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Focusing on interest rates and coupon bonds, this book does not employ stochas-
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finance. The Heath–Jarrow–Morton model and the Libor Market Model are gener-
alized by realizing the forward and Libor interest rates as an imperfectly correlated
quantum field. Theoretical models have been calibrated and tested using bond and
interest rates market data.

Building on the principles formulated in the author’s previous book (Quantum
Finance, Cambridge University Press, 2004), this ground-breaking book brings
together a diverse collection of theoretical and mathematical interest rate models. It
will interest physicists and mathematicians researching in finance, and professionals
working in the finance industry.

Belal E. Baaquie is Professor of Physics in the Department of Physics at the
National University of Singapore. He obtained his B.S. from Caltech and his Ph.D.
from Cornell University. His specialization is in quantum field theory, and he has
spent the last ten years applying quantum mathematics, and quantum field theory
in particular, to quantitative finance. Professor Baaquie is an affiliated researcher
with the Risk Management Institute, Singapore, and is a founding Editor of the
International Journal of Theoretical and Applied Finance. His pioneering book
Quantum Finance has created a new branch of research in theoretical and applied
finance.

Cover illustrations: Shanghai skyline and the Bund.





INTEREST RATES AND COUPON
BONDS IN QUANTUM FINANCE

B E L A L E . B A A Q U I E
National University of Singapore



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-88928-5

ISBN-13 978-0-511-63036-1

© B. E. Baaquie 2010

2009

Information on this title: www.cambridge.org/9780521889285

This publication is in copyright. Subject to statutory exception and to the 

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy 

of urls for external or third-party internet websites referred to in this publication, 

and does not guarantee that any content on such websites is, or will remain, 

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (Adobe Reader)

Hardback

http://www.cambridge.org
http://www.cambridge.org/9780521889285


This book is dedicated to my wife Najma Sultana Baaquie,
my son Arzish Falaqul Baaquie, and my daughter Tazkiah Faizaan Baaquie.

Their precious love, affection, support, and optimism
have made this book possible.





Contents

Prologue page xv
Acknowledgements xviii

1 Synopsis 1

2 I nterest r ates and c oupon bonds 3
2.1 Introduction 3
2.2 Expanding global money capital 4
2.3 New centers of global finance 8
2.4 Interest rates 9
2.5 Three definitions of interest rates 10
2.6 Coupon and zero c oupon bonds 12
2.7 Continuous compounding: forward interest rates 14
2.8 Instantaneous forward interest rates 16
2.9 Libor and Euribor 18
2.10 Simple inte re st ra te 20
2.11 Discre te discounting: zero c oupon yield c urve 22
2.12 Zero coupon yield curve and interest rates 26
2.13 Summary 28
2.14 Appendix: De-noising financial data 29

3 Options and option theory 32
3.1 Introduction 32
3.2 Options 34
3.3 Vanilla options 36
3.4 Exotic options 37
3.5 Option pricing: arbitrage 39
3.6 Martingales and option pricing 40

vii



viii Contents

3.7 Choice of numeraire 42
3.8 Hedging 42
3.9 Delta-hedging 44
3.10 Black–Scholes equation 46
3.11 Black–Scholes path inte gral 48
3 . 1 2 P a th in te g ra tio n a n d o p tio n p ric e 52
3.13 Path integration: European call option 54
3 . 1 4 Op tio n p ric e : v o la tility e x p a n s io n 56
3.15 Derivatives and the real economy 59
3.16 Summary 62

4 I nterest r ate and coupon bond options 63
4.1 Introduction 63
4.2 Interest rate s waps 65
4.3 Interest rate caps and floors 70
4.4 Put–call parity for caplets and floorlets 73
4.5 Put–call: empirical Libor caple t a nd floorle t 75
4.6 Coupon bond options 76
4.7 Put–call parity for European bond option 77
4.8 American coupon bond option put–call

inequalities 78
4.9 Interest rate s waptions 79
4.10 Interest rate caps and swaptions 82
4.11 Heath–Jarrow–Morton path inte gral 83
4.12 HJM c oupon bond European option price 85
4.13 Summary 89

5 Quantum field theory of bond forward interest r ates 91
5.1 Introduction 91
5.2 Bond forward interest rates: a quantum field 92
5.3 Forward interest rates: Lagrangian and action 94
5.4 Velocity quantum field A(t , x)  98
5.5 Generating functional for A(t , x): propagator 100
5.6 Future market time 101
5.7 Stiff propagator 102
5.8 Integral condition for interest rates’ martingale 103
5.9 Pricing kernel and path integration 105
5.10 Wils on expansion of quantum field A(t , x)  108
5.11 Time evolution of a bond 11 0
5.12 Differential martingale condition for bonds 11 2



Contents ix

5.13 HJM limit of forward interest rates 11 4
5.14 Summary 11 5

6 Libor Market Model of interest rates 117
6.1 Introduction 11 7
6.2 Libor and zero c oupon bonds 11 9
6.3 Libor Market Model and quantum finance 121
6.4 Libor Ma rtingale : forward bond numeraire 123
6.5 Time e volution of Libor 125
6 . 6 Vo la tility γ (t , x)  fo r p o s itiv e L ib o r 126
6.7 Forward bond numeraire : Libor drift ζ (t , Tn) 127
6.8 Libor dynamics and c orre la tions 132
6.9 Logarithmic Libor ra te s φ(t  , x)  134
6.10 Lagrangian and path integral for φ(t  , x)  139
6.11 Libor forward interest rates fL(t, x) 141
6.12 Summary 144
6.13 Appendix: Limits of the Libor Ma rket Model 146
6.14 Appendix: Jacobian of AL(t , x) → φ(t , x) 148

7 Empir ic al analysis of forward interest r ates 150
7.1 Introduction 151
7.2 Interest rate correlation functions 152
7 . 3 In te re s t ra te v o la tility 153
7.4 Empirical normalized propagators 155
7.5 Empirical stiff propagator 157
7 . 6 E mp iric a l s tiff p ro p a g a to r: fu tu re ma rk e t time 159
7.7 Empirical analysis of the Libor Market Model 163
7 . 8 Sto c h a s tic v o la tility υ(t  , x)  166
7.9 Zero coupon yield curve and covariance 169
7.10 Summary 173

8 Libor Market Model of interest r ate options 176
8.1 Introduction 176
8.2 Quantum Libor Ma rket Model: Black caple t 178
8 . 3 Vo la tility e x p a n s io n fo r L ib o r d rift 180
8.4 Zero c oupon bond option 182
8.5 Libor Market Model coupon bond option price 185
8.6 Libor Market Model European swaption price 189
8.7 Libor Asia n s waption price 192



x Contents

8.8 BGM–Jamshidia n s waption price 197
8.9 Summary 202

9 Numeraires for bond forward interest rates 204
9.1 Introduction 205
9.2 Money market numeraire 206
9.3 Forward bond numeraire 206
9.4 Change of numeraire 207
9.5 Forward numeraire 208
9.6 Common Libor numeraire 210
9.7 Linear pricing a mid-curve caplet 213
9.8 Forward numeraire and caplet price 214
9.9 Common Libor measure a nd caple t price 215
9.10 Money market numeraire and caplet price 216
9.11 Numeraire invariance: numerical example 218
9.12 Put–call parity for numeraires 219
9.13 Summary 222

10 Empirical analysis of interest r ate c aps 223
10.1 Introduction 223
10.2 Linear and Black caplet prices 225
10.3 Linear caplet price: parameters 227
10.4 Linear caplet price: market correlator 231
10.5 Effective volatility: para metric fit 233
10.6 Pricing an interest rate cap 235
10.7 Summary 236

11 Coupon bond European and Asian options 239
11.1 Introduction 239
11.2 Payoff function’s volatility e xpansion 240
11.3 Coupon bond option: Feynman expansion 243
11.4 Cumula nt coefficie nts 247
11.5 Coupon bond option: approximate pric e 249
11.6 Zero coupon bond option price 252
11.7 Coupon bond Asia n option price 254
11.8 Coupon bond European option: HJM limit 258
11.9 Coupon bond option: BGM–Jamshidian limit 260
11.10 Coupon bond Asia n option: HJM limit 262
11 .11 S umma ry 263



Contents xi

11.12 Appendix: Coupon bond option price 264
11.13 Appendix: Zero coupon bond option price 267

12 Empirical analysis of interest r ate s waptions 268
12.1 Introduction 268
12.2 Swaption price 269
12.3 Swaption price ‘a t the money’ 271
1 2 . 4 Vo la tility a n d c o rre la tio n o f s wa p tio n s 272
12.5 Data from s waption market 274
12.6 Zero coupon yield curve 275
12.7 Evaluating I : the forward bond correlator 276
12.8 Empirical re sults 279
12.9 Swaption pricing and HJM model 281
12.10 Summary 281

13 Correlation of c oupon bond options 283
13.1 Introduction 283
13.2 Corre la tion function of coupon bond options 284
13.3 Perturbation expansion for correlator 285
13.4 Coefficients for martingale drift 288
13.5 Coefficients for market drift 293
13.6 Empirical study 295
13.7 Summary 300
13.8 Appendix: Bond option a uto-corre la tion 300

14 Hedging interest r ate options 304
14.1 Introduction 305
14.2 Portfolio for hedging a caple t 306
1 4 . 3 D e lta -h e d g in g in te re s t ra te c a p le t 307
14.4 Stochastic hedging 308
14.5 Residual variance 312
14.6 Empirical analysis of stochastic hedging 315
14.7 Hedging caple t with two future s for inte re st ra te 317
14.8 Empirical results on residual variance 319
14.9 Summary 320
14.10 Appendix: Residual varia nce 321
14.11 Appendix: Conditional probability for interest rate 322
14.12 Appendix: Conditional probability – two inte re st ra te s 325
14.13 Appendix: HJM limit of hedging functions 327



xii Contents

15 Inte re st rate Hamiltonian and option theory 329
15.1 Introduction 329
15.2 Hamiltonian and e quity option pricing 330
15.3 Equity Hamiltonian and martingale condition 332
15.4 Pricing kernel and Hamiltonian 333
15.5 Hamiltonian for Black–Scholes equation 335
15.6 Interest rate state space Vt 337
15.7 Interest rate Hamiltonian 339
15.8 Interest rate Hamiltonian: martingale condition 343
15.9 Numeraire and Hamiltonian 346
15.10 Hamiltonian and Libor Ma rket Model drift 347
15.11 Inte re st ra te Hamiltonian and option pricing 353
15.12 Bond evolution opera tor 356
15.13 Libor evolution opera tor 360
15.14 Summary 363

16 American options for c oupon bonds and interest r ates 365
16.1 Introduction 366
16.2 American equity option 367
16.3 American caple t a nd coupon bond options 372
1 6 . 4 F o rwa rd in te re s t ra te s : la ttic e th e o ry 375
16.5 American option: recurs ion e quation 378
1 6 . 6 F o rwa rd in te re s t ra te s : tre e s tru c tu re 382
16.7 American option: numerical algorithm 383
16.8 American caplet: numerical results 388
16.9 Numerical re sults : American coupon bond option 390
16.10 Put–call for American coupon bond option 394
16.11 Summary 397

17 Hamiltonian derivation of coupon bond options 399
17.1 Introduction 400
17.2 Coupon bond European option price 400
17.3 Coupon bond barrier eigenfunctions 406
17.4 Zero coupon bond barrier option price 407
17.5 Barrier function 410
17.6 Barrier linearization 413
17.7 Overcomplete barrier eigenfunctions 416
17.8 Coupon bond barrier option price 420
17.9 Barrier option: limiting cases 424



Contents xiii

17.10 Summary 427
17.11 Appendix: Barrier option c oefficients 428

Epilogue 433

A Mathematical background 436
A. 1 D ira c -d e lta fu n c tio n 436
A.2 Martingale 439
A.3 Gaussian integration 441
A.4 White noise 446
A.5 Functional diffe re ntia tion 449
A. 6 Sta te s p a c e V 450
A.7 Quantum field 454
A.8 Quantum mathematic s 457

B US debt markets  460
B.1 Growth of US debt market 460
B.2 2008 Financia l meltdown: US subprime loans 462

Glossary of physics terms 468

Glossary of finance terms 470

List of symbols 473

References 481

Index 486





Prologue

The 2008 economic crisis has shown that the capital markets need new and fresh
theoretical and mathematical concepts for designing and pricing financial instru-
ments. Focusing on interest rates and coupon bonds, this book does not employ
stochastic calculus – the bedrock of the present-day mathematical finance – for any
of the derivations. Interest rates and coupon bonds are studied in the self-contained
framework of quantum finance that is independent of stochastic calculus. Quantum
finance provides solutions and results that go beyond the formalism of stochastic
calculus.

It is five years since Quantum Finance [12] was published in 2004 and it is
indeed gratifying to see how well it has been received. No attempt has been made
to re-work the principles of finance. Rather, the main thrust of this book is to
employ the methods of theoretical physics in addressing the subject of finance.
Theoretical physics has accumulated a vast and rich repertoire of mathematical
concepts and techniques; it is only natural that this treasure house of quantitative
tools be employed to analyze the field of finance, and the debt market in particular.

The term ‘quantum’ in Quantum Finance refers to the use of quantum mathe-
matics, namely the mathematics and theoretical concepts of quantum mechanics
and quantum field theory, in analyzing and studying finance. Finance is an entirely
classical subject and there is no � – Planck’s constant, the sine qua non of quantum
phenomena – in quantum finance: the term ‘quantum’ is a metaphor. Consider the
case of classical phase transformations that result from the random fluctuations of
classical fields; critical exponents, which characterize phase transitions, are com-
puted using the mathematics of nonlinear quantum field theories [95]. Similar to
the case of phase transitions, quantum mathematics provides powerful theoretical
and mathematical tools for studying the underlying random processes that drive
modern finance.

The principles of quantum finance provide a comprehensive and self-contained
theoretical platform for modeling all forms of financial instruments. This book,
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xvi Prologue

in particular, is focused on studying interest rates and coupon bonds. A detailed
analytical, computational, and empirical study of debt instruments constitutes the
main content of this book.

The Libor Market Model and the Heath–Jarrow–Morton model, which are the
industry standards for modeling interest rates and coupon bonds, are both based
on exactly correlated Libor and forward interest rates. The book makes a quantum
finance generalization of these models to imperfectly correlated interest rates by
modeling the forward interest rates as a quantum field. Empirical studies provide
strong evidence supporting the imperfect correlation of interest rates. Many ground-
breaking results are obtained for debt instruments. In particular, it is shown that
quantum field theory provides a generalization of Ito calculus that is required for
studying imperfectly correlated interest rates.

In the capital markets, interest rates determine the returns on cash deposits.
Coupon bonds, on the other hand, are loans that are disbursed – with the objective
of earning interest – against promissory notes. In principle, the interest paid on
cash deposits and the interest earned on loans are equivalent. However, all interest
rates are only defined for a finite time interval – of which the minimum is overnight
(24 hours). In particular, all interest rate derivatives are based on benchmark interest
rates for cash deposits of a duration of 90 days. The bond (derivatives) markets,
in contrast, have no such minimum duration. The existence of a finite duration for
the (benchmark) interest rates creates two distinct sectors of the debt derivatives
market, namely derivatives of interest rates and derivatives of coupon bonds – with
a nonlinear transformation connecting the two sectors.

Numerous and exhaustive calculations are carried out for diverse forms of inter-
est rate and coupon bond options. Complicated concepts and calculations that are
typical for debt instruments are introduced and motivated, in some cases by first
discussing analogous and simpler equity instruments. It is my view that only by
actually working out the various steps required in a calculation can a reader grasp
the principles and techniques of what is still a subject in its infancy. Almost all the
intermediate steps in the various calculations are included so as to clear the way for
the interested reader. A few key ideas are repeated in the various chapters so that
each chapter can be read more or less independently.

The material covered in the book is primarily meant for physicists and mathemati-
cians engaged with research in the field of finance, as well as professional theorists
working in the finance industry. Specialists working in the field of debt instruments
will hopefully find that the theoretical tools and mathematical ideas developed in
this book broaden their repertoire of quantitative approaches to finance. The mate-
rial could also be of interest to physicists, probabilists, applied mathematicians, and
statisticians – as well as graduates students in science and engineering – who are
thinking of pursuing research in the field of finance.



Prologue xvii

One of the aims of this book is to be self-c ontained a nd compre hensive. All
derivations and concepts are introduced from first principles, and all important
re s u lts a re d e riv e d a b in itio . G iv e n th e d iv e rs e n a tu re o f th e p o te n tia l a u d ie n c e ,
fundamental concepts of finance have been reviewed for readers who are new to
this field. Appendix A reviews the essential mathematical background required for
following the various derivations and is meant to introduce specialists working in
finance to the concepts of quantum mathematics.
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1
Synopsis

The book consists of three major themes. Any one of the three components can be
read without many gaps in the analysis.

1 The introductory chapters are primarily intended for readers who are unfamiliar with
the fundamental concepts of finance. The principles and mathematical expressions for
debt instruments, which are analyzed in later chapters, are reviewed in Chapter 2,3, and
4. Options are briefly discussed and the Black–Scholes option theory is given a path
integral formulation.

2 A major subject matter of the book is the theory of coupon bonds. A quantum field theory
of the bond forward interest rates f (t , x) is developed in Chapter 5 and forms a core
chapter. It provides a model for the study of coupon and zero coupon bonds. Many of the
derivations in later chapters are based on the quantum finance model of bond forward
interest rates.

3 The quantum finance formulation of Libor interest rates is another major topic. The
Libor Market Model is formulated in Chapter 6; the nonlinear Libor forward interest
rates fL(t , x) that it is based upon are transformed into logarithmic Libor interest rates
φ(t , x). In Chapter 7 some empirical properties of the Libor Market Model are studied and
in Chapter 8 the prices of Libor options are obtained by using techniques of quantum
field theory. A derivation of the Libor Market Model’s nonlinear drift term is given in
Chapter 15, based on the Libor Hamiltonian and state space of φ(t , x).

The inter-connection of the various chapters is shown in the flowchart given
overleaf.
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2
Interest rates and coupon bonds

Interest rates, coupon bonds, and their derivatives are the main instruments of the
debt markets, which constitute well over 60% of the entire capital markets. A brief
discussion locates the debt markets in the general framework of finance and points to
the growing importance of the debt markets in the global economy. Interest rates are
a measure of the returns on cash deposits, whereas coupon bonds are a measure of
the present value of future cash flows. From this intuitive and apparently simple idea
flow all the various definitions of interest rates and coupon bonds. The fundamental
concept of forward interest rates that describe the bond market is introduced. The
interest rate markets are driven by Libor and Euribor; these two instruments are
defined and a few of their important features are discussed.

2.1 Introduction

Finance is the discipline that studies the borrowing, lending, and investing of money
capital. The main form of money capital is paper issued by various governments
and private organizations, which includes corporations and individuals. The three
pillars of finance are equity, debt, and foreign exchange and are the basis of all
financial instruments. Financial markets, collectively known as the capital markets,
trade in these instruments [31].

Capital in economics represents the collection of productive assets required for
carrying out economic activities. Financial ‘paper’ is not merely ordinary paper,
but, rather, the preferred form of money capital that is used for representing value:
a value based not on how it has been generated but, rather, on its present day
and future value in the capital markets – and in economic activity in general.
Money capital carries an intrinsic risk since expectations of what can be realized
in the present and future are always subject to uncertainties inherent in any form
of forecasting. Unlike traditional economies – where finance is a passive force
and auxiliary to the real economy – the capital markets today are one of the most

3



4 Interest rates and coupon bonds

powerful and dynamic components of the modern global economy and a potent
force for economic growth and expansion. The capital markets are expected to
become increasingly important with the increasing inter-connections of the global
economy. However, there is a downside to the increasing importance of finance.
Due to the inherently uncertain and random nature of money capital, the capital
markets have an uncontrollable and unpredictable component that can wreak havoc
on the real economy. Advanced theories of money capital are required for creating
financial instruments that can be used for managing risk and reducing instabilities
of the capital markets – and thus help to tame the destabilizing spikes, bubbles,
meltdowns, and crashes of the financial markets.

Money capital comes in many forms with the main three forms being stocks and
shares of companies, debt instruments, and cash of various currencies. Money, or
more precisely money capital that is seeking returns from the economy, is a dynamic
quantity – with opportunities for money to yield profit constantly changing with
time. Interest rates reflect the relation of the value of money with time and quantify
the time-dependent and dynamic aspect of money.

Debtors pay a return – the amount depending on the interest rate – to the providers
of credit. Debt and surplus capital are two sides of the same coin, since debt for
one party is the complement of the credit that the other party has provided. The
world’s debt market is an expression of the net savings that the world economy has
generated.

One needs sophisticated and effective models of interest rates to manage and
expand the net global savings so as to maximize its returns. It is from this
perspective – of optimizing the management of the international debt markets – that
quantum finance models of interest rates and coupon bonds have been developed
and form the main content of this book.

Optimizing the management of international liquidity will result in better
allocation and returns on investments as well as create conditions for the pros-
perity of society at large. In particular, managing flows of international capital to
developing and other higher risk economies, using customized financial instru-
ments, would result in a larger fraction of mankind having access to investment
capital – leading to the betterment of people’s lives and wealth.

2.2 Expanding global money capital

The nature of finance has undergone a radical change in the last 30 years, with the
financial sector of the economy becoming increasingly more important. There are
many indicators that point to this fundamental change in the financial superstructure
of economically advanced countries.



2.2 Expanding global money capital 5

In 2006, the world economy generated about US$65 trillion worth of goods and
services, of which raw materials (taken directly from nature) constituted about
two-thirds (US$43 trillion) of the total value. The remaining one-third (US$22
trillion) was the value added by human labor. For example, in 2007 – based on
daily production of 85 million barrels (about 31 billion barrels a year) – the sale of
petroleum at around US$100 per barrel generated a revenue worth about US$3.1
trillion, with a large part of this revenue being invested in the capital markets.

In general, a substantial fraction of the net profit generated by the world economy
as well as the savings and net accumulated surplus capital of many individuals,
organizations, and countries is held in the form of money capital. In particular,
cash rich oil and gas producers as well as East Asian economies (with substantial
national reserves) have created ‘sovereign funds’ for investing their surplus in the
capital markets. Money capital is bound to be increasingly important; due to the
enormous scale of the global economy and the net savings it generates, there is not
enough gold or other precious commodities that can hold this value. Paper seems
the only way to represent and store the generated global surplus value.

Risk management, based on models that quantify the degree of risk, allows many
institutional investors to convert net savings into money capital. Better risk manage-
ment instruments have drawn risk-averse investors, such as insurance companies
and pension and sovereign funds amongst others, to place their assets in the capital
markets, contributing to the current explosion of the money capital.

IMF estimates that in 2005 the total value of the stocks, bonds, and bank loans
worldwide was about US$165 trillion. The global bond (debt) market’s share was
close to US$104 trillion – by far the largest component of the global capital
markets – accounting for over 63% of the total; banking credit in 2008 amounted to
about US$23 trillion. In 2005, cross-border money flows (stocks, bonds, real estate,
and so on) amounted to about US$6 trillion. The foreign exchange markets have
also undergone a phenomenal increase, with about US$3 trillion being traded daily
in 2007.

In 2007, global stocks were worth about US$56 trillion – about 35% of the capital
markets – with the US and Eurozone each accounting for US$18 trillion and the
rest of world accounting for US$20 trillion. The US capital markets had a total
worth of US$42 trillion of which US$24 trillion was in the bond (debt) market and
US$18 trillion in stocks (equity).

In 2006 global debt issuance rose to a record US$6.9 trillion with the global syn-
dicated loan volume exceeding US$3.2 trillion. During the period of 2000–2005
nonfinancial companies worldwide issued $19.3 trillion worth of debt, in the form
of corporate medium-term notes (MTNs), with the biggest issuers being the auto-
motive industry, issuing 70 MTNs worth US$4.54 trillion followed by insurance
companies issuing 26 MTNs worth US$4.49 trillion.



6 Interest rates and coupon bonds

Market liquidity and risk management – two of the current lynch pins of the
financial system – require the participation of speculators. A speculator, who can
be an individual, a corporation, or a financial institution, makes an estimate of the
future and if right profits and if wrong loses. Speculating on the capital markets
usually means taking high risks since the future is always uncertain. Speculative
positions create market liquidity as well as provide a mechanism for sharing risk,
which, for example, a (manufacturing) business, not having in-house expertise in
risk management, may want to dispense with.

Although the term ‘speculator’, to some, carries a negative connotation, the
market needs both informed and uninformed, traders. Speculators are not inside
traders but, instead, should be called uninformed traders, in contrast to informed
traders who buy or sell a specific instrument. If only informed traders were market
players, any move to buy or sell would lead to slippage in the offered prices, leading
to the informed traders being held to ransom by the market. Uninformed traders
provide the ‘veil’, a background of ‘noise’, that allows informed traders to enter
the market without causing major slippages in prices. One needs both the informed
and uninformed traders for the market to function efficiently.

2.2.1 Securitization

Another reason for the expansion of the capital markets is that financial engineering
has created instruments that allow diverse forms of future cash flows to be used
for issuing vast amounts of securitized debt. Securitization is the consolidation
and structuring of cash-flow producing financial instruments, called asset-backed
securities, that can then be traded in the capital markets. For example, the securi-
tization of cash flows, such as mortgage payments and rentals, has allowed these
to be traded in the capital markets – adding to the depth and liquidity of the capital
markets.

Securitization is a relatively new concept in finance, having gained acceptance
only over the last 20 years. Securitized debt has grown in the issuance of new
loans and covers such diverse sectors as residential mortgages, commercial real
estate, corporate loans, auto loans, student loans, and so on. In 1990, just 10%
of mortgages in the United States were securitized, compared to 70% in 2007. It
is estimated that by the middle of 2008 there were asset-backed securities worth
US$10.2 trillion in the US and US$2.3 trillion in Europe. In 2007, new issues of
asset-backed securities amounted to US$3.5 trillion in the US and US$650 billion in
Europe. Securitization has had a major setback due to the 2008 US economic crisis,
with the issuance of new mortgage-backed securities dropping by almost 85% in
the first half of 2008 compared to the same period in 2007. The 2008 subprime
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crises in US home mortgages is claimed by some critics to be a negative example
of securitization; this is not entirely correct and is discussed in Appendix B.2 .

The lack of securitization can be a formidable barrier to economic development.
It has been argued by Soto [91] that the securitization of third world developing
countries’ real estate, and of property in general, into tradable financial instruments
could release vast amounts of capital. It was estimated that, in 1997, capital worth
about US$9.3 trillion was locked up due to lack of securitization, an amount twice
of the then total US public debt [91]. This ‘dead capital’, if securitized, could play
a major role in the economic growth of the developing countries. Mortgages are
fungible (a commodity that is freely interchangeable with another in satisfying
an obligation) only in countries where the rule of law is well established and the
legal system guarantees ownership. To securitize real estate assets in third world
countries, hence, requires a stable political system that is accountable and relatively
free from corruption. For these reasons, third world countries will have to overcome
many major hurdles before they are in a position to create mortgage and other
asset-backed securities, which would in turn release presently inert capital.

2.2.2 Profitability of the financial sector

At present, the rate of return of the financial sector and services in general is about
20% for the advanced economies of the US, Europe, and Japan – much higher
than the 8–10% returns from manufacturing.1 For example, from 2002 to 2006 five
leading US investment banks – Goldman Sachs, Merrill Lynch, Morgan Stanley,
Lehman Brothers, and Bears Stern – had an average return on equity of about 22%,
amounting to US$30 billion – rivaling returns for such profitable industrial sectors
as pharmaceuticals and energy.

The increasing volume of financial money capital reflects the overall expansion
of the world economy, with vast amounts of surplus finding its way to the capital
markets. The high rates of return from finance capital is one of the reasons for the
immense infusion of savings and other assets into the global capital markets. The
higher rate of return is thought to be due to the finance industry not being as mature
as manufacturing and is taken to indicate a shift of the global economy to a new
regime. There is, however, a contrarian view that the high returns from finance are
primarily the result of the formation of an asset bubble – and hence intrinsically
unstable and not sustainable.

The September–October 2008 global financial meltdown seems to provide strong
evidence in support of the contrarian view. By the end of the September–October

1 The rate of return on manufacturing is thought to be low due to the increasingly large capital investment required
for setting up and upgrading modern industries.
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2008 US financial meltdown, all the five US investment banks had c eased to
exis t – with Goldman Sachs and Morgan Stanley having converted themselves into
bank holding companie s. The c onsis te ntly high re turns of 22% from 2002 to 2006
shown by the five investment banks, with hind s ight, is s een to comple te ly coincide
with the formation and e xpansion of the US subprime mortgage loans’ financia l
bubble and may have s imply been a result of this bubble.

Finance may still give a return higher than manufacturing due to the creation
of new financial instruments , but in the current climate of financial turmoil and
contraction it will be a while before such innovations find acceptance in the capital
ma rke ts .

2.3 New centers of global finance

The United States (US) capital markets, since 1945, have been the most important
component of the global capital markets, playing a central role in shaping and
developing the international financia l s yste m. In Appendix B, the structure of the
US debt markets is briefly reviewed.

The US is losing its pre-eminent position in the global capital markets due to
the following reasons: (a) massive financial losses caused by the 2008 economic
meltdown – in the US stock market, for example stocks on the Dow Jones lost 34%
of their value in 2008 (the largest drop since 1931), and in the bankruptcy of major
US financial institutions; (b) the rise of other capital markets and centers of wealth.
The year 2007 saw a sea change in the distribution of global wealth. Largely due
to the rise of China and India and investments by oil and gas producing countries,
for the first time since the Second World War (1945) London displaced New York
to become the center of the global capital markets. Over 40% of the world’s foreign
equities were traded in London, more than New York. Over 30% of the world’s
foreign currency trading took place in London, being larger than New York and
Tokyo combined.

The US capital markets, in 2007, were worth US$42 trillion of which US$7.3
trillion was owned by foreigners, namely 17%, who also held 44% of the US
national debt. In contrast to both New York and Tokyo, which depend largely on
their domestic and East Asian markets, 80% of London’s business comes from
international sources, spread widely over many regions and countries.

The shift away from a US-centered global financial system can also be seen in
the emergence of the Euro as an international reserve currency, as can be seen from
Table 2.1. The Euro was introduced in 1999 and by 2008 had appreciated over 50%
against the US Dollar. International reserves are now held in both the US Dollar
and the Euro, with estimates that by 2010 about 34% will be held in Euro and 54%
in the US Dollar, in contrast to 2000 when 71% of world reserves were held in
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Table 2.1 International reserve in Euros and US Dollars, and the projected
currency distribution of these reserves by the year 2010.

Currency of international reserve

2000 2007 2010 (projected)

US Dollar $ 71% 63% 54%
Euro € 18% 26% 34%

US Dollars. Some economists have predicted that, by as early as 2015, the Euro
may overtake the US Dollar as the main international reserve currency provided two
conditions hold: (a) more countries, including the UK, join the Eurozone countries
and (b) the 2008 US economic crisis causes a deterioration in the value of the US
Dollar.

With the increasing pace of globalization, one can expect the emergence of
new international centers of finance in Shanghai, Hong Kong, Singapore, Mumbai,
Dubai, Sao Paolo, and so on.

2.4 Interest rates

Interest rates, in essence, represent the interplay of time with economic activity,
money capital, and real (tangible) assets.

The money form of capital represents real productive assets of society that can
erode over time; furthermore, other factors like inflation, currency devaluations,
new technologies, and so on make the value represented by financial assets a vari-
able quantity that responds to changing circumstances. Financial assets represent
the ability to initiate or facilitate economic activities, opportunities for which are
tied to many social factors. For these and many other reasons, the effective value
of money is strongly dependent on time.

How does one estimate the time value of money? From economic theory, the
sum total of all the endogenous and exogenous factors that affect the time value
of money are contained in the interest rates that one earns on cash deposits or on
Treasury Bonds. Money invested in other financial instruments is more compli-
cated to value as risk premiums are involved, perceptions of which differ between
investors. Ultimately, the time value of money involves discounting expected future
cash flows from bonds to obtain its present-day value; or, inversely, compounding
present-day cash deposits for obtaining its expected future value.

Interest rates fix the cost of borrowing capital, the ‘cost’ of money, and are
determined by both, the supply and demand for money – which depend on the
prevailing interest rates – and by the macroeconomic policies of central banks.
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Central banks would, ideally, like to hold down inflation while at the same time
engendering economic growth; central banks balance inflation against the rate of
economic growth by regulating the supply of money. One of the major tools for
influencing the supply and demand for money is by setting interest rates.

Market forces of supply and demand and central banks’ setting of interest rates
are in a state of constant tension. Market forces sometimes force the central banks
to change the interest rates so as to bring them in line with the market; at other
times, central banks intervene by changing the interest rates and thus affecting the
market’s demand for money.

The concepts of discounting and compounding are fundamental to finance.
However, contrary to what one intuitively expects, the relation turns out to be
far more complex than discounting and compounding simply being the inverse of
each other. The different forms of compounding (discounting) present (future) cash
flows provide different ways by which interest rates are defined.

Consider the future value of a fixed deposit that is rolled over continuously;
a constant interest rate leads to an exponential compounding of the value of the
initial fixed deposit. Discounting, on the other hand, is the procedure that yields
the present-day value of a pre-fixed future cash flow and is exponentially smaller
for constant interest rates. In essence, all measures of interest rates arise by either
discounting expected future cash flows to obtain their present-day value or by
compounding the present-day value of fixed deposits to obtain the value of future
cash flows.

2.5 Three definitions of interest rates

The following procedures for defining interest rates are widely used in the financial
markets, with an interest rate ‘yield curve’ for each case.

• Returns on cash deposits using simple interest rates. This is the basis of defining Libor
and Euribor, the two fundamental market determined interest rates.

• Discrete compounding of cash deposits and discrete discounting of bonds. This procedure
is the basis for the definition of the zero coupon yield curve (ZCYC), which is fundamental
to the interest rates and bond markets.

• Instantaneous compounding and discounting future cash flows. This definition leads to
the concept of instantaneous forward interest rates, the main theoretical construct of the
bond market.

To simplify the discussion of the central concepts, all interest rates for now
are taken to be constant. The more complex generalizations of these concepts are
discussed in the later sections.
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2.5.1 Simple interest rates

Consider a principal sum of amount M , kept in a bank fixed deposit at time t and
earning a simple interest at the rate of L per year. After a period of say T years, the
initial amount M increases to M[1 + (T − t)L]. Conversely, if one is to receive
a pre-fixed amount B at time T in the future, the value of that amount at time t is
given by B/[1 + (T − t)L]. In summary

M at time t = M[1 + (T − t)L] at time T
B

[1 + (T − t)L] at time t = B at time T (2.1)

2.5.2 Discrete compounding and discounting: yield to maturity

Consider a fixed deposit made at time t; the principal earns a yield to maturity z,
a dimensionless quantity that is a measure of simple interest for a period, usually
taken to be one year. At the end of one year, the interest earned is compounded –
namely, the interest earned is added to the principal sum. At the end of the first
year M(1 + z) is the amount in the fixed deposit; at the end of the second year
the amount in the fixed deposit is M(1 + z)2, and so on. For a deposit of duration
T − t years, there are [T − t] = (T − t)/1 number of compounding.2

Hence, at time T , the discretely compounded amount for a fixed deposit made
at time t is given by

M at time t = M(1 + z)[T−t] at time T
B

(1 + z)[T−t] at time t = B at time T (2.2)

where the last equation gives the discretely discounted value at time t of a pre-fixed
payment B at time T .

2.5.3 Continuous compounding and discounting

Consider the case of discrete compounding, but now let ε be an infinitesimal period
of discrete compounding. Consider the limit of ε→ 0; simple interest payments are
now given by z= εr; r is the instantaneous spot interest rate and has the dimension
of 1/time. The interest generated in the time interval t to t + ε, is Mεr and the
fixed deposit is compounded to yield M(1 + εr). For the time interval T − t , the

2 Note [T − t] is always an integer.
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number of times the principal is compounded is (T − t)/ε; hence the value of the
continuously compounded fixed deposit at time T is given by

lim
ε→0

M(1 + εr)(T−t)/ε = Mer(T−t)

In summary, for continuously compounded interest rates

M at time t = Mer(T−t) at time T
B

er(T−t) at time t = B at time T (2.3)

All the different ways of defining interest rates are of course consistent. Any
inconsistency or incompatibility in the different definitions of interest rates leads to
arbitrage opportunities in the prices of debt instruments.3 This in turn would lead
to trades that remove any pricing inconsistency.

2.6 Coupon and zero coupon bonds

Cash represents present-day value, whereas bonds represent future cash flows.
Bonds are fundamental instruments of debt; the seller of a bond issues a promis-

sory note to the buyer that states the seller’s (legal) obligation to make a future
payment of a certain pre-determined amount. The amount includes a component
that is the return on the bond and reflects the interest rate paid by the issuer of
the bond.

One of the primary financial instruments of the national and international debt
markets are government and corporate bonds. Interest rates can be derived from
the market prices of bonds. Given the vast diversity of the bond market, only those
aspects of bonds are discussed that are of direct relevance to the material covered
in this book. The readers are referred to the extensive literature on bonds [73].

A zero coupon bond is a financial instrument that gives a single pre-determined
payoff, of say €1, called the principal amount, when it matures at some fixed future
time T ; its price at earlier time t < T is given by B(t , T ). Note that for a zero
coupon bond there are no coupon payments and hence the name.

At time t there are, in principle, infinitely many zero coupon bonds with varying
maturities; that is, bonds B(t , T ), in principle, exist for all T ∈ [t , t + ∞] years.
In practice, in the capital markets, the zero coupon bonds are usually issued with
maturity from one day to about 30 years in the future and henceT ∈ [t , t+30] years.
The collection of the prices of all zero coupon bonds B(t , T ), with maturity from
present time t to a maximum time T is called the zero coupon bond term structure.

3 Arbitrage opportunities means that one can make risk-free profit that is higher than the (risk-free) rate of return
on fixed deposits. See Section 3.5.
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Consider a coupon bond, denoted by B(t), that pays a principal of L when
it matures at time T , and pays fixed dividends (coupons) ai at times Ti , i =
1, 2, . . . , N . The value of the coupon bond at time t < Ti can be shown [63, 65] to
be equivalent to a portfolio of zero coupon bonds with maturities coinciding with
the payment dates of the coupons. Quantitatively

B(t) =
N∑
i=1

aiB(t , Ti)+ LB(t , T ) =
N∑
i=1

ciB(t , Ti) (2.4)

For simplicity of notation, the time of maturity of the coupon bond is taken to be
the date of the last coupon payment, that is T = TN . The final payment is included
in the sum by setting ci = ai ; cN = aN + L.

Intuitively, the reason that a portfolio of zero coupon bonds is equal to a coupon
bond is because the two instruments have the same cash flow. Every coupon payment
for the coupon bond is equivalent to a zero coupon bond maturing at the time of the
payment.Afundamental theorem of finance states that any two financial instruments
that have the same cash flow are identical [63]. The proof follows from the fact
that, otherwise, arbitrage opportunities would exist for the prices – which is ruled
out in an efficient market.

2.6.1 Coupon bond yield-to-maturity y

Given the wide variety of coupon bonds, with different face values L, different
amounts and number of coupon payments ai and N respectively, it is difficult
to compare the rates of return of two different coupon bonds. For this reason, a
generalization of the zero coupon bond yield-to-maturity z, given in Eq. (2.23), is
defined for coupon bonds and denoted by y.

Coupon bond yield-to-maturity y is the annual yield such that, at time t , the
present values of the future cash flows, discretely discounted yearly by y, equal
the face value of the coupon bond. For coupon bonds with N number of (annual)
payments, the yield-to-maturity is defined as follows

B(t) =
N∑
i=1

ai

(1 + y)i
+ L

(1 + y)N

Given the values of B(t), ai , and N , it is in general a nonlinear problem to eval-
uate y, and is usually done numerically. Once the y value of a coupon bond is
determined, one can accurately compare it with other coupon bonds with very
different cash flows. One can readily generalize the definition of the coupon bond
yield-to-maturity y for coupons that are paid out c times a year and so on.
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From Eq. (2.4) one can conclude that the zero coupon bonds are the fundamental
instruments of the bond market. If one can model the behavior of the zero coupon
bonds, one automatically has, in principle, a model for the coupon bonds. However,
as is to be expected, the coupon bond is a much more complex instrument than the
zero coupon bond.

All bonds have a credit risk, which is the likelihood of default, due by the possible
inability of the issuer to pay either the coupons or the principal amount. Credit risk
arises from various sources and the financial consequences of default are taken into
account in the pricing models of such defaultable, or risky, bonds; in particular, the
higher the possibility of default, the higher the interest rate that has to be paid out
by the issuer of the bond.

An important class of both coupon and zero coupon bonds are those that carry
no risk of default; such bonds are called Treasury Bonds. In practice, bonds issued
by the US federal government are taken to be risk-free Treasury Bonds and conse-
quently have the lowest interest rates in the debt market. Almost all the discussions
on bonds, in the later chapters, are confined to the study of risk-free Treasury
Bonds.

Since bonds generate pre-fixed (series of) cash flows, they belong to the larger
class of financial instruments called fixed-income securities. The ownership of
a fixed-income security is often, erroneously, considered to be less risky than the
ownership of equity since – short of the issuer going bankrupt – the owner of a fixed-
income security is guaranteed a return. However, due to interest rate risk, credit
risk, and currency risk (for the bonds that are issued in a foreign currency), a bond
portfolio before maturity can lose as much value, or even more, than a portfolio of
equities.

2.7 Continuous compounding: forward interest rates

The present-day value of a bond is obtained by discounting future cash flow(s)
using various methods, with each method providing a definition of interest rates.

Consider the simplest case of an economy that has a constant interest rate r . As
discussed in Eq. (2.3) a continuously compounded fixed cash deposit of €1 made
at time t will yield, at time T in the future, a cash of amount exp{(T − t)r}. Hence
a zero coupon bond yielding €1 at time T has a present value of

B(t , T ) = e−(T−t)r

In general, a real economy never has an interest rate that is constant over future
time. Instead, for each future time T , there is a separate effective interest rate,
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denoted by r(t , T ), called the term structure of interest rates and also known as the
interest yield curve. The zero coupon bond is given by

B(t , T ) = e−(T−t)r(t ,T )

⇒ r(t , T ) = − 1
T − t

lnB(t , T ) (2.5)

The interest yield curve can also be used for determining the future value of
a fixed deposit that is continuously compounded; for €1 deposited at time t and
continuously compounded, its future value at time T is locked in at time t to be
equal to exp{(T − t)r(t , T )}.

Forward interest rates, denoted by f (t;T1, T2), are continuous rates that are
available in the debt market such that one can lock-in, at time t , the interest rate for
a deposit from future time T1 to T2, with T2 > T1.

To understand the relation of f (t ;T1, T2) to zero coupon bonds, consider two
zero coupon bonds B(t , T1) and B(t , T2), with T2 > T1. The definition of bonds in
terms of the interest yield curve given in Eq. (2.5) yields

B(t , T1) = e−(T2−T1)f (t;T1,T2)B(t , T2)

⇒ f (t;T1, T2) = − 1
T2 − T1

ln
[B(t , T1)

B(t , T2)

]
(2.6)

Discounting of bonds, from future to present time, is shown in Figure 2.1.
For a deposit made at time t , the future value at times T1 and T2 are

exp{(T1 − t)r(t , T1)} and exp{(T2 − t)r(t , T2)}, respectively. However, the value
of the two deposits are related, as shown in Figure 6.6, since one can take the cash
obtained at time T1 and lock-in the interest at time t , for the duration from T1 to T2
using f (t;T1, T2). The principle of no-arbitrage yields

e(T2−t)r(t ,T2) = e(T1−t)r(t ,T1)e(T2−T1)f (t;T1,T2) (2.7)

t T1 T2 Time

Figure 2.1 The discounting of bond payoff directly from time T2 to time t and via
an intermediate time T1.
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2.8 Instantaneous forward interest rates

Forward interest rates play a central role in the study of interest rates and coupon
bonds. The forward interest rates provide a representation of zero coupon term
structure that is analytically and conceptually very useful in the study of the bond
market.

To derive the instantaneous forward interest rates from the term structure of the
zero coupon bonds, consider two bonds that are mature at infinitesimally separated
future times. More precisely, in Eq. (2.6) let T2 = T1 + ε; hence one obtains the
following4

B(t , T + ε) = e−εf (t ,T ,T+ε)B(t , T ) (2.8)

The limit of forward interest rates

f (t , T ) ≡ lim
ε→0

f (t , T , T + ε) (2.9)

defines the instantaneous forward interest rates, namely f (t , T ). Instantaneous
forward interest rates f (t , T ) are the rate, fixed at time t , for instantaneous loans at
future time T > t ; as expected f (t , T ) has the dimensions of 1/time. All forward
interest rates are always positive and hence

f (t , T ) > 0 for all t , T (2.10)

The spot interest rate r(t) is the instantaneous interest rate at time t; the definition
of the instantaneous forward rates yields

r(t) = f (t , t)

Eq. (2.8) provides a recursion equation. Let maturity time be discretized into a
lattice with T − kε points; then, since B(t , t) = 1, Eq. (2.8) yields the following

B(t , T ) = exp{−εf (t , T − ε)}B(t , T − ε)

= exp

⎧⎨⎩−ε
(T−t)/ε∑
k=1

f (t , T − εk)

⎫⎬⎭B(t , t)
→ exp

{
−
∫ T−t

0
dy f (t , T − y)

}
⇒ B(t , T ) = exp

{
−
∫ T

t

dx f (t , x)
}

; x = T − y (2.11)

4 In practice, one takes ε = 1 day = 1/360 year.
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Figure 2.2 (a) The forward interest rates, indicated by the dashed lines, that define
a zero coupon bond B(T1, T2) and its forward price F(t , T1, T2). (b) The forward
bond price F = F(t , T1, T2) for zero coupon bonds maturing at different times
T2, with T1 − t = 2 years in the future. The forward interest rates f (t , T ) were
obtained from the US$ zero coupon yield curve for t = 29 January 2003.

Figure 2.2(a) graphically represents the forward interest rates that define a zero
coupon bond B(T1, T2).

It is worth noting that one can directly obtain the current value of the bond
B(t , T ) by discounting the €1 payoff taking infinitesimal backward time steps ε
from maturity T to present time t , which yields5

B(t , T ) = e−εf (t ,t+ε)e−εf (t ,t+2ε) . . . e−εf (t ,x) . . . e−εf (t ,T )

⇒ B(t , T ) = exp
{
−
∫ T

t

dxf (t , x)
}

(2.12)

∂B(t , T )
∂T

= −f (t , T )B(t , T ) (2.13)

In fact, the result given above, using the concept of discounting, is obtained more
formally in Eq. (2.11), using the recursion equation.

Eq. (2.12) shows that f (t , x) is a set of variables equivalent to the zero coupon
bonds. From the definition of the instantaneous forward interest rates given in
Eq. (2.12), the forward interest rate and the interest yield curve are given by the
following

f (t : T1, T2) = 1
T2 − T1

∫ T2

T1

dxf (t , x)

r(t , T ) = 1
T − t

∫ T

t

dxf (t , x)

5 The fixed payoff €1 is assumed and is not written out explicitly.
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Suppose a zero coupon bond B(T1, T2) is going to be issued at some future time
T1 > t , with expiry at time T2; the forward price of the zero coupon bond is the
price that one pays at time t to lock-in the delivery of the bond when it is issued at
future time T1. Hence, the forward bond price is given by

F(t , T1, T2) = exp
{
−
∫ T2

T1

dxf (t , x)
}

= B(t , T2)

B(t , T1)
: forward bond price (2.14)

In terms of the forward interest rates the forward bond price is given by

F(t , T1, T2) = exp{−(T2 − T1)f (t ;T1, T2)}
Figure 2.2(b) shows the forward bond price F =F(t , T1, T2) of the bond

B(T1, T2). The values of the forward bond price are plotted in Figure 2.2(b), as
a function of maturity time. It can be seen that the forward price falls rapidly, as is
expected, given the exponential discounting of the bond prices.

At any instant t , the capital markets (implicitly) have instantaneous forward
interest rates from present t out to a time TFR in the future; for example, if t refers
to present time t0, then one has forward rates from t0 till time t0 +TFR in the future.
In the market, TFR is at least about 30 years, and hence we have TFR > 30 years.
In general, at any time t , all the forward interest rates f (t , x) exist till time t +TFR
and, hence, have future time x with t < x < t + TFR .

2.9 Libor and Euribor

The two main international currencies are the US Dollar and the Euro, which is
the currency of the European Union. As can be seen from Table 2.1, almost 90%
of international cash reserves are in the form of US Dollars or Euros. Cash fixed
deposits in these currencies account for almost 90% of simple interest rates that are
traded in the capital markets. Cash deposits in US Dollars as well as British Pounds
earn simple interest at the rate fixed by Libor and deposits in Euros earn interest
rates fixed by Euribor.

2.9.1 Libor

The interest rates offered for time deposits are often based on Libor, the London
Interbank Offered Rate [12]. Libor is one of the main instruments for interest rates
in the debt market, and is widely used for multifarious purposes.

Libor was launched on 1 January 1986 by the British Bankers’ Association.
Libor is a daily quoted rate based on the interest rates at which commercial banks
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are willing to lend funds to other banks in the London interbank money market.
The minimum deposit for a Libor has a par value of $1,000,000. Libor is a simple
interest rate for fixed bank deposits and the British Bankers’Association has daily
quotes of Libor for loans in the money market of the following duration: overnight;
one and two weeks; one, three, four, five, six, nine, and 12 months. Libors of longer
duration are obtained from the interest rate swap market and are quoted for future
loans of duration from two years to 30 years. A Libor zero coupon yield curve is
constructed from the swap market and is quoted by vendors of financial data. The
Libor market is active in maturities ranging from a few days to 30 years, with the
greatest depth in the 90- and 180-day time deposits.

The three-month Libor is the benchmark rate that forms the basis of the Libor
derivatives market. All Libor swaps, futures, caps, floors, swaptions, and so on are
based on the three-month deposit. The main focus of this book is Libor derivatives
and the term Libor will be taken to be synonymous with the three-month Libor.

In 1999 the open positions on Eurodollar futures had a par value of about US$750
billion, and has grown tremendously since then. The Chicago Mercantile Exchange
(CME) Libor futures represent one-month Libor rates on a $3 million deposit. In
2008, CME had Eurodollar futures and options on Libor with open interest of over
40 million Libor contracts and an average daily volume of 3.0 million. Libor is
amongst the world’s most liquid short-term interest rate futures contracts. Interest
rate swaps, with Libor taken as the floating rate, currently trade on the interbank
market for maturities of up to 50 years.

Market data on Libor futures are given for daily time t in the form ofL(t , Ti− t),
with fixed dates of maturity Ti (March, June, September, and December) and shown
in Figure 2.2(a). The shortest maturity time is θmin = 3 months, and the spot rate
is taken to be r(t) = f (t , θmin).

2.9.2 Euribor

Euribor (Euro Interbank Offered Rate) is the benchmark rate of the Euro money
market, which has emerged since 1999. Euribor is simple interest on fixed deposits
in the Euro currency; the duration of the deposits can vary from overnight, weekly,
monthly, three monthly out to long duration deposits of ten years and longer. Euribor
is sponsored by the Financial Markets Association (ACI) and by the European
Banking Federation (FBE), which represents 4,500 banks in the 24 member states
of the European Union and in Iceland, Norway, and Switzerland. Euribor is the rate
at which Euro interbank term deposits are offered by one prime bank to another.

The choice of banks quoting for Euribor is based on market criteria. These banks
are of first-class credit standing. They are selected to ensure that the diversity of the
Euro money market is adequately reflected, thereby making Euribor an efficient and
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Figure 2.3 (a) Daily Eurodollar futures for Libor ratesL(t , t+7 years), . . . L(t , t+
6 years), …L(t , t + 1 year), and L(t , t + 0.25 years) with t ∈ [1996, 1999].
(b) Euribor maturing one, two, and three years in the future, from 26 May 1999 to
17 May 2004.

representative benchmark. All the features discussed for Libor can also be applied
to Euribor.

Euribor was first announced on 30 December 1998 for deposits starting on
4 January 1999. Figure 2.3(b) shows daily values for three Euribor forward interest
rates for 90-day deposits one, two, and three years in the future. Since its launch,
Euribor has been actively trading on the options markets and is the underlying
rate of many derivatives transactions, both over-the-counter and exchange-traded.
Euribor is one of the most liquid global interest rate instruments, second only to
Libor. The Euribor zero coupon yield curve, based on the rates being contracted in
the Euribor swaps market, extends out to 50 years in the future.

2.10 Simple interest rate

Cash deposits can earn simple interest rates for a given period of time. For example,
one can lock-in at time t , a simple interest rate, denoted by L(t;T1, T2), for a fixed
deposit from future time T1 to T2. The period of the deposit, namely T2 − T1, is
called the tenor of the simple interest rate.

A deposit of €1, made from time T1 to T2, will increase, as in Eq. (2.1), to an
amount 1+ (T2 −T1)L(t ;T1, T2). Similarly, the present-day value of a zero coupon
bond B(t , T ) is given by

B(t , T ) = 1
1 + (T − t)L(t ; t , T )
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and more generally

B(t , T2) = B(t , T1)
1

1 + (T2 − T1)L(t ;T1, T2)

From the definition of zero coupon bonds given in Eq. (2.12) the simple interest
rates are given in terms of the instantaneous forward interest rates by the following

1
1 + (T2 − T1)L(t ;T1, T2)

= exp
{
−
∫ T2

T1

dxf (t , x)
}

⇒ L(t;T1, T2) = 1
T2 − T1

[
exp

{∫ T2

T1

dxf (t , x)
}

− 1
]

(2.15)

From Eq. (2.10) one has f (t , x) > 0 and this leads to

L(t;T1, T2) > 0 (2.16)

The forward interest rates for returns on fixed cash deposits are the same as
f (t , x); these rates are, in principle, identical to the forward interest rates discussed
in Section 2.8.

Consider a future time falling within the fixed maturity times, say θ = x − t ,
with Ti − t ≤ θ ≤ Ti+1 − t; to obtain L(t , θ) with fixed θ , a spline interpolation
for the values of the Libor yields the values of L(t , T ) for continuous future time
T . The spline interpolation is necessary since the Libor data are provided only for
discrete maturity times Ti − t , whereas for empirically studying interest rates, data
are required for constant θ . The daily interpolated data, from 1996 to 1999 for the
Libor rates, is plotted in Figure 2.3(a).

A futures contract is an undertaking by participating parties, entered into at time
t , to loan or borrow a fixed amount of principal at an interest rate fixed by Libor
L(t , T1, T2); the contract is executed at a specified future date T1 > t . Consider a
futures contract entered into at time t for a 90-day deposit of the principal P , from
future time T to T + 	 (	 = 90/360 year). On maturity, an investor who is long on
the contract receives P plus simple interest I ; hence

P + I = P [1 + 	L(t ;T , T + 	)] (2.17)

where L(t;T , T + 	) is the (annualized) three-month Libor interest rate. For
simplicity of notation, a 90-day tenor is written as 	.

One can express the principal plus interest based on compounding by instanta-
neous forward interest rates and obtain

P + I = Pe
∫ T+	
T dxf (t ,x) (2.18)
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Define the benchmark three-month Libor by

L(t;T ) ≡ L(t;T , T + 	) (2.19)

The relationship between Libor and forward interest rates, from Eqs. (2.17) and
(2.18), is given by

1 + 	L(t , T ) = e
∫ T+	
T dxf (t ,x); ⇒ L(t , T ) = e

∫ T+	
T dxf (t ,x) − 1

	
(2.20)

Note that the above equation is a special case of the relation between L(t;T1, T2)

and f (t , x) given in Eq. (2.15) with T1 = T and T2 = T + 	.
Forward interest rates f (t , x) can be extracted from Libor futures data. Since

Libor is determined on a daily basis, the data for the forward interest rates are given
only for discrete calendar time. Future time is also discrete, with the benchmark
Libor given at 90-day intervals.

In terms of zero coupon bonds B(t , T ), from Eqs. (2.12) and (2.20), Libor has
the following representation

L(t , T ) = 1
	

B(t , T )− B(t , T + 	)

B(t , T + 	)
(2.21)

It is sometimes assumed that the Libor futures prices are approximately equal to
the forward interest rates. More precisely, from Eq. (2.20)

L(t , T ) = e
∫ T+	
T dxf (t ,x) − 1

	
� f (t , T )+O(	) (2.22)

The errors in setting Libor equal to the forward interest rates are usually negligible,
given the other errors that arise in the empirical study; the justification for this
assumption is discussed in [12]. In summary, Libor can be identified with the
forward interest rates, but sometimes it is more appropriate to use the full expression
for L(t , T ).

2.11 Discrete discounting: zero coupon yield curve

Recall that, from Section 2.5, the yield-to-maturity z of a zero coupon bond is the
annual simple interest that is discretely compounded every year. Let T , t be the
maturity and issue date of the bond; as before, let [T − t] = (T − t)/year be
an integer equal to the number of years. On maturing, the bond value of €1 will
compound to (1 + z)[T−t]. Since, on maturity, the payoff of the bond is €1, the
relation of z to the price of the zero coupon bond at t is given by

B(t , T ) = 1
(1 + z)[T−t] (2.23)



2.11 Discrete discounting: zero coupon yield curve 23

Note the yield-to-maturity varies for the different bonds; hence, a more pre-
cise notation is to have a term structure for the yield-to-maturity, called the zero
coupon yield curve (ZCYC) and denoted byZ(t , T ); similar to z,Z(t , T ) is dimen-
sionless. Eq. (2.23), for a ZCYC that is annually compounded, has the following
generalization

B(t , T ) = 1
(1 + Z(t , T ))[T−t] (2.24)

Equation (2.24) states that Z(t , T ) is the dimensionless yield-to-maturity, com-
pounded annually, that is earned by the zero coupon bond B(t , T ). If the interest is
paid out c times a year, then the number of payments is c[T − t] with each payment
of interest being Z(t , T )/c; hence, for a ZCYC for interest that is compounded
c times a year, the bond is given by

B(t , T ) = 1(
1 + 1

c
Z(t , T )

)c[T−t] (2.25)

In the bond market, for semi-annual (six monthly) payments, c = 2 and hence

B(t , T ) = 1(
1 + 1

2Z(t , T )
)2[T−t] (2.26)

Market data forZ(t , T ) from the bond market are given in Figure 2.4(a) for fixed
future remaining time, that is for Z(t , t + θ), with future remaining time θ ranging

Z (t,t + q)
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Figure 2.4 (a) The zero coupon yield curve (ZCYC) Z(t , T ) is given along the
lines of constant θ = x − t; the diagram shows Z(t , t + θ) for θ = constant.
(b) The spline curve fit for the US Treasury Bonds semi-annually compounded
zero coupon yield curve (ZCYC) Z(t , T ), with market data given by the filled
squares. The curve is given for calendar time t = 29 January 2003 out to
30 years into the future. The market values of the ZCYC are given for discrete
future remaining time θ equal to 3m, 6m, 1y, 2y, 3y, 4y, 5y, 6y, 7y, 8y, 9y, 10y,
15y, 20y, 30y.
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Figure 2.5 Zero coupon yield curve obtained from US Treasury Bonds. The
calendar date is from 29 January 2003 to 4 March 2003, with a total of 25 trading
days.

from three months out to 30 years. Figure 2.4(b) shows the structure of the ZCYC
Z(t , T ) for US Treasury Bonds as a function of remaining future time θ = T − t

with calendar time t fixed at 29 January 2003; market data are the discrete points
and the interpolation curve is the result of a spline fit.6

Figure 2.5 shows the ZCYC obtained from US Treasury Bonds. The ZCYC rises
and flattens out, as expected, since forward interest rates for the future are in general
higher than near-term loans and spot rates, given that risks accumulate further out
into the future. However, there are cases in which the ZCYC may have an inversion
in the future reflecting some regulation or other exogenous factors that affect the
future behavior of the bond market. There are several theories of interest rates that
study the long- and short-term behavior of the ZCYC [73].

ZCYC is given by the capital markets for future remaining time T − t from zero
up to 30 years; in other words, every day, due to trading in the bond markets, the
value of the Z(t , T ), from one day up to 30 years in the future is refreshed and
updated by the bond market. The long duration of data for the ZCYC makes it one
of the most important interest rate instruments for modeling the long-term behavior
of the bond markets. To obtain the values ofZ(t , T ) for continuous values of future
time θ = T − t one fits the discretely given values of the ZCYC by a smooth spline
curve.7

6 For the empirical studies in later chapters, daily Treasury Bond ZCYC data for calendar times from 29 January
2003 to 28 January 2005 were used.

7 It is assumed that the ZCYC rates are smooth; the assumption is a reasonable one to make as one would intuitively
expect that the ZCYC, say three years into the future would not be too different from that of three years and
one month into the future. The loss in accuracy due to the spline interpolation is unimportant since the future
times at which Z(t , T ) is specified, namely values of T , are separated by at least by three months. The market
data that are being studied have random errors larger than the errors introduced by the spline interpolation. See
Section 2.14.
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Both the bond markets as well as the Libor markets provide a ZCYC. For the case
of Libor, the British Bankers’ Association quotes daily interest rates for overnight
(24 hours) deposits up to rates for deposits made one year in the future. Libors for
deposits made at future time from one to 30 years are obtained from the interest
rate swaps market. All the Libors are combined to produce a single ZCYC that
is semi-annually compounded to produce the effective Libor zero coupon bonds.
More precisely

BL(t , T ) = 1(
1 + 1

2ZL(t , T )
)2[T−t] (2.27)

where the subscriptL indicates Libor. In Chapter 6 the Libor forward interest rates
that are derived from BL(t , T ) are discussed. In principle, B(t , T ) = BL(t , T ),
but there are differences related to the risk of default in the Libor market being
greater than in the Treasury Bond market. Figure 2.6(a) shows the Libor ZCYC for
two days five years apart and Figure 2.6(b) shows the Libor ZCYC ZL(t , x) for
25 consecutive days until 8 August 2008.

The term structure of the zero coupon bondsB(t , T ), for some fixed time t , con-
sists of the prices for all T ∈ [t , t + 30 years]. The market usually gives the term
structure of the zero coupon bonds B(t , T ) in terms of the ZCYC. Figure 2.7(a)
shows the term structure of zero coupon bonds as reconstructed from the US Trea-
sury Bonds’ ZCYC. Figure 2.7(b) shows the term structure for Libor zero coupon
bonds BL(t , T ) for two days five years apart; the shape of the Libor is different
from the Treasuries result.
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Figure 2.6 (a) A graph of Libor ZL(t , T ). The solid line is for 8 August 2008 and
the dashed line is for 28 October 2003. (b) A graph of Libor ZL(t , T ), with future
time T − t shown along the x-axis out to 30 years; the daily values for t – for 25
subsequent days until 8 August 2008 – are shown along the y-axis.
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Figure 2.7 The ZCYC data are for t = 29 January 2003 and with T − t up
to 30 years into the future. (a) The term structure zero coupon bonds B(t , T )
(dotted line) obtained from ZCYCZ(t , T ) data (unbroken line). NoteB(t , T ) falls
off exponentially due to exponential discounting. (b) The term structure, up to
30 years for Libor zero coupon bonds BL(t , T ) – obtained from the Libor ZCYC.
The solid line is for 8 August 2008 and the dashed line is for 28 October 2003.

2.12 Zero coupon yield curve and interest rates

Both the ZCYC and the forward interest rates are descriptions of the same financial
instrument, namely the zero coupon bonds; in the case of Libor, the ZCYC does not
correspond to any actual traded zero coupon bonds, but, rather, is a compact way
of expressing market data on the term structure for all the Libors taken together.

The two different descriptions, namely the ZCYC and the forward interest rates,
are useful for representing different aspects of the interest rate and bond mar-
kets. Recall, from Section 2.5, that discounting future cash flows provides the
following two definitions of the underlying interest rates: (a) the zero coupon
yield curve (ZCYC) Z(t , T ), defined by the annual or semi-annual discounting
and (b) instantaneous forward interest rates f (t , T ), defined by instantaneous
discounting.

The traded zero coupon bond prices are quoted in the bond markets by specifying
the ZCYC. In the case of the interest rate markets, the Libor ZCYC is directly
quoted, based on a semi-annual compounding for obtaining the hypothetical Libor
zero coupon bonds. Eqs. (2.12) and (2.25) are the key for relating the zero coupon
bond price to the underlying interest rates and yield

B(t , T ) = 1(
1 + 1

c
Z(t , T )

)c[T−t] = exp
{
−
∫ T

t

dxf (t , x)
}

⇒
∫ T

t

dxf (t , x) = c[T − t] ln
(

1 + 1
c
Z(t , T )

)
(2.28)
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Eq. (2.28) is dimensionally consistent. The left-hand side is dimensionless; as
required, the right-hand side is also dimensionless; c is the dimensionless num-
ber of payments per year, Z(t , T ) is dimensionless, and, furthermore, the integer
[T − t] is also dimensionless.

From Eq. (2.28) one has, by differentiating on future time T , the following

f (t , T ) = c

ε
ln
(

1 + 1
c
Z(t , T )

)
+ [T − t]

1 + 1
c
Z(t , T )

∂Z(t , T )
∂T

(2.29)

One can numerically differentiate the ZCYC to extract f (t , T ); this procedure does
yield an estimate of f (t , x) from Eq. (2.29), but with such large errors that it makes
the estimate quite useless for any empirical purpose.

The zero coupon bonds B(t , T ) are reconstructed directly from the ZCYC using
Eq. (2.25) in Figure 2.8(a) (continuous line) and from forward interest rates f (t , T )
(dotted line), which have been extracted from the ZCYC using Eq. (2.29). One can
see from Figure 2.8(a) that one gets large and systematic errors by using f (t , T ):
the longer the time in the future the larger the systematic errors.

Both the interest rate and bond markets directly provide the ZCYC that is the
integral of the forward interest rates over an interval of future time [t , T ]. Hence, to
minimize errors, all the numerical procedures that employ the ZCYC data should,
as far as possible, directly employ the ZCYC data. One needs to avoid numerically
differentiating Z(t , T ).
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Figure 2.8 The ZCYC data are for t = 29 January 2003 and with T − t up
to 30 years into the future. (a) Zero coupon term structure B(t , T ) constructed
from ZCYC (unbroken line) and from the forward interest rates (dotted line).
(b) Forward interest rates with maturity time up to five years in the future, con-
structed from Libor L(t , T ) (dotted line) and from ZCYC Z(t , T ) (unbroken
line).
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Figure 2.8(b) shows the zero coupon term structureB(t , T ), obtained empirically
from the ZCYC and from Libor. It is seen, as expected, that for relatively short
remaining future time of T − t ≤ 5 years the two curves give almost identical
results. The ZCYC produce zero coupon term structure for maturities of up to
30 years in the future and one needs to generate the long duration zero coupon
bond directly from the Libor ZCYC and not from market Libors, which are usually
of a duration of up to ten years.

There is an empirical difference between Libor and Treasury Bonds. Libor has a
finite probability of default, whereas Treasuries are risk free; the difference between
these two rates is expressed by the TED (Treasury Eurodollar) spread. The differ-
ence is the spread between the Libor and forward interest rates derived from the
ZCYC and is a measure of the risk of default of financial institutions that lend and
borrow at Libor; in most cases, the spread is negligible and is ignored in all of the
later discussions.

2.13 Summary

A brief review of finance shows the key role that the debt markets play in the capital
markets and in the global economy. The changing nature of global capital markets
and, in particular, the shift of the international capital markets to new centers were
briefly discussed.

Given the growing importance of financial markets for the global economy,
instabilities, such as the 2008 US financial crisis, need to be curtailed so that the
financial system provides a stable environment for steady global economic growth.
No country or region, no matter how large or ‘important’, should be allowed to hold
the global economy to ransom. International financial instruments and regulations
should address the current imbalances in the global capital markets. A fair, efficient
and transparent financial system would mobilize currently untapped capital as well
as release entrepreneurial energy that would be beneficial to all players – and to the
world economy in general.

Some experts have declared that the 2008 financial crisis has sounded the death
knell for financial engineering, which is said to have become irrelevant; such pro-
nouncements are far from the truth. The importance of the capital markets, and
in particular of the debt market, is indisputable; in particular, one can expect the
global debt markets to play an increasingly important role in the international cap-
ital markets and in the world economy in general. Far from financial engineering
being irrelevant, powerful quantitative financial models will continue to be indis-
pensable in managing risk and maximizing returns on capital. Interest rate models
of increasing sophistication will be required for designing and pricing ever-more
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complex debt instruments as well as for efficiently deploying a vast and expanding
mountain of debt capital.

The chief component of the global capital markets is the debt market, which in
turn consists mainly of the bond and interest rate markets. Bonds and interest rates
are fundamental financial instruments of the debt market and reflect the time value
of money. The different ways of defining interest rates and yields of bonds are the
result of different ways of either discounting future cash flows or compounding
present-day cash deposits or other tradable assets. The two ways of defining the
future value of time lead to forward interest rates.

Coupon bond and forward interest rates and their derivatives will be discussed at
length in the following chapters. Libor and Euribor were briefly discussed as these
are the most important interest rate instruments, having the greatest liquidity and
being the most widely traded. The three-month Libor and Euribor are taken to be
the benchmark interest rates earned on cash deposits as these are the most relevant
for the interest rate derivatives markets.

2.14 Appendix: De-noising financial data

All the values of financial instruments are influenced by background random noise.
Consider for example the market value of a 90-day LiborL(t , T0) that matured at a
fixed date of T0 = 16 December 2003. The original data series on Libor is for the
period from 14 June 2000 to 16 December 2003. The daily Libor is plotted from 14
June 2000 to 10 June 2002 in Figure 2.9. One can see the value of Libor is jagged
(nondifferentiable) on a small time scale and regular on a long time scale.

It is assumed that Libor, and in general the price of all financial instruments, is
composed of its true value, denoted by s(t) and superimposed on it is noise, denoted
by w(t). In other words, one has [43]

L(t , T0) = s(t)+ w(t)

It is assumed that w(t) is white noise, specified by the normal random variable
given by N(μ, σ); at every instant, the smooth component of the market price,
namely s(t), has added to it a noise that is drawn from a normal (Gaussian) random
variable. The random noise is assumed to be centered around the market price s(t)
and hence it is expected that μ = 0. In other words, the observed random market
price for Libor, based on the assumptions discussed, is given by

L(t , T0) = s(t)± σ with 66% likelihood
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Figure 2.9 Original and de-noised Libor L(t , T0) maturing at fixed time in the
future given by T0 = 16 December 2003 and for the time period t ∈ [14 June
2000, 10 June 2002].
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Figure 2.10 (a) The smooth component s(t) of Libor L(t , T0). (b) Gaussian
white noise w(t) = N(μ, σ) inherent in the market value of Libor L(t , T0), with
μ = −1.4 × 10−6% per year and σ = 0.0629% per year.

The behavior of the smooth portion s(t) of Libor can have complicated dynamics
and, in particular, is expected to be mean reverting.

De-noising consists of subtracting, at each instant, the white noise component
from the market value ofL(t , T0) and thus obtaining its smooth component, namely
s(t). For many purposes, it is the smooth component of the market value of a finan-
cial instrument that is required. One of the most efficient procedures is to use
wavelet analysis to filter out white noise. There are many different ‘basis’ states
that one can use to transform the market price to its smooth component and the
Debauche wavelets D8 were used.
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Figure 2.9 shows the original ( jagged) swaption market price and the de-noised
smooth curve as well. Figure 2.10(a) shows the de-noised swaption price s(t) and
Figure 2.10(b) shows the noise component w(t). The distribution of white noise
w(t) is given by N(−1.4 × 10−6, 0.0629), where the units for the parameters of
the normal distribution are % per year.

Note that the typical value of Libor, as given in Figure 2.9, is of the order of
5%; the noise component is given by σ = 0.06%, which is small – about 1% of
the market price. This is what one expects since noise is supposed to be a small
background component of the market price. Furthermore, μ = −1.4 × 10−6%
per year, which is completely neglible compared to the price of the daily value
of Libor, hence confirming the assumption that the random noise is symmetrically
distributed about the smooth curve s(t).


