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Preface

The development of high-speed fiber-based optical communication systems that has
taken place since the early 1970s can be really considered as a technological wonder. In
a few years, key components were devised (such as the semiconductor laser) with the
help of novel technological processes (such as epitaxial growth) and found immediate
application thanks to the development of low-loss optical fibers. New compound semi-
conductor alloys (namely, InGaAsP) were ready to provide their potential to emit the
right wavelengths needed for long-haul fiber propagation. When electronic repeaters
seemed unable to provide a solution to long-haul propagation, fiber amplifiers were
developed that allowed for all-optical signal regeneration. And the list could be contin-
ued. A miracle of ingenuity from a host of researchers made it possible to assemble this
complex puzzle in a few years, thus bringing optoelectronic technology to a consumer
electronics level.

Increasing the system capacity by increasing the transmission speed was, of course,
a main concern from the early stages of optical system development. While optoelec-
tronic devices behave, on the electronic side, in a rather conventional way up to speeds
of the order of 1 Gbps, for larger speeds (up to 40 Gbps and beyond) RF wave propa-
gation has to be accounted for in designing and modeling optoelectronic devices. When
speed increases, the distributed interaction between RF and optical waves becomes a
useful, sometimes indispensable, ingredient in many optoelectronic devices, like mod-
ulators and (to a lesser extent) detectors. Similarly, the electronic circuits that interface
light sources, modulators, and detectors should provide broadband operation up to
microwave or millimeter-wave frequencies, thus making it mandatory to exploit com-
pound semiconductor electronics (GaAs- or InP-based) or advanced Si-based solutions
(like SiGe HBT integrated circuits or nanometer MOS processes).

Increasing speed beyond the 10 Gbps limit by improving device performance, how-
ever interesting it is from the research and development side, may in practice be less
appealing from the market standpoint. The ultimate destiny of optoelectronic devices
(such as sources, modulators, and detectors) optimized for 40 Gbps (or even faster) sys-
tems after the post-2000 market downturn still is uncertain, and research in the field
has followed alternative paths to the increase of system capacity. At the same time,
new application fields have been developed, for instance in the area of integrated all-Si
optical signal processing systems, and also for integrated circuit level high-capacity
communications. However, the development of high-speed optoelectronic devices has
raised a number of stimulating (and probably lasting) design issues. An example is the
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principle of the distributed interaction between optical and RF waves, which is com-
mon to a variety of high-speed components. Another relevant theme is the co-design
and the (possibly monolithic) integration of the electronic and optoelectronic compo-
nents of a system, not to mention the critical aspects concerning device packaging and
interconnection in systems operating at 40 Gbps and beyond.

Taking the above into account, it is not surprising that the main purpose of the present
book is to provide a kind of unified (or, perhaps, not too widely separated) treatment
of high-speed electronics and optoelectronics, starting from compound semiconduc-
tor basics, down to high-speed transistors, ICs, detectors, sources and modulators. Part
of the material was originally developed for a number of postgraduate and Master
courses, and therefore has the ambition (but also the limitation) of providing a treat-
ment starting from the very basics. It is hoped that this justifies both the presence of
introductory material on semiconductors and semiconductor optical properties, and a
treatment of high-speed electronics starting from a review of transmission lines and
scattering parameters. From this standpoint, the text attempts to be as self-contained
as possible. Of course, the choice of subjects is somewhat influenced by the author’s
personal tastes and previous research experience (not to mention the need to keep the
page count below 500): some emphasis has been put on noise, again with an attempt
to present a self-contained treatment of this rather difficult topic, and many important
optoelectronic components have not been included (to mention one, semiconductor opti-
cal amplifiers). Yet another innovative subject that is missing is microwave photonics,
where of course the RF and microwave and optoelectronic worlds meet. Nevertheless,
the text is (in the author’s opinion, at least) different enough from the many excellent
textbooks on optoelectronics available on the market to justify the attempt to write it.

I wish to thank a number of colleagues (from Politecnico di Torino, unless otherwise
stated) for their direct or indirect contribution to this book. Ivo Montrosset provided
many useful suggestions on the treatment of optical sources. Incidentally, it was under
the guidance of Ivo Montrosset and Carlo Naldi that (then an undergraduate student)
I was introduced to the basics of passive and active optoelectronic devices, respectively;
this happened, alas, almost 30 years ago. Helpful discussions with Gian Paolo Bava and
Pierluigi Debernardi (Consiglio Nazionale delle Ricerche) on laser noise, with Simona
Donati Guerrieri on the semiconductor optical properties and with Fabrizio Bonani and
Marco Pirola on active and passive high-speed semiconductor electronic devices and
circuits are gratefully acknowledged. Michele Goano kindly revised the sections on
compound semiconductors and the numerical problems, and provided useful sugges-
tions on III-N semiconductors. Federica Cappelluti prepared many figures (in particular
in the section on photodetectors), initially exploited in lecture slides. Finally, Claudio
Coriasso (Avago Turin Technology Center, Torino) kindly provided material on inte-
grated electroabsorption modulators (EAL), including some figures. Additionally, I am
indebted to a number of ME students who cooperated in research, mainly on lithium
niobate modulators; among those, special mention goes to F. Carbonera, D. Frassati, G.
Giarola, A. Mela, G. Omegna, L. Terlevich, P. Zandano. A number of PhD students also
worked on subjects relevant to the present book: Francesco Bertazzi (now with Politec-
nico di Torino) on EM modeling of distributed electrooptic structures; Pietro Bianco,
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on high-speed modulator drivers; Federica Cappelluti, on electroabsorption modulator
modeling; Gloria Carvalho, on EAL modeling; Antonello Nespola (now with Istituto
Superiore Mario Boella), on the modeling of distributed high-speed photodetectors.
Part of the thesis work of Antonello Nespola and Federica Cappelluti was carried out
within the framework of a cooperation with UCLA (Professor Ming Wu, now at Univer-
sity of California, Berkeley). Finally, I gratefully recall many helpful discussions with
colleagues from the industry: among those, Marina Meliga, Roberto Paoletti, Marco
Romagnoli, and Luciano Socci.

Giovanni Ghione
January 2009





1 Semiconductors, alloys,
heterostructures

1.1 Introducing semiconductors

Single-crystal semiconductors have a particularly important place in optoelectronics,
since they are the starting material for high-quality sources, receivers and amplifiers.
Other materials, however, can be relevant to some device classes: polycrystalline or
amorphous semiconductors can be exploited in light-emitting diodes (LEDs) and solar
cells; dielectrics (also amorphous) are the basis for passive devices (e.g., waveguides
and optical fibers); and piezoelectric (ferroelectric) crystals such as lithium niobate are
the enabling material for a class of electrooptic (EO) modulators. Moreover, polymers
have been recently exploited in the development of active and passive optoelectronic
devices, such as emitters, detectors, and waveguides (e.g., fibers). Nevertheless, the
peculiar role of single-crystal semiconductors justifies the greater attention paid here
to this material class with respect to other optoelectronic materials.

From the standpoint of electron properties, semiconductors are an intermediate
step between insulators and conductors. The electronic structure of crystals generally
includes a set of allowed energy bands, that electrons populate according to the rules
of quantum mechanics. The two topmost energy bands are the valence and conduction
band, respectively, see Fig. 1.1. At some energy above the conduction band, we find the
vacuum level, i.e., the energy of an electron free to leave the crystal. In insulators, the
valence band (which hosts the electrons participating to the chemical bonds) is separated
from the conduction band by a large energy gap Eg , of the order of a few electronvolts
(eV). Due to the large gap, an extremely small number of electrons have enough energy
to be promoted to the conduction band, where they could take part into electrical con-
duction. In insulators, therefore, the conductivity is extremely small. In metals, on the
other hand, the valence and conduction bands overlap (or the energy gap is negative),
so that all carriers already belong to the conduction band, independent of their energy.
Metals therefore have a large conductivity. In semiconductors, the energy gap is of the
order of 1–2 eV, so that some electrons have enough energy to reach the conduction
band, leaving holes in the valence band. Holes are pseudo-particles with positive charge,
reacting to an external applied electric field and contributing, together with the electrons
in the conduction band, to current conduction. In pure (intrinsic) semiconductors, there-
fore, charge transport is bipolar (through electrons and holes), and the conductivity is
low, exponentially dependent on the gap (the larger the gap, the lower the conductivity).
However, impurities can be added (dopants) to provide large numbers of electrons to
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Figure 1.1 Main features of semiconductor bandstructure. Eg is the energy gap; Ec is the conduction band
edge; Ev is the valence band edge.

the conduction band (donors) or of holes to the valence band (acceptors). The resulting
doped semiconductors are denoted as n-type and p-type, respectively; their conductiv-
ity can be artificially modulated by changing the amount of dopants; moreover, the dual
doping option allows for the development of pn junctions, one of the basic building
blocks of electronic and optoelectronic devices.

1.2 Semiconductor crystal structure

Crystals are regular, periodic arrangements of atoms in three dimensions. The point
set r defining the crystal nodes, corresponding to the atomic positions (Bravais lattice)
satisfies the condition r = ka1 + la2 + ma3, where k, l,m are integer numbers and a1,
a2, a3 are the primitive vectors denoting the primitive cell, see Fig. 1.2. Bravais lattices
can be formed so as to fill the entire space only if the angles α1, α2, α3 assume values
from a discrete set (60◦, 90◦, 120◦, or the complementary value to 360◦). According to
the relative magnitudes of a1, a2, a3 and to the angles α1, α2, α3, 14 basic lattices can be
shown to exist, as in Table 1.1. In semiconductors, only two lattices are technologically
important at present, i.e. the cubic and the hexagonal. Most semiconductors are cubic
(examples are Si, Ge, GaAs, InP. . . ), but some are hexagonal (SiC, GaN). Both the cubic
and the hexagonal structure can be found in carbon (C), where they are the diamond and
graphite crystal structures, respectively.

Three kinds of Bravais cubic lattices exist, the simple cubic (sc), the face-centered
cubic (fcc) and the body-centered cubic (bcc), see Fig. 1.3. The cubic semiconductor
crystal structure can be interpreted as two shifted and compenetrated fcc Bravais
lattices.

Let us consider first an elementary semiconductor (e.g., Si) where all atoms are equal.
The relevant cubic lattice is the diamond lattice, consisting of two interpenetrating
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Table 1.1 The 14 Bravais lattices.

Name Bravais lattices Conditions on primitive vectors

Triclinic 1 a1 �= a2 �= a3, α1 �= α2 �= α3
Monoclinic 2 a1 �= a2 �= a3, α1 = α2 = 90◦ �= α3
Orthorhombic 4 a1 �= a2 �= a3, α1 = α2 = α3 = 90◦
Tetragonal 2 a1 = a2 �= a3, α1 = α2 = α3 = 90◦
Cubic 3 a1 = a2 = a3, α1 = α2 = α3 = 90◦
Trigonal 1 a1 = a2 = a3, α1 = α2 = α3 < 120◦ �= 90◦
Hexagonal 1 a1 = a2 �= a3, α1 = α2 = 90◦, α3 = 120◦

α1

α2 α3

a3–

a2–

a1–

Figure 1.2 Semiconductor crystal structure: definition of the primitive cell.

(a)

a

a

a

(b) (c)

Figure 1.3 Cubic Bravais lattices: (a) simple, (b) body-centered, (c) face-centered.

fcc Bravais lattices, displaced along the body diagonal of the cubic cell by one-
quarter the length of the diagonal, see Fig. 1.4. Since the length of the diagonal is
d = a

∣∣x̂ + ŷ + ẑ
∣∣ = a

√
3, the displacement of the second lattice is described by the

vector

s = a
√

3

4

x̂ + ŷ + ẑ√
3

= a

4

(
x̂ + ŷ + ẑ

)
.

1.2.1 The Miller index notation

The Miller indices are a useful notation to denote planes and reference directions
within a lattice. The notation (h, k, l), where h, k, l are integers, denotes the set of
parallel planes that intercepts the three points a1/h, a2/k and a3/ l, or some multiple
thereof, while [h, k, l] in square brackets is the direction orthogonal to plane (h, k, l).
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a
4

(x + y + z)ˆ ˆ ˆ

Figure 1.4 The diamond lattice as two cubic face-centered interpenetrating lattices. The pale and dark gray
points represent the atoms falling in the basic cell.
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Figure 1.5 Examples of planes and directions according to the Miller notation.

Additionally, {h, k, l} is a family of planes with symmetries and 〈h, k, l〉 is the related
direction set. In cubic lattices, the primitive vectors coincide with the Cartesian axes
and a1 = a2 = a3 = a, where a is the lattice constant; in this case, we simply have
[h, k, l] ≡ hx̂ + k ŷ + l̂ z where x̂ , ŷ and ẑ are the Cartesian unit vectors.

To derive the Miller indices from the plane intercepts in a cubic lattice, we normalize
with respect to the lattice constant (thus obtaining a set of integers (H, K , L)), take the
reciprocal (H−1, K −1, L−1) and finally multiply by a minimum common multiplier
so as to obtain a set (h, k, l) such as h : k : l = H−1 : K −1 : L−1. Notice that a zero
index corresponds to an intercept point at infinity. Examples of important planes and
directions are shown in Fig. 1.5.

Example 1.1: Identify the Miller indices of the following planes, intersecting the coor-
dinate axes in points (normalized to the lattice constant): (a) x = 4, y = 2, z = 1;
(b) x = 10, y = 5, z = ∞; (c) x = 3.5, y = ∞, z = ∞; (d) x = −4, y = −2, z = 1.

We take the reciprocal of the intercept, and then we multiply by the minimum com-
mon multiplier, so as to obtain an integer set with minimum module. In case (a),
the reciprocal set is (1/4, 1/2, 1), with minimum common multiplier 4, leading to
the Miller indices (1, 2, 4). In case (b), the reciprocals are (1/10, 1/5, 0) with Miller
indices (1, 2, 0). In case (c), the plane is orthogonal to the z axis, and the Miller indices
simply are (1, 0, 0). Finally, case (d) is similar to case (a) but with negative intercepts;
according to the Miller notation we overline the indices rather than using a minus sign;
we thus have (1, 2, 4).
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1.2.2 The diamond, zinc-blende, and wurtzite semiconductor cells

The cubic diamond cell includes 8 atoms; in fact, if we consider Fig. 1.6, the corner
atoms each contribute to eight adjacent cells, so that only 8/8 = 1 atom belongs to the
main cell. The atoms lying on the faces belong half to the main cell, half to the nearby
ones, so that only 6/2 = 3 atoms belong to the main cell. Finally, the other (internal)
4 atoms belong entirely to the cell. Therefore, the total number of atoms in a cell is
1 + 3 + 4 = 8. In the diamond cell, each atom is connected to the neighbours through
a tetrahedral bond. All atoms are the same (C, Si, Ge...) in the diamond lattice, while in
the so-called zinc-blende lattice the atoms in the two fcc constituent lattices are different
(GaAs, InP, SiC. . . ). In particular, the corner and face atoms are metals (e.g., Ga) and
the internal atoms are nonmetals (e.g., As), or vice versa.

In the diamond or zinc-blende lattices the Miller indices are conventionally defined
with respect to the cubic cell of side a. Due to the symmetry of the tetrahedral atom
bonds, planes (100) and (110), etc. have two bonds per side, while planes (111) have
three bonds on the one side, two on the other. Moreover, the surface atom density is
different, leading, for example, to different etch velocities.

Some semiconductors, such as SiC and GaN, have the hexagonal wurtzite crystal
structure. Hexagonal lattices admit many polytypes according to the stacking of succes-
sive atom layers; a large number of polytypes exists, but only a few have interesting
semiconductor properties (e.g. 4H and 6H for SiC). The wurtzite cell is shown in
Fig. 1.7, including 12 equivalent atoms. In the ideal lattice, one has

∣∣a3

∣∣ = c,
∣∣a1

∣∣ = ∣∣a2

∣∣ = a,
c

a
=
√

8

3
≈ 1.633.

Some properties of semiconductor lattices are shown in Table 1.2.1 It can be
noted that wurtzite-based semiconductors are often anisotropic (uniaxial) and have two
dielectric constants, one parallel to the c-axis, the other orthogonal to it.

Figure 1.6 The diamond (left) and zinc-blende (right) lattices.

1 Semiconductor properties are well documented in many textbooks; an excellent online resource is provided
by the Ioffe Institute of the Russian Academy of Sciences at the web site [1].
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Table 1.2 Properties of some semiconductor lattices: the crystal is D (diamond), ZB (zinc-blende) or W
(wurtzite); the gap is D (direct) or I (indirect); ε‖ is along the c axis, ε⊥ is orthogonal to the c axis for
wurtzite materials. Permittivities are static to RF. Properties are at 300 K.

Material Crystal Eg D/I εr or ε‖ ε⊥ a c Density, ρ
(eV) gap (Å) (Å) (g/cm3)

C D 5.50 I 5.57 3.57 3.51
Si D 1.12 I 11.9 5.43 2.33
SiC ZB 2.42 I 9.72 4.36 3.17
Ge D 0.66 I 16.2 5.66 5.32
GaAs ZB 1.42 D 13.2 5.68 5.32
GaP ZB 2.27 I 11.11 5.45 4.14
GaSb ZB 0.75 D 15.7 6.09 5.61
InP ZB 1.34 D 12.56 5.87 4.81
InAs ZB 0.36 D 15.15 6.06 5.67
InSb ZB 0.23 D 16.8 6.48 5.77
AlP ZB 2.45 I 9.8 5.46 2.40
AlAs ZB 2.17 I 10.06 5.66 3.76
AlSb ZB 1.62 I 12.04 6.13 4.26
CdTe ZB 1.47 D 10.2 6.48 5.87
GaN W 3.44 D 10.4 9.5 3.17 5.16 6.09
AlN W 6.20 D 9.14 3.11 4.98 3.25
InN W 1.89 D 14.4 13.1 3.54 5.70 6.81
ZnO W 3.44 D 8.75 7.8 3.25 5.21 5.67

a2–

a1–

a3 = c– –

Figure 1.7 The hexagonal wurtzite cell. The c-axis corresponds to the direction of the a3 = c vector.

1.2.3 Ferroelectric crystals

Ferroelectric materials have a residual spontaneous dielectric polarization after the
applied electric field has been switched off. The behavior of such materials is some-
what similar to that of ferromagnetic materials. Below a transition temperature, called
the Curie temperature Tc, ferroelectric materials possess a spontaneous polarization
or electric dipole moment. The magnitude of the spontaneous polarization is greatest
at temperatures well below the Curie temperature, and approaches zero as the Curie
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Table 1.3 Properties of some ferroelectric crystals. KDP stands for potassium dihydrogen phosphate.
Data from [2], Ch. 13, Table 2.

Material class Material Curie temperature Spontaneous polarization
Tc (K) Ps (μC/cm2)

KDP KH2PO4 123 4.75
Perovskites BaTiO3 408 26
Perovskites LiNbO3 1480 71
Perovskites KNbO3 708 30

temperature is approached. Ferroelectric materials are inherently piezoelectric; that is,
in response to an applied mechanical load, the material will produce an electric charge
proportional to the load. Similarly, the material will produce a mechanical deformation
in response to an applied voltage. In optoelectronics, ferroelectric materials are particu-
larly important because of the excellent electrooptic properties, i.e., the strong variation
of the material refractive index with an applied electric field. The crystal structure is
often cubic face-centered, and the material is anisotropic and uniaxial. The most impor-
tant ferroelectric crystal for optical applications is probably lithium niobate, LiNbO3

(LN for short); some other materials (such as barium titanate) belonging to the so-
called perovskite class are also sometimes used. The crystal structure of perovskites
is face-centered cubic. Above the Curie temperature, the crystal is strictly cubic, and
positive and negative ions are located in the cell so as to lead to zero dipole moment.
Below the Curie temperature, however, a transition takes place whereby positive and
negative ions undergo a shift in opposite directions; the crystal structure becomes tetrag-
onal (i.e., the elementary cell height a3 is different from the basis a1 = a2) and, due
to the charge displacement, a net dipole moment arises. Table 1.3 shows a few prop-
erties of ferroelectric crystals, namely the spontaneous polarization Ps and the Curie
temperature [2].

1.2.4 Crystal defects

In practice, the crystal lattice is affected by defects, either native (i.e., not involv-
ing external atoms) or related to nonnative impurities. Moreover, defects can be point
defects (0D), line defects (1D), surface defects (2D), such as dislocations, and vol-
ume defects (3D), such as precipitates. Native point defects are vacancies, see Fig. 1.8,
and self-interstitials, while interstitials are nonnative atoms placed in the empty space
between the already existing lattice atoms. Substitutional defects involve an external
atom, e.g., a dopant, which replaces one native atom. Typically, dopants act as donors
or acceptors only if they are in a substitutional site; if they are in an interstitial site, they
are inactive (chemically inactivated).2

2 Dopants can also be electrically inactivated when they are not ionized.
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Vacancy (1D)

Substitutional defect (1D) Frenkel defect (1D)
Dislocation (2D)

Self-interstitial and
interstitial (1D)

Figure 1.8 Point defects in a crystal (1D) and dislocations (2D).

1.3 Semiconductor electronic properties

1.3.1 The energy–momentum dispersion relation

A crystal is a periodic arrangement of atoms; since each positively charged nucleus
induces a spherically symmetric Coulomb potential, superposition yields in total a
periodic potential U (r) such as

U (r) = U (r + L),

where L = ka1 + la2 + ma3. In such a periodic potential, electrons follow the rules of
quantum mechanics, i.e., they are described by a set of wavefunctions associated with
allowed electron states. Allowed states correspond to allowed energy bands, which col-
lapse into energy levels for isolated atoms; allowed bands are separated by forbidden
bands. Low-energy electrons are bound to atoms, and only the two topmost allowed
bands (the last, being almost full, is the valence band; the uppermost, almost empty,
is the conduction band) take part in carrier transport. As already recalled, the vac-
uum level U0 is the minimum energy of an electron free to move in and out of the
crystal.

Electrons in a crystal are characterized by an energy–momentum relation E(k), where
the wavevector k is related to the electron momentum p as p = h̄k. The dispersion
relation E(k) is defined in the k space, also called the reciprocal space; it is generally
a multivalued function, periodic in the reciprocal space, whose fundamental period is
called the first Brillouin zone (FBZ). A number of branches of the dispersion relation
refer to the valence band, a number to the conduction band; the total number of branches
depends on the crystal structure and is quite large (e.g., 12 for the conduction band and
8 for the valence band) in wurtzite semiconductors.

In cubic semiconductors, the FBZ is a solid with six square faces and eight hexagonal
faces, as shown in Fig. 1.9. Owing to symmetries, only a portion of the FBZ, called
the irreducible wedge, actually includes independent information; all the rest can be
recovered by symmetry. Important points in the FBZ are the center (� point), the X
point (center of the square face), and the L point (center of the hexagonal face).

The full details of the dispersion relation are not essential for understanding low-
energy phenomena in semiconductors; attention can be restricted to the branches
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Irreducible
wedge

K'

K
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Γ: kx = ky = kz = 0

L: |kx| = |ky| = |kz| = π/a

X: |kx| = 2π/a, ky = kz = 0
Γ

X

Figure 1.9 The first Brillouin zone (FBZ) in a cubic lattice (lattice constant a).
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Figure 1.10 Simplified dispersion relation for GaAs.

describing low-energy electrons in the conduction band (around the conduction band
edge Ec) and high-energy electrons (low-energy holes) in the valence band (around
the valence band edge Ev). Valence band electrons are more efficiently described in
terms of pseudoparticles (the holes) related to electrons missing from the valence band.
Holes behave as particles with positive charge and potential energy opposite to the elec-
tron energy, so that the topmost branches of the dispersion relation (i.e., the branches
describing low-energy holes) define the valence band edge.

As a relevant example, let us discuss the dispersion relation for a direct-bandgap
semiconductor, GaAs. The term direct bandgap refers to the fact that the minimum
of the conduction band and the maximum of the valence band (both located in the �
point) correspond to the same momentum h̄k, in this case h̄k = 0. The dispersion rela-
tion shown in Fig. 1.10 is simplified, in the sense that only the lowest branch of the
conduction band is shown, while three branches of the valence band appear, the heavy
hole (HH), the light hole (LH), and the split-off band. Light and heavy hole bands are
degenerate, i.e., they share the same minimum in the � point, and they differ because
of the E(k) curvature near the minimum, which corresponds to a larger or smaller hole
effective mass. The split-off band enters some transport and optical processes but can
be neglected in a first-order treatment. The conduction band has the lowest minimum at
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the � point, and two secondary minima at the L and X points. The main gap is 1.42 eV,
while the secondary gaps are 1.72 eV (L point) and 1.90 eV (X point). Only a section of
the dispersion relation is presented, running from the L point to the � point (the center
of the FBZ), and then from the � point to the X point and back to the origin through the
K point.

Since electrons and holes have, at least in the absence of an applied field, a Boltz-
mann energy distribution (i.e., their probability to have energy E is proportional to
exp(−E/kB T ), where kB T = 26 meV at ambient temperature), most electrons and
holes can be found close to the conduction band and valence band edges, respectively.

Consider now the lowest minimum of the conduction band or highest maximum in
the valence band; the dispersion relation can be approximated (around the � point) by
a parabola as

En − Ec ≈ h̄2k2

2m∗
n
, Ev − Eh ≈ h̄2k2

2m∗
h
,

where m∗
n and m∗

h are the electron and hole effective masses.3 Therefore, the electron
kinetic energy En − Ec or hole kinetic energy Ev − Eh (assuming the valence band
edge energy Ev and the conduction band edge energy Ec to be the energy of a hole
or of an electron, respectively, at rest) have, approximately, the same expression as the
free-space particle kinetic energy, but with an effective mass m∗

n or m∗
h instead of the

in vacuo inertial mass m0. If the minimum is not located in the center of the first BZ
(as for the conduction band of indirect bandgap semiconductors) the momentum (in a
dynamic sense) can be defined “with respect to the minimum,” so that the following
approximation applies:

En − Ec ≈ h̄2
∣∣k−kmin

∣∣ 2

2m∗
n

.

The effective mass can be evaluated from the inverse of the curvature of the dispersion
relation around a minimum or a maximum. In general, the approximating surface can
be expressed as

En − Ec = h̄2k
2
a

2m∗
na

+ h̄2k
2
b

2m∗
nb

+ h̄2k
2
c

2m∗
nc
,

which is an ellipsoid; the coordinate system coincides with the principal axes. If the
three effective masses are equal, the ellipsoid degenerates into a spherical surface, and
we say that the minimum is spherical, with isotropic effective mass. This typically
happens at � point minima. In indirect-bandgap semiconductors, the constant-energy

3 Corrections to the parabolic approximation accounting for nonparaboliticity effects can be introduced (e.g.,
in the conduction band) through the expression:

Ek (1 + αEk ) = h̄2k2

2m∗
n
,

where Ek is the electron kinetic energy En − Ec and α is a nonparabolicity correction factor.
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surfaces are rotation ellipsoids, and we can define two effective masses, one transversal
m∗

nt (common to two principal directions) and one longitudinal m∗
nl (along the third

principal direction). The electron effective mass increases with Eg , according to the
fitting law (see (2.9)):

m∗
n

m0
≈ Eg

∣∣
eV

13
.

Due to degeneracy, the valence bands have a more complex behavior near the valence
band edge, but can anyway be approximated with isotropic masses; however, since the
heavy and light hole populations mix, a properly averaged effective mass has to be
introduced; the same remark applies for electrons with anisotropic effective mass. The
averaging law is related to the application, and is not unique; we can therefore have an
effective mass for transport and also (as discussed later) an effective mass for the density
of states that follow different averaging criteria. Concerning the density of states mass
(denoted with the subscript D), we have for the electrons

m∗
n,D �

(
m∗

nam∗
nbm∗

nc

)1/3
M2/3

c .

The above expression refers to the general case of ellipsoidal minima with multiplicity
Mc (more than one minimum in the FBZ); for a � point spherical minimum in the
conduction band we have simply

m∗
n,D = m∗

n,

while for the rotation ellipsoid case in Si (where 6 equivalent minima are present in the
FBZ) we obtain

m∗
n,D � 62/3(m∗

nl)
1/3(m∗

nt )
2/3.

For holes, in the case of degeneracy:

m∗
h,D �

[
(m∗

hh)
3/2 + (m∗

lh)
3/2
]2/3

,

while of course m∗
h,D reduces to m∗

hh or m∗
lh if degeneracy is removed (as in a strained

quantum well, see Section 1.7). Concerning the effective masses for transport, since on
average the electron moves along all three principal directions with the same probability,
we have that the transport or conductivity average electron mass is given by

1

m∗
n,tr

= 1

3m∗
na

+ 1

3mnb
+ 1

3mnc
,

which reduces, for Si, to

1

m∗
n,tr

= 2

3m∗
nt

+ 1

3mnl
.

In a spherical minimum (isotropic effective mass) we finally have

m∗
n,tr = m∗

n .
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For holes, the situation is more complex, since heavy and light holes exist. It can be
shown that the transport hole effective mass is given by a weighted average over the
heavy and light holes as (see e.g., [3], Section 8.1.2)

1

m∗
h,tr

= phh

pm∗
hh

+ plh

pm∗
lh
,

where plh and phh are the light and heavy hole densities and p = plh + phh is the total
hole density. At or near equilibrium, the HH and LH populations are related through the
effective densities of states, so that

phh

p
= m∗

hh
3/2

m∗
lh

3/2 + m∗
hh

3/2
,

plh

p
= m∗

lh
3/2

m∗
lh

3/2 + m∗
hh

3/2
;

it follows that

1

m∗
h,tr

= m∗
hh

1/2 + m∗
lh

1/2

m∗
hh

3/2 + m∗
lh

3/2
.

For instance, in Si we have m∗
hh = 0.49 m0, m∗

lh = 0.16 m0; thus:

m0

m∗
h,tr

= 0.491/2 + 0.161/2

0.163/2 + 0.493/2
→ m∗

h,tr = 0.37m0.

1.3.2 The conduction and valence band wavefunctions

Electrons and holes belonging to the conduction and valence bands are character-
ized, from the standpoint of quantum mechanics, by a wavefunction. According to the
Bloch theorem, wavefunctions in a periodic potential (e.g., a crystal) can be generally
expressed as

ψk(r) = exp(−jk · r)uk(r), (1.1)

where uk(r) is a periodic function in the crystal space, such as uk(r) = uk(r + L), L
being a linear combination (with integer indices) of the primitive lattice vectors. The
functional form of the wavefunction in (1.1), called the Bloch wave, ensures that the
probability associated with the wavefunction is indeed a periodic function in the crystal
space. For k ≈ 0 (e.g., near the � point) one has ψk(r) ≈ u0(r), where u0(r) follows
single-atom-like wavefunctions (s-type or p-type, see Fig. 1.11).

Since the detailed spatial behavior of wavefunctions is relevant to optical properties,
we recall that conduction band wavefunctions are, near the � point, s-type, i.e., they
have a probability distribution with spherical constant-probability surfaces. On the other
hand, the valence band wavefunctions are p-type, i.e., they are even with respect to two
orthogonal directions and odd with respect to the third, see Fig. 1.11. For instance,
px is even with respect to the y and z axes and odd with respect to the x axis. The
detailed shape of the wavefunctions is much less important than their property of being
even in all directions (the s-type wavefunction) or odd with respect to one direction.
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Figure 1.11 Conduction band (s-type) and valence band (p-type) wavefunctions: probability distribution and
wavefunction sign (for p-type).

More specifically, it can be shown that heavy and light hole wavefunctions result from
a superposition of p-type wavefunctions:

φH H (x, y, z) = − 1√
2

(
px ± jpy

)
(1.2)

φL H (x, y, z) = − 1√
6

(
px ± jpy ∓ 2pz

)
, (1.3)

where the prefactors are introduced for normalization, see e.g., [4], Section 2.4.

1.3.3 Direct- and indirect-bandgap semiconductors

A simplified version of the dispersion relation, including the main conduction band
minima and valence band maxima, is often enough to explain the electronic and opti-
cal behavior of a semiconductor. Such an example is shown in Fig. 1.12(a), for GaAs:
the coincident maxima and minima in the � point make this semiconductor a typical
example of direct-bandgap material. Direct-bandgap semiconductors are particularly
important in optics, because they are able to interact directly with photons; in fact, those
can provide an energy of the order of the energy gap, but negligible momentum. To pro-
mote an electron from the valence to the conduction band, an energy larger than the gap
has to be provided, but, in GaAs, negligible momentum, since the valence band maxi-
mum and conduction band minimum are both at k = 0. Since the interaction involves
only one electron and one photon, the interaction probability is high.

Silicon, the most important semiconductor in electronics, is an example of an
indirect-bandgap semiconductor, i.e., a material in which the valence band maximum
and conduction band minimum occur at different values of k, see Fig. 1.12(b). In par-
ticular, the main conduction band minimum is close to point X but within the FBZ, and
six minima exist in the FBZ. The electron energy around such minima can be expressed
as a function of the transverse (e.g., orthogonal to (100)) and of the longitudinal (e.g.,
parallel to (100)) wavenumbers:

En ≈ Ec + h̄2k2
t

2m∗
nt

+ h̄2k2
l

2m∗
nl
.

In Si, the electron–photon interaction leading to band-to-band processes requires a sub-
stantial amount of momentum, which has to be supplied by a further particle, typically
a lattice vibration (phonon). The multibody nature of the interaction makes it less
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Figure 1.12 Simplified dispersion relation for (a) GaAs, (b) Si, (c) Ge. In Ge, the main conduction band
minimum (A) is indirect, and has an impact on transport and low-energy optical properties; the
secondary direct minimum (B) influences the optical properties at high photon energy.

probable, and therefore the interaction strength is lower. Typically, direct-bandgap semi-
conductors are able to absorb and emit light; indirect-bandgap semiconductors absorb
light (albeit less efficiently) but are unable to operate as high-efficiency light emitters,
particularly in lasers. Germanium (Ge), see Fig. 1.12(c), is an indirect-bandgap semi-
conductor; the lowest conduction band minimum is at point L , but a direct bandgap
exists with a higher energy (0.9 eV) at point �. As a result, the main transport properties
of Ge are typical of an indirect-bandgap material, but optical properties are influenced
by the fact that high-energy photons can excite electrons directly from the valence band
to the direct minimum. Some of germanium’s optical properties (e.g., the absorption)
exhibit both indirect- and direct-bandgap semiconductor features, depending on the
photon energy.

In the above materials, the central minima can be characterized by isotropic or quasi-
isotropic (as for the valence band) effective masses, while indirect bandgap minima are
typically anisotropic and have to be described in terms of a longitudinal and transverse
effective mass. A summary of the effective masses and other band properties in Si and
GaAs is shown in Table 1.4.

Many III-V semiconductors have a bandstructure similar to GaAs. InP, see
Fig. 1.13(a), has a slightly lower bandgap, but a larger difference between the cen-
tral and the lateral minima. This has important consequences on transport properties,
since it increases the electric field at which the electrons are scattered from the cen-
tral minimum (characterized by high mobility, i.e., high electron velocity with the same
applied electric field) to the lateral minima (with low mobility). This ultimately leads to
a decrease of the average electron velocity with increasing field, see Fig. 1.14. The max-
imum velocity is larger in InP than in GaAs, allowing for the development of electron
devices (such as transistors) with superior properties in terms of maximum speed. The
peak electron velocity (corresponding to the onset of the negative differential mobil-
ity region) occurs at a field Em related to the energy difference �E between the � and
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Table 1.4 Main band properties of Si and GaAs. The electron mass m0 is 9.11 × 10−34 kg.

Property Si GaAs

Electron effective masses m∗
nl = 0.98m0 m∗

n = 0.067m0
m∗

nt = 0.19m0
m∗

n,D = 1.08m0 m∗
n,D = 0.067m0

m∗
n,tr = 0.26m0 m∗

n,tr = 0.067m0
Hole effective masses m∗

hh = 0.49m0 m∗
hh = 0.45m0

m∗
lh = 0.16m0 m∗

lh = 0.08m0
m∗

h,D = 0.55m0 m∗
h,D = 0.47m0

m∗
h,tr = 0.37m0 m∗

h,tr = 0.34m0

Energy gap Eg(T ), T (K) 1.17 − 4.37 × 10−4T 2

636 + T
1.52 − 5.4 × 10−4T 2

204 + T

Electron affinity qχ (eV) 4.01 4.07

–3

–4

–1E
ne

rg
y,

 e
V

0

1

2

3

4
InP InAs A1As

2.75 2.15

0.35

0.69 0.94

1.34

–2

–3

–4

–1E
ne

rg
y,

 e
V

0

1

2

3

4

–2

–3

–4

–1E
ne

rg
y,

 e
V

0

1

2

3

4

–2

(a)

L Γ X
k

L Γ X
k

L Γ X
k 

(b) (c)

Figure 1.13 Simplified bandstructure of (a) InP, (b) InAs, (c) AlAs.

lateral minima; in GaAs�E ≈ 300 meV with Em ≈ 3.2 kV/cm while in InP�E ≈ 700
meV with Em ≈ 10 kV/cm.4 InAs, see Fig. 1.13(b), has a very similar bandstructure,
but with lower energy gap. For certain compound semiconductors, such as AlAs, see
Fig. 1.13(c), the central minimum is higher than the lateral minima, thus making the
material of indirect-bandgap type. InAs and AlAs are not particularly important per
se, but rather as the components of semiconductor alloys. Some additional compound
semiconductor properties are listed in Table 1.5, where vs is the electron high-field
saturation velocity (also denoted as vn,sat), vmax is the maximum steady-state electron
velocity. Notice that, while the saturation velocity is almost independent of doping, the
maximum in the nonmonotonic velocity–field curve of most compound semiconductors

4 In GaN, on the other hand, �E ≈ 3 eV, leading to a peak field in excess of 200 kV/cm, see, e.g., [5].
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Table 1.5 Band properties of some important compound semiconductors. Mobility data are upper
bounds referring to undoped material.

Property In0.53Ga0.47As GaAs InP AlAs InAs

a (Å ) 5.869 5.683 5.869 5.661 6.0584
Eg @300 K (eV) 0.717 1.424 1.34 2.168 0.36
qχ (eV) 4.07 4.37 3.50 4.90
m∗

n/m0 0.041 0.067 0.077 0.150 0.027
m∗

lh/m0 0.044 0.08 0.12 0.150 0.023
m∗

hh/m0 0.452 0.45 0.6 0.76 0.60
ε(0)/ε0 13.77 13.18 12.35 10.16 14.6
ε(∞)/ε0 11.38 10.9 9.52 8.16 12.25
Ebr (kV/cm) 3.0 3.2 11
μn (cm2/Vs) 12000 8500 5500 40000
vmax (107 cm/s) ≈ 2.5 ≈ 1.7 ≈ 2.7
vs (107 cm/s) 0.7 1

3
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Figure 1.14 Electron drift velocity–field curves of Si, GaAs, InP, GaN, and InGaAs lattice matched to InP.
The GaN velocity has a peak toward 200 kV/cm and then saturates with GaAs-like behavior.
Adapted from [6], p. 13.

(see Fig. 1.14) depends on the low-field mobility and therefore on doping; the values
provided (referring to intrinsic material) are therefore indicative.

Compound semiconductor families are classified according to the chemical nature
of the metal and nonmetal components. If the metal component belongs to group III
and the nonmetal to group V, we obtain a III-V compound. Examples of III-V com-
pounds are GaAs, InP, GaSb, InAs (direct bandgap) and AlAs, GaP (indirect bandgap).
III-V compounds with nitrogen such as GaN, InN, AlN are often referred to as III-
N compounds. III-V compounds are probably the most important semiconductors for
high-frequency electronics and optoelectronics. II-VI compounds include CdTe, HgTe,
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ZnS, CdSe, ZnO (direct bandgap; note that HgTe has a negative bandgap and therefore
has a metal rather than semiconductor behavior). IV-IV compounds are SiC and SiGe,
both of them of indirect bandgap type. Finally, I-VII semiconductor compounds also
exist, such as AgI and CuBr.

1.4 Carrier densities in a semiconductor

1.4.1 Equilibrium electron and hole densities

According to the picture drawn so far, a simplified representation of the semiconductor
bandstructure includes two energy bands, the valence and conduction bands, separated
by the energy gap Eg . Some electrons have large enough energy to be promoted from the
valence to the conduction band, leaving behind positive charges called holes. Both elec-
trons and holes can interact with an external electric field, and with photons or other par-
ticles. Further details of the bandstructure are introduced in Fig. 1.1, such as the electron
affinity qχ , i.e., the distance between the conduction band edge and the vacuum level
U0, and the ionization I0, i.e., the distance between the valence band edge and the vac-
uum level. The electron and hole populations n and p depend on the number of electron
and hole states per unit volume in the two bands (density of states Nc and Nv , respec-
tively, both functions of the energy), and on how those states are populated as a function
of the energy. According to statistical mechanics, electrons and holes follow at equi-
librium the Fermi–Dirac distribution,5 while the out-of-equilibrium distribution can be
often approximated, in optoelectronic devices, by the so-called quasi-Fermi distribution.

In the effective mass approximation, the density of states (DOS) in a 3D (bulk)
semiconductor can be shown to be

Nc(E) ≡ gc(E) = 4π

h3
(2m∗

n,D)
3/2
√

E − Ec

Nv(E) ≡ gv(E) = 4π

h3
(2m∗

h,D)
3/2
√

Ev − E,

whose behavior is shown in Fig. 1.15. Owing to the effect of heavy holes, the valence
band DOS typically is larger than the conduction band DOS.

The Fermi–Dirac distributions describing the electron and hole equilibrium occupa-
tion statistics are expressed as

fn(E) = 1

1 + exp

(
E − EF

kB T

) (1.4)

fh(E) = 1

1 + exp

(
EF − E

kB T

) , (1.5)

5 Or by the Boltzmann distribution, an approximation of the Fermi–Dirac distribution holding for energies
larger than the Fermi energy.
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gv(E) gc(E)Eg

Ev Ec E

Figure 1.15 Valence (gv) and conduction band (gc) density of states in a bulk semiconductor.

where the Fermi level EF is constant in the whole system. If the Fermi level is within
the energy gap (this case corresponds to nondegenerate semiconductors) the Boltzmann
approximation of the statistics holds:

fn(E) ≈
E�EF

exp

(
EF − E

kB T

)
, fh(E) ≈

E�EF
exp

(
E − EF

kB T

)
.

The Boltzmann approximation applies, in fact, if the distance between E and EF is
larger than a few kB T units. In the degenerate case the Fermi level can fall into the
conduction or valence bands, and this condition is violated; in such cases, the full
Fermi–Dirac statistics has to be used.

The behavior of the two Fermi–Dirac distributions for electrons and holes is shown
in Fig. 1.16. Integrating the product between the density of states and the statistical
distributions (with the Boltzmann approximation) over all energies (i.e., from Ec to
≈ ∞ for the conduction band and from ≈ −∞ to Ev for the valence band), we have

n =
∫ ∞

Ec

Nc(E) fn(E) dE = Nc exp

(
EF − Ec

kB T

)
p =

∫ Ev

−∞
Nv(E) fh(E) dE = Nv exp

(
Ev − EF

kB T

)
,

where the effective densities of states are

Nc = 2
(2πm∗

n,DkB T )3/2

h3
, Nv = 2

(2πm∗
h,DkB T )3/2

h3
. (1.6)

In an intrinsic (undoped) semiconductor p = n = ni , where

ni = Nc exp

(
EFi − Ec

kB T

)
= pi = Nv exp

(
Ev − EFi

kB T

)
,

from which the intrinsic Fermi level can be derived; the intrinsic Fermi level is located
at midgap, with a small (typically negative) correction related to the ratio Nc/Nv =
(m∗

n,D/m∗
h,D)

3/2:

EFi = kB T log

√
Nc

Nv
+ Ec + Ev

2
.

Moreover, the intrinsic concentration can be directly related to the energy gap:



1.4 Carrier densities in a semiconductor 19

fFD(E) 1–fFD(E)

T = 300 K

T = 300 K

T = 0 K

T = 0 K
EF

E

EF

E

0 00.5 0.51 1

Figure 1.16 Fermi–Dirac distributions for electrons (left) and holes (right).
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temperature. Data from [1].

ni pi = n2
i = Nc Nv exp

(
− Eg

kB T

)
. (1.7)

The intrinsic concentration as a function of the temperature for Si, Ge, GaAs, InP and
GaN is shown in Fig. 1.17. With increasing T , the intrinsic concentration increases
exponentially; this is one of the main limitations in high-temperature semiconductor
operation, since when the intrinsic concentration is of the order of the doping, doping
becomes ineffective.

In equilibrium conditions, the product of the concentrations n and p does not depend
on the position of the Fermi level, and is equal to the square of the intrinsic concentration
(mass action law):

np = n2
i . (1.8)
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1.4.2 Electron and hole densities in doped semiconductors

The mass action law also holds for doped semiconductors. A semiconductor can be
doped with a donor (density ND), an element able to provide an additional electron
when substituting an atom of the native semiconductor lattice. Examples of donors in Si
are As and P (both belonging to group V, and therefore with an extra electron in the outer
shell vs. Si). The additional electron is weakly bound to the donor (ionization energy
into the conduction band of the order of 10 meV for shallow donors) and therefore can
easily be ionized and enter the conduction band, thus participating in conduction.6 In
this case, the semiconductor is called n-type. Semiconductors can also be doped with
acceptors (concentration NA). For instance, Si atoms have 4 electrons in the outermost
shell; acceptors (e.g., B, a group III element) have 3 electrons in the outermost shell
(i.e., one electron less than the substituted native atom) and can therefore attract an
electron from the valence band, leaving behind a hole (again with a ionization energy
of the order of 10 meV). The semiconductor in this case is called p-type.

If donors and acceptors are fully ionized one has, also taking into account the mass
action law (1.8):

n ≈ N+
D ≈ ND, p ≈ n2

i /ND n-type semiconductor

p ≈ N−
A ≈ NA, n ≈ n2

i /NA p-type semiconductor.

In a doped semiconductor, the carrier concentration evolves with temperature according
to a three-region behavior; the relevant intervals are the freeze-out, the saturation, and
the intrinsic range.

At extremely low temperature, most carriers do not have enough energy to ionize into
the conduction band, and the carrier population decreases with T well below the value
n ≈ ND (freeze-out range). The intermediate range (called the saturation range), cor-
responding to normal device operation, begins at a temperature such as (3/2)kB T ≈ 20
meV, i.e., T ≈ 150 K (this is just an indicative value, since the donor or acceptor ion-
ization energy depends on the doping and semiconductor materials), and ends at a
temperature such as ni (T ) ≈ ND (in n-type Si with ND = 1015 cm−3 this corresponds
to T ≈ 200oC). In the saturation range, n ≈ ND or p ≈ NA; the maximum operat-
ing temperature increases with increasing gap. Finally, above the saturation range we
find the intrinsic range: at high temperature the intrinsic concentration becomes large
enough to flood the semiconductor with electrons not originating from the donors (or
holes not originating from the acceptors).

6 A donor or acceptor introduces an isolated energy level in the forbidden band. Shallow donors have an
energy level ED close to the conduction band edge (typically a few meV), while for shallow acceptors
the energy level E A is close to the valence band. Deep donors and acceptors have energy levels close to
the center of the gap and act more as electron or hole traps (or recombination centers) than as dopants,
since their ionization (or electrical activation) is low. Ionized dopants follow electron- or hole-like Fermi
statistics: donors are almost 100% activated if the Fermi level is below the donor level, while acceptors are
almost 100% activated if the Fermi level is above the acceptor level. This implies, for example, that a deep
donor is not ionized in an n-type semiconductor, and even the activation of shallow donors ultimately drops
for extremely large n-type doping, since for increasing donor concentration the Fermi level finally becomes
larger than the donor level.
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From the expressions for the electron and hole densities, the Fermi level can easily
be evaluated. In n-type semiconductors, the Fermi level increases vs. EFi , becom-
ing closer to the conduction band edge, while for p-type semiconductors the Fermi
level decreases and becomes closer to the valence band edge. For very high dop-
ing (e.g., in excess of 1019 cm−3), donors and acceptors cannot be assumed to be
100% ionized (or electrically activated) any longer, but their ionization is related to the
very position of the Fermi level and typically decreases, as already remarked, when
the Fermi level becomes larger than the donor or smaller than the acceptor energy
level.

In a degenerate semiconductor, the Fermi level (or the quasi-Fermi level out of equi-
librium) is very close to the conduction or valence band edges or even falls within one
of the two bands. Typically, a semiconductor cannot be made degenerate by doping, but
degeneracy is a condition that can be achieved out of equilibrium (e.g., in a direct-bias
pn junction under high carrier injection).

1.4.3 Nonequilibrium electron and hole densities

To address the out-of-equilibrium statistics in a simplified way, we note that deviations
from thermodynamic equilibrium may imply two quite different consequences: dis-
equilibrium between the electron and the hole populations, and disequilibrium in carrier
populations due to an applied (electric) field.

In equilibrium, the electron and hole populations follow the mass action law, any
deviation from this being compensated for by generation–recombination (GR) processes
whereby electron–hole (e-h) pairs are generated or disappear by recombination. The
excess charge n′ or p′ (with respect to equilibrium) is removed according to the time
behavior

n′(t) = n′(0) exp(−t/τn),

with a characteristic time (called the excess lifetime, τn or τh for electrons and
holes, respectively) whose order of magnitude can range from a few milliseconds to
nanoseconds according to the restoring mechanism. Recombination processes basi-
cally involve an exchange of energy and momentum with other particles, e.g., phonons
(lattice vibrations, corresponding to the so-called thermal GR process), photons (radia-
tive GR), other electrons and holes (Auger recombination and impact generation).
If the carrier population deviation with respect to equilibrium is maintained by an
external cause (e.g., a photon flux leading to radiative generation of e-h pairs) the
resulting out-of-equilibrium condition can be characterized by a slightly modified
form of the equilibrium probability distribution (called the quasi-Fermi distribu-
tion).

A second nonequilibrium situation derives from the effect of an applied electric
field. While the average carrier velocity is zero at equilibrium, and therefore the
carrier distribution in the velocity space is symmetrical with respect to the origin,
application of an electric field leads to an increase of the average velocity and to a
nonsymmetrical velocity distribution. For very large fields, the change in shape of
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the distribution with respect to the equilibrium may become dramatic and a simple
quasi-Fermi approach will not be sufficient. However, this form of extreme field–carrier
disequilibrium is not essential in the analysis of most optoelectronic devices, and there-
fore a simplified discussion based on the static carrier velocity–field properties will
suffice.

To describe electron–hole imbalance with respect to the equilibrium, we there-
fore introduce the so called quasi-Fermi statistics, where the single Fermi level is
replaced by two separate quasi-Fermi levels EFn and EFh according to the following
formulae:

fn(E, EFn) = 1

1 + exp

(
E − EFn

kB T

) ≈
E�EFn

exp

(
EFn − E

kB T

)
(1.9)

fh(E, EFh) = 1

1 + exp

(
EFh − E

kB T

) ≈
E�EFh

exp

(
E − EFh

kB T

)
, (1.10)

where the relevant Boltzmann approximations have also been introduced. Within the
Boltzmann approximation the carrier densities become

n = Nc exp

(
EFn − Ec

kB T

)
, p = Nv exp

(
Ev − EFh

kB T

)
,

while the mass action law can be modified to allow for a difference in the two quasi-
Fermi levels (in equilibrium EFn = EFh = EF ):

np = n2
i exp

(
EFn − EFh

kB T

)
. (1.11)

In particular,

np > n2
i for EFn > EFh (carrier injection)

np < n2
i for EFn < EFh (carrier depletion).

In the degenerate case, the Boltzmann approximation is invalid and we have to express
the charge density with the help of special functions (the Fermi–Dirac integrals):

n = 2√
π

NcF1/2

(
EFn − Ec

kB T

)
, p = 2√

π
NvF1/2

(
Ev − EFh

kB T

)
.

The computation of the Fermi–Dirac integral can be performed through suit-
able analytical approximations; an example is given by the Joyce–Dixon (inverse)
formulae:

EFn ≈Ec + kB T

[
log

n

Nc
+ 1√

8

n

Nc

]
(1.12)

EFh ≈Ev − kB T

[
log

p

Nv
+ 1√

8

p

Nv

]
. (1.13)
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Figure 1.18 Behavior of the Fermi–Dirac integral (F1/2) in the degenerate and nondegenerate ranges.
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The overall behavior of the Fermi integral in the two ranges (nondegenerate and degen-
erate) is shown in Fig. 1.18. For extreme degeneration, the following polynomial
approximation holds:

n ≈
√

2m3/2
n,D

π2h̄3

2

3
(EFn − Ec)

3/2 , p ≈
√

2m3/2
h,D

π2h̄3

2

3
(Ev − EFh)

3/2 .

A summary of some possible equilibrium bandstructures is shown in Fig. 1.19; notice
that the n-type and p-type degenerate cases are purely theoretical, since increasing
the doping level beyond a certain level makes EF > ED or EF < E A, thus decreas-
ing the donor or acceptor activation. This implies that the degenerate condition cannot
practically be obtained at equilibrium. Finally, Fig. 1.20 concerns examples out of
equilibrium; degeneracy arises in these cases from the high-injection condition.
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Figure 1.20 Examples of transition from the equilibrium (left) to the out-of-equilibrium bandstructure for
degenerate and nondegenerate semiconductors.

1.5 Heterostructures

Crystals with different lattice constants grown on top of each other by epitaxial tech-
niques are affected by interface defects called misfit dislocations. Such defects operate
as electron or hole traps, and therefore the resulting structure is unsuited to the develop-
ment of electron devices. However, if the lattice mismatch between the substrate and the
heteroepitaxial overlayer is low or zero, an ideal or almost ideal crystal can be grown,
made of two different materials. The resulting structure is called a heterostructure, and,
since the electronic properties of the two layers are different, we also refer to it as a het-
erojunction. The material discontinuity arising in the heterojunction leads to important
electronic and optical properties, such as confinement of carriers (related to the discon-
tinuity of the conduction or valence bands) and confinement of radiation (due to the
bandgap discontinuity and to the related refractive index step).

Heterostructures can be lattice-matched (if the two sides have the same lattice con-
stant) or affected by a slight mismatch (indicatively, the maximum mismatch is of the
order of 1%), which induces tensile or compressive strain. In this case, we talk about
pseudomorphic or strained heterostructures, see Fig. 1.21. A small amount of strain in
the heterostructure can be beneficial to the development of electronic or optoelectronic
devices, since it leads to additional degrees of freedom in the band structure engineer-
ing, and in many cases allows for an improvement of the material transport or optical
properties.

A double heterojunction made with a thin semiconductor layer (the thickness
should be typically of the order of 100 nm) sandwiched between two layers (e.g.,
AlGaAs/GaAs/AlGaAs) creates a potential well in the conduction and/or valence band
and is often referred to as a quantum well (QW). A succession of weakly interacting
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Figure 1.21 Pseudomorphic or strained growth. Above, the epilayer lattice constant is larger than that of the
substrate: nonepitaxial growth with interface misfit dislocations and strained epitaxy. Below, the
epilayer lattice constant is smaller than that of the substrate.

quantum wells is called a multi quantum well (MQW); if the MQW has many layers,
with significant overlapping between the wavefunctions of adjacent wells, we finally
obtain a superlattice (SL). The artificial periodicity imposed by the superlattice over the
natural periodicity of the crystal introduces important modifications in the electronic
properties.

1.6 Semiconductor alloys

Heterostructures are largely based on semiconductor alloys. The idea behind alloys is
to create semiconductors having intermediate properties with respect to already exist-
ing “natural” semiconductors. Among such properties are the lattice constant a and the
energy gap Eg . In several material systems, both a and Eg approximately follow a lin-
ear law with respect to the individual component parameters. The motivation to tailor
the lattice constant is of course to achieve lattice matching to the substrate; tailoring the
energy gap gives the possibility to change the emitted photon energy, thus generating
practically important wavelengths, such as the 1.3 or 1.55 μm wavelengths needed for
long-haul fiber communications (since they correspond to minimum fiber dispersion and
absorption, respectively, see Fig. 1.22). Examples are alloys made of two components
and three elements (called ternary alloys: e.g., AlGaAs, alloy of GaAs and AlAs) and
alloys made of four components and elements (called quaternary alloys, e.g., InGaAsP,
alloy of InAs, InP, GaAs, GaP). By proper selection of the alloy composition, semicon-
ductor alloys emitting the right wavelength and matched to the right substrate can be
generated.
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In order to quantitatively define an alloy, we have to consider that compound semi-
conductors (CS) are polar compounds with a metal M combined with a nonmetal N
in the form M N . Two different CSs sharing the same metal or nonmetal give rise to a
ternary alloy or compound:

(M1 N )x (M2 N )1−x =M1x M2(1−x)N , e.g., Alx Ga1−x As

(M N1)y (M N2)1−y =M N1y N2(1−y), e.g., GaAsyP1−y,

where x and 1 − x denote the mole fraction of the two metal components, and y and
1 − y denote the mole fraction of nonmetal components. Four different CSs sharing
two metal and two nonmetal components yield a quaternary alloy or compound. In the
following formulae, M and m are the metal components, N and n are the nonmetal
components, and α + β + γ = 1:

(M N )α (Mn)β (m N )γ (mn)1−α−β−γ = Mα+βm1−α−βNα+γ n1−α−γ
= Mx m1−x Nyn1−y (e.g., Inx Ga1−x AsyP1−y).

Most alloy properties can be derived from the component properties through (global
or piecewise) linear interpolation (Vegard law), often with second-order corrections
(Abeles law); examples are the lattice constant, the energy gap, the inverse of the
effective masses, and, in general, the bandstructure and related quantities. Varying the
composition of a ternary alloy (one degree of freedom) changes the gap and related
wavelength, but, at the same time, the lattice constant; in some cases (AlGaAs) the
two components (AlAs and GaAs) are already matched, so that alloys with arbitrary Al
content are lattice matched to the substrate (GaAs).

On the other hand, varying the composition of a quaternary alloy (two degrees of
freedom) independently changes both the gap and the lattice constant, so as to allow for
lattice matching to a specific substrate, e.g., InGaAsP on InP.
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Figure 1.23 Evolution of the bandstructure of AlGaAs changing the Al content from 0 to 1.

The Vegard or Abeles laws must be applied with care in some cases. As an example,
consider the Alx Ga1−x As alloy and call P an alloy parameter, such as the energy gap.
The Vegard law can be written as:

P(x) = (1 − x)PGaAs + x PAlAs;
by inspection, this yields a linear interpolation between the two constituent parameters.
However, this law fails to accurately reproduce the behavior of the AlGaAs energy gap
because GaAs is direct bandgap, and AlAs is indirect. To clarify this point, let us con-
sider the simplified bandstructure of the alloy as shown in Fig. 1.23. We clearly see that
the main and secondary (X point) minima have the same level for x = 0.45; for larger
Al mole fraction, the material becomes indirect bandgap. Since the composition depen-
dence is different for the energy levels of the � and X minima, a unique Vegard law
fails to approximate the gap for any alloy composition, and a piecewise approximation
is required:

Eg ≈1.414 + 1.247x, x < 0.45

Eg ≈1.985 + 1.147(x − 0.45)2, x > 0.45.

The same problems arise in the InGaAsP alloy, since GaP is indirect bandgap; thus, a
global Vegard approximation of the kind

PInGaAsP = (1 − x)(1 − y)PGaAs + (1 − x)y PGaP + xy PInP + x(1 − y)PInAs

(by inspection, the approximation is bilinear and yields the correct values for the four
semiconductor components) may be slightly inaccurate.

1.6.1 The substrate issue

Electronic and optoelectronic devices require to be grown on a suitable (typically, semi-
conductor) substrate. In practice, the only semiconductor substrates readily available
are those that can be grown into monocrystal ingots through Czochralsky or Bridgman
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techniques – i.e., in order of decreasing quality and increasing cost, Si, GaAs, InP, SiC,
and a few others (GaP, GaSb, CdTe). Devices are to be grown so as to be either lattice
matched to the substrate, or slightly (e.g., 1%) mismatched (pseudomorphic approach).
The use of graded buffer layers allows us to exploit mismatched substrates, since it dis-
tributes the lattice mismatch over a larger thickness. This approach is often referred to
as the metamorphic approach; it is sometimes exploited both in electronic and in opto-
electronic devices. Metamorphic devices often used to have reliability problems related
to the migration of defects in graded buffer layers; however, high-quality metamorphic
field-effect transistors with an InP active region on a GaAs substrate have recently been
developed with success.

1.6.2 Important compound semiconductor alloys

Alloys are often represented as a straight or curved segment (for ternary alloys) or
quadrilateral area (for quaternary alloys) in a plane where the x coordinate is the lattice
constant and the y coordinate is the energy gap; see Fig. 1.24. The segment extremes
and the vertices of the quadrilateral are the semiconductor components. In Fig. 1.24
some important alloys are reported:

• AlGaAs, lattice-matched for any composition to GaAs, direct bandgap up to an Al
mole content of 0.45.

• InGaAsP, which can be matched either to GaAs or to InP substrates; InP substrate
matching includes the possibility of emitting 1.55 or 1.3 μm wavelengths;7 the alloy
is direct bandgap, apart from around the GaP corner, whose gap is indirect.

• InAlAs, which can be lattice matched to InP with composition Al0.48In0.52As.
• InGaAs, a ternary alloy matched to InP with composition Ga0.47In0.53As; it is a

subset of the quaternary alloy InGaAsP.
• InGaAsSb, the antimonide family, a possible material for long-wavelength devices,

but with a rather underdeveloped technology vs. InGaAsP.
• HgCdTe, a ternary alloy particularly relevant to far infrared (FIR) detection owing to

the very small bandgap achievable.
• SiGe, an indirect bandgap alloy important for electronic applications (heterojunction

bipolar transistors) but also (to a certain extent) for detectors and electroabsorption
modulators;

• III-N alloys, such as AlGaN and InGaN, with applications in short-wavelength
sources (blue lasers) but also in RF and microwave power transistors. AlGaN can
be grown by pseudomorphic epitaxy on a GaN virtual substrate; GaN has in turn no
native substrate so far, but can be grown on SiC, sapphire (Al2O3) or Si. The InGaN
alloy is exploited in optoelectronic devices such as blue lasers and LEDs, besides
being able to cover much of the visible spectrum.8

7 InGaAsP lattice-matched to InP can emit approximately between 0.92 and 1.65 μm.
8 The InN gap is controversial, and probably is much smaller than the previously accepted value around 2

eV. The nitride data in Fig. 1.24 are from [8], Fig. 3.
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Since GaN, AlN, and InN have the wurtzite (hexagonal) crystal structure, an equiva-
lent lattice constant aC,eq has to be defined for comparison with cubic crystals, so as to
make the volume of the wurtzite cell VH (per atom) equal to the volume of a cubic cell
(per atom); taking into account that the wurtzite cell has 12 equivalent atoms, while the
cubic cell has 8 equivalent atoms, we must impose:

1

12
VH = 1

12

3
√

3

2
ca2

H = 1

8
a3

C.eq → aC,eq =
(√

3ca2
H

)1/3
,

where VH is the volume of the wurtzite cell prism of sides a and c. For GaN aH = 0.317
nm, c = 0.516 nm; it follows that

aC,eq =
(√

3ca2
H

)1/3 =
(√

3 · 0.516 · 0.3172
)1/3 = 0.448 nm.

1.7 Bandstructure engineering: heterojunctions and quantum wells

Although the bandstructure of a semiconductor depends on the lattice constant a, which
is affected by the operating temperature and pressure, significant variations in the band-
structure parameters cannot be obtained in practice. Nevertheless, semiconductor alloys
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enable us to generate new, “artificial” semiconductors with band properties intermedi-
ate with respect to the components. A more radical change in the bandstructure occurs
when heterojunctions are introduced so as to form quantized structures. A deep varia-
tion in the density of states follows, with important consequences in terms of optical
properties (as we shall discuss later, the absorption profile as a function of the photon
energy mimics the density of states). Moreover, strain in heterostructures allows for fur-
ther degrees of freedom, like controlling the degeneracy between heavy and light hole
subbands.

Heterojunctions are ideal, single-crystal junctions between semiconductors having
different bandstructures. As already recalled, lattice-matched or strained (pseudomor-
phic) junctions between different semiconductors or semiconductor alloys allow for
photon confinement (through the difference in refractive indices), carrier confinement
(through potential wells in conduction or valence bands), and quantized structures such
as superlattices, quantum wells, quantum dots, and quantum wires. An example of a het-
erostructure band diagram is shown in Fig. 1.25, where the band disalignment derives
from application of the affinity rule (i.e., the conduction band discontinuity is the affin-
ity difference, the valence band discontinuity is the difference in ionizations). In many
practical cases, however, band disalignments are dominated by interfacial effects and do
not follow the affinity rule exactly; for instance, in the AlGaAs-GaAs heterostructure
one has

|�Ec| ≈ 0.65�Eg, |�Ev| ≈ 0.35�Eg. (1.14)

More specifically, the valence and conduction band discontinuities as a function of the
Al fraction are (in eV) [1]:

|�Ev| = 0.46x

|�Ec| =
{

0.79x, x < 0.41
0.475 − 0.335x + 0.143x2, x > 0.41.

According to the material parameters, several band alignments are possible, as shown in
Fig. 1.26; however, the most important situation in practice is the Type I band alignment
in which the energy gap of the narrowgap material is included in the gap of the widegap
material.

Ev

Ec

U0

|ΔEv|

|ΔEc|

EgA EgB

I0B

I0A

qχB

qχA

Figure 1.25 Heterostructure band alignment through application of the affinity rule to two materials having
different bandstructures.
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Figure 1.26 Classification of heterostructures according to band alignment; �E j = E j B − E j A.

Heterojunctions can be made with two n-type or p-type materials (homotype hetero-
junctions) so as to form a pn junction (heterotype heterojunctions). Often, the widegap
material is conventionally denoted as N or P according to the type, the narrowgap mate-
rial as n or p. According to this convention, a heterotype heterojunction is, for example,
N p or n P and a narrowgap intrinsic layer sandwiched between two widegap doped
semiconductors is Ni P .

Single or double heterostructures can create potential wells in the conduction and/or
valence bands, which can confine carriers so as to create conducting channels (with
application to electron devices, such as field-effect transistors), and regions where
confined carriers achieve high density and are able to recombine radiatively. In the
second case, the emitted radiation is confined by the refractive index step associ-
ated with the heterostructure (the refractive index is larger in narrowgap materials).
An example of this concept is reported in Fig. 1.27, a Ni P structure in direct bias
that may operate like the active region of a light-emitting diode or a semiconductor
laser.

Carriers trapped by the potential well introduced by a double heterostructure are con-
fined in the direction orthogonal to the well, but are free to move in the two other
directions (i.e., parallel to the heterojunction). However, if the potential well is very
narrow the allowed energy levels of the confined electrons and holes will be quantized.
The resulting structure, called a quantum well (QW), has a different bandstructure vs.
bulk, where sets of energy subbands appear (see Fig. 1.28). Also the density of states is
strongly affected.

The quantum behavior of carriers in narrow (conduction or valence band) potential
wells originated by heterojunctions between widegap and narrowgap semiconductors
can be analyzed by applying the Schrödinger equation to the relevant particles (elec-
tron or holes) described in turn by a 3D effective mass approximation. Solution of the
Schrödinger equation enables us to evaluate the energy levels and subbands, given the
well potential profile. In a rectangular geometry, we start from bulk (3D motion possible,


