```
Traceback (most recent call last):
    File ',<pyshell#9>',, line 1, in ?
        print n + s
TypeError: unsupported operand types for +: 'int' and 'str'
```

Python 2.0 and later versions also have augmented assignment operators, such as $a+=b$, that are familiar to the users of C . The augmented operators and the equivalent arithmetic expressions are shown in the following table.

$\mathrm{a}+=\mathrm{b}$	$\mathrm{a}=\mathrm{a}+\mathrm{b}$
$\mathrm{a}-=\mathrm{b}$	$\mathrm{a}=\mathrm{a}-\mathrm{b}$
$\mathrm{a} *=\mathrm{b}$	$\mathrm{a}=\mathrm{a} * \mathrm{~b}$
$\mathrm{a} /=\mathrm{b}$	$\mathrm{a}=\mathrm{a} / \mathrm{b}$
$\mathrm{a} * *=\mathrm{b}$	$\mathrm{a}=\mathrm{a} * \mathrm{~b}$
$\mathrm{a} \%=\mathrm{b}$	$\mathrm{a}=\mathrm{a} \% \mathrm{~b}$

Comparison Operators

The comparison (relational) operators return 1 for true and 0 for false. These operators are:

$<$	Less than
$>$	Greater than
$<=$	Less than or equal to
$>=$	Greater than or equal to
$==$	Equal to
$!=$	Not equal to

Numbers of different type (integer, floating point, etc.) are converted to a common type before the comparison is made. Otherwise, objects of different type are considered to be unequal. Here are a few examples:

```
>>> a = 2 # Integer
>>> b = 1.99 # Floating point
>>> c = '2, # String
>>> print a > b
1
>>> print a == c
0
>>> print (a > b) and (a != c)
1
>>> print (a > b) or (a == b)
1
```


Conditionals

The if construct

if condition:
 block

executes a block of statements (which must be indented) if the condition returns true. If the condition returns false, the block is skipped. The if conditional can be followed by any number of elif (short for "else if") constructs

```
elif condition:
    block
```

which work in the same manner. The else clause

```
else:
```

block
can be used to define the block of statements that are to be executed if none of the if-elif clauses is true. The function sign_of_a illustrates the use of the conditionals:

```
def sign_of_a(a):
        if a < 0.0:
            sign = 'negative'
        elif a > 0.0:
            sign = 'positive'
        else:
            sign = 'zero'
    return sign
a = 1.5
print 'a is ' + sign_of_a(a)
```

Running the program results in the output
a is positive

Loops

The while construct
while condition:
block
executes a block of (indented) statements if the condition is true. After execution of the block, the condition is evaluated again. If it is still true, the block is executed
again. This process is continued until the condition becomes false. The else clause

```
else:
    block
```

can be used to define the block of statements that are to be executed if the condition is false. Here is an example that creates the list $[1,1 / 2,1 / 3, \ldots]$:

```
nMax = 5
n = 1
a = [] # Create empty list
while n < nMax:
    a.append(1.0/n) # Append element to list
    n = n + 1
print a
```

The output of the program is

```
[1.0, 0.5, 0.33333333333333331, 0.25]
```

We met the for statement before in Section 1.1. This statement requires a target and a sequence (usually a list) over which the target loops. The form of the construct is

```
for target in sequence:
    block
```

You may add an else clause that is executed after the for loop has finished. The previous program could be written with the for construct as

```
nMax = 5
a = []
for n in range(1,nMax):
    a.append(1.0/n)
print a
```

Here n is the target and the list $[1,2, \ldots, n M a x-1]$, created by calling the range function, is the sequence.

Any loop can be terminated by the break statement. If there is an else cause associated with the loop, it is not executed. The following program, which searches for a name in a list, illustrates the use of break and else in conjunction with a for loop:

```
list = ['Jack', 'Jill', 'Tim', 'Dave']
name = eval(raw_input('Type a name: ')) # Python input prompt
for i in range(len(list)):
    if list[i] == name:
        print name,'is number',i + 1,'on the list'
        break
```

```
else:
    print name,'is not on the list'
```

Here are the results of two searches:

```
Type a name: 'Tim'
```

Tim is number 3 on the list
Type a name: 'June'
June is not on the list

The

```
continue
```

statement allows us to skip a portion of the statements in an iterative loop. If the interpreter encounters the continue statement, it immediately returns to the beginning of the loop without executing the statements below continue. The following example compiles a list of all numbers between 1 and 99 that are divisible by 7 .

```
x = [] # Create an empty list
for i in range(1,100):
    if i%7!= 0: continue # If not divisible by 7, skip rest of loop
    x.append(i) # Append i to the list
print x
```

The printout from the program is
[7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98]

Type Conversion

If an arithmetic operation involves numbers of mixed types, the numbers are automatically converted to a common type before the operation is carried out. Type conversions can also be achieved by the following functions:

int (a)	Converts a to integer
long (a)	Converts a to long integer
float (a)	Converts a to floating point
complex (a)	Converts to complex $a+0 j$
complex (a,b)	Converts to complex $a+b j$

The foregoing functions also work for converting strings to numbers as long as the literal in the string represents a valid number. Conversion from a float to an integer is carried out by truncation, not by rounding off. Here are a few examples:

```
>>> a = 5
>>> b = -3.6
```

```
>>> d = '4.0'
>>> print a + b
1.4
>>> print int(b)
-3
>>> print complex(a,b)
(5-3.6j)
>>> print float(d)
4.0
>>> print int(d) # This fails: d is not Int type
Traceback (most recent call last):
    File ',<pyshell#7>',', line 1, in ?
        print int(d)
ValueError: invalid literal for int(): 4.0
```


Mathematical Functions

Core Python supports only a few mathematical functions:

abs (a)	Absolute value of a
\max (sequence)	Largest element of sequence
\min (sequence)	Smallest element of sequence
round (a, n)	Round a to n decimal places
$\operatorname{cmp}(\mathrm{a}, \mathrm{b})$	Returns $\left\{\begin{array}{r}-1 \text { if } \mathrm{a}<\mathrm{b} \\ 0 \text { if } \mathrm{a}=\mathrm{b} \\ 1 \text { if } \mathrm{a}>\mathrm{b}\end{array}\right.$

The majority of mathematical functions are available in the math module.

Reading Input

The intrinsic function for accepting user input is
raw_input (prompt)

It displays the prompt and then reads a line of input that is converted to a string. To convert the string into a numerical value, use the function

```
eval(string)
```

The following program illustrates the use of these functions:

```
a = raw_input('Input a: ')
print a, type(a) # Print a and its type
b = eval(a)
print b,type(b) # Print b and its type
```

The function type (a) returns the type of the object a; it is a very useful tool in debugging. The program was run twice with the following results:

```
Input a: 10.0
10.0 <type 'str'>
10.0 <type 'float'>
Input a: 11**2
11**2 <type 'str'>
121 <type 'int'>
```

A convenient way to input a number and assign it to the variable a is

```
a = eval(raw_input(prompt))
```


Printing Output

Output can be displayed with the print statement:

```
printobject1,object2,...
```

which converts object1, object2, and so on to strings and prints them on the same line, separated by spaces. The newline character ' $\backslash \mathrm{n}$ ' can be used to force a new line. For example,

```
>>> a = 1234.56789
>>> b = [2, 4, 6, 8]
>>> print a,b
1234.56789 [2, 4, 6, 8]
>>> print 'a =',a, '\nb =',b
a = 1234.56789
b = [2, 4, 6, 8]
```

The modulo operator (\%) can be used to format a tuple. The form of the conversion statement is

```
'%format1 %format2 ...' % tuple
```

where format1, format $2 \cdots$ are the format specifications for each object in the tuple. Typically used format specifications are:

$w \mathrm{~d}$	Integer
$w \cdot d \mathrm{f}$	Floating point notation
$w \cdot d \mathrm{e}$	Exponential notation

where w is the width of the field and d is the number of digits after the decimal point. The output is right-justified in the specified field and padded with blank spaces

1.2 Core Python

(there are provisions for changing the justification and padding). Here are a couple of examples:

```
>>> a = 1234.56789
>>> n = 9876
>>> print '%7.2f' % a
1234.57
>>> print 'n = %6d' % n # Pad with spaces
n = 9876
>>> print 'n = %06d' % n # Pad with zeroes
n = 009876
>>> print '%12.4e %6d' % (a,n)
    1.2346e+003 9876
```


Opening and Closing a File

Before a data file can be accessed, you must create a file object with the command

$$
\text { file_object }=\text { open(filename, action) }
$$

where filename is a string that specifies the file to be opened (including its path if necessary) and action is one of the following strings:

' r '	Read from an existing file.
' w '	Write to a file. If filename does not exist, it is created.
' a '	Append to the end of the file.
'r+'	Read to and write from an existing file.
' $w+$ '	Same as 'r+', but filename is created if it does not exist.
' $a+$ '	Same as ' $w+$ ', but data is appended to the end of the file.

It is good programming practice to close a file when access to it is no longer required. This can be done with the method
file_object.close()

Reading Data from a File

There are three methods for reading data from a file. The method
file_object.read (n)
reads n characters and returns them as a string. If n is omitted, all the characters in the file are read.

If only the current line is to be read, use
file_object.readline(n)
which reads n characters from the line. The characters are returned in a string that terminates in the newline character $\backslash \mathrm{n}$. Omission of n causes the entire line to be read.

All the lines in a file can be read using

```
file_object.readlines()
```

This returns a list of strings, each string being a line from the file ending with the newline character.

Writing Data to a File

The method
file_object.write()
writes a string to a file, whereas
file_object.writelines()
is used to write a list of strings. Neither method appends a newline character to the end of a line.

The print statement can also be used to write to a file by redirecting the output to a file object:

```
print >> file_object, object1, object2,...
```

Apart from the redirection, this statement works just like the regular print command.

Error Control

When an error occurs during execution of a program, an exception is raised and the program stops. Exceptions can be caught with try and except statements:

```
try:
    do something
except error:
    do something else
```

where error is the name of a built-in Python exception. If the exception error is not raised, the try block is executed; otherwise, the execution passes to the except block. All exceptions can be caught by omitting error from the except statement.

Here is a statement that raises the exception ZeroDivisionError:

```
>>> c = 12.0/0.0
Traceback (most recent call last):
    File ,'<pyshell#0>',, line 1, in ?
        c = 12.0/0.0
ZeroDivisionError: float division
```

This error can be caught by

```
try:
    c = 12.0/0.0
except ZeroDivisionError:
    print 'Division by zero'
```


1.3 Functions and Modules

Functions

The structure of a Python function is

```
def func_name(param1, param2,...):
    statements
    return return_values
```

where param1, param2,... are the parameters. A parameter can be any Python object, including a function. Parameters may be given default values, in which case the parameter in the function call is optional. If the return statement or return_values are omitted, the function returns the null object.

The following example computes the first two derivatives of $\arctan (x)$ by finite differences:

```
from math import atan
def finite_diff(f,x,h=0.0001): # h has a default value
    df =(f(x+h) - f(x-h))/(2.0*h)
    ddf =(f(x+h) - 2.0*f(x) + f(x-h))/h**2
    return df,ddf
x = 0.5
df,ddf = finite_diff(atan,x) # Uses default value of h
print 'First derivative =',df
print 'Second derivative =',ddf
```

Note that atan is passed to finite_diff as a parameter. The output from the program is

First derivative $=0.799999999573$
Second derivative $=-0.639999991892$

The number of input parameters in a function definition may be left arbitrary. For example, in the function definition

```
def func(x1,x2,*x3)
```

x 1 and x 2 are the usual parameters, also called positional parameters, whereas x 3 is a tuple of arbitrary length containing the excess parameters. Calling this function with
func (a,b,c,d,e)
results in the following correspondence between the parameters:

$$
\mathrm{a} \longleftrightarrow \mathrm{x} 1, \quad \mathrm{~b} \longleftrightarrow \mathrm{x} 2, \quad(\mathrm{c}, \mathrm{~d}, \mathrm{e}) \longleftrightarrow \mathrm{x} 3
$$

The positional parameters must always be listed before the excess parameters.
If a mutable object, such as a list, is passed to a function where it is modified, the changes will also appear in the calling program. Here is an example:

```
def squares(a):
    for i in range(len(a)):
        a[i] = a[i]**2
a = [1, 2, 3, 4]
squares(a)
print a
```

The output is

```
[1, 4, 9, 16]
```


Lambda Statement

If the function has the form of an expression, it can be defined with the lambda statement

```
func_name = lambda param1, param2,. . . : expression
```

Multiple statements are not allowed.
Here is an example:

```
>>> c = lambda x,y : x**2 + y**2
>>> print c(3,4)
```

25

Modules

It is sound practice to store useful functions in modules. A module is simply a file where the functions reside; the name of the module is the name of the file. A module can be loaded into a program by the statement
from module_name import *
Python comes with a large number of modules containing functions and methods for various tasks. Some of the modules are described briefly in the following section.

Additional modules, including graphics packages, are available for downloading on the Web.

1.4 Mathematics Modules

math Module

Most mathematical functions are not built into core Python, but are available by loading the math module. There are three ways of accessing the functions in a module. The statement

```
from math import *
```

loads all the function definitions in the math module into the current function or module. The use of this method is discouraged because it not only is wasteful, but can also lead to conflicts with definitions loaded from other modules.

You can load selected definitions by

```
from math import funcl,func2,...
```

as illustrated here:

```
>>> from math import log,sin
>>> print log(sin(0.5))
-0.735166686385
```

The third method, which is used by the majority of programmers, is to make the module available by

```
import math
```

The module can then be accessed by using the module name as a prefix:

```
>>> import math
>>> print math.log(math.sin(0.5))
-0.735166686385
```

The contents of a module can be printed by calling dir(module). Here is how to obtain a list of the functions in the math module:

```
>>> import math
>>> dir(math)
['__doc__,', '___name__', 'acos', 'asin', 'atan',
    'atan2', 'ceil', 'cos', 'cosh', 'e', 'exp', 'fabs',
    'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log',
    'log10', 'modf', 'pi', 'pow', 'sin', 'sinh', 'sqrt',
    'tan', 'tanh']
```

Most of these functions are familiar to programmers. Note that the module includes two constants: π and e.

cmath Module

The cmath module provides many of the functions found in the math module, but these accept complex numbers. The functions in the module are:

```
['__doc__,', '___name__', 'acos', 'acosh', 'asin', 'asinh',
    'atan', 'atanh', 'cos', 'cosh', 'e', 'exp', 'log',
    'log10', 'pi', 'sin', 'sinh', 'sqrt', 'tan', 'tanh']
```

Here are examples of complex arithmetic:

```
>>> from cmath import sin
>>> x = 3.0 -4.5j
>>> y = 1.2 + 0.8j
>>> z = 0.8
>>> print x/y
(-2.56205313375e-016-3.75j)
>>> print sin(x)
(6.35239299817+44.5526433649j)
>>> print sin(z)
(0.7173560909+0j)
```


1.5 numpy Module

General Information

The NumPy module ${ }^{2}$ is not a part of the standard Python release. As pointed out before, it must be obtained separately and installed (the installation is very easy). The module introduces array objects that are similar to lists, but can be manipulated by numerous functions contained in the module. The size of an array is immutable, and no empty elements are allowed.

The complete set of functions in numpy is far too long to be printed in its entirety. The following list is limited to the most commonly used functions:

```
['complex', 'float', 'abs', 'append', arccos',
'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2',
'arctanh', 'argmax', 'argmin', 'cos', 'cosh', 'diag',
'diagonal', 'dot', 'e', 'exp', 'floor', 'identity',
'inner, 'inv', 'log', 'log10', 'max', 'min',
'ones','outer', 'pi', 'prod' 'sin', 'sinh', 'size',
'solve','sqrt', 'sum', 'tan', 'tanh', 'trace',
'transpose', 'zeros', 'vectorize']
```

[^1]
Creating an Array

Arrays can be created in several ways. One of them is to use the array function to turn a list into an array:

```
array(list,dtype = type_specification)
```

Here are two examples of creating a 2×2 array with floating-point elements:

```
>>> from numpy import array,float
>>> a = array([[2.0, -1.0],[-1.0, 3.0]])
>>> print a
[[ 2. -1.]
    [-1. 3.]]
>>> b = array([[2, -1],[-1, 3]],dtype = float)
>>> print b
[[ 2. -1.]
    [-1. 3.]]
```

Other available functions are

```
zeros((dim1,dim2),dtype = type_specification)
```

which creates a $\operatorname{dim} 1 \times \operatorname{dim} 2$ array and fills it with zeroes, and
ones((dim1,dim2),dtype = type_specification)
which fills the array with ones. The default type in both cases is float.
Finally, there is the function

```
arange (from, to, increment)
```

which works just like the range function, but returns an array rather than a list. Here are examples of creating arrays:

```
>>> from numpy import *
>>> print arange(2,10,2)
[2 4 6 8]
>>> print arange(2.0,10.0,2.0)
[ 2. 4. 6. 8.]
>>> print zeros(3)
[ 0. 0. 0.]
>>> print zeros((3),dtype=int)
[0 0 0]
>>> print ones((2,2))
[[ 1. 1.]
    [ 1. 1.]]
```


Accessing and Changing Array Elements

If a is a rank-2 array, then a[i,j] accesses the element in row i and column j, whereas a[i] refers to row i. The elements of an array can be changed by assignment:

```
>>> from numpy import *
>>> a = zeros((3,3),dtype=int)
>>> print a
[[[0}0000
    [0}0000
    [0}0000]
>>> a[0] = [2,3,2] # Change a row
>>> a[1,1] = 5 # Change an element
>>> a[2,0:2] = [8,-3] # Change part of a row
>>> print a
[[[ 2 3 2]
    [ 0
    [ 8 -3 0]]
```


Operations on Arrays

Arithmetic operators work differently on arrays than they do on tuples and lists - the operation is broadcast to all the elements of the array; that is, the operation is applied to each element in the array. Here are examples:

```
>>> from numpy import array
>>> a = array([0.0, 4.0, 9.0, 16.0])
>>> print a/16.0
[ 0. 0.25 0.5625 1. ]
>>> print a - 4.0
[ -4. 0. 5. 12.]
```

The mathematical functions available in NumPy are also broadcast:

```
>>> from numpy import array,sqrt,sin
>>> a = array([1.0, 4.0, 9.0, 16.0])
>>> print sqrt(a)
[ 1. 2. 3. 4.]
>>> print sin(a)
[ 0.84147098 -0.7568025 0.41211849 -0.28790332]
```

Functions imported from the math module will work on the individual elements, of course, but not on the array itself. Here is an example:

```
>>> from numpy import array
>>> from math import sqrt
```

```
>>> a = array([1.0, 4.0, 9.0, 16.0])
>>> print sqrt(a[1])
2.0
>>> print sqrt(a)
Traceback (most recent call last):
```

 \(\vdots\)
 TypeError: only length-1 arrays can be converted to Python scalars

Array Functions

There are numerous functions in NumPy that perform array operations and other useful tasks. Here are a few examples:

```
>>> from numpy import *
>>> A = array([[4,-2,1],[-2,4,-2],[1,-2,3]],dtype=float)
>>> b = array([1,4,3],dtype=float)
>>> print diagonal(A) # Principal diagonal
[ 4. 4. 3.]
>>> print diagonal(A,1) # First subdiagonal
[-2. -2.]
>>> print trace(A) # Sum of diagonal elements
11.0
>>> print argmax(b) # Index of largest element
1
>>> print argmin(A,axis=0) # Indecies of smallest col. elements
[1 0 1]
>>> print identity(3) # Identity matrix
[[ 1. 0. 0.]
    [ 0. 1. 0.]
    [ 0. 0. 1.]]
```

There are three functions in NumPy that compute array products. They are illustrated by the program listed below For more details, see Appendix A2.

```
from numpy import *
x = array([7,3])
y = array([2,1])
A = array([[1,2],[3,2]])
B = array([[1,1],[2,2]])
# Dot product
print "dot(x,y) =\n",dot(x,y) # {x}.{y}
print "dot(A,x) =\n",dot(A,x) # [A]{x}
print "dot(A,B) =\n",dot(A,B) # [A][B]
```

```
# Inner product
print "inner(x,y) =\n",inner(x,y) # {x}.{y}
print "inner(A,x) =\n",inner(A,x) # [A]{x}
print "inner(A,B) =\n",inner(A,B) # [A][B_transpose]
# Outer product
print "outer(x,y) =\n",outer(x,y)
print "outer(A,x) =\n",outer(A,x)
print "Outer(A,B) =\n",outer(A,B)
```

The output of the program is

```
dot(x,y) =
17
dot(A,x) =
[13 27]
dot(A,B) =
[[5 5]
    [7 7]]
inner(x,y) =
17
inner(A,x) =
[13 27]
inner(A,B) =
[[\begin{array}{lll}{3}&{6}\end{array}]
    [ 5 10]]
outer(x,y) =
[[14 7]
    [ 6 3]]
outer(A,x) =
[[ 7 3]
    [14 6]
    [21 9]
    [14 6]]
Outer(A,B) =
[[\begin{array}{llll}{1}&{1}&{2}&{2}\end{array}]
    [[2 2 4 4]
    [\begin{array}{llll}{3}&{3}&{6}&{6}\end{array}]
    [2 2 4 4]]
```


Linear Algebra Module

NumPy comes with a linear algebra module called linalg that contains routine tasks such as matrix inversion and solution of simultaneous equations. For example:

```
>>> from numpy import array
>>> from numpy.linalg import inv,solve
>>> A = array([[ 4.0, -2.0, 1.0], )
    [-2.0, 4.0, -2.0], \
    [ 1.0, -2.0, 3.0]])
>>> b = array([1.0, 4.0, 2.0])
>>> print inv(A) # Matrix inverse
[[ 0.33333333 0.16666667 0. ]
    [ 0.16666667 0.45833333 0.25 ]
    [ 0. 0.25 0.5 ]}
>>> print solve(A,b) # Solve [A]{x} = {b}
[ 1., 2.5, 2. ]
```


Copying Arrays

We explained before that if a is a mutable object, such as a list, the assignment statement $\mathrm{b}=\mathrm{a}$ does not result in a new object b, but simply creates a new reference to a, called a deep copy. This also applies to arrays. To make an independent copy of an array a, use the copy method in the NumPy module:

$$
\mathrm{b}=\mathrm{a} \cdot \operatorname{copy}()
$$

Vectorizing Algorithms

Sometimes the broadcasting properties of the mathematical functions in the NumPy module can be utilized to replace loops in the code. This procedure is known as vectorization. Consider, for example, the expression

$$
s=\sum_{i=0}^{100} \sqrt{\frac{i \pi}{100}} \sin \frac{i \pi}{100}
$$

The direct approach is to evaluate the sum in a loop, resulting in the following "scalar" code:

```
from math import sqrt,sin,pi
x=0.0; sum = 0.0
for i in range(0,101):
    sum = sum + sqrt(x)*sin(x)
    x = x + 0.01*pi
print sum
```

The vectorized version of algorithm is

```
from numpy import sqrt,sin,arange
from math import pi
x = arrange(0.0,1.001*pi,0.01*pi)
print sum(sqrt(x)*sin(x))
```

Note that the first algorithm uses the scalar versions of sqrt and sin functions in the math module, whereas the second algorithm imports these functions from the numpy. The vectorized algorithm is faster, but uses more memory.

1.6 Scoping of Variables

Namespace is a dictionary that contains the names of the variables and their values. The namespaces are automatically created and updated as a program runs. There are three levels of namespaces in Python:

- Local namespace, which is created when a function is called. It contains the variables passed to the function as arguments and the variables created within the function. The namespace is deleted when the function terminates. If a variable is created inside a function, its scope is the function's local namespace. It is not visible outside the function.
- A global namespace is created when a module is loaded. Each module has its own namespace. Variables assigned in a global namespace are visible to any function within the module.
- Built-in namespace is created when the interpreter starts. It contains the functions that come with the Python interpreter. These functions can be accessed by any program unit.

When a name is encountered during execution of a function, the interpreter tries to resolve it by searching the following in the order shown: (1) local namespace, (2) global namespace, and (3) built-in namespace. If the name cannot be resolved, Python raises a NameError exception.

Because the variables residing in a global namespace are visible to functions within the module, it is not necessary to pass them to the functions as arguments (although is good programming practice to do so), as the following program illustrates:

```
def divide():
    c = a/b
    print 'a/b =',c
a = 100.0
b = 5.0
divide()
>>>
a/b = 20.0
```

Note that the variable c is created inside the function divide and is thus not accessible to statements outside the function. Hence an attempt to move the print statement out of the function fails:

```
def divide():
    c = a/b
a = 100.0
b = 5.0
divide()
print 'a/b =',c
>>>
Traceback (most recent call last):
    File ''C:\Python22\scope.py',, line 8, in ?
        print c
NameError: name 'c' is not defined
```


1.7 Writing and Running Programs

When the Python editor Idle is opened, the user is faced with the prompt >>>, indicating that the editor is in interactive mode. Any statement typed into the editor is immediately processed upon pressing the enter key. The interactive mode is a good way to learn the language by experimentation and to try out new programming ideas.

Opening a new window places Idle in the batch mode, which allows typing and saving of programs. One can also use a text editor to enter program lines, but Idle has Python-specific features, such as color coding of keywords and automatic indentation, that make work easier. Before a program can be run, it must be saved as a Python file with the .py extension, for example, myprog.py. The program can then be executed by typing python myprog. py; in Windows, double-clicking on the program icon will also work. But beware: the program window closes immediately after execution, before you get a chance to read the output. To prevent this from happening, conclude the program with the line

```
raw_input('press return')
```

Double-clicking the program icon also works in Unix and Linux if the first line of the program specifies the path to the Python interpreter (or a shell script that provides a link to Python). The path name must be preceded by the symbols \#!. On my computer the path is/usr/bin/python, so that all my programs start with the line \#!/usr/bin/python. On multiuser systems the path is usually /usr/local/bin/python.

When a module is loaded into a program for the first time with the import statement, it is compiled into bytecode and written in a file with the extension .pyc. The next time the program is run, the interpreter loads the bytecode rather than the original Python file. If in the meantime changes have been made to the module, the
module is automatically recompiled. A program can also be run from Idle using the Run/Run Module menu.

It is a good idea to document your modules by adding a docstring at the beginning of each module. The docstring, which is enclosed in triple quotes, should explain what the module does. Here is an example that documents the module error (we use this module in several of our programs):

```
## module error
,', err(string).
    Prints 'string' and terminates program.
,,,
import sys
def err(string):
    print string
    raw_input('Press return to exit')
    sys.exit()
```

The docstring of a module can be printed with the statement

```
printmodule_name.__doc
```

For example, the docstring of error is displayed by

```
>>> import error
>>> print error.__doc__
    err(string).
    Prints 'string' and terminates program.
```


2 Systems of Linear Algebraic Equations

Solve the simultaneous equations $\mathbf{A x}=\mathbf{b}$

2.1 Introduction

In this chapter we look at the solution of n linear, algebraic equations in n unknowns. It is by far the longest and arguably the most important topic in the book. There is a good reason for this - it is almost impossible to carry out numerical analysis of any sort without encountering simultaneous equations. Moreover, equation sets arising from physical problems are often very large, consuming a lot of computational resources. It is usually possible to reduce the storage requirements and the run time by exploiting special properties of the coefficient matrix, such as sparseness (most elements of a sparse matrix are zero). Hence, there are many algorithms dedicated to the solution of large sets of equations, each one being tailored to a particular form of the coefficient matrix (symmetric, banded, sparse, etc.). A well-known collection of these routines is LAPACK - Linear Algebra PACKage, originally written in Fortran77. ${ }^{1}$

We cannot possibly discuss all the special algorithms in the limited space available. The best we can do is to present the basic methods of solution, supplemented by a few useful algorithms for banded and sparse coefficient matrices.

Notation

A system of algebraic equations has the form

$$
\begin{aligned}
A_{11} x_{1}+A_{12} x_{2}+\cdots+A_{1 n} x_{n}= & b_{1} \\
A_{21} x_{1}+A_{22} x_{2}+\cdots+A_{2 n} x_{n}= & b_{2} \\
& \vdots \\
A_{n 1} x_{1}+A_{n 2} x_{2}+\cdots+A_{n n} x_{n}= & b_{n}
\end{aligned}
$$

[^2]where the coefficients $A_{i j}$ and the constants b_{j} are known, and x_{i} represent the unknowns. In matrix notation the equations are written as
\[

\left[$$
\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \tag{2.2}\\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n 1} & A_{n 2} & \cdots & A_{n n}
\end{array}
$$\right]\left[$$
\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}
$$\right]=\left[$$
\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}
$$\right]
\]

or, simply,

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{2.3}
\end{equation*}
$$

A particularly useful representation of the equations for computational purposes is the augmented coefficient matrix obtained by adjoining the constant vector \mathbf{b} to the coefficient matrix \mathbf{A} in the following fashion:

$$
[\mathbf{A} \mid \mathbf{b}]=\left[\begin{array}{cccc|c}
A_{11} & A_{12} & \cdots & A_{1 n} & b_{1} \tag{2.4}\\
A_{21} & A_{22} & \cdots & A_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
A_{n 1} & A_{n 2} & \cdots & A_{n 3} & b_{n}
\end{array}\right]
$$

Uniqueness of Solution

A system of n linear equations in n unknowns has a unique solution, provided that the determinant of the coefficient matrix is nonsingular; that is, $|\mathbf{A}| \neq 0$. The rows and columns of a nonsingular matrix are linearly independent in the sense that no row (or column) is a linear combination of other rows (or columns).

If the coefficient matrix is singular, the equations may have an infinite number of solutions, or no solutions at all, depending on the constant vector. As an illustration, take the equations

$$
2 x+y=3 \quad 4 x+2 y=6
$$

Because the second equation can be obtained by multiplying the first equation by 2 , any combination of x and y that satisfies the first equation is also a solution of the second equation. The number of such combinations is infinite. On the other hand, the equations

$$
2 x+y=3 \quad 4 x+2 y=0
$$

have no solution because the second equation, being equivalent to $2 x+y=0$, contradicts the first one. Therefore, any solution that satisfies one equation cannot satisfy the other one.

III Conditioning

The obvious question is: what happens when the coefficient matrix is almost singular, that is, if $|\mathbf{A}|$ is very small? In order to determine whether the determinant of the
coefficient matrix is "small," we need a reference against which the determinant can be measured. This reference is called the norm of the matrix and is denoted by $\|\mathbf{A}\|$. We can then say that the determinant is small if

$$
|\mathbf{A}| \ll\|\mathbf{A}\|
$$

Several norms of a matrix have been defined in existing literature, such as the euclidean norm

$$
\begin{equation*}
\|\mathbf{A}\|_{e}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j}^{2}} \tag{2.5a}
\end{equation*}
$$

and the row-sum norm, also called the infinity norm

$$
\begin{equation*}
\|\mathbf{A}\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|A_{i j}\right| \tag{2.5b}
\end{equation*}
$$

A formal measure of conditioning is the matrix condition number, defined as

$$
\begin{equation*}
\operatorname{cond}(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\| \tag{2.5c}
\end{equation*}
$$

If this number is close to unity, the matrix is well conditioned. The condition number increases with the degree of ill-conditioning, reaching infinity for a singular matrix. Note that the condition number is not unique, but depends on the choice of the matrix norm. Unfortunately, the condition number is expensive to compute for large matrices. In most cases it is sufficient to gauge conditioning by comparing the determinant with the magnitudes of the elements in the matrix.

If the equations are ill conditioned, small changes in the coefficient matrix result in large changes in the solution. As an illustration, take the equations

$$
2 x+y=3 \quad 2 x+1.001 y=0
$$

that have the solution $x=1501.5, y=-3000$. Because $|\mathbf{A}|=2(1.001)-2(1)=0.002$ is much smaller than the coefficients, the equations are ill conditioned. The effect of ill-conditioning can be verified by changing the second equation to $2 x+1.002 y=0$ and re-solving the equations. The result is $x=751.5, y=-1500$. Note that a 0.1% change in the coefficient of y produced a 100% change in the solution!

Numerical solutions of ill-conditioned equations are not to be trusted. The reason is that the inevitable roundoff errors during the solution process are equivalent to introducing small changes into the coefficient matrix. This in turn introduces large errors into the solution, the magnitude of which depends on the severity of illconditioning. In suspect cases the determinant of the coefficient matrix should be computed so that the degree of ill-conditioning can be estimated. This can be done during or after the solution with only a small computational effort.

Linear Systems

Linear, algebraic equations occur in almost all branches of numerical analysis. But their most visible application in engineering is in the analysis of linear systems (any system whose response is proportional to the input is deemed to be linear). Linear systems include structures, elastic solids, heat flow, seepage of fluids, electromagnetic fields, and electric circuits, that is, most topics taught in an engineering curriculum.

If the system is discrete, such as a truss or an electric circuit, then its analysis leads directly to linear algebraic equations. In the case of a statically determinate truss, for example, the equations arise when the equilibrium conditions of the joints are written down. The unknowns $x_{1}, x_{2}, \ldots, x_{n}$ represent the forces in the members and the support reactions, and the constants $b_{1}, b_{2}, \ldots, b_{n}$ are the prescribed external loads.

The behavior of continuous systems is described by differential equations, rather than algebraic equations. However, because numerical analysis can deal only with discrete variables, it is first necessary to approximate a differential equation with a system of algebraic equations. The well-known finite difference, finite element, and boundary element methods of analysis work in this manner. They use different approximations to achieve the "discretization," but in each case the final task is the same: to solve a system (often a very large system) of linear, algebraic equations.

In summary, the modeling of linear systems invariably gives rise to equations of the form $\mathbf{A x}=\mathbf{b}$, where \mathbf{b} is the input and \mathbf{x} represents the response of the system. The coefficient matrix \mathbf{A}, which reflects the characteristics of the system, is independent of the input. In other words, if the input is changed, the equations have to be solved again with a different \mathbf{b}, but the same \mathbf{A}. Therefore, it is desirable to have an equation-solving algorithm that can handle any number of constant vectors with minimal computational effort.

Methods of Solution

There are two classes of methods for solving systems of linear, algebraic equations: direct and iterative methods. The common characteristic of direct methods is that they transform the original equations into equivalent equations (equations that have the same solution) that can be solved more easily. The transformation is carried out by applying the three operations listed here. These so-called elementary operations do not change the solution, but they may affect the determinant of the coefficient matrix as indicated in parentheses.

- Exchanging two equations (changes sign of $|\mathbf{A}|$).
- Multiplying an equation by a non-zero constant (multiplies $|\mathbf{A}|$ by the same constant).
- Multiplying an equation by a nonzero constant and then subtracting it from another equation (leaves $|\mathbf{A}|$ unchanged).

Iterative or indirect methods start with a guess at the solution \mathbf{x}, and then repeatedly refine the solution until a certain convergence criterion is reached. Iterative methods are generally less efficient than their direct counterparts because of the large number of iterations required. But they do have significant computational advantages if the coefficient matrix is very large and sparsely populated (most coefficients are zero).

Overview of Direct Methods

Table 2.1 lists three popular direct methods, each of which uses elementary operations to produce its own final form of easy-to-solve equations.

In the table, \mathbf{U} represents an upper triangular matrix, \mathbf{L} is a lower triangular matrix, and I denotes the identity matrix. A square matrix is called triangular if it contains only zero elements on one side of the leading diagonal. Thus, a 3×3 upper triangular matrix has the form

$$
\mathbf{U}=\left[\begin{array}{ccc}
U_{11} & U_{12} & U_{13} \\
0 & U_{22} & U_{23} \\
0 & 0 & U_{33}
\end{array}\right]
$$

and a 3×3 lower triangular matrix appears as

$$
\mathbf{L}=\left[\begin{array}{ccc}
L_{11} & 0 & 0 \\
L_{21} & L_{22} & 0 \\
L_{31} & L_{32} & L_{33}
\end{array}\right]
$$

Triangular matrices play an important role in linear algebra, because they simplify many computations. For example, consider the equations $\mathbf{L x}=\mathbf{c}$, or

$$
\begin{aligned}
L_{11} x_{1} & =c_{1} \\
L_{21} x_{1}+L_{22} x_{2} & =c_{2} \\
L_{31} x_{1}+L_{32} x_{2}+L_{33} x_{3} & =c_{3}
\end{aligned}
$$

If we solve the equations forward, starting with the first equation, the computations are very easy, because each equation contains only one unknown at a time. The

Method	Initial form	Final form
Gauss elimination	$\mathbf{A x}=\mathbf{b}$	$\mathbf{U x}=\mathbf{c}$
LU decomposition	$\mathbf{A x}=\mathbf{b}$	$\mathbf{L U x}=\mathbf{b}$
Gauss-Jordan elimination	$\mathbf{A x}=\mathbf{b}$	$\mathbf{I x}=\mathbf{c}$

Table 2.1
solution would thus proceed as follows:

$$
\begin{aligned}
& x_{1}=c_{1} / L_{11} \\
& x_{2}=\left(c_{2}-L_{21} x_{1}\right) / L_{22} \\
& x_{3}=\left(c_{3}-L_{31} x_{1}-L_{32} x_{2}\right) / L_{33}
\end{aligned}
$$

This procedure is known as forward substitution. In a similar way, $\mathbf{U x}=\mathbf{c}$, encountered in Gauss elimination, can easily be solved by back substitution, which starts with the last equation and proceeds backward through the equations.

The equations $\mathbf{L U x}=\mathbf{b}$, which are associated with LU decomposition, can also be solved quickly if we replace them with two sets of equivalent equations: $\mathbf{L y}=\mathbf{b}$ and $\mathbf{U x}=\mathbf{y}$. Now $\mathbf{L y}=\mathbf{b}$ can be solved for \mathbf{y} by forward substitution, followed by the solution of $\mathbf{U x}=\mathbf{y}$ by means of back substitution.

The equations $\mathbf{I x}=\mathbf{c}$, which are the produced by Gauss-Jordan elimination, are equivalent to $\mathbf{x}=\mathbf{c}$ (recall the identity $\mathbf{I} \mathbf{x}=\mathbf{x}$), so that \mathbf{c} is already the solution.

EXAMPLE 2.1

Determine whether the following matrix is singular:

$$
\mathbf{A}=\left[\begin{array}{rrr}
2.1 & -0.6 & 1.1 \\
3.2 & 4.7 & -0.8 \\
3.1 & -6.5 & 4.1
\end{array}\right]
$$

Solution Laplace's development of the determinant (see Appendix A2) about the first row of \mathbf{A} yields

$$
\begin{aligned}
|\mathbf{A}| & =2.1\left|\begin{array}{rr}
4.7 & -0.8 \\
-6.5 & 4.1
\end{array}\right|-(-0.6)\left|\begin{array}{rr}
3.2 & -0.8 \\
3.1 & 4.1
\end{array}\right|+1.1\left|\begin{array}{rr}
3.2 & 4.7 \\
3.1 & -6.5
\end{array}\right| \\
& =2.1(14.07)+0.6(15.60)+1.1(35.37)=0
\end{aligned}
$$

Because the determinant is zero, the matrix is singular. It can be verified that the singularity is due to the following row dependency: $($ row 3$)=(3 \times$ row 1$)-($ row 2$)$.

EXAMPLE 2.2

Solve the equations $\mathbf{A x}=\mathbf{b}$, where

$$
\mathbf{A}=\left[\begin{array}{rrr}
8 & -6 & 2 \\
-4 & 11 & -7 \\
4 & -7 & 6
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{r}
28 \\
-40 \\
33
\end{array}\right]
$$

knowing that the LU decomposition of the coefficient matrix is (you should verify this)

$$
\mathbf{A}=\mathbf{L} \mathbf{U}=\left[\begin{array}{rrr}
2 & 0 & 0 \\
-1 & 2 & 0 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{rrr}
4 & -3 & 1 \\
0 & 4 & -3 \\
0 & 0 & 2
\end{array}\right]
$$

[^0]: ${ }^{1}$ The Python interpreter also compiles byte code, which helps to speed up execution somewhat.

[^1]: ${ }^{2}$ NumPy is the successor of older Python modules called Numeric and NumArray. Their interfaces and capabilities are very similar. Although Numeric and NumArray are still available, they are no longer supported.

[^2]: ${ }^{1}$ LAPACK is the successor of LINPACK, a 1970s and 80s collection of Fortran subroutines.

