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Preface

Over the past 30 years, the world has witnessed the rapid development of optoelectronic
devices based on III-V compound semiconductors. Past effort has mainly been directed
to the theoretical understanding of, and the technology development for, these devices in
applications in telecommunication networks and compact disk (CD) data storage. With
the growing deployment of such devices in new fields such as illumination, display, fiber
sensor, fiber gyro, optical coherent tomography, etc., research on optoelectronic devices,
especially on those light emitting components, continues to expand with the pursuit of
many experimental explorations on new materials such as group-III nitride alloys and
II-VI compounds and novel structures such as quantum wires, dots, and nanostructures.

As the manufacturing technology becomes mature and standardized and few uncer-
tainties are left, design and simulation become the major issue in the performance
enhancement of existing devices and in the development of new devices. Recent progress
in numerical techniques as well as computing hardware has provided a powerful platform
that makes sophisticated computer-aided design, modeling, and simulation possible. So
far, the development of optoelectronic devices seems to replicate the history of electronic
devices: from discrete to integrated, from technology intensive to design intensive, from
trial-and-error experiments to computer-aided simulation and optimization.

The purpose of this book is to bridge the gap between the theoretical framework and
the solution to real-world problems, or, more specifically, to bridge the gap between
our knowledge acquired on electromagnetic field theory, quantum mechanics, and semi-
conductor physics and optoelectronic device design and modeling through advanced
numerical tools.

Advanced optoelectronic devices are built on compound semiconductor material sys-
tems with complicated geometrical structures; they are also operated under varying
conditions. For this reason, we can find hardly any easy, intuitive, and analytical solu-
tions to the first-principle-based governing equations that accurately describe the closely
coupled physical processes inside such devices. Although solutions are relatively easy
to obtain from the equations derived from the phenomenological model, assumptions
have to be made in such a model, which often ignores some important effects and fails to
achieve quantitative agreement between theoretically predicted and practically measured
results.

Therefore, obtaining the solution directly from the physics-based governing equations
through numerical techniques seems to be a promising approach to bridge the gap as
mentioned above, as not only a qualitative, but also a quantitative matching between
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the theory and experiment is achievable. This book is intended for readers who want to
link their understanding of the device physics through the theoretical framework they
have already acquired to the design, modeling and simulation of real-world devices and
innovative structures.

This book will focus on semiconductor-based optoelectronic devices such as laser
diodes (LDs), electro-absorption modulators (EAMs), semiconductor optical amplifiers
(SOAs), and superluminescent light emitting diodes (SLEDs) in various applications.
Numerical methods will be used throughout the analysis of these devices.

Derived from physics-based first principles, governing equations will be given for the
description of different physical processes, such as light propagation, optical gain gen-
eration, carrier transport and thermal diffusion, and their interplays inside the devices.
Different numerical techniques will be discussed in detail along with the process of seek-
ing the solution to these governing equations. Discussions on device design optimizations
will also be followed, based on the interpretation of the numerical solutions.

The methodology introduced in this book hopefully will help its readers to learn (1)
how to extract the governing equations from first principles for the accurate description
of their devices; and more importantly, (2) how to obtain the numerical solution to those
governing equations once derived. Practical design and simulation examples are also
given to support the approaches used in this book.

I am in debt to my colleague and friend, Professor W.-P. Huang, who showed me the
prospect of computer-aided design, modeling and simulation in this field 15 years ago,
and with whom I had countless stimulating discussions on almost every topic involved in
this book, from the material physics to waveguide theory, from the model establishment
to result interpretation, and from the modeling methodology to numerical algorithm. I
would like to thank Dr. T. Makino (former Nortel), Dr. K. Yokoyama (former NTT), Dr.
T. Yamanaka (NTT), Dr. C.-L. Xu (RSoft Inc.), Dr. J. Hong (Oplink Inc.), Dr. A. Shams
(former Photonami Inc.), Professor S. Sadeghi (University of Alabama at Huntsville),
Professor W. Li (University of Wisconsin at Platteville), Professor Y. Luo (Tsinghua
University), Professor Y.-H. Zhang (Arizona State University), Ms. T.-N. Li (InPhenix
Inc.), Ms. N. Zhou (AcceLink Co.), Mr. M. Mazed (IP Photonics Inc.), Professor T.
Luo (University of Minnesota), Professor C.-Q. Xu (McMaster University), Professor
M. Dagenais (University of Maryland at College Park), Dr. J. Piprek (former University
of California at Santa Barbara), and many other colleagues and friends in this field, for
numerous insightful and inspiring discussions and interactions on various subjects in this
book, during and after our research collaborations. I am grateful to Ms. Y.-P. Xi, who
helped me with the simulation of SOAs and SLEDs, and Mr. Q.-Y. Xu, who helped me
with the simulation of crosstalks in the integrated DFB laser and monitoring photodetec-
tor. I am also grateful to Professor S.-H. Chen (Huazhong University of Sci. and Tech.)
and her graduate students, who helped me to create most of the schematic diagrams in the
first eight chapters and all the three-dimensional device structure drawings in Chapters 10
and 12. I would also like to thank my graduate students and many other graduate students
in the Department of Electrical and Computer Engineering at McMaster University who
took my course on this subject, for their valuable comments and suggestions. Finally, I
appreciate the constant help and great patience of Dr. J. Lancashire and Ms. S. Koch.



1 Introduction

1.1 The underlying physics in device operation

Figure 1.1 shows the major physical processes and their linkages in the operation of
optoelectronic devices.

To capture these physical processes, we need the following models and knowledge:

(1) a model that describes wave propagation along the device waveguide (electromag-
netic wave theory);

(2) a model that describes the optical properties of the device material platform
(semiconductor physics);

(3) a model that describes carrier transport inside the device (quasi-electrostatic theory);
(4) a model that describes thermal diffusion inside the device (thermal diffusion theory).

Therefore, the above four aspects should be included in any model established for
simulation of optoelectronic devices.

1.2 Modeling and simulation methodologies

There are two major approaches in device modeling and simulation.

(1) Physics modeling: a direct approach based on the first principle physics-based model.

The required governing equations in the preceding four aspects are all derived from
first principles, such as the Maxwell equations (including electromagnetic wave theory
for the optical field distribution and quasi-electrostatic theory for the carrier transport),
the Schrödinger equation (for the semiconductor band structure), the Heisenberg equation
(for the gain and refractive index change), and the thermal diffusion equation (for the
temperature distribution).

This model gives the physical description of what exactly happens inside the device
and is capable of providing predictions on device performance in every aspect, once the
device building material constants, the structural geometrical sizes, and the operating
conditions are all given.

This approach is usually adopted by device designers who work on developing devices
themselves.
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Fig. 1.1. The physical processes and their linkages in the operation of optoelectronic devices. Noted in
brackets are the first principle equations that govern these processes.

However, such a modeling technique is usually complex and sophisticated numerical
tools have to be invoked in solving the equations involved. Computationally it is usually
expensive.

(2) Behavior modeling: an indirect approach based on an equivalent or phenomenolog-
ical model.

The governing equations in the preceding four aspects are extracted from first prin-
ciples under various assumptions. Hence they are greatly simplified compared with the
equations in the physics-based model. Those frequently used methods in the extraction
of the simplified equations include: (1) reducing or even eliminating spatial dimensions;
(2) neglecting the dependence that causes only relatively slow or small variation; and
(3) ignoring the physical processes that have little direct effect on the aspects of inter-
est. Another method is to replace the original local or discrete variable by a global or
integrated variable in the description of the physical process, as the latter usually obeys
a certain conservation law, hence a corresponding balance equation can be derived in a
simple form.

This model does not give the description of what exactly happens inside the device
but is capable of providing the same device terminal performance as the physics-based
model. Therefore, if the device is treated as a black box, this model will provide the
correct output for any given input.

This approach is usually adopted by circuit and system designers who just use rather
than develop devices.
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Although this modeling technique is usually simple and computationally inexpensive,
it has two major drawbacks that prevent its application in device design and development.
The first demerit is that it can give hardly any physical insights. Little information can
be obtained on how to make a device work better by improving the design. The second
demerit is that it often relies on non-physical input parameters, such as effective constants
or phenomenologically introduced coefficients, which are usually difficult to obtain.

In optoelectronic device modeling, we normally take a combination of the preceding
two approaches. Depending on different simulation requirements, we usually retain a
minimum set of the necessary physics-based equations and replace the rest by simplified
ones.

1.3 Device modeling aspects

In device modeling, we normally look at the following aspects.

(1) Device steady state performance.
No time dependence needs to be considered in this simulation. The device character-
istics are usually modeled as functions of the bias.

(2) Device small-signal dynamic performance.
Based on the small-signal linearization, a direct current (DC) at a fixed bias plus a
frequency domain analysis are required in this simulation.

(3) Device large-signal dynamic performance.
A direct time-domain analysis is required in the simulation.

(4) Noise performance.
Either a semi-analytical frequency domain analysis or a numerical time-domain
analysis is required in this simulation.

1.4 Device modeling techniques

A typical procedure for optoelectronic device modeling and simulation includes:

(1) input geometrical structures;
(2) input material constants;
(3) set up meshes;
(4) initialize solvers (pre-processing);
(5) input operating conditions;
(6) scale variables (physical to numerical);
(7) start looping;
(8) call carrier solver;
(9) call temperature solver;

(10) call material solver;
(11) call optical solver;
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(12) go back to step 7 until convergence;
(13) scale variables (numerical to physical);
(14) output assembly (post-processing).

To start this procedure, however, one must have an initial device structure, which relies
on one’s understanding of the device physics and on one’s experience accumulated from
analysis and interpretation of the results obtained from device design, modeling and
simulation practice.

Other than the initial structure, we still need to collect all the input parameters required
by the numerical solvers. These parameters are usually obtained from open literature,
experiment, or calibration.

The following are a number of numerical techniques that are often involved in
optoelectronic device modeling:

(1) partial differential equation (PDE) solvers (boundary value and mixed boundary
and initial value problems);

(2) ordinary differential equation (ODE) solvers (initial and boundary value problems);
(3) algebraic eigenvalue problem solvers;
(4) linear and non-linear system of algebraic equations solvers;
(5) root searching routine;
(6) minimization or maximization routine;
(7) function evaluations, interpolation and extrapolation routines;
(8) numerical quadratures;
(9) fast Fourier transform (FFT) and digital filtering routines;

(10) pseudo-random number generation.

The key issue in device modeling is to establish numerical solvers for PDEs, which
usually follows a procedure as shown below.

(1) Scale the variables in given PDEs.
(2) Set up computation window and mesh grids.

(These two steps translate a physical problem into a numerical problem.)

(3) Equation discretization through, e.g., finite difference (FD) scheme.
(4) Boundary processing.

(These two steps translate PDEs into a system of algebraic equations.)

(5) Start Newton’s iteration for the system of non-linear algebraic equations.

(This step translates the system of non-linear algebraic equations into a system of linear
algebraic equations.)

(6) Find solution to the system of linear algebraic equations.
Direct method (for moderate size or dense coefficient matrix).
Iterative method (for large size sparse coefficient matrix).
Convergence acceleration (for iterative method).
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(7) Convergence acceleration for Newton’s iteration.

(The numerical solution will be obtained after this step.)

(8) Scale variables and post processing.

(A physical solution will be obtained after this step.)

1.5 Overview

This book is divided into three parts. The first part, comprising Chapters 2, 3, 4, and
5, is on the derivation and explanation of governing equations that model the closely
coupled physics processes in optoelectronic devices. The second part, Chapters 6, 7, 8,
and 9, is devoted to numerical solution techniques for the governing equations arising
from the first part and explains how these techniques are jointly applied in device simu-
lation. Chapters 10, 11, and 12 form the third part, which provides real-world design and
simulation examples of optoelectronic devices, such as Fabry–Perot (FP) and distributed
feedback (DFB) LDs, EAMs, SOAs, SLEDs, and their monolithic integrations.



2 Optical models

2.1 The wave equation in active media

2.1.1 Maxwell equations

The behavior of the optical wave is generally governed by the Maxwell equations

∇ × ⇀

E(⇀r , t) = − ∂

∂t

⇀

B(⇀r , t), (2.1)

∇ × ⇀

H(⇀r , t) = ∂

∂t

⇀

D(⇀r , t) + ⇀

J (⇀r , t), (2.2)

∇ · ⇀

D(⇀r , t) = ρ(⇀r , t), (2.3)

∇ · ⇀

B(⇀r , t) = 0, (2.4)

where
⇀

E and
⇀

H indicate the electric and magnetic fields in V/m and A/m, respectively, r
and t represent the space coordinate vector and time variable, respectively,

⇀

D the electric
flux density in C/m2,

⇀

B the magnetic flux density in Wb/m2,
⇀

J the current density in
A/m2, and ρ the charge density in C/m3.

In semiconductors, the constitutive relation reads

⇀

D(⇀r , t) =
∫ t

−∞
ε(⇀r , t − τ)

⇀

E(⇀r , τ )dτ, (2.5)

⇀

B(⇀r , t) = µ0
⇀

H(⇀r , τ ), (2.6)

with ε and µ0 denoting the time domain permittivity of the host medium and permeability
in a vacuum in F/m and H/m, respectively.

Noting that

ε(⇀r , t) = ε0[δ(t) + χ(⇀r , t)], (2.7)

with ε0 denoting the permittivity in a vacuum in F/m and χ the dimensionless time-
domain susceptibility of the host medium, equation (2.5) can also be written as

⇀

D(⇀r , t) = ε0

∫ t

−∞
[δ(t − τ) + χ(⇀r , t − τ)]

⇀

E(⇀r , τ )dτ = ε0
⇀

E(⇀r , t) + ⇀

P (⇀r , t), (2.8)
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where the induced polarization of the host medium in C/m2 is defined as

⇀

P (⇀r , t) ≡ ε0

∫ t

−∞
χ(⇀r , t − τ)

⇀

E(⇀r , τ )dτ. (2.9)

For an electromagnetic field at optical frequencies

ρ = 0. (2.10)

In a passive area without any radiative recombination process

⇀

J = 0. (2.11)

In an active area with a spontaneous emission process

⇀

J = ⇀

J sp. (2.12)

It is worth mentioning that, in an active area, the stimulated emission process will
be included in the susceptibility, as it is a purely homogeneous process induced by
a given electric field. Therefore, the stimulated emission process is excluded from
equation (2.12), as the driven current must be a purely inhomogeneous source.

By using equations (2.5) and (2.6), the electrical and magnetic flux densities
⇀

D and
⇀

B can be eliminated from equations (2.1) and (2.2); hence we obtain

∇ × ⇀

E = −µ0
∂

∂t

⇀

H, (2.13)

∇ × ⇀

H = ε0
∂

∂t

⇀

E + ∂

∂t

⇀

P + ⇀

J sp. (2.14)

At least in principle, equations (2.13), (2.14) and (2.9) can be solved directly under
the given semiconductor material property described by the susceptibility χ over
the entire device structure and the spontaneous emission source

⇀

J sp in the active
area. For example, a finite difference time domain (FDTD) approach can be used
to discretize equations (2.13) and (2.14) on Yee’s unit cells [1]. Each electrical and
magnetic field component can therefore be solved through the resulted recursion
in the time domain on those cells that fill out the whole device domain. How-
ever, although FDTD based numerical solvers have been very successful in dealing
with passive structures, they have seldom been employed for solving active struc-
tures because of the highly dispersive material property with embedded non-linearity
and distributed inhomogeneous driving source. Moreover, every component of the
electrical and magnetic fields must be handled as an unknown variable, which
exhausts memory capacity and hence makes the computation impossible for devices
with sizeable domains. For this reason, a wave equation model with a reduced
number of unknown variables is usually more convenient in dealing with active
devices.
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2.1.2 The wave equation

The duality principle implies that it is not necessary to use both electrical and magnetic
fields to describe optical wave propagation: either an electrical or magnetic field will be
sufficient. To reduce the number of variables involved, we perform ∇× on both sides of
equation (2.13) and replace the right hand side (RHS) ∇ × ⇀

H with equation (2.14) to
obtain

∇(∇ · ⇀

E) − ∇2 ⇀

E = −µ0

(
ε0

∂2

∂t2
⇀

E + ∂2

∂t2
⇀

P + ∂

∂t

⇀

J sp

)
. (2.15)

From equations (2.3), (2.8), (2.10) and (2.9), we also have

∇ · ⇀

E = − 1

ε0
∇ · ⇀

P = −
∫ t

−∞
∇ · [χ(⇀r , t − τ)

⇀

E(⇀r , τ )
]

dτ

= −
∫ t

−∞
χ(⇀r , t − τ)

[∇ · ⇀

E(⇀r , τ )
]

dτ −
∫ t

−∞
[∇χ(⇀r , t − τ) · ⇀

E(⇀r , τ )
]

dτ.

(2.16)

If we restrict our model to those structures with

∇χ(⇀r , t) · ⇀

E(⇀r , t) ≈ 0, (2.17)

we find
∇ · ⇀

E = 0. (2.18)

Hence equation (2.15) becomes

∇2 ⇀

E = 1

c2

∂2

∂t2
⇀

E + 1

c2ε0

∂2

∂t2
⇀

P + µ0
∂

∂t

⇀

J sp, (2.19)

with
c ≡ 1/

√
(µ0ε0), (2.20)

defined as the speed of light in a vacuum in m/s.
Condition (2.17) holds for those structures with weak optical guidance, i.e., χ only

changes slightly in the plane perpendicular to the wave propagation direction, as such
∇Tχ(⇀r , t) · ⇀

ET(⇀r , t) ≈ 0. Along the wave propagation direction (assumed to be z),
however, ∂χ/∂z does not need to be small since Ez ≈ 0 anyway. Therefore, wave
equation (2.19) holds even for devices with non-uniform structures along the wave
propagation direction, e.g., distributed feedback (DFB) or distributed Bragg reflector
(DBR) lasers, as long as the wave is weakly guided in the cross-section.

Expressions (2.19) and (2.9) form the wave equation model that describes optical
wave propagation in a weakly guided device structure. In the wave equation (2.19),
the only term on the left hand side (LHS) gives the spatial diffraction of the electrical
field, while the first term on the RHS gives the time dispersion of the electrical field.
The balance of these two terms gives the inherent property of the optical wave, i.e., the
propagation in space. The second term on the RHS denotes the contribution from the
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wave–media interaction where the convolution reveals that the wave at a certain time
t will be affected by the whole past “history” of the media response. This is simply
because the media cannot instantaneously respond to the incident wave. The last term
on the RHS represents the contribution of the spontaneous emission known as a noise
current source. As the only inhomogeneous term, it plays a crucial role as the “seed”
in light-emitting devices. Without the inclusion of this inhomogeneous contribution in
equation (2.19), a laser will never lase as equation (2.19) would have only zero solution
because of its homogeneity.

In comparison with the Maxwell equations in their original form, the wave equation
model is physically straightforward and has minimum required unknown variables
involved. However, equation (2.19) contains the second order derivatives with respect
to time and is in the form of a hyperbolic partial differential equation (PDE). Unlike an
elliptical PDE with only static solutions, or a parabolic PDE with solutions exponentially
approaching its steady state, a hyperbolic PDE takes harmonic oscillations as its inherent
solution and bears no time-invariant steady state. Therefore, stability will always be an
issue in looking for its solutions if the initial value is not well posed or not sufficiently
smooth.

Knowing that a hyperbolic PDE takes the harmonic wave as its “static” solution,
we can therefore write the general solution of the wave equation (2.19) in the form of a
“modulated” wave, i.e., a harmonic wave with “slow-varying” envelope. By doing so, we
should be able to extract a governing equation for this envelope from equation (2.19). As
the envelope changes more slowly, the new equation will take a reduced time derivative
and hence become more stable.

2.2 The reduced wave equation in the time domain

We assume that the optical wave is composed of harmonic waves with discrete
frequencies and relatively slow-varying envelopes

⇀

E(⇀r , t) = 1

2

∑
k

⇀uk(
⇀r , t)e−jωkt + c.c., (2.21)

with ⇀uk and ωk indicating the kth harmonic wave envelope function in V/m and angular
frequency in rad/s, respectively, and where c.c. means complex conjugate. By further
assuming the linearity of equation (2.19) (i.e., χ has no explicit dependence on

⇀

E),
we take only a single frequency (k = 0) in the following derivations without losing
generality: when multiple frequencies are involved, it is trivial to consider a summation
in a linear system because of the superposition principle. For the same reason, we can
drop the complex conjugate part by considering

⇀

E(⇀r , t) = ⇀u(⇀r , t)e−jω0t , (2.22)

only, with ω0 as the harmonic wave frequency (or reference frequency) and with the
subscript of the envelope function omitted. Since equations (2.19) and (2.9) are all real,
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if we take our real-world optical wave as the real (or imaginary) part of equation (2.22),
our real-world result will then be the real (or imaginary) part of the solution obtained
from equations (2.19) and (2.9). The reason that we use a complex exponential function
to replace the sinusoidal function is that the former is the eigenfunction of any linear
and time-invariant system, whereas the latter is not, unless it forms a proper linear
combination, i.e., a complex exponential function.

Replacing the optical field in equation (2.9) with equation (2.22) yields

⇀

P (⇀r , t) = ε0

∫ t

−∞
χ(⇀r , t − τ)⇀u(⇀r , τ )e−jω0τ dτ = ε0F

−1 [
χ̃(⇀r , ω)̃⇀u(⇀r , ω − ω0)

]
≈ ε0χ̃(⇀r , ω0)F

−1 [̃
⇀u(⇀r , ω − ω0)

] = ε0χ̃(⇀r , ω0)
⇀u(⇀r , t)e−jω0t ,

(2.23)

with ⇀̃u and χ̃ indicating the frequency domain responses of the slow-varying harmonic
wave envelope function and susceptibility, respectively, and F−1[. . .] the inverse Fourier
transform. Equation (2.23) holds only when the susceptibility varies much faster than the
slow-varying envelope in the time domain; or equivalently, the bandwidth of χ̃ is much
larger than that of ⇀̃u in the frequency domain. In optoelectronic devices, this is usually
true as long as the base-band signal (hence the slow-varying envelope) does not consist
of very short pulses. Since the full width half maximum (FWHM) bandwidth of χ̃ is
usually as broad as 5–10 THz (i.e., around 50–100 nm in a C-band centered at 1550 nm),
i.e., χ can respond to any time change slower than sub-picosecond, any base-band signal
that varies slower than 10 ps would make equation (2.23) a valid approximation.

We now plug both equations (2.22) and (2.23) into equation (2.19) to obtain

j
2ω0

c2
[1 + χ̃(⇀r , ω0)]

∂⇀u

∂t
= −∇2⇀u − ω2

0

c2
[1 + χ̃(⇀r , ω0)]⇀u + µ0ejω0t

∂

∂t

⇀

J sp, (2.24)

where under the slow-varying envelope assumption (|∂2⇀u/∂t2| � ω2
0|⇀u|), ∂2⇀u/∂t2 is

dropped.
Equation (2.24) is the reduced wave equation in the time domain. It governs the

slow-varying envelope of an optical field that is assumed in a harmonic wave form
with optical frequency ω0. Compared with equation (2.19), equation (2.24) has the
fast-varying harmonic factor (e−jω0t ) excluded, hence has a reduced time derivative
order. Numerically, stable solutions can be obtained through time domain discretization
by following the envelope change (∂⇀u/∂t), rather than by following the optical wave
change (∂

⇀

E/∂t) itself. This normally results in a great saving of progressive steps as the
former changes much slower than the latter in the time domain.

Actually, equation (2.24) is solved directly only when the device structure does not
have any dominant feature in space and hence the wave does not form any time-invariant
spatial pattern known as a “mode.” In waveguide based optoelectronic and photonic
devices, however, the wave is confined at least along one dimension. Therefore, an
optical mode can be introduced at least along this dimension and the wave will travel in
the reduced spatial dimensions. For this reason, equation (2.24) can be further simplified
for waveguide based optoelectronic and photonic devices as shown in Section 2.4.
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2.3 The reduced wave equation in the space domain

Because of the symmetry embedded in wave equation (2.19) in respect of time and space,
in principle we can also assume that the optical wave is composed of plane waves with
discrete propagation constants and relatively slow-varying envelope functions. More
specifically, by assuming that the propagation of these plane waves is all in the z direction,
we can write

⇀

E(⇀r , t) = 1

2

∑
k

⇀vk(
⇀r , t)ejβkz + c.c., (2.25)

with ⇀vk and βk indicating the kth plane wave envelope function in V/m and propagation
constant in rad/m, respectively. In equation (2.25), the envelope function is only slow-
varying in z but can change arbitrarily in the perpendicular xy plane. Again, under the
linear assumption of equation (2.19), we need only to consider

⇀

E(⇀r , t) = ⇀v(⇀r , t)ejβ0z. (2.26)

Replacing the optical field in equation (2.9) with equation (2.26) yields

⇀

P (⇀r , t) = ε0

∫ t

−∞
χ(⇀r , t − τ)⇀v(⇀r , τ )ejβ0z dτ = ⇀p(⇀r , t)ejβ0z, (2.27)

with the slow-varying polarization envelope function defined as

⇀p(⇀r , t) ≡ ε0

∫ t

−∞
χ(⇀r , t − τ)⇀v(⇀r , τ )dτ . (2.28)

We now plug both equations (2.26) and (2.27) into equation (2.19) to obtain

∂2⇀v

∂x2
+ ∂2⇀v

∂y2
+ 2jβ0

∂⇀v

∂z
= 1

c2

∂2⇀v

∂t2
+ 1

c2ε0

∂2 ⇀p

∂t2
+ β2

0
⇀v + µ0e−jβ0z

∂

∂t

⇀

J sp, (2.29)

where under the slow-varying envelope assumption (|∂2⇀v/∂z2| � β2
0 |⇀v |), ∂2⇀v/∂z2 is

dropped.
Equation (2.29) is the reduced wave equation in the space domain. Together with

equation (2.28), it governs the slow-varying envelope of an optical field which is assumed
in a modulated plane wave form with its propagation constant β0 in the z direction.
Compared with equation (2.19), equation (2.29) has the fast-varying phase factor (ejβ0z)

excluded, hence it has a reduced (from second to first) spatial derivative order in at least
one of the three dimensions. However, unlike equation (2.24), equation (2.29) is not
well posed [2]. Therefore, no finite difference algorithm in the time domain will lead to a
stable solution to equation (2.29). For this reason, we do not use equation (2.29) directly
but proceed to reduce the time derivative orders following the method in Section 2.2 to
make equation (2.29) a well-posed problem.
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2.4 The reduced wave equation in both time and space domains − the
traveling wave model

In waveguide based optoelectronic and photonic devices, the optical wave usually
propagates along one direction and is fully or partially confined in the cross-sectional
plane perpendicular to the propagation direction. Either starting from the reduced wave
equation in the time domain (2.24) or starting from the reduced wave equation in the
space domain (2.29), we can further simplify the optical governing equation under such
a condition.

2.4.1 The wave equation in fully confined structures

If the optical wave propagates only along z and is fully confined in the cross-sectional
xy plane, and if the waveguide transverse structure is uniform along z, we can write the
optical field in equation (2.19) as

⇀

E(⇀r , t) = 1

2
⇀s φ(x, y)e(z, t)ej(β0z−ω0t) + c.c., (2.30)

where

⇀s = unit vector along the polarization direction of the optical field
⇀

E,
φ(x, y) = cross-sectional field distribution in 1/m known as the optical mode or the

eigenfunction of the optical waveguide,
e(z, t) = longitudinal field envelope function in V taking relatively slow change with

time and along the propagation direction,
ej(β0z−ω0t) = dimensionless propagation factor in the form of f (z − vt) known as a

(harmonic) plane wave traveling at a phase velocity defined by ω0/β0.

Expression (2.30) clearly shows that the optical field is factorized into a fast-varying
plane wave traveling along z, which is also modulated by an envelope function with
slow variation in z and t , and a fixed mode profile in the cross-sectional area without
any change in the z direction.

A typical example of such a structure, known as the ridge waveguide, is illustrated in
Fig. 2.1.

Under the linear assumption made in equation (2.19), we can rewrite equation (2.30) as

⇀

E(⇀r , t) = ⇀xφ(x, y)e(z, t)ej(β0z−ω0t), (2.31)

with ⇀x indicating the unit vector along x. Here we have considered only one polarization
direction, taken to be x, without losing generality. Comparing equation (2.31) with
equation (2.22), we know that the optical envelope function in equation (2.24) must be
in the form

⇀u(⇀r , t) = ⇀xφ(x, y)e(z, t)ejβ0z. (2.32)

As a consequence of (2.32), again our final result will be the real part of the solution
only.
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Fig. 2.1. A ridge waveguide structure in which the optical field can be factorized into a modulated plane
wave traveling in the z direction and a mode profile in the xy plane without change in z.

Replacing the envelope function in equation (2.24) by expression (2.32), we find:{
j
2k0

c
[1 + χ̃(⇀r , ω0)]∂e(z, t)

∂t
+ 2jβ0

∂e(z, t)

∂z

}
φ(x, y)

= −e(z, t)

{
∂2

∂x2
+ ∂2

∂y2
−β2

0 + k2
0[1 + χ̃(⇀r , ω0)]

}
φ(x, y) + µ0e−j(β0z−ω0t)

∂Jspx

∂t
,

(2.33)

where k0 ≡ ω0/c and Jspx ≡ ⇀

J sp · ⇀x. Under the slow-varying envelope assumption
(|∂2e/∂z2| � |β0|2|e|), ∂2e/∂z2 is dropped from equation (2.33). Since the optical field
is fully confined in the cross-sectional area with a background material refractive index
distribution denoted as n(x, y, ω0), we will be able to find the time-invariant optical
field distribution in the xy plane, known as the optical mode, by solving the following
eigenvalue problem:(

∂2

∂x2
+ ∂2

∂y2

)
φ(x, y) + k2

0n2(x, y, ω0)φ(x, y) = β2
0φ(x, y), (2.34)

subject to the normalization condition∫
�

φ2(x, y)dx dy = 1, (2.35)

with � indicating the entire cross-sectional area in m2 where the optical mode spreads.
Substitute the spatial derivative terms in the xy plane in equation (2.33) by

equation (2.34), multiply the optical mode φ(x, y) on both sides of the equation obtained,
and integrate over the entire cross-sectional area to yield

1

neff c

{∫
�

[1 + χ̃(⇀r , ω0)]φ2(x, y)dx dy

}
∂e(z, t)

∂t
+ ∂e(z, t)

∂z

= j
k0

2neff

{∫
�

[1 + χ̃(⇀r , ω0) − n2(x, y, ω0)]φ2(x, y)dx dy

}
e(z, t) + s̃(z, t), (2.36)
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where the inhomogeneous spontaneous emission contribution in V/m is given as

s̃(z, t) ≡ − je−j(β0z−ω0t)

2neff ω0

√(
µ0

ε0

)∫
�

∂Jspx

∂t
φ(x, y)dx dy, (2.37)

with the dimensionless effective index defined as neff ≡ β0/k0.
In optoelectronic and photonic devices with full wave confinement in the cross-

sectional area, external bias is usually applied along the wave propagation direction
in z, which introduces a material gain and an associated refractive index change inside
the active region along this direction. Noting that the material gain per wavelength cycle
(i.e., g/k0 = gc/ω0 = gλ0/2π , with λ0 denoting the reference wavelength in a vacuum)
and the refractive index change (i.e., �n), both induced by the external bias, appear to
be much smaller than the background (i.e., under zero external bias or “cold cavity”)
material refractive index n(x, y, ω0), which is uniform along z, we find

n2(⇀r , ω0) = [n(x, y, ω0) + �n(z, ω0)]2

≈ n2(x, y, ω0) + 2n(x, y, ω0)�n(z, ω0), (2.38)

g(⇀r , ω0) = g(z, ω0) − α(x, y, z), (2.39)

1 + χ̃(⇀r , ω0) =
[
n(⇀r , ω0) − j

2k0
g(⇀r , ω0)

]2

≈ n2(x, y, ω0) + 2n(x, y, ω0)�n(z, ω0) − j

k0
n(x, y, ω0)[g(z, ω0) − α(x, y, z)].

(2.40)

In equations (2.38) to (2.40), we have defined the following:

n(⇀r , ω0) = dimensionless material refractive index,
n(x, y, ω0) = dimensionless cross-sectional area refractive index under zero bias,

also known as the background or “cold cavity” refractive index,
�n(z, ω0) = dimensionless bias induced refractive index change, non-zero only

inside the active region,
g(⇀r , ω0) = material gain in 1/m,
g(z, ω0) = bias induced interband stimulated emission gain (or loss, when it is

negative) in 1/m, non-zero only inside the active region,
α(x, y, z) = optical loss in 1/m because of non-interband processes such as free-

carrier absorption and scattering.

We have also dropped higher order terms such as (�n)2, (g/k0)
2 and (�n)(g/k0).

By utilizing equation (2.40) and noting that the interband stimulated emission gain
g(z, ω0) and the associated refractive index change �n(z, ω0) exist only inside the active
region, we can derive∫

�

[1 + χ̃(⇀r , ω0)]φ2(x, y)dx dy ≈
∫

�

n2(x, y, ω0)φ
2(x, y)dx dy ≡ n2 (2.41a)
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and ∫
�

[1 + χ̃(⇀r , ω0) − n2(x, y, ω0)]φ2(x, y)dx dy

≈
[

2�n(z, ω0) − j

k0
g(z, ω0)

] ∫
�ar

n(x, y, ω0)φ
2(x, y)dx dy

+ j

k0

∫
�

n(x, y, ω0)α(x, y, z)φ2(x, y)dx dy

≈ n�

[
2�n(z, ω0) − j

k0
g(z, ω0)

]
+ j

k0
nα(z), (2.41b)

with �ar defined as the cross-sectional area of the active region. Also in deriving
equation (2.41b), we have utilized the following approximations:

∫
�ar

n(x, y, ω0)φ
2(x, y)dx dy ≈ n

∫
�ar

φ2(x, y)dx dy = n� (2.42)

and∫
�

n(x, y, ω0)α(x, y, z)φ2(x, y)dx dy ≈ n

∫
�

α(x, y, z)φ2(x, y)dx dy = nα(z),

(2.43)
with the optical confinement factor and optical modal loss defined as

� ≡
∫
�ar

φ2(x, y)dx dy∫
�

φ2(x, y)dx dy
=

∫
�ar

φ2(x, y)dx dy, (2.44)

α(z) ≡
∫
�

α(x, y, z)φ2(x, y)dx dy∫
�

φ2(x, y)dx dy
=

∫
�

α(x, y, z)φ2(x, y)dx dy. (2.45)

Finally, we plug equations (2.41a) and (2.41b) into equation (2.36) to yield

1

vg

∂e(z, t)

∂t
+ ∂e(z, t)

∂z
=

[
jk0��n(z, ω0) + 1

2
�g(z, ω0) − 1

2
α(z)

]
e(z, t) + s̃(z, t),

(2.46)

where vg ≡ c/ng ≈ cneff /n
2 and neff ≈ n are assumed, and where ng is the group index

and vg is the group velocity.
Equation (2.46) governs the envelope function of the optical wave propagating along

+z. For the optical wave that propagates along the opposite direction (−z), we just
need to use −z to replace z in equation (2.46) as both the material property and the
spontaneous emission contribution have bidirectional symmetry along ±z. Therefore,
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we obtain(
1

vg

∂

∂t
+ ∂

∂z

)
ef (z, t) =

[
jk0��n(z, ω0) + 1

2
�g(z, ω0) − 1

2
α(z)

]
ef (z, t) + s̃ f (z, t),

(2.47a)(
1

vg

∂

∂t
− ∂

∂z

)
eb(z, t) =

[
jk0��n(z, ω0) + 1

2
�g(z, ω0) − 1

2
α(z)

]
eb(z, t) + s̃ b(z, t),

(2.47b)

where we have used the superscripts f and b to indicate the forward and backward
propagating wave envelope functions, respectively. In equation (2.47), because the
inhomogeneous spontaneous emission contributes to both the forward and backward
propagating waves, we have s̃ b(z, t) = s̃ f (−z, t) with s̃ f given by equation (2.37).

The one-dimensional (1D) slow-varying envelope equation (2.47) along the wave
propagation direction (i.e., ±z), together with the two-dimensional (2D) eigenvalue
equation (2.34) in the cross-sectional area (i.e., the xy plane), form the governing
equations for modeling the optical wave that propagates along ±z and is fully confined
by the waveguide in the cross-sectional xy plane. These equations can be solved subject
to certain initial and boundary conditions. Since the initial and boundary conditions are
related to the operating conditions and structures of specific devices, we will find the
effect of these conditions on device performance through examples in Chapter 10.

Once the optical mode φ(x, y), the forward (along +z) and the backward (along −z)

slow-varying envelopes ef (z, t) and eb(z, t) are solved by equations (2.34) and (2.47),
respectively, the real-world optical field is obtained by using

⇀

E(⇀r , t) = 1

2
⇀xφ(x, y)[ef (z, t)ejβ0z + eb(z, t)e−jβ0z]e−jω0t + c.c. (2.48)

As seen in the derivation process, we find that this model is valid under the following
conditions.

(1) Assumptions on the optical wave.
• Wave propagates along the device in a longitudinal direction only.
• Wave is fully confined in the cross-sectional area perpendicular to the propagation

direction.
• Wave has discrete optical frequencies with relatively slow-varying envelopes.

(2) Assumptions on the material.
• Material has linear optical property.
• Material takes no time to respond to any variation of optical wave envelope.

Also, in the above derivations, we have assumed that the optical wave has:

• a single operating frequency (i.e., ω0);
• a single optical mode (i.e., the waveguide supports a single guided mode only);
• a single polarization state (assumed to be along x).
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However, equations (2.34) and (2.47) can readily be expanded to model the optical
wave with multiple operating frequencies, or multiple modes, or arbitrary polarization
states, by utilizing the linear superposition theory and the mode orthogonality. Therefore,
the last three constraints are removable.

By comparing equation (2.31) with equation (2.26), we find that the optical envelope
function in equation (2.29) can be written as

⇀v(⇀r , t) = ⇀xφ(x, y)e(z, t)e−jω0t . (2.49)

Inserting equation (2.32) into equation (2.23) yields

⇀

P (⇀r , t) = ⇀xε0χ̃(⇀r , ω0)φ(x, y)e(z, t)ej(β0z−ω0t). (2.50)

Further, comparing equation (2.50) with equation (2.27), we also find

⇀p(⇀r , t) = ⇀xε0χ̃(⇀r , ω0)φ(x, y)e(z, t)e−jω0t . (2.51)

By replacing the optical field and polarization envelope functions in equation (2.29) by
expressions (2.49) and (2.51), respectively, and utilizing equations (2.34) and (2.35), we
obtain equation (2.36) again, as it should be. This confirms that equation (2.47) is the
reduced wave equation both in time and space domains; it can be obtained from the full
wave equation (2.19) by reducing the time derivative and the space derivative in either
sequence. The condition under which the time derivative can be reduced requires the
optical field to take an amplitude-modulated harmonic wave in the time domain, with its
modulation bandwidth (i.e., the base bandwidth) much smaller than the harmonic wave
frequency (i.e., the carrier frequency), as required by the time slow-varying envelope
assumption. The condition under which the spatial derivative can be reduced in a certain
direction requires the optical field to take an amplitude-modulated plane wave in that
direction, with its modulation bandwidth (i.e., the maximum spatial frequency) much
smaller than the propagation constant, as required by the spatial slow-varying envelope
assumption. Since equation (2.47) has been derived under both conditions, it governs the
(slow-varying) envelope function of an optical field in the form of a modulated harmonic
plane wave in a certain direction (along z in this derivation). A harmonic plane wave in
a certain direction describes a plane wave propagating along that direction. Therefore,
equation (2.47) governs the (slow-varying) envelope functions of the two traveling plane
waves along ±z, respectively.

2.4.2 The wave equation in partially confined structures

In some applications, the waveguide transverse structure is not uniform along the wave
propagation direction. A typical example is a horizontally varied structure such as the
horn waveguide [3] shown in Fig. 2.2.

In such a structure, the optical wave is confined only in the vertical direction y, rather
than in the entire cross-sectional xy plane. Therefore, instead of equation (2.31), we have
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Fig. 2.2. A horn waveguide structure in which the optical wave is confined only in the y direction and is
propagating along both z and x directions.

to write the optical field in the form of [4]

⇀

E(⇀r , t) = ⇀xφ(y)e(x, z, t)ej(β0z−ω0t), (2.52)

with φ(y) indicating the optical field distribution (or the 1D optical mode) along
y in 1/m1/2, and e(x, z, t) the envelope function in V/m1/2. In accordance with
equation (2.52), we will use

⇀u(⇀r , t) = ⇀xφ(y)e(x, z, t)ejβ0z, (2.53)

to replace equation (2.32) as well. Plugging (2.53) into (2.24), multiplying the 1D optical
mode φ(y) on both sides of the equation obtained, and integrating along the vertical
direction y yields

1

neff c

{∫
�y

[1 + χ̃(⇀r , ω0)]φ2(y)dy

}
∂e(x, z, t)

∂t
+ ∂e(x, z, t)

∂z

= j

2neff k0

∂2e(x, z, t)

∂x2
+ jk0

2neff

{∫
�y

[1 + χ̃(⇀r , ω0) − n2(y, ω0)]φ2(y)dy

}
× e(x, z, t) + s̃(x, z, t), (2.54)

where the 1D optical mode along y can be found by solving the following eigenvalue
problem

∂2

∂y2
φ(y) + k2

0n2(y, ω0)φ(y) = β2
0φ(y), (2.55)

subject to the normalization condition∫
�y

φ2(y)dy = 1. (2.56)

In expressions (2.54) to (2.56), �y indicates the entire vertical range along y in m
where the 1D optical mode spreads. Note that n(y, ω0) denotes the dimensionless back-
ground or “cold cavity” material refractive index distribution along y. Again, ∂2e/∂z2
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is dropped from equation (2.54) under the slow-varying envelope assumption. Finally,
in equation (2.54), the inhomogeneous spontaneous emission contribution in V/m3/2 is
given as

s̃(x, z, t) ≡ − je−j(β0z−ω0t)

2neff ω0

√µ0

ε0

∫
�y

∂Jspx

∂t
φ(y)dy. (2.57)

In such a waveguide structure, the active region usually expands to an entire xz plane
within one of the vertically stacked layers in the y direction. In accordance with the
active region distribution, the external bias is usually applied on the top xz plane, which
introduces a material gain and an associated refractive index change inside the active
region. Similarly to equations (2.38) to (2.40), by assuming that the bias induced material
gain per wavelength cycle and the associated refractive index change are perturbations in
the background material refractive index distribution, which is uniform in the xz plane,
we find

n2(⇀r , ω0) ≈ n2(y, ω0) + 2n(y, ω0)�n(x, z, ω0), (2.58)

g(⇀r , ω0) = g(x, z, ω0) − α(x, y, z), (2.59)

1 + χ̃(⇀r , ω0) =
[
n(⇀r , ω0) − j

2k0
g(⇀r , ω0)

]2

≈ n2(y, ω0) + 2n(y, ω0)�n(x, z, ω0) − j

k0
n(y, ω0) [g(x, z, ω0) − α(x, y, z)] .

(2.60)

In equations (2.58) to (2.60), we have dropped the higher order terms (�n)2, (g/k0)
2

and (�n)(g/k0).
By utilizing equation (2.60) and noting that the interband stimulated emission gain

g(x, z, ω0) and the associated refractive index change �n(x, z, ω0) exist only inside the
active region, we can further derive∫

�y

[1 + χ̃(⇀r , ω0)]φ
2(y)dy ≈

∫
�y

n2(y, ω0)φ
2(y)dy ≡ n2 (2.61a)

and ∫
�y

[
1 + χ̃(⇀r , ω0) − n2(y, ω0)

]
φ2(y)dy

≈
[

2�n(x, z, ω0) − j

k0
g(x, z, ω0)

] ∫
�ary

n(y, ω0)φ
2(y)dy

+ j

k0

∫
�y

n(y, ω0)α(x, y, z)φ2(y)dy

≈ n�

[
2�n(x, z, ω0) − j

k0
g(x, z, ω0)

]
+ j

k0
nα(x, z), (2.61b)
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with �ary defined as the active region vertical thickness along y. In deriving (2.61b), we
have utilized the following approximations:∫

�ary

n(y, ω0)φ
2(y)dy ≈ n

∫
�ary

φ2(y)dy = n�, (2.62)∫
�y

n(y, ω0)α(x, y, z)φ2(y)dy ≈ n

∫
�y

α(x, y, z)φ2(y)dy = n α(x, z), (2.63)

with the optical confinement factor and optical modal loss defined as

� ≡
∫
�ary

φ2(y)dy∫
�y

φ2(y)dy
=

∫
�ary

φ2(y)dy, (2.64)

α(x, z) ≡
∫
�y

α(x, y, z)φ2(y)dy∫
�y

φ2(y)dy
=

∫
�y

α(x, y, z)φ2(y)dy. (2.65)

Finally, we plug equations (2.61a) and (2.61b) into equation (2.54) to yield

1

vg

∂e(x, z, t)

∂t
+ ∂e(x, z, t)

∂z
= j

2neff k0

∂2e(x, z, t)

∂x2

+
[

jk0��n(x, z, ω0) + 1

2
�g(x, z, ω0) − 1

2
α(x, z)

]
e(x, z, t) + s̃(x, z, t), (2.66)

where again vg ≡ c/ng ≈ cneff /n
2 and neff ≈ n are assumed.

Equation (2.66) governs the envelope function of the optical wave propagating along
+z. For the optical wave that propagates along the opposite direction (−z), we just need
to use −z to replace z in equation (2.66) because of the material bidirectional symmetry
along ±z. Therefore, we obtain(

1

vg

∂

∂t
+ ∂

∂z

)
ef (x, z, t) = j

2neff k0

∂2

∂x2
ef (x, z, t)

+
[

jk0��n(x, z, ω0) + 1

2
�g(x, z, ω0) − 1

2
α(x, z)

]
ef (x, z, t) + s̃ f (x, z, t), (2.67a)(

1

vg

∂

∂t
− ∂

∂z

)
eb(x, z, t) = j

2neff k0

∂2

∂x2
eb(x, z, t)

+
[

jk0��n(x, z, ω0) + 1

2
�g(x, z, ω0) − 1

2
α(x, z)

]
eb(x, z, t) + s̃ b(x, z, t),

(2.67b)

where again the superscripts f and b distinguish the forward and backward propagating
wave envelope functions, and the inhomogeneous spontaneous emission contributions
to the forward and backward propagating waves, with s̃ f given by equation (2.57) and
s̃ b(x, z, t) = s̃ f (x, −z, t), respectively.

Therefore, the 2D slow-varying envelope equation (2.67) in the xz plane, together
with the 1D eigenvalue equation (2.55) in y, form the governing equations for modeling
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the partially confined (along the vertical direction y) optical wave propagation along ±z.
Because of the lack of lateral confinement (in the x direction), the 2D envelope function
diffracts laterally as indicated by an extra second-order derivative term in respect of x in
the governing equation (2.67). Therefore, as the solution of equation (2.67), the envelope
function changes only slowly with z and t , which indicates the wave propagation along
±z; its change in x, however, will be determined by the boundary conditions imposed
in the x direction, which is normally related to the device lateral structure, and its rate of
change may not slow. Again, equations (2.67) and (2.55) can be solved, once the initial
and boundary conditions are specified for a given device.

Finally, the real-world optical field is obtained using

⇀

E(⇀r , t) = 1

2
⇀xφ(y)[ef (x, z, t)ejβ0z + eb(x, z, t)e−jβ0z]e−jω0t + c.c. (2.68)

2.4.3 The wave equation in periodically corrugated structures

In DFB or DBR lasers and other grating based devices, periodically corrugated structures
must be employed to provide distributed reflections along with the waveguide. A typical
example of such a periodically corrugated waveguide structure is shown in Fig. 2.3.

Unlike the previous structures, in which the forward and backward propagating waves
have no interaction until they reach the waveguide ends, such a waveguide allows the
forward and backward waves to couple to each other as they propagate through the
periodically perturbed structure along the waveguide. Moreover, a periodic structure
with period � can be expanded as a summation of many harmonic grating orders with
their wave numbers ranking as m2π/�, where m = 0, ±1, ±2, . . . ,±∞. Assuming
that the grating harmonic component in the Mth (M ≥ 1) order couples the forward and
backward propagation waves along the waveguide direction (±z), the mth (m > M)
order components will fast decay and hence are negligible. The mth (m < M) order
components will, however, couple the forward and backward propagating waves to the
radiation waves which leave the waveguide at a certain angle to the propagation direction
along ±z [5, 6, 7].

y

z

xo

Fig. 2.3. A periodically corrugated waveguide structure in which the propagating waves along ±z are
distributively coupled because of the reflections of the grating.
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Since the Mth harmonic order of the grating wave number couples the forward and
backward propagation constants, we must have

2δ = β0 −
(

M
2π

�
− β0

)
= 2

(
β0 − Mπ

�

)
� 2β0, (2.69)

where 2δ is the difference of the propagation constants between the original forward and
the backward coupled to forward (through the grating backward scattering) propagating
waves. Note that −2δ, on the other hand, is the difference in the propagation constants
between the original backward and the forward coupled to backward (again through the
grating backward scattering) propagating waves. A necessary condition for the forward
(and the backward) propagating wave to be sustainable inside the waveguide is apparently
that the two forward (and the two backward) propagating wave components have the
same propagation constants, known as phase matching. For passive waveguides, we
immediately find that the phase matching condition arises at δ = 0. In active waveguides,
however, the component with the fastest growing amplitude (because of the gain) does not
necessarily correspond to δ = 0. Therefore, the active waveguide may allow sustainable
forward and backward propagating waves to have their propagation constants detuned
from ±Mπ/� (i.e., the Bragg condition), or δ �= 0. On the scale of β0 (or π/�), the
detuning (δ) must be very small, i.e., δ/β0 � 1, as otherwise the amplitude loss because
of the phase mismatch cannot be compensated for by the amplitude growth from the
gain. Therefore, waves with large detuned propagation constants away from the Bragg
condition cannot exist. Equation (2.69) addresses such a quasi-phase matching condition
in active waveguides.

In accordance with the phase matching condition, we can take the propagation con-
stants of the forward and backward propagating waves as±Mπ/� instead of the previous
±β0 to facilitate deriving the coupled wave equations shown below. However, it is worth
mentioning that, by taking ±β0 as the propagation constants of the forward and back-
ward propagating waves in decomposing the total optical field (2.71), we can also get a
consistent result.

Also, from the phase matching condition, coupling between the forward and backward
propagating waves with propagation constant ±Mπ/� and the radiation waves with
propagation constant βr can only happen at

βr = ±
(

Mπ

�
− m

2π

�

)
= ±M − 2m

�
π, (2.70a)

with m = 1, 2, 3, . . . , M/2 for even M and m = 1, 2, 3, . . . , (M − 1)/2 for odd M ,
respectively. Equation (2.70a) can also be written as

βr = M − 2m

�
π, (2.70b)

with m = 1, 2, 3, . . . , M − 1.
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Therefore, in periodically corrugated waveguide structures, we have to retain both
forward and backward propagating waves, as well as all the radiation waves that satisfy
the phase matching conditions, in decomposing the optical field for deriving the reduced
wave equation in both time and space domains. For this reason, we plug

⇀u(⇀r , t) = ⇀x

{
φ(x, y)

[
ef (z, t)ej Mπ

�
z + eb(z, t)e−j Mπ

�
z
]

+
M−1∑
m=1

êm(x, y)ej M−2m
�

πz

}
,

(2.71)
into (2.24) to obtain

1 + χ̃

neff c
φ

(
ej Mπ

�
z ∂ef

∂t
+ e−j Mπ

�
z ∂eb

∂t

)
+ φ

(
ej Mπ

�
z ∂ef

∂z
− e−j Mπ

�
z ∂eb

∂z

)
=

j
1

2neff k0

M−1∑
m=1

ej M−2m
�

πz

[
∂2

∂x2
+ ∂2

∂y2
+ k2

0(1 + χ̃) −
(

M − 2m

�

)2

π2
]
êm

+ j
k0

2neff

(
1 + χ̃ − n2 + 2neff δ

k0

)
φ

(
ef ej Mπ

�
z + ebe−j Mπ

�
z

)
− j

ejω0t

2neff ω0

√(
µ0

ε0

)
∂Jspx

∂t
,

(2.72)

where equations (2.34) and (2.69) have been used while ∂2ef /∂z2 and ∂2eb/∂z2 have
been dropped under the slow-varying envelope assumption. Strictly speaking, the radi-
ation wave amplitudes êm should have (z, t) dependence as well, since the forward and
backward propagating waves are actually the sources of these radiation waves and the
former certainly depends on (z, t). However, as will be seen in equation (2.82), the
dependence of êm on (z, t) is implicit (i.e., through ef and eb only), therefore, we can
ignore the partial derivatives of êm to (z, t) as the changes of êm on (z, t) are adiabatic.
For this reason, we only record êm as explicit functions of (x, y).

Usually the grating itself, i.e., the corrugated part, can be viewed as a perturbation
in an optical waveguide with full confinement in the cross-sectional area, which has
been discussed in Section 2.4.1 and is known as the unperturbed reference waveguide.
Following the change in the grating, the material properties, i.e., the refractive index and
gain, all change periodically along the wave propagation direction z. Therefore, we can
expand the periodically changed material properties into Fourier series by writing

n2(⇀r , ω0) =
⎡⎣n(x, y, ω0) +

+∞∑
m=−∞,m�=0

�nm(x, y)ejm 2π
�

z + �n(z, ω0)

+
+∞∑

m=−∞,m�=0

δnmejm 2π
�

z

⎤⎦2

≈ n2(x, y, ω0) + 2n(x, y, ω0)�n(z, ω0)

+ 2n(x, y, ω0)

+∞∑
m=−∞,m�=0

[�nm(x, y) + δnm] ejm 2π
�

z, (2.73)
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and

g(⇀r , ω0) = g(z, ω0) +
+∞∑

m=−∞,m�=0

�gmejm 2π
�

z −
⎡⎣α(x, y, z) +

+∞∑
m=−∞,m�=0

�αm(x, y)ejm 2π
�

z

⎤⎦
= g(z, ω0) − α(x, y, z) +

+∞∑
m=−∞,m�=0

[�gm − �αm(x, y)] ejm 2π
�

z, (2.74)

with �nm, δnm, �gm, and �αm denoting the mth Fourier expansion coefficient of the
material refractive index, the (bias induced) index change, the (bias induced) stimu-
lated emission gain, and the optical loss, respectively. In these expansions, the Fourier
coefficients are obtained through

�nm(x, y) = 1

�

∫ �

0
np(x, y, z)e−jm 2π

�
z dz, (2.75a)

δnm = 1

�

∫ �

0
�np(z)e−jm 2π

�
z dz, (2.75b)

�gm = 1

�

∫ �

0
gp(z)e−jm 2π

�
z dz, (2.75c)

�αm(x, y) = 1

�

∫ �

0
αp(x, y, z)e−jm 2π

�
z dz, (2.75d)

for m = 0, ±1, ±2, . . ., with np, �np, gp, and αp denoting the periodically corrugated
part of the material refractive index, the (bias induced) index change, the (bias induced)
stimulated emission gain and the optical loss, respectively. Also in equations (2.73) and
(2.74), the DC components (i.e., the 0th order coefficients �n0, δn0, �g0, and �α0)

are merged with their corresponding terms in the reference waveguide where the grating
does not exist (i.e., n, �n, g, and α, respectively). Although it is always possible to
select the unperturbed reference waveguide in such a way that the average np in one
period is equal to zero, hence �n0 = 0, it is generally not possible to have all the
DC components disappear for a given corrugated structure, no matter how we select
our reference. Therefore, we should not forget to include the DC contribution of the
corrugated part to the material properties given in equations (2.73) and (2.74).

From equations (2.73) and (2.74), we can derive

1 + χ̃(⇀r , ω0) =
[
n(⇀r , ω0) − j

2k0
g(⇀r , ω0)

]2

≈ 1 + χ̃0(
⇀r , ω0) + 2n(x, y, ω0)

+∞∑
m=−∞,m�=0

Am(x, y)ejm 2π
�

z, (2.76a)

with

Am(x, y) ≡ �nm(x, y) + δnm − j

2k0
[�gm − �αm(x, y)], (2.76b)


