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Preface

The fundamental theory that underlies the physicist’s description of the material
world is quantum mechanics – specifically Erwin Schrödinger’s 1926 formula-
tion of the theory. This theory also brought with it an emphasis on certain fields
of mathematical analysis, e.g., Hilbert space theory, spectral analysis, differen-
tial equations, etc., which, in turn, encouraged the development of parts of pure
mathematics.

Despite the great success of quantum mechanics in explaining details of the
structure of atoms, molecules (including the complicated molecules beloved of
organic chemists and the pharmaceutical industry, and so essential to life) and
macroscopic objects like transistors, it took 41 years before the most fundamental
question of all was resolved: Why doesn’t the collection of negatively charged
electrons and positively charged nuclei, which are the basic constituents of the
theory, implode into a minuscule mass of amorphous matter thousands of times
denser than the material normally seen in our world? Even today hardly any
physics textbook discusses, or even raises this question, even though the basic
conclusion of stability is subtle and not easily derived using the elementary
means available to the usual physics student. There is a tendency among many
physicists to regard this type of question as uninteresting because it is not easily
reducible to a quantitative one. Matter is either stable or it is not; since nature tells
us that it is so, there is no question to be answered. Nevertheless, physicists firmly
believe that quantum mechanics is a ‘theory of everything’ at the level of atoms
and molecules, so the question whether quantum mechanics predicts stability
cannot be ignored. The depth of the question is further revealed when it is realized
that a world made of bosonic particles would be unstable. It is also revealed by
the fact that the seemingly innocuous interaction of matter and electromagnetic
radiation at ordinary, every-day energies – quantum electrodynamics – should be
a settled, closed subject, but it is not and it can be understood only in the context

xiii



xiv Preface

of perturbation theory. Given these observations, it is clearly important to know
that at least the quantum-mechanical part of the story is well understood.

It is this stability question that will occupy us in this book. After four decades
of development of this subject, during which most of the basic questions have
gradually been answered, it seems appropriate to present a thorough review of
the material at this time.

Schrödinger’s equation is not simple, so it is not surprising that some inter-
esting mathematics had to be developed to understand the various aspects of the
stability of matter. In particular, aspects of the spectral theory of Schrödinger
operators and some new twists on classical potential theory resulted from this
quest. Some of these theorems, which play an important role here, have proved
useful in other areas of mathematics.

The book is directed towards researchers on various aspects of quantum
mechanics, as well as towards students of mathematics and students of physics.
We have tried to be pedagogical, recognizing that students with diverse back-
grounds may not have all the basic facts at their finger tips. Physics students
will come equipped with a basic course in quantum mechanics but perhaps will
lack familiarity with modern mathematical techniques. These techniques will
be introduced and explained as needed, and there are many mathematics texts
which can be consulted for further information; among them is [118], which we
will refer to often. Students of mathematics will have had a course in real anal-
ysis and probably even some basic functional analysis, although they might still
benefit from glancing at [118]. They will find the necessary quantum-mechanical
background self-contained here in chapters two and three, but if they need more
help they can refer to a huge number of elementary quantum mechanics texts,
some of which, like [77, 22], present the subject in a way that is congenial to
mathematicians.

While we aim for a relaxed, leisurely style, the proofs of theorems are either
completely rigorous or can easily be made so by the interested reader. It is our
hope that this book, which illustrates the interplay between mathematical and
physical ideas, will not only be useful to researchers but can also be a basis for
a course in mathematical physics.

To keep things within bounds, we have purposely limited ourselves to the
subject of stability of matter in its various aspects (non-relativistic and relativis-
tic mechanics, inclusion of magnetic fields, Chandrasekhar’s theory of stellar
collapse and other topics). Related subjects, such as a study of Thomas–Fermi
and Hartree–Fock theories, are left for another day.
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C H A P T E R 1

Prologue

1.1 Introduction

The basic constituents of ordinary matter are electrons and atomic nuclei. These
interact with each other with several kinds of forces – electric, magnetic and
gravitational – the most important of which is the electric force. This force
is attractive between oppositely charged particles and repulsive between like-
charged particles. (The electrons have a negative electric charge −e while the
nuclei have a positive charge +Ze, with Z = 1, 2, . . . , 92 in nature.) Thus, the
strength of the attractive electrostatic interaction between electrons and nuclei
is proportional to Ze2, which equals Zα in appropriate units, where α is the
dimensionless fine-structure constant, defined by

α = e2

h̄c
= 7.297 352 538 × 10−3 = 1

137.035 999 68
, (1.1.1)

and where c is the speed of light, h̄ = h/2π and h is Planck’s constant.
The basic question that has to be resolved in order to understand the existence

of atoms and the stability of our world is:

Why don’t the point-like electrons fall into the (nearly) point-like nuclei?

This problem of classical mechanics was nicely summarized by Jeans in 1915
[97]:

“There would be a very real difficulty in supposing that the (force) law 1/r2 held
down to zero values of r . For the force between two charges at zero distance
would be infinite; we should have charges of opposite sign continually rushing
together and, when once together, no force would be adequate to separate
them . . . Thus the matter in the universe would tend to shrink into nothing or
to diminish indefinitely in size.”

1



2 Prologue

A sensitive reader might object to Jeans’ conclusion on the grounds that
the non-zero radius of nuclei would ameliorate the collapse. Such reasoning
is beside the point, however, because the equilibrium separation of charges
observed in nature is not the nuclear diameter (10−13 cm) but rather the atomic
size (10−8 cm) predicted by Schrödinger’s equation. Therefore, as concerns
the problem of understanding stability, in which equilibrium lengths are of the
order of 10−8 cm, there is no loss in supposing that all our particles are point
particles.

To put it differently, why is the energy of an atom with a point-like nucleus
not −∞? The fact that it is not is known as stability of the first kind; a more
precise definition will be given later. The question was successfully answered
by quantum mechanics, whose exciting development in the beginning of the
twentieth century we will not try to relate – except to note that the basic theory
culminated in Schrödinger’s famous equation of 1926 [156]. This equation
explained the new, non-classical, fact that as an electron moves close to a nucleus
its kinetic energy necessarily increases in such a way that the minimum total
energy (kinetic plus potential) occurs at some positive separation rather than at
zero separation.

This was one of the most important triumphs of quantum mechanics!

Thomson discovered the electron in 1897 [180, 148], and Rutherford [155]
discovered the (essentially) point-like nature of the nucleus in 1911, so it took
15 years from the discovery of the problem to its full solution. But it took almost
three times as long, 41 years from 1926 to 1967, before the second part of the
stability story was solved by Dyson and Lenard [44].

The second part of the story, known as stability of the second kind, is, even
now, rarely told in basic quantum mechanics textbooks and university courses,
but it is just as important. Given the stability of atoms, is it obvious that bulk
matter with a large number N of atoms (say, N = 1023) is also stable in the
sense that the energy and the volume occupied by 2N atoms are twice that of N
atoms? Our everyday physical experience tells us that this additivity property, or
linear law, holds but is it also necessarily a consequence of quantum mechanics?
Without this property, the world of ordinary matter, as we know it, would not
exist.

Although physicists largely take this property for granted, there were a few
that thought otherwise. Onsager [145] was perhaps the first to consider this
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kind of question, and did so effectively for classical particles with Coulomb
interactions but with the addition of hard cores that prevent particles from
getting too close together. The full question (without hard cores) was addressed
by Fisher and Ruelle in 1966 [66] and they generalized Onsager’s results to
smeared out charges. In 1967 Dyson and Lenard [44] finally succeeded in
showing that stability of the second kind for truly point-like quantum particles
with Coulomb forces holds but, surprisingly, that it need not do so. That is,
the Pauli exclusion principle, which will be discussed in Chapter 3, and which
has no classical counterpart, was essential. Although matter would not collapse
without it, the linear law would not be satisfied, as Dyson showed in 1967 [43].
Consequently, stability of the second kind does not follow from stability of the
first kind! If the electrons and nuclei were all bosons (which are particles that
do not satisfy the exclusion principle), the energy would not satisfy a linear
law but rather decrease like −N7/5; we will return to this astonishing discovery
later.

The Dyson–Lenard proof of stability of the second kind [44] was one of
the most difficult, up to that time, in the mathematical physics literature. A
challenge was to find an essential simplification, and this was done by Lieb and
Thirring in 1975 [134]. They introduced new mathematical inequalities, now
called Lieb–Thirring (LT) inequalities (discussed in Chapter 4), which showed
that a suitably modified version of the 1927 approximate theory of Thomas and
Fermi [179, 62] yielded, in fact, a lower bound to the exact quantum-mechanical
answer. Since it had already been shown, by Lieb and Simon in 1973 [129, 130],
that this Thomas–Fermi theory possessed a linear lower bound to the energy, the
many-body stability of the second kind immediately followed.

The Dyson–Lenard stability result was one important ingredient in the solution
to another, but related problem that had been raised many years earlier. Is it true
that the ‘thermodynamic limit’ of the free energy per particle exists for an infinite
system at fixed temperature and density? In other words, given that the energy
per particle of some system is bounded above and below, independent of the size
of the system, how do we know that it does not oscillate as the system’s size
increases? The existence of a limit was resolved affirmatively by Lebowitz and
Lieb in 1969 [103, 116], and we shall give that proof in Chapter 14.

There were further surprises in store, however! The Dyson–Lenard result was
not the end of the story, for it was later realized that there were other sources
of instability that physicists had not seriously thought about. Two, in fact. The
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eventual solution of these two problems leads to the conclusion that, ultimately,
stability requires more than the Pauli principle. It also requires an upper bound
on both the physical constants α and Zα.1

One of the two new questions considered was this. What effect does Einstein’s
relativistic kinematics have? In this theory the Newtonian kinetic energy of an
electron with mass m and momentum p, p2/2m, is replaced by the much weaker√

p2c2 +m2c4 −mc2. So much weaker, in fact, that the simple atom is stable
only if the relevant coupling parameter Zα is not too large! This fact was known
in one form or another for many years – from the introduction of Dirac’s 1928
relativistic quantum mechanics [39], in fact. It was far from obvious, therefore,
that many-body stability would continue to hold even if Zα is kept small (but
fixed, independent of N ). Not only was the linear N -dependence in doubt but
also stability of the first kind was unclear. This was resolved by Conlon in 1984
[32], who showed that stability of the second kind holds if α < 10−200 and
Z = 1.

Clearly, Conlon’s result needed improvement and this led to the invention of
interesting new inequalities to simplify and improve his result. We now know
that stability of the second kind holds if and only if both α and Zα are not too
large. The bound on α itself was the new reality, previously unknown in the
physics literature.

Again new inequalities were needed when it was realized that magnetic fields
could also cause instabilities, even for just one atom, if Zα2 is too large. The
understanding of this strange, and totally unforeseen, fact requires the knowl-
edge that the appropriate Schrödinger equation has ‘zero-modes’, as discovered
by Loss and Yau in 1986 [139] (that is, square integrable, time-independent
solutions with zero kinetic energy). But stability of the second kind was still
open until Fefferman showed in 1995 [57, 58] that stability of the second kind
holds if Z = 1 and α is very small. This result was subsequently improved to
robust values of Zα2 and α by Lieb, Loss and Solovej in 1995 [123].

The surprises, in summary, were that stability of the second kind requires
bounds on the fine-structure constant and the nuclear charges. In the relativistic
case, smallness of α and of Zα is necessary, whereas in the non-relativistic case
with magnetic fields, smallness of α and of Zα2 is required.

1 If Z ≥ 1, which it always is in nature, a bound on Zα implies a bound on α, of course. The
point here is that the necessary bound on α is independent of Z, even if Z is arbitrarily small.
In this book we shall not restrict our attention to integer Z.
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Given these facts, one can ask if the simultaneous introduction of relativistic
mechanics, magnetic fields, and the quantization of those fields in the man-
ner proposed by M. Planck in 1900 [149], leads to new surprises about the
requirements for stability. The answer, proved by Lieb, Loss, Siedentop and
Solovej [127, 119], is that in at least one version of the problem no new con-
ditions are needed, except for expected adjustments of the allowed bounds for
Zα and α.

While we will visit all these topics in this book, we will not necessarily follow
the historical route. In particular, we will solve the non-relativistic problem
by using the improved inequalities invented to handle the relativistic problem,
without the introduction of Thomas–Fermi theory. The Thomas–Fermi story
is interesting, but no longer essential for our understanding of the stability of
matter. Hence we will mention it, and sketch its application in the stability of
matter problem, but we will not treat it thoroughly, and will not make further
use of it. Some earlier pedagogical reviews are in [108, 115].

1.2 Brief Outline of the Book

An elementary introduction to quantum mechanics is given in Chapter 2. It is a
thumbnail sketch of the relevant parts of the subject for readers who might want
to refresh their memory, and it also serves to fix notation. Readers familiar with
the subject can safely skip the chapter.

Chapter 3 discusses the many-body aspects of quantum mechanics and, in
particular, introduces the concept of stability of matter in Section 3.2. The
chapter also contains several results that will be used repeatedly in the chapters
to follow, like the monotonicity of the ground state energy in the nuclear charges,
and the fact the bosons have the lowest possible ground state energy among all
symmetry classes.

A detailed discussion of Lieb–Thirring inequalities is the subject of
Chapter 4. These inequalities play a crucial role in our understanding of stability
of matter. They concern bounds on the moments of the negative eigenvalues of
Schrödinger type operators, which lead to lower bounds on the kinetic energy of
many-particle systems in terms of the corresponding semiclassical expressions.
This chapter, like Chapters 5 and 6, is purely mathematical and contains analytic
inequalities that will be applied in the following chapters.

Electrostatics is an old subject whose mathematical underpinning goes back
to Newton’s discussion in the Principia [144] of the gravitational force, which
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behaves in a similar way except for a change of sign from repulsive to attrac-
tive. Nevertheless, new inequalities are essential for understanding many-body
systems, and these are given in Chapters 5 and 6. The latter chapter contains a
proof of the Lieb–Oxford inequality [125], which gives a bound on the indirect
part of the Coulomb electrostatic energy of a quantum system.

Chapter 7 contains a proof of stability of matter of non-relativistic fermionic
particles. This is the same model for which stability was first shown by Dyson
and Lenard [44] in 1967. The three proofs given here are different and very
short given the inequalities derived in Chapters 4–6. As a consequence, matter
is not only stable but also extensive, in the sense that the volume occupied is
proportional to the number of particles. The instability of the same model for
bosons will also be discussed.

The analogous model with relativistic kinematics is discussed in Chapter 8,
and stability for fermions is proved for a certain range of the parameters α

and Zα. Unlike in the non-relativistic case, where the range of values of these
parameters was unconstrained, bounds on these parameters are essential, as
will be shown. The proof of stability in the relativistic case will be an important
ingredient concerning stability of the models discussed in Chapters 9, 10 and 11.

The influence of spin and magnetic fields will be studied in Chapter 9. If
the kinetic energy of the particles is described by the Pauli operator, it becomes
necessary to include the magnetic field energy for stability. Again, bounds on
various parameters become necessary, this time α and Zα2. It turns out that zero
modes of the Pauli operator are a key ingredient in understanding the boundary
between stability and instability.

If the kinetic energy of relativistic particles is described by the Dirac operator,
the question of stability becomes even more subtle. This is the content of Chap-
ter 10. For the Brown–Ravenhall model, where the physically allowed states are
the positive energy states of the free Dirac operator, there is always instability
in the presence of magnetic fields. Stability can be restored by appropriately
modifying the model and choosing as the physically allowed states the ones that
have a positive energy for the Dirac operator with the magnetic field.

The effects of the quantum nature of the electromagnetic field will be inves-
tigated in Chapter 11. The models considered are the same as in Chapters 9
and 10, but now the electromagnetic field will be quantized. These models are
caricatures of quantum electrodynamics. The chapter includes a self-contained
mini-course on the electromagnetic field and its quantization. The stability and
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instability results are essentially the same as for the non-quantized field, except
for different bounds on the parameter regime for stability.

How many electrons can an atom or molecule bind? This question will be
addressed in Chapter 12. The reason for including it in a book on stability of
matter is to show that for a lower bound on the ground state energy only the
minimum of the number of nuclei and the number of electrons is relevant. A
large excess charge can not lower the energy.

Once a system becomes large enough so that the gravitational interaction
can not be ignored, stability fails. This can be seen in nature in terms of the
gravitational collapse of stars and the resulting supernovae, or as the upper mass
limit of cold stars. Simple models of this gravitational collapse, as appropriate
for white dwarfs and neutron stars, will be studied in Chapter 13. In particular,
it will be shown how the critical number of particles for collapse depends on
the gravitational constant G, namely G−3/2 for fermions and G−1 for bosons,
respectively.

The first 13 chapters deal essentially with the problem of showing that the
lowest energy of matter is bounded below by a constant times the number of
particles. The final Chapter 14 deals with the question of showing that the
energy is really proportional to the number of particles, i.e., that the energy per
particle has a limit as the particle number goes to infinity. Such a limit exists
not only for the ground state energy, but also for excited states in the sense that
at positive temperature the thermodynamic limit of the free energy per particle
exists.



C H A P T E R 2

Introduction to Elementary
Quantum Mechanics and Stability

of the First Kind

In this second chapter we will review the basic mathematical and physical
facts about quantum mechanics and establish physical units and notation. Those
readers already familiar with the subject can safely jump to the next chapter.

An attempt has been made to make the presentation in this chapter as elemen-
tary as possible, and yet present the basic facts that will be needed later. There
are many beautiful and important topics which will not be touched upon such as
self-adjointness of Schrödinger operators, the general mathematical structure of
quantum mechanics and the like. These topics are well described in other works,
e.g., [150].

Much of the following can be done in a Euclidean space of arbitrary dimension,
but in this chapter the dimension of the Euclidean space is taken to be three –
which is the physical case – unless otherwise stated. We do this to avoid confusion
and, occasionally, complications that arise in the computation of mathematical
constants. The interested reader can easily generalize what is done here to the
R
d, d > 3 case. Likewise, in the next chapters we mostly consider N particles,

with spatial coordinates in R
3, so that the total spatial dimension is 3N .

2.1 A Brief Review of the Connection Between Classical and
Quantum Mechanics

Considering the range of validity of quantum mechanics, it is not surprising
that its formulation is more complicated and abstract than classical mechanics.
Nevertheless, classical mechanics is a basic ingredient for quantum mechanics.
One still talks about position, momentum and energy which are notions from
Newtonian mechanics.

The connection between these two theories becomes apparent in the semi-
classical limit, akin to passing from wave optics to geometrical optics. In its
Hamiltonian formulation, classical mechanics can be viewed as a problem

8



2.1 Review of Classical and Quantum Mechanics 9

of geometrical optics. This led Schrödinger to guess the corresponding wave
equation. We refrain from fully explaining the semiclassical limit of quantum
mechanics. For one aspect of this problem, however, the reader is referred to
Chapter 4, Section 4.1.1.

We turn now to classical dynamics itself, in which a point particle is fully
described by giving its position x = (x1, x2, x3) in R

3 and its velocity v =
dx/dt = ẋ in R

3 at any time t , where the dot denotes the derivative with respect
to time.1 Newton’s law of motion says that along any mechanical trajectory its
acceleration v̇ = ẍ satisfies

mẍ = F(x, ẋ, t), (2.1.1)

where F is the force acting on the particle and m is the mass. With F(x, ẋ, t)
given, the expression (2.1.1) is a system of second order differential equations
which together with the initial conditions x(t0) and v(t0) = ẋ(t0) determine x(t)
and thus v(t) for all times. If there are N particles interacting with each other,
then (2.1.1) takes the form

mi ẍi = Fi , i = 1, . . . , N, (2.1.2)

where Fi denotes the sum of all forces acting on the i th particle and xi denotes
the position of the i th particle. As an example, consider the force between two
charged particles, whose respective charges are denoted by Q1 and Q2, namely
the Coulomb force given (in appropriate units, see Section 2.1.7) by

F1 = Q1Q2
x1 − x2

|x1 − x2|3 = −F2. (2.1.3)

If Q1Q2 is positive the force is repulsive and if Q1Q2 is negative the force
is attractive. Formula (2.1.3) can be written in terms of the potential energy
function

V (x1, x2) = Q1Q2

|x1 − x2| , (2.1.4)

noting that

F1 = −∇x1V and F2 = −∇x2V. (2.1.5)

As usual, we denote the gradient by ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3).

1 We follow the physicists’ convention in which vectors are denoted by boldface letters.
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2.1.1 Hamiltonian Formulation

Hamilton’s formulation of classical mechanics is the entry to quantum physics.
Hamilton’s equations are

ẋ = ∂H

∂ p
, ṗ = −∂H

∂x
(2.1.6)

where H (x, p) is the Hamilton function and p the canonical momentum of
the particle. Assuming that

F (x) = −∇V (x) (2.1.7)

for some potential V then, in the case that the canonical momentum is given by

p = mv, (2.1.8)

Eq. (2.1.6) with

H = p2

2m
+ V (x) (2.1.9)

yields (2.1.1). The function

T ( p) = p2

2m
(2.1.10)

is called the kinetic energy function. A simple computation using Eq. (2.1.6)
shows that along each mechanical trajectory the function H (x(t), p(t)) is a
constant which we call the energy, E.

2.1.2 Magnetic Fields

Not in all cases is the canonical momentum given by (2.1.8). An example is the
motion of a charged particle of mass m and charge −e in a magnetic field B(x)
in addition to a potential, V (x). The Lorentz force on such a particle located at
x and having velocity v is2

FLorentz = −e

c
v ∧ B(x). (2.1.11)

2 We use the symbol ∧ for the vector product on R
3, instead of ×, since the latter may be confused

with x.
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The Hamilton function is then given by3

H (x, p) = 1

2m

(
p + e

c
A(x)

)2
+ V (x), (2.1.12)

where A(x), called the vector potential, determines the magnetic field (more
properly called the magnetic induction) B(x) by the equation

∇ ∧ A(x) = curl A(x) = B(x). (2.1.13)

The fact that an arbitrary magnetic field can be written this way as a curl is
a consequence of the fact that Maxwell’s equations dictate that all physical
magnetic fields satisfy

∇ · B(x) = div B(x) = 0. (2.1.14)

The parameter c in (2.1.12) is the speed of light, which equals 299 792 458
meters/sec.

The canonical momentum p is now not equal to mass times velocity but rather

mv = p + e

c
A(x). (2.1.15)

It is a simple calculation to derive the Lorentz law for the motion of an electron in
an external magnetic field using (2.1.6) with (2.1.12) as the Hamilton function.

The energy associated with this B field (i.e., the amount of work needed to
construct this field or, equivalently, the amount of money we have to pay to the
electric power company) is4

Emag(B) := 1

8π

∫
R3

|B(x)|2dx. (2.1.16)

The units we use are the conventional absolute electrostatic units. For further
discussion of units see Section 2.1.7.

3 We note that we use the convention that the electron charge equals −e, with e > 0, and hence
the proper form of the kinetic energy is given by (2.1.12). In the formula ( p − eA(x)/c)2/(2m),
which is usually found in textbooks, e denotes a generic charge, which can be positive or
negative.

4 The equation a := b (or b =: a) means that a is defined by b.
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Since the only requirement on A is that it satisfy (2.1.13) we have a certain
amount of freedom in choosing A. It would appear that the A has three degrees
of freedom (the three components of the vector A) but in reality there are only
two since B has only two degrees of freedom (because div B = 0). If we assume
that Emag(B) < ∞ (which should be good enough for physical applications) then
we can choose the field A such that (2.1.13) holds and

div A = 0 and
∫
R3

|A(x)|6 dx < ∞. (2.1.17)

A proof of this fact is given in Lemma 10.1 in Chapter 10. The condition
div A = 0 is of no importance to us until we get to Chapter 10. All results prior
to Chapter 10 hold irrespective of this condition. Its relevance is explained in
Section 10.1.1 on gauge invariance.

2.1.3 Relativistic Mechanics

It is straightforward to describe relativistic mechanics in the Hamiltonian for-
malism. The Hamilton function for a free relativistic particle is

Trel( p) := c
√

p2 +m2c2 −mc2, (2.1.18)

from which the relation between p and the velocity, v, is found to be

v = ∂Trel( p)

∂ p
= c p√

p2 +m2c2
. (2.1.19)

Note that |v| < c. We can, of course, include a magnetic field in this relativistic
formalism simply by replacing p by p + e

c
A(x).

A potential can be added to this Trel( p) so that the Hamilton function becomes

Hrel( p, x) = Trel( p) + V (x). (2.1.20)

Hamilton’s equations (2.1.6) then yield a mathematically acceptable theory, but
it has to be admitted that it is not truly a relativistic theory from the physical
point of view. The reason is that the theory obtained this way is not invariant
under Lorentz transformations, i.e., the equations of motion (and not merely
the solutions of the equations) are different in different inertial systems. We
shall not attempt to explain this further, because we shall not be concerned
with true relativistic invariance in this book. In any case, ‘energy’ itself is not
a relativistically invariant quantity (it is only a component of a 4-vector). We
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shall, however, be concerned with the kind of mechanics defined by the Hamilton
function Hrel in (2.1.20) because this dynamics is an interesting approximation
to a truly relativistic mechanics.

2.1.4 Many-Body Systems

There is no difficulty in describing many-body systems in the Hamiltonian
formalism – with either relativistic or non-relativistic kinematics. As an example,
consider the problem of N electrons and M static nuclei interacting with each
other via the Coulomb force. The electrons have charge −e, and are located
at positions X = (x1, . . . , xN ), xi ∈ R

3 for i = 1, . . . , N . The M nuclei have
charges eZ = e(Z1, . . . , ZM ) and are located at R = (R1, . . . , RM ) with Ri ∈
R

3 for i = 1, . . . ,M . Then the potential energy function of this system is
e2VC(X, R), with

VC(X, R) = W (X, R) + I (X) + U (R), (2.1.21)

where

W (X, R) = −
N∑
i=1

M∑
j=1

Zj

|xi − Rj | (2.1.22)

I (X) =
∑

1≤i<j≤N

1

|xi − xj | (2.1.23)

U (R) =
∑

1≤i<j≤M

ZiZj

|Ri − Rj | . (2.1.24)

The three terms have the following meaning: W (X, R) is the electron–nucleus
attractive Coulomb interaction, I (X) is the electron–electron repulsive inter-
action and U (R) is the nucleus–nucleus repulsive interaction. The total force
acting on the i th electron is thus given by

Fi = −e2∇xi
VC(X, R). (2.1.25)

The Hamilton function is the sum of kinetic energy and potential energy

H (X, P) = T (P) + e2VC(X, R), (2.1.26)
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where

T (P) =
N∑
j=1

p2
j

2m
, P = ( p1, . . . , pN ) (2.1.27)

in the non-relativistic case (or with the obvious change in the relativistic case). If
the nuclei are dynamic, one also has to add the nuclear kinetic energy, of course.

In the case of static nuclei, R are simply fixed parameters. We point out
that when we study stability of the quantum analogue of this system, it will be
essential to look for bounds that are independent of R.

2.1.5 Introduction to Quantum Mechanics

On atomic length scales, position and momentum can no longer describe the state
of a particle. They both play an important role as observables but to describe
the state of a quantum mechanical particle one requires a complex valued
function ψ : R

3 → C, called the wave function. In the remainder of the present
chapter we limit the discussion to a single particle. The discussion of N -particle
wave functions, ψ : R

3N → C is deferred to Chapter 3.
In order to fix the state of an electron one has to specify infinitely many

numbers (i.e., a whole function) – not just the six numbers p and x of classical
mechanics. The function x 	→ |ψ(x)|2 is interpreted as a probability density and
hence we require the normalization condition

∫
R3

|ψ(x)|2dx = 1. (2.1.28)

The classical energy is replaced by an energy functional, E(ψ), of the wave
function of the system:

E(ψ) = Tψ + Vψ, (2.1.29)

where

Tψ = h̄2

2m

∫
R3

|∇ψ(x)|2dx, (2.1.30)


