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Preface

Starting from the development of transistor technology to laser technology, the field
of solid state devices and their circuit applications has advanced rapidly. The silicon
bipolar junction transistor was first applied to low frequency circuits. The subsequent
advances in materials science made it possible to fabricate compound semiconductor
transistors capable of operating at microwave frequencies and high speeds. This pre-
sented the capability of applications in both analogue and digital circuits. At the same
time, the wide choice of high performance semiconductor materials also enabled the
development of optoelectronic devices such as lasers and light-emitting diodes. The
communications industry continues to grow and diversify, thus necessitating the design
of circuits which will satisfy the requirements of mobile telephones which are becom-
ing more and more sophisticated in their performance. Circuit design has applications
in other areas such as optical communications.

This book focusses on high-speed electronics and optoelectronics where the devices
operate at frequencies ≥1 GHz. It is presented in two parts with devices being dis-
cussed in the first part and the circuit applications in the second part. In Part One,
semiconductor devices fabricated in a variety of material systems – Si, III–V compound
semiconductors and SiGe – are presented. We discuss the concepts and the fundamen-
tal principles of operation. We do not attempt to present the latest results as they will
already be obsolete by the time the book is published. It is assumed that the reader has
had a course in fundamental solid state physics.

Chapter 1 reviews semiconductor materials and physics. For the reader who is famil-
iar with the topics, this chapter will be a brief review. If not, the reader can go to the
references section to get a detailed coverage of the topics. Semiconductor materials are
described followed by brief discussions of crystal structure and bonding. The section
on quantum mechanics is intended to present only the important concepts and is not
a comprehensive treatment of the subject. Semiconductor properties are described fol-
lowed by types of semiconductors. Semiconductor junctions are treated in detail as they
are the basis of the devices to be treated in subsequent chapters.

Chapter 2 presents high-frequency/high-speed electronic devices starting with the
MESFET, which was the first transistor to operate at microwave frequencies. The devel-
opment of the high electron mobility transistor (HEMT) represented a major advance in
technology and is presented here in detail. The recent application of MOSFETs to radio
frequency has been successful and the properties are covered in detail. Finally, bipolar
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and heterojunction bipolar transistors (HBTs) are described. Models for the transistors
are presented and their method of implementation is described.

Chapter 3 presents the optimisation and parameter extraction of the circuit models of
the electronic devices. The simulated annealing algorithm is discussed followed by the
application of neural networks to circuit modelling. The genetic algorithm is defined
and its application to optimisation is shown. Parameter extraction methods are given for
circuit models using semi-analytical methods and basic expressions are derived.

Chapter 4 deals with various optical sources such as light-emitting diodes and lasers,
giving details of their physical properties and their modes of operation. The discussion
of emitters is followed by an extensive coverage of a variety of photodetectors.

In Part Two of the book, we discuss analogue circuits at the gate level. We will
assume that the reader has a background (at the undergraduate level) in fundamental
analogue circuit theory. Chapter 5 (Part Two of the book) deals with the components of
high-speed analogue circuits. After a review of scattering parameter theory, the power
and noise relations for two-port networks are discussed. Transistor amplifiers are cov-
ered in detail, showing the application of the devices described in Chapter 2. This is
followed by a discussion of oscillators and mixers for high-speed circuits. Important
passive components of high-speed circuits complete this chapter.

We have a layered approach to each chapter in the book. There is an executive
summary at the beginning of each chapter. This will make the book valuable also for
technical managers who may not want to go through the chapter content in detail. We
have extensive problems at the end of each chapter, which will give the student appli-
cations of the theory. This book should be useful to research engineers and graduate
students. Results from various research papers are presented, many of which are only
available in journals which are referenced extensively. However, the reader need not
go to the original papers as the results are given in sufficient detail to give a good
understanding of the material.
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Part One

Devices





1 Review of semiconductor materials
and physics

1.1 Executive summary

Semiconductor devices are fabricated using specific materials that offer the desired
physical properties. There are three classes of solid state materials: insulators, semi-
conductors and conductors. This distinction is based on the electrical conductivity of
these materials with insulators having the lowest and conductors having the highest con-
ductivity. Semiconductors fall in between and their conductivity is affected by several
factors such as temperature, the incidence of light, the application of a magnetic field
and impurities. This versatility makes semiconductors very important in electronics and
optoelectronics applications.

Semiconductors themselves are divided into two classes: elemental and compound.
Each type has distinctive physical properties which are exploited in device design. Typ-
ical elemental semiconductor device materials are silicon and germanium; examples of
compound semiconductors are GaAs, InP, AlGaAs and SiGe. The single crystal struc-
ture of these materials is that of a periodic lattice and this determines the properties
of the semiconductors. Silicon has the diamond crystal structure and the compound
semiconductors have the zincblende lattice structure. The bonding between atoms in a
crystal of the semiconductors is termed covalent bonding, where electrons are shared
between atoms. Fundamental principles of quantum mechanics are applied to determine
the energy band structure of the semiconductor.

The basic device physics involves the description of the energy band structure, the
density of states, the carrier concentration and the definition of donors and acceptors.
Semiconductors are categorised as direct or indirect depending on the bandgap. The
absorption mechanism is described and radiation and recombination processes impor-
tant to device performance are detailed. The two carrier transport processes are drift
and diffusion. The currents due to these transport processes are expressed in terms of
the applied electric field, the carrier mobility and the carrier concentration. The junction
formed by p-type semiconductor (excess holes) and n-type semiconductor (excess elec-
trons) is described and the characteristics of such a junction are given. The important
Schottky diode, a junction formed by a metal and a semiconductor layer (n-doped in
this case) is characterised.

Heterostructures formed by dissimilar semiconductors are important in device design.
The properties of heterojunctions of semiconductor materials are presented. Silicon–
germanium heterojunctions are of particular interest as high performance electronic
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Table 1.1 Portion of the periodic table showing semiconductor
material elements

Period Group III Group IV Group V

2 B C N
Boron Carbon Nitrogen

3 Al Si P
Aluminium Silicon Phosphorus

4 Ga Ge As
Gallium Germanium Arsenic

5 In Sn Sb
Indium Tin Antimony

Table 1.2 Elemental and binary compound semiconductors

Elements IV–IV Binary compounds III–V Binary compounds

Si Silicon SiC Silicon carbide AlAs Aluminium arsenide
Ge Germanium SiGe Silicon germanium AlP Aluminium phosphide

AlSb Aluminium antimonide
BN Boron nitride
GaAs Gallium arsenide
GaN Gallium nitride
GaSb Gallium antimonide
InAs Indium arsenide
InP Indium phosphide
InSb Indium antimonide

Table 1.3 Ternary and quaternary semiconductors

Ternary compounds Quaternary compounds

AlxGa1−xAs AlxGa1−xAsySb1−y
Aluminium gallium arsenide Aluminium gallium arsenic antimonide
GaAs1−xPx GaxIn1−xAs1−yPy
Gallium arsenic phosphide Gallium indium arsenic phosphide

devices have been designed using this material alloy. This chapter gives a detailed
discussion of these heterojunctions.

1.2 Semiconductor materials

Materials used for semiconductors fall into two categories: elemental semiconductors
and compound semiconductors. Table 1.1 shows the section in the periodic table which
has the semiconductor elements and Table 1.2 lists examples for elemental and binary
compound semiconductors. Some ternary and quaternary semiconductors are listed in
Table 1.3.
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1.3 Types of solids

There are three types of solids: crystalline, polycrystalline and amorphous. The arrange-
ment of atoms is periodic in three dimensions in a crystalline solid with forces binding
the atoms together. This periodicity exists over the entire crystal and it will appear the
same regardless of the region where the crystal is viewed. If the periodicity of the atoms
occurs over a small region of the solid and changes in different regions of the solid, the
solid is termed to be polycrystalline. Atoms in amorphous solids exhibit no periodicity.
Figure 1.1 shows the three different types of solids.

1.4 Crystal structure

Semiconductor materials such as Si, Ge and GaAs that are to be used for devices are
crystalline, that is, a single crystal. This periodic arrangement of atoms in a crystal is
termed a lattice and the distance between the atoms is the lattice constant. The unit
cell is a fundamental unit in the crystal and a repetition of the unit cell generates the
entire lattice. The unit cell is not unique and can be chosen in various ways as shown
in Figure 1.2(a). This is a two-dimensional representation of the crystal lattice. The
entire lattice can be constructed by translations of any of the three unit cells in two
coordinate directions. The primitive unit cell is the smallest unit cell. A generalised
primitive three-dimensional unit cell is shown in Figure 1.2(b). The coordinate direc-
tions are a,b,c. In cubic structures, these would be the rectangular coordinates. The
basic cubic crystal structures are (a) the simple cubic, (b) the body-centred cubic and

(a) Crystalline (b) Polycrystalline (c) Amorphous

Fig. 1.1 Schematic arrangement of atoms in solids.

(a) Two-dimensional lattice –
      shaded areas show possible unit cells

(b) Generalised primitive unit cell

b

a

c

Fig. 1.2 Unit cells.
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(a) Simple cubic (b) Body-centred cubic (c) Face-centred cubic

Fig. 1.3 Types of cubic lattices.

a

(a) (b)

Ga

aAs

Fig. 1.4 (a) Diamond lattice and (b) Zincblende lattice. (S. M. Sze, Semiconductor Devices: Physics and
Technology, John Wiley & Sons, 1985). Reprinted with permission of John Wiley & Sons, Inc.

(c) the face-centred cubic shown in Figure 1.3. The simple cubic lattice has an atom
at each corner of the cube, where the length of a side of the cube is a, the lattice con-
stant. The body-centred cubic lattice (BCC) has an additional atom in the centre of the
cube and the face-centred cubic lattice (FCC) has an additional atom in the centre of
each face of the cube. The two most important semiconductor crystal structures are the
diamond lattice structure and the zincblende structure. Silicon and germanium have the
diamond lattice structure and most of the binary compound semiconductors such as
GaAs have the zincblende lattice structure. The only difference between the diamond
and the zincblende structures is that the latter has two different types of atoms as seen
in Figure 1.4. The diamond structure consists of two inter-penetrating FCC sublattices
of atoms. The second FCC cube is shifted by one-fourth of the body diagonal, which
is the longest diagonal. In the zincblende structure of GaAs, one sublattice has gallium
atoms and the other has arsenic atoms.

1.5 Crystal directions and planes

Crystals are of finite size and hence have surfaces. It is necessary to define the planes at
the crystal surfaces and the crystallographic directions, both of which determine the



Review of semiconductor materials and physics 7

z

2a

y

4a

3a
x

Fig. 1.5 Representation of plane with Miller indices [6, 5, 8].

x

y

z

[436]

Fig. 1.6 Representation of direction with Miller indices [6, 5, 8].

properties of semiconductor devices. The rectangular coordinate system defines the
cubic crystal and the plane surfaces and directions are described by a set of indices
called the Miller indices. Planes are described by the indices (h,k,l) and the directions
perpendicular to these planes are described by the same indices [hkl].

Example: Find the Miller indices of the plane which makes intercepts 3a,4a,2a along
the coordinate axes in a cubic crystal, where a is the lattice constant. Draw the direction
vector with the same Miller indices.

Solution: The intercepts are 3, 4 and 2. The reciprocals are 1/3, 1/4 and 1/2. Multipli-
cation by the lowest common denominator, which is 12, yields (4,3,6). These are the
Miller indices which define the plane shown in Figure 1.5. It can be shown that parallel
planes are described by the same Miller indices.

The Miller indices of the direction are given as [436]. The intercepts on the three coor-
dinate axes are 3, 4 and 2. The direction vector is drawn and seen to be perpendicular to
the planes shown in Figure 1.6.

The basic planes in cubic crystals are shown in Figure 1.7. It is also important to
describe specific directions in a crystal in addition to the planes. As in the case of the
crystal plane, a crystal direction is also described by three integers which are the com-
ponents of a vector drawn in the particular crystal direction. The crystal planes and
directions of most interest are shown in Figure 1.8. The [hkl] direction is perpendicular
to the (hkl) plane.
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Fig. 1.7 Basic crystal planes.

(a) (100) plane
      [100] direction

(b) (110) plane
      [110] direction

(c) (111) plane
      [111] direction

[100]

x

y

z

[110]

x

y

z

[111]

x

y

z

Fig. 1.8 Important crystal planes and directions.

1.6 Atomic bonding

Atoms are held together by bonding forces to form solids. When the attractive and
repulsive forces are equivalent, the atoms are in equilibrium and maintain the spacing
characterised by the lattice constant, a. There are different bonding classifications which
are described by the dominant force of attraction. When one of the atoms gives up an
electron in the outer shell to another atom, positive and negative ions are produced.
There is a Coulomb interaction force of attraction between them. This is termed ionic
bonding. At equilibrium, the forces of attraction and repulsion are equivalent. Sodium
chloride (NaCl) and Potassium chloride (KCl) are examples of ionic bonding after the
formation of the Na+ and Cl− ions.

1.6.1 Covalent bonding

This type of bonding results when electrons are shared by neighbouring atoms. The
hydrogen atom is the simplest example of covalent bonding. Each of the two electrons
bonds with the other to complete the lowest energy shell as shown in Figure 1.9.

Each atom in a diamond or zincblende lattice has four nearest neighbours. Each atom
has four electrons in the outer orbit. These are the valence electrons and each atom
shares these valence electrons with its four neighbours. The interaction between the
shared electrons results in bonding forces which are quantum mechanical in nature. In
other words, each electron pair constitutes a covalent bond. Elements in group IV such
as Si and Ge have four valence electrons as shown in the references [8, 14, 15]. These
are available for bonding as seen in Figure 1.10. Compound semiconductors such as
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(a) Valence electrons (b) Covalent bonding

H2

Fig. 1.9 Covalent bonding in hydrogen.

Si Si Si Si

Si Si

Si Si

(a) Silicon atoms with four valence electrons (b) Covalent bonding

Fig. 1.10 Covalent bonding in silicon.

GaAs exhibit both covalent as well as ionic bonding. This is due to the fact that Ga and
As occur in two different groups in the periodic table and hence there is a transfer of
charge resulting in some ionic bonding.

1.7 Atomic physics

The theories of atomic physics were based on experimental observations. These theories
subsequently explained the experiments and led to the understanding of atoms in matter.

1.7.1 The photoelectric effect

The measurements of Planck on a heated sample of material indicated that energy is
radiated in discrete units called quanta as shown in Equation (1.1).

E = hν, (1.1)

where h (Planck’s constant) = 6.63×10−34 J · s and ν is the frequency of the radiation.
Heinrich Hertz discovered the photoelectric effect in 1887. The experiments performed
by Philipp Lenard, a former student of Hertz, showed that if light shines on a metal
surface in vacuum, some of the electrons receive enough energy so that they are emit-
ted from the surface into the vacuum. They were interpreted by Albert Einstein, who
received the Nobel Prize for his work in 1921. This is termed the photoelectric effect and
the maximum energy is a function of the frequency of the incident light. The quantised
units of light energy are called photons.
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Based on further experimental observations of Davisson and Germer (USA) and
Thompson (UK) on the diffraction of electrons by the atoms in a crystal, de Broglie
related the wavelength of a particle of momentum p = mv, where m is the mass of the
particle as seen in Equation (1.2):

λ = h

p
= h

mv
. (1.2)

1.7.2 The Bohr model of the atom

A model of the atom was first proposed by Bohr. In his model, the electrons move in
stable circular orbits about the nucleus and the electron may move to an orbit of higher
or lower energy. The electron would either gain energy or lose energy by the absorption
or emission of a photon of energy hν. Bohr further proposed that the angular momentum
of the electron moving in a circular orbit was an integral multiple of Planck’s constant
as seen in Equation (1.3).

p
θ
= nh

2π
= nh̄, n = 1, 2, 3, ... (1.3)

The hydrogen atom with one electron and the nucleus illustrates this concept in a simple
manner as seen in Figure 1.11.

Assuming that the electron of mass m rotates in a stable orbit of radius r with velocity
v, the angular momentum is written in Equation (1.4):

p
θ
= mvr = nh̄. (1.4)

The electrostatic force between the charge on the nucleus and the charge on the electron
must be equal to the centripetal force for the electron to remain in stable orbits. This
yields the expression in Equation (1.5) for the energy of the electron [15]:

En = − mq4

2(4πε0)2n2h̄2
. (1.5)

+q

–q

r

Fig. 1.11 Bohr model of the hydrogen atom.
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2 3 4 n = 51

Fig. 1.12 Electron orbits in Bohr model (not to scale).

The electron orbits in the Bohr model are shown in Figure 1.12.

1.8 The de Broglie relation

The initial theoretical and experimental results of Planck, Einstein and Bohr laid the
foundation for the development of quantum mechanics. It was de Broglie, however,
who first postulated that if waves were seen to behave as particles then it could be that
particles might behave like waves.

In the Bohr formulation, the electron which travels in a circular orbit of radius r is
assumed to behave like a wave with a wavelength λ. It travels in a circular path equal
in length to the circumference 2πr , which will be an integral number of wavelengths so
that

nλ = 2πr. (1.6)

The Bohr formulation yielded the linear velocity of the electron to be

v = q2

4πε0nh̄
. (1.7)

Using this velocity relation, the wavelength can be written as

λ = h

mv
= h

p
, (1.8)

where p is the linear momentum of the electron. Thus, de Broglie postulated that the
relationship between the wavelength and the linear momentum p of a particle is given
by Equation (1.2).

p = h

λ
= h

2π

2π

λ
= h̄k. (1.9)
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This is the de Broglie relationship. For free electrons, the energy–momentum relation-
ship is as follows:

E = mv2

2
= p2

2m
; p = √

2m E . (1.10)

Hence, the experiments of Davisson and Germer and of Thompson were verified by the
de Broglie relationship.

1.9 Quantum mechanics

Newtonian mechanics can be used to describe physical behaviour that is macroscopic.
Typical examples of this are planetary motion, the classical electromagnetic fields
and fluid motion. The motion of electrons and the interaction of electrons in atoms
in semiconductor materials cannot, however, be described thus since we are dealing
with microscopic behaviour. This physical behaviour on the atomic scale can only
be described by quantum mechanics rather than Newtonian mechanics. Quantum or
wave mechanics had as its basis the physical understanding developed by Planck and
de Broglie. The classical laws of the conservation of energy, momentum and angular
momentum are also assumed to be valid in quantum mechanics. Hence, the physics
involved in the interaction between atoms can be described mathematically by quantum
mechanics.

1.9.1 Probability and the uncertainty principle

When the motion of the particle is microscopic, the parameters cannot be described
exactly but rather in terms of average (expectation) values. Hence we have, for example,
the expectation values of position, momentum and energy of an electron. So, we have a
probabilistic rather than an exact description of the particle behaviour. There is, thus, an
inherent uncertainty in the position and momentum of the particle. This was formulated
by Heisenberg and is termed the Heisenberg uncertainty principle. The uncertainty in
the measurement of the position and momentum of particle motion is given as

(�x)(�px) ≥ h̄. (1.11)

The uncertainty in energy is related to the time at which the energy was measured and
is given by

(�E)(�t) ≥ h̄. (1.12)

These equations show that the simultaneous measurements of position and momen-
tum on the one hand and energy and time on the other hand cannot be performed with
arbitrary accuracy.

It follows that we can only determine the probability of finding an electron in a certain
position or having a certain momentum. This leads to the definition of a probability
density function. The probability of finding a particle in a range, say, from x to x + dx
is given by
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Table 1.4 Classical variables and quantum operators

Classical variable Quantum operator

x x
f (x) f (x)
Momentum p(x) h̄

j
∂
∂x

Kinetic energy p2

2m
−h̄2

2m
∂2

∂x2

Potential energy V V
Total energy E −h̄

j
∂
∂t

∫ ∞

−∞
P(x)dx = 1, (1.13)

where P(x) is a normalised function. The average value of a function x is defined as

〈 f (x)〉 =
∫ ∞

−∞
f (x)P(x)dx = 1. (1.14)

The correspondence between classical and quantum mechanical quantities is shown in
Table 1.4.

The basic principles of quantum mechanics will now be reviewed. Each particle in
a physical system is described by a wave function �(x, y, z, t). The function and its
space derivatives are continuous, finite and single-valued.

The probability of finding a particle with wave function � in the volume dxdydz is
�∗�dxdydz. Then we have the following definition for three-dimensional space:∫ ∞

−∞
�∗�dxdydz = 1. (1.15)

The expectation value of any physical quantity X can be written as

< X > =
∫ ∞

−∞
�∗ Xoper�dxdydz, (1.16)

where Xoper is the operator corresponding to the variable X .
The classical equation for energy conservation is Kinetic energy + Potential energy =

Total energy:

p2

2m
+ V = E . (1.17)

1.9.2 The wave equation

We obtain the quantum mechanical energy equation by substituting the corresponding
operators which operate on the one-dimensional wave function �(x, t):

−h̄2

2m

∂2�(x, t)

∂x2
+ V (x)�(x, t) = E�(x, t) = −h̄

j

∂�(x, t)

∂t
. (1.18)
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Fig. 1.13 Infinite potential well, width = 2a.

This is the one-dimensional Schrödinger wave equation. The three-dimensional wave
equation is

−h̄2

2m
∇2� + V (x)� = E� = −h̄

j

∂�

∂t
. (1.19)

The wave equation is applied to the solution of various physical problems. The problem
of the infinite potential well provides an understanding of the method of solution and an
insight into the discrete energies of a single electron [14, 15].

This basic physical concept is important since quantum wells can be fabricated using
semiconductor structures for devices. A general solution of the one-dimensional wave
equation can be written as follows:

�(x, t) = ψ(x) exp

(− j Et

h̄

)
. (1.20)

We consider the infinite quantum well of width 2a with zero potential outside the well
as shown in Figure 1.13.

On solving the one-dimensional wave function, we obtain n solutions and the discrete
energy levels are given by [14, 15],

En = π2h̄2n2

8m0a2
, (1.21)

where m0 is the rest mass of the electron and a is the lattice constant of the crystal.
The one-dimensional problem of a particle in a finite potential well can also be solved
and the allowed energies of the particle determined [10]. The phenomenon of tunnelling
wherein an electron with energy E tunnels through a potential barrier with barrier height
V0 greater than E is also explained by quantum mechanics. Classically, the electron
would not be able to show this behaviour. If we have a potential barrier of width a, the
one-dimensional Schrödinger equation can be solved in the three regions I, II and III as
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shown in Figure 1.14. There are three regions for the problem. Regions I and III have
zero potential. Say region II has a potential V0, then the solutions in the three regions
are given by:

Region I : ψ(x) = A exp( jkx) + B exp(− jkx); k2 = 2m E

h̄2
(1.22)

Region II : ψ(x) = C exp(−αx) + D exp(+αx); α2 = 2m(V0 − E)

h̄2
(1.23)

Region III : ψ(x) = F exp( jkx); k2 = 2m E

h̄2
. (1.24)

Using the conditions that the wave function and its derivatives are continuous at the
boundaries, x = 0 and x = a, the tunnelling probability is of the form:

T =
∣∣∣∣ F

A

∣∣∣∣2

= 4

4cosh2(αd) + (
α
k − k

α

)2
sinh2(αd)

. (1.25)

Boundary conditions are matched at the two boundaries and T , the tunnelling probabil-
ity is determined.

The method of solution is the same regardless of the shape of the barrier. Triangu-
lar and trapezoidal barriers have a simple geometry and hence give us exact solutions.
When the barriers are of arbitrary shape, the tunnelling probability is solved using the
Wentzel–Kramers–Brillouin (WKB) approximation:

T ∼= exp

[
−2

∫ d2

d1

| f (x) | dx

]
(1.26)

with

f (x) = 2m0

h̄2
[V (x) − E], (1.27)

where V (x) is the arbitrary potential. The limits of the integral d1 to d2 represent the
classically forbidden region, where the potential energy is larger than the total particle
energy.
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1.10 Statistical mechanics

1.10.1 The free electron

When the three-dimensional Schrödinger equation is solved, the general solution gives
the wave function for the electron in motion in a region of zero potential. The
behaviour of electrons in semiconductor crystals can be assumed to be like that of so-
called free electrons under certain conditions, hence the importance of this result. The
time-independent wave function solution is given by

ψ(r) = A exp(k · r), (1.28)

where A is a complex quantity and is the amplitude, k is the wave vector and r
is the three-dimensional space vector. This results in energies of the same form as
Equation (1.21).

1.10.2 Fermi–Dirac distribution

The Fermi–Dirac distribution function f (E) gives the probability that states with energy
E are occupied by particles [10]:

f (E) = 1

1 + exp
(

E−EF
kT

) , (1.29)

EF represents the Fermi energy where f(E) becomes equal to 1/2.

1.11 Electrons in a semiconductor

Since semiconductors have periodic lattice structures, the electrons are subjected to
a periodic potential. Hence the Schrödinger equation must be solved for a periodic
potential [10]. The Bloch theorem states that the one-dimensional wave function for
an electron in a periodic potential is given by

ψ(x) = Vk(x) exp( jkx), (1.30)

where Vk(x) is a periodic potential with the same periodicity as the semiconductor
crystal with lattice constant a such that

Vk(x) = Vk(x + na), (1.31)

where n is an integer.

1.12 The Kronig–Penney model

An important model for the band structure is the Kronig–Penney model (Figure 1.15).
The one-dimensional periodic potential is given by

V (x) = 0, 0 ≤ x ≤ a (1.32)

V (x) = V0, −b ≤ x ≤ 0 (1.33)
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Fig. 1.15 Periodic potential for Kronig–Penney model.

The periodicity distance is d = a + b. The wave equation is solved in the three regions
and the continuity conditions for the wave function and its derivatives are applied. The
non-trivial solutions are obtained when the electron energy is less than and greater than
the potential V0 [10, 14]. The transcendental equation to be solved is

cos kxd = cos aα cosh bδ − α2 − δ2

2αδ
sin aα sinh bδ, 0 < E < V0 (1.34)

cos kxd = cos aα cos bδ − α2 + δ2

2αδ
sin aα sin bδ, E > V0 (1.35)

with

α =
√

2m0 E

h̄2
, β =

√
2m0(E − V0)

h̄2
, δ =

√
2m0(V0 − E)

h̄2
. (1.36)

The solution of the equation gives the energy E. The allowed energy bands are sepa-
rated by band gaps with no allowed energies. It follows that there are forbidden energy
regions for an electron which is subjected to a periodic potential in a semiconductor
crystal.

1.12.1 Effective mass

When the centre of mass of a classical particle moves with a velocity v, we define
a phase velocity. If we have a packet of travelling waves with a centre frequency
ω and a wavenumber k, we have the classical dispersion relation for the group
velocity:

vg = dω

dk
. (1.37)

In the quantum mechanical formulation, the wavepacket is the analogue of the classical
particle in a given region of space. This wavepacket consists of constant-energy wave



18 High-Speed Electronics and Optoelectronics

function solutions and a centre energy is defined. Hence the wavepacket group velocity
in the quantum-mechanical formulation can be written as in Equation (1.20):

vg = 1

h̄

d E

dk
. (1.38)

Using the force–momentum relations, we define the effective mass of an electron in a
crystal as

m∗ =
(

1

h̄2

d2 E

dk2

)−1

. (1.39)

Section 1.14.1 defines heavy and light holes corresponding to wide and narrow bands
respectively.

1.12.2 Carriers in semiconductors

The two types of carriers in semiconductors are the conduction band electrons and the
valence band holes. The electrons occupy the conduction band when the temperature is
raised above 0 K. The unoccupied states in the valence band are holes and are defined
to have a positive charge with the same magnitude as the electronic charge. Hence, we
consider electrons in determining the conduction band properties and holes in deter-
mining the valence band properties. The band structures of several semiconductors are
given by Pierret, and Streetman and Banerjee [10, 15] and others.

1.13 Semiconductors in equilibrium

1.13.1 Intrinsic semiconductors

A semiconductor is described as being intrinsic when there are no impurities and no
defects in the crystal. The concentration of electrons in the conduction band is equal
to the concentration of holes in the valence band. At 0 K, the electrons occupy all the
available energy states in the valence band and all the states in the conduction band
are empty. This follows from the fact that at 0 K, each electron is in the lowest possi-
ble energy state. As the temperature is increased the electrons are excited due to the
acquired thermal energy and move into the conduction band leaving behind holes in the
valence band. Therefore, the equilibrium concentration of electrons in the conduction
band n0 is equal to the equilibrium concentration of holes in the valence band p0 in
intrinsic semiconductors [2, 15]:

n0 = p0 = ni, (1.40)

where ni is simply referred to as the intrinsic concentration of holes and electrons.

1.13.2 Extrinsic semiconductors

When impurity atoms are added to the intrinsic semiconductor such that the electron
concentration is no longer equal to the hole concentration, it becomes an extrinsic
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semiconductor and n0 �= p0. Thus the doping of a semiconductor with impurities can
produce excess electrons or holes. These atoms can be either donors or acceptors. If the
dopant produces an excess of electrons, the dopant is referred to as a donor, the semi-
conductor becomes n-type material with n > p and the current is predominantly due to
the negatively charged electrons. If, on the other hand, the dopant generates holes, the
dopant is referred to as an acceptor, the result is a p-type semiconductor with p > n
and the current is predominantly due to the positively charged holes. Note that the hole
charge has the same magnitude as the electronic charge [2, 8, 15].

1.13.3 Semiconductor band diagrams

The band diagrams for p- and n-type semiconductors at thermal equilibrium are given in
Figure 1.16. The bottom of the conduction band is Ec, the top of the valence band is Ev,
the intrinsic energy level is at mid-band and is denoted by Ei and the Fermi level is EF.

1.13.4 Electron and hole distribution

The distribution of electrons in the conduction band and holes in the valence band is
obtained using the Fermi–Dirac probability function. The electron distribution in the
conduction band is written as

n(E) = gc(E) f (E), (1.41)

where gc(E) is the density of quantum states in the conduction band and f (E) is the
Fermi–Dirac probability function given in Equation (1.29). The hole distribution in the
valence band can be written in a similar way:

p(E) = gv(E)[1 − f (E)]. (1.42)

The density of states functions are written as

gc(E) = m∗
n

√
2m∗

n(E − Ec)

π2h̄3
, E ≥ Ec (1.43)

gv(E) =
m∗

p

√
2m∗

p(Ev − E)

π2h̄3
, E ≤ Ev. (1.44)

The equilibrium concentration of electrons can now be written as

n0 =
∫ ∞

Ec

n(E)dE, (1.45)
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where n(E) is given by Equation (1.41). Similarly, the equilibrium hole concentration
is written as

p0 =
∫ Ev

−∞
p(E)dE, (1.46)

where p(E) is given by Equation (1.42). The equilibrium electron and hole concentra-
tions in the conduction and valence bands respectively are written as

n0 = Nc exp

(−(Ec − EF)

kT

)
(1.47)

p0 = Nv exp

(−(EF − Ev)

kT

)
, (1.48)

where Nc and Nv are the effective density of states functions in the conduction and
valence bands respectively.

Nc = 2

(
2πm∗

nkT

h2

)3/2

(1.49)

Nv = 2

(
2πm∗

pkT

h2

)3/2

. (1.50)

The intrinsic carrier concentration ni is given by

n2
i = n0 p0. (1.51)

By substitution of Equations (1.47) and (1.48), we can write the intrinsic concentra-
tion as

n2
i = Nc Nv exp

(−(Ec − Ev)

kT

)
(1.52)

= Nc Nv exp
−Eg

kT
, (1.53)

where Eg is the bandgap energy.

1.14 Direct and indirect semiconductors

When light illuminates a semiconductor, and the photon energy is equal to or larger than
the band gap, the light is absorbed, and creates hole–electron pairs. These holes and
electrons are equal in number to maintain charge neutrality, and since they are not in
equilibrium, in due course they recombine; this recombination may be radiative or non-
radiative. Radiative recombination, when a photon is emitted usually at the bandgap
energy, only occurs in direct bandgap material, whereas non-radiative recombination
may occur in both direct and indirect bandgap semiconductors. In indirect semicon-
ductors, this non-radiative recombination requires a phonon to mediate the process.
Non-radiative processes in direct bandgap material are usually through traps or due
to surface recombination. The direct or indirect band gap defines whether the lowest
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position of the conduction band aligns with the maximum of the valence band along
momentum space, where the effective momentum value k is equal to zero.

Direct bandgap semiconductors are capable of photon emission, by radiative recom-
bination, but indirect semiconductors have a low probability of radiative recombination.
However, indirect bandgap semiconductors may have isoelectronic impurity states
which are direct, and therefore the recombination from these states may also be radia-
tive. GaP, which is an indirect gap semiconductor, may be doped with zinc oxide or
nitrogen to produce these states, and the widely used green or red light–emitting diodes
are examples of this emission.

1.14.1 Absorption processes

Considering Figure 1.17, we note that three different valence bands are shown. Equa-
tion (1.39) had linked the carrier mobility the second derivative of energy with respect
to k. It is then easy to understand why the band with less curvature at k = 0 (V1) is
called the “heavy hole band”, while the one which is more strongly bent (V2) is called
“light hole band”. In most bulk semiconductors, the light and heavy hole bands con-
cide at k = 0 – they are degenerate. The band V3 is called the “split-off band”. Note

V2
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Fig. 1.17 Band diagram of bulk Ge (left) and Si (right). Note that the minimum of the conduction band is
not aligned with maximum of the valence band at k = 0, indicating that these are indirect
semiconductors. S. Wang, Fundamentals of Semiconductor Theory and Device Physics, 1st
Edition, pp. 233–234, c©1989. Reprinted by permission of Pearson Education, Inc., Upper
Saddle River, NJ.
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Fig. 1.18 Band diagram of bulk GaAs. Note that the minimum of the conduction band is aligned with
maximum of the valence band at k = 0, indicating that this is a direct gap semiconductor.
S. Wang, Fundamentals of Semiconductor Theory and Device Physics, 1st Edition, pp. 233–234,
c©1989. Reprinted by permission of Pearson Education Inc., Upper Saddle River, NJ.

that in each of these cases, the minimum of the conduction band is not aligned with
the maximum of the valence band where k = 0, which implies that these are indirect
semiconductors. In Figure 1.18, the band diagram of the direct semiconductor GaAs is
shown; here the conduction band minimum is along the k = 0 axis and aligned with the
maximum of the valence band. Note the degenerate valence band of heavy holes and
light holes and the split-off band.

Photo-excitation of semiconductors with photons energies equal to or greater than
the bandgap energy of the material results in absorption, which in turn causes the
creation of hole–electron pairs for each photon. The major source of absorption in
semiconductors is the valence band to conduction band transition. In the case of direct
semiconductors, the transition occurs when the photon energy is at the bandgap value
or larger and results in the transition of an electron in the valence band to the conduc-
tion band. In indirect semiconductors, the absorption has to be mediated by phonons. In
addition to the band to band absorption, transitions take place from acceptor to donor
levels, from acceptor to conduction band, valence to donor level, all of which result
in absorption below the bandgap energy. Figure 1.19 shows schematically the band
to band transition for the direct gap semiconductor, and in Figure 1.20, the phonon-
mediated transition. The conduction band to valence band and impurity band to impurity
band transitions are shown schematically in Figure 1.21. Not shown in this figure are
the impurity band to conduction and valence band transitions, all of which lead to
absorption and emission of the appropriate photon energies.



Review of semiconductor materials and physics 23

Ec

Ev

Eg

k
0

Fig. 1.19 Schematic diagram of the conduction and valence bands of a direct semiconductor and the
transitions.
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Fig. 1.20 Schematic diagram of the indirect semiconductor and the phonon-mediated transitions.
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Fig. 1.21 Transitions possible with a semiconductor with impurity donor and acceptor bands: conduction
band to valence band and impurity band to impurity band are illustrated. Others, conduction
band to impurity band and valence band to impurity band have not been shown.
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The absorption rate of the band to band transitions, for both the direct and indirect
transitions may be calculated using quantum theory, but is not included here.

Free carrier absorption also occurs in most semiconductors as the carrier density is
always non-zero. The absorption of a photon by a carrier within a band results in the
carrier having a larger energy. The absorption coefficient is proportional to the carrier
density [3]. This effect is important in the design of waveguide devices, where typically
this may result in absorption of the order of 1 dB cm−1 when the carrier densities are
high in the 1018 cm−3 region.

1.14.2 Exciton absorption

In pure semiconductors, the absorbed photon with bandgap energy or larger may create
excitons, which are electron–hole pairs that are bound, and in the binding process give
up the binding energy. The binding energy of these excitons is of the order of about
4.5 meV, and at low temperatures, an excitonic absorption peak is seen a little below
the band to band absorption energy. At room temperature, this peak is not seen in bulk
material, because the thermal broadening due to optical phonons is comparable, and
the excitons that are created dissociate very rapidly. In quantum wells, however, the
excitons remain extant at room temperature due to enhanced binding energies, which are
typically two or three times that of the thermal broadening energy. Thus, the absorption
characteristics of the material with quantum wells also show the excitonic absorption
in addition to the usual band to band absorption. When a transverse electric field is
applied to the quantum well, the absorption edge shifts to a longer wavelength. A simple
explanation of this phenomenon is shown in Figure 1.22, where the schematic wave
functions of the electron and hole in the quantum well are shown. When the transverse
field is applied, then the quantum well bands tilt, and the resulting gap between the
electron–hole wave functions decreases, which results in the absorption edge moving to
a smaller energy and thus a longer wavelength.

Ec

Ec

E

Ev

Ev

Eg EgEg

Fig. 1.22 A schematic diagram of the wave functions in a quantum well, and the effect of applying a field
across the well, resulting in tilting of the wells. This so-called Quantum Confined Stark Effect
reduces the effective band gap of the material.
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Fig. 1.23 Absorption coefficient for various semiconductors (M. Shur, Physics of Semiconductor Devices,
Prentice Hall, 1990 c©Prentice Hall).

Other absorption mechanisms are due to valence to impurity band, impurity band
to other impurity band or impurity band to conduction band transition, intraband
absorption between different levels in the same band, and free carrier absorption.

The absorption spectra of different semiconductors is summarised in Figure 1.23.

1.15 Recombination and radiation in semiconductors

The absorption of photons by the semiconductor results in the generation of elec-
trons and holes, which disturbs the equilibrium status of the semiconductor. Electrical
injection also results in this non-equilibrium of an excess of electrons in the conduc-
tion band and an equal number of holes in the valence band. These recombine, both
non-radiatively and radiatively, the latter in direct gap semiconductors. In general, the
radiative transitions are dominated by the conduction band to valence band emission
and therefore define the energy of the emitted photons. Other recombination processes
include exciton recombination, donor to acceptor and other impurity recombinations.
The radiation spectrum from recombination is generally shifted to lower energy from
the absorption spectrum, and this is termed the Stokes or the Franck–Condon shift due
to imperfections in materials or interfaces.
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In general the excess electrons and holes decay at some rate, resulting in the density
varying as exp(−t/τ), where τ is defined as the lifetime of the carriers. The decay of
these carriers results in transfer of energy to the lattice in the form of phonons for the
non-radiative decay and transfer of energy to photons for radiative decay.

The corresponding lifetimes are labelled as τnr and τr for the non-radiative and radia-
tive decay, respectively, and the corresponding non-radiative and radiative rates are Rnr

and Rr, respectively. Thus, the total lifetime constant τ is given as:

1

τ
= 1

τnr
+ 1

τr
. (1.54)

The corresponding total spontaneous rate of recombination is given by

Rspon = Rnr + Rr. (1.55)

Devices such as the light-emitting diode (LED) largely depend on spontaneous emis-
sion, and in this case the internal quantum efficiency is given by

ηinternal = Rr

Rnr + Rr
. (1.56)

The exponential decay rate of the excess carriers is inversely proportional to recombi-
nation rate, and if the excess of electron is �n, then the recombination rates Rr and Rnr

are given by the expressions: Rr = �n/τr and Rnr = �n/τnr. Then internal quantum
efficiency may also be written as

ηinternal =
1
τr

1
τr

+ 1
τnr

= 1

1 + τr
τnr

= τnr

τr + τnr
. (1.57)

The total spontaneous recombination rate is given by the equation:

Rtotal = A�n + B�n2 + C�n3. (1.58)

The first term is the Shockley–Read–Hall recombination due to defects and traps, the
second is the spontaneous emission due to radiative transition, and the third is the Auger
recombination term. Auger recombination is non-radiative, occurs at high injection
levels, and is a three-particle process. It becomes important in ternary and quater-
nary compounds of InP-based materials, and is evident in the long wavelength laser
structures.

1.15.1 Spontaneous and stimulated emission

The radiative recombination process discussed above occurs spontaneously, and this
is used in traditional LED structures. In lasers, stimulated emission is the source of
light, and in this section the relationship between absorption, spontaneous emission and
stimulated emission, first outlined by Einstein in 1917, is discussed. The derivations
given here follow the approach outlined by Casey and Panish [4] and Agrawal [1].

It can be shown that the blackbody radiation law is given by

P(E) = 8πn 3 E2

h3c3(eE/kT − 1)
, (1.59)
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Fig. 1.24 Transitions from level E1 to E2 for absorption and from E2 to E1 for emission, F1 and F2 are
the electron and hole quasi-Fermi levels respectively.

where n is the index of the material under consideration, h is Planck’s constant, c is the
speed of light in vacuum, E is the energy given by hν, ν is the frequency and k is
Boltzmann’s constant. This is the expression for the energy density blackbody radiation
P(E), and is in thermal equilibrium, when the input radiation is equal to the outgoing
radiation.

For a semiconductor, consider the transitions from the conduction band to the valence
band and also the reverse. The energy levels in each of these bands have to obey the
Pauli exclusion principle, which implies only two carriers at each level. Thus, the band
is a series of levels, as shown in Figure 1.24, and the transition energy for an electron
from a level E1 in the valence band to a level E2 in the conduction band requires that an
incident photon has energy given by hν = E2 − E1. Let the probability of this transition
taking place be given by B12, and let f1 be the probability that an electron exists at level
E1 and (1− f2) be the probability that a vacancy occurs at level E2. Also assume that the
radiation density of photon energy incident on the semiconductor is given by P(E21).
Then the upward transition rate is given by

r12 = B12 f1(1 − f2)P(E21). (1.60)

Note that f1 and f2 take the form of the Fermi–Dirac distribution

fi = 1

e(Ei−Fi)/kT + 1
, (1.61)

where Fi is the corresponding quasi-Fermi level, k is Boltzmann’s constant and T the
temperature in Kelvin.

Similarly, the downward transition rate, now called the stimulated transition, is
given as

r21(stim) = B21 f2(1 − f1)P(E21), (1.62)

where B21 is the transition probability, f2 is the probability that an electron is present
at E2 and (1 − f1) is the probability that there is vacancy at E1.

Finally, there is the spontaneous transition from E2 to E1, without any incident
radiation involved, given by

r21(spon) = A21 f2(1 − f1). (1.63)
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In thermal equilibrium, the input radiation is equal to the output, the Fermi levels F1 =
F2, and hence

r12 = r21(spon) + r21(stim). (1.64)

Equating, simplifying and noting that P(E21) is the blackbody radiation term,

P(E21) = 8πn3 E2

h3c3(eE21/kT − 1)
(1.65)

= A21 f2(1 − f1)

B12 f1(1 − f2) − B21 f2(1 − f1)
(1.66)

= A21

B12eE21/kT − B21
. (1.67)

Equating Equations (1.65) and (1.67) and separating them into temperature-dependent
and temperature-independent terms give the following results:

A21 = 8πn 3 E2

h3c3
B21 (1.68)

and

B21 = B12. (1.69)

These are Einstein’s coefficients and their relationships with each other.
The condition under which stimulated emission dominates is an interesting one. This

requires a non-equilibrium condition in which the presence of incident radiation is
required. This results in the population densities in the conduction and valence bands to
be different from the equilibrium condition. For stimulated emission to dominate, the
stimulated emission rate, r21(stim), needs to exceed the absorption rate r12. Substituting
from Equations (1.60) and (1.62),

B21 f2(1 − f1)P(E21) > B12 f1(1 − f2)P(E21). (1.70)

Since B21 = B12, this equation becomes

f2(1 − f1) > f1(1 − f2). (1.71)

Substituting for f1 and f2 from Equation 1.61, this equation becomes

e(F2−F1)/kT > e(E2−E1)/kT (1.72)

or

F2 − F1 > E2 − E1. (1.73)

This implies that the difference in the quasi-Fermi levels is greater than the emission
energy of the photon. If the emission is at bandgap energy, then the difference between
quasi-Fermi levels needs to be greater than the bandgap energy Eg.
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1.16 Carrier transport in semiconductors

Drift and diffusion are the two mechanisms whereby carriers are transported in semi-
conductors such that there is current flow. It will be assumed that thermal equilibrium
will not be disturbed during these processes [2, 8, 10, 15].

1.16.1 Drift current

When an external electric field is applied to a semiconductor, it produces a force that will
accelerate the electrons and holes in opposite directions as long as there are available
energy states in the conduction and valence bands. The net drift of charge will produce
a current which is the drift current. If the electric field is denoted as E , the drift current
densities for electrons and holes are written as

Jn(drift) = qnvndr = qμnnE (1.74)

Jp(drift) = qpvpdr = qμpnE, (1.75)

where q is the charge on a particle (electron or hole), J is the surface density of current,
vndr and vpdr are the drift velocities of electrons and holes, respectively, and μ is the
mobility.

1.16.2 Diffusion current

Electrons flow from a region of higher concentration to a region of lower concentration,
producing a flux of electrons and an electron diffusion current which is in the opposite
direction to the flux. The hole flow is such that the hole flux and the hole diffusion
current are in the same direction since the holes are positively charged. The diffusion
current densities for electrons and holes are given by

Jndiff = q Dn
dn

dx
(1.76)

Jpdiff = −q Dp
dp

dx
, (1.77)

where Dn and Dp are the electron and hole diffusion coefficients respectively. The
diffusion coefficient is related to the mobility μ by the Einstein relation:

D = μkT

q
. (1.78)

Hence,
Dn

μn
= Dp

μp
= kT

q
. (1.79)

Adding Equations (1.74)–(1.77),

J = (qμnn + qμp p)E + q Dn
dn

dx
− q Dp

dp

dx
. (1.80)
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1.17 p–n junction

When a junction is formed by a p-type and an n-type semiconductor, holes move from
the p to the n side across the metallurgical junction and electrons move in the opposite
direction. There are concentration gradients of electrons and holes giving rise to diffu-
sion. Furthermore, when the electrons leave the n region, positively ionised donor atoms
remain behind and, similarly, negatively ionised acceptor atoms remain in the p region.
These ionised donors and acceptors reside on both sides of the metallurgical junction
and are not mobile. The length of this region increases as the diffusion continues. The
resultant electric field is directed from the positive charge to the negative charge. This
field builds up in such a way as to oppose the diffusion of the carriers in both directions
across the junction. An equilibrium condition is reached and there is no net flow of cur-
rent across the junction. The ionised region on both sides of the metallurgical junction
is called the depletion or space charge region. The p–n junction is seen in Figure 1.25.
The band diagram and space charge distribution of a p–n homojunction are shown in
Figure 1.26. The general form of Poisson’s equation for an abrupt junction where there
is an abrupt change in the doping concentration is

dE
dx

= q

εs
(p − n + ND − NA), (1.81)

where p is the hole concentration, n is the electron concentration and ND and NA are
the ionised donor and acceptor concentrations respectively. If the metallurgical junction
is the origin, the depletion region on the p side extends to −xp and on the n side to xn.
Poisson’s equation is written for the depletion regions on either side of the metallurgical
junction as

dE
dx

= − q

εs
NA, −xp < x ≤ 0 (1.82)

dE
dx

= q

εs
ND, 0 < x ≤ xn, (1.83)

where εs is the permittivity of the semiconductor material. The regions outside the
depletion region are neutral regions and hence the electric field is zero. Equations (1.82)
and (1.83) are solved using the boundary condition on the electric field to get

0
x

xn–xp

p n
Depletion region

+
+
+
+

+ + +
+ + +

+ + +
+ + +

– – – –
– – ––
– – –
– – – –

–

Fig. 1.25 p–n junction at equilibrium.
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Diffusive electron transport
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Diffusive hole transport
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qND

xn

–xp
x

–qNA

Fig. 1.26 p–n junction without externally applied voltage – band diagram (centre) and space charge
distribution (bottom).

E = −q NA

εs
(x + xp), −xp < x ≤ 0 (1.84)

E = q ND

εs
(x − xn), 0 < x ≤ xn. (1.85)

The potential is related to the electric field by the equation

E = −dV

dx
. (1.86)

Integrating Equations (1.84) and (1.85)

V (x) = q NA

2εs
(x + xp)

2, −xp < x ≤ 0 (1.87)

V (x) = −q ND

2εs
(x − xn)

2, 0 < x ≤ xn. (1.88)
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1.17.1 The built-in potential

The built-in potential on the p side of the junction is the potential difference across the
depletion region. It is determined similarly on the n side.

Vbip = q NA

2εs
x2

p (1.89)

Vbin = q ND

2εs
x2

n . (1.90)

The total built-in potential across the junction is

Vbi = (Vbip + Vbin) (1.91)

= q

2εs
[NAx2

p + NDx2
n ]. (1.92)

The continuity of the electric field across the junction at x = 0 requires that

NAxp = NDxn. (1.93)

It is assumed that the dopants are fully ionised and the total ionised positive charge
per unit area on the n side is equal to the total ionised negative charge per unit area on
the p side. At thermal equilibrium, there is no net current flow and hence the drift and
diffusion currents are equal. The electron current is

Jn = 0 (1.94)

= Jndrift + Jndiff (1.95)

= qμnnE + q Dn
dn

dx
. (1.96)

The hole current is written as

Jp = 0 (1.97)

= Jpdrift + Jpdiff (1.98)

= qμp pE − q Dp
dp

dx
. (1.99)

When the net hole current is zero, and with the electric field equal to the gradient of the
potential, it may be shown that

Vbi = kT

q
ln

NAND

n2
i

. (1.100)

It has been assumed that there is full ionisation of the dopant impurity levels such that
the majority carrier concentrations are the doping concentrations and the equilibrium
concentrations are related by

n0 p0 = n2
i . (1.101)

1.17.2 The depletion layer width

The widths of the depletion layer in the p- and n-type semiconductors may be calculated.
The maximum electric field occurs at the metallurgical junction, x = 0. This is given by

εsEmax = q NDxn = q NAxp. (1.102)
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Using the Equations (1.92) and (1.93) with

| Vbi | = Emax

2
[xn + xp] (1.103)

W = xn + xp (1.104)

=
√

2εs

q

(
1

ND
+ 1

NA

)
| Vbi |. (1.105)

1.17.3 The depletion capacitance

The depletion capacitance is the capacitance at the p–n junction. The depletion layer is
modelled as a parallel plate capacitor. The capacitance is written as

Cj = εs A

W
, (1.106)

where A is the area of the p–n junction and W is the depletion layer width given by
Equation (1.105). The junction capacitance is given by

C = A

√
qεs NA ND

2Vbi(NA + ND)
. (1.107)

1.17.4 p–n junction under bias

At thermal equilibrium, the total electrostatic potential across the p–n junction is the
built-in potential,Vbi, and the potential difference between the p and n regions is qVbi.
If now a voltage VA is applied with the positive terminal connected to the p side and the
negative to the n side, the junction is forward-biased and the total electrostatic potential
across the junction is Vbi − VA, resulting in a reduction of the depletion layer width.
A potential barrier was formed at thermal equilibrium restricting the motion of the
majority carriers. The application of the forward bias reduces the height of the bar-
rier. If, on the other hand, a voltage is applied with the positive terminal connected to
the n side and the negative terminal to the p side, the electrostatic potential across the
junction is Vbi − (−VA) and the height of the barrier is increased with the reverse bias.
The depletion widths and the energy band diagrams are shown in the figure. The width
of the depletion layer is given by

W =
√

2εs

q

(
ND + NA

NA ND

)
(Vbi ∓ VA). (1.108)

1.17.5 Current–voltage characteristics

The total current density in a p–n junction is given as:

J = q

[
Dnnp0

Ln
+ Dp pn0

Lp

] [
exp

(
qVA

kT

)
− 1

]
, (1.109)


