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It is always a source of pleasure when a great and beautiful idea proves to be correct in
actual fact. Albert Einstein [letter to Sigmund Freud]

The answer to all these questions may not be simple. I know there are some scientists who
go about preaching that Nature always takes on the simplest solutions. Yet the simplest
by far would be nothing, that there would be nothing at all in the universe. Nature is far
more interesting than that, so I refuse to go along thinking it always has to be simple.

Richard Feynman
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Preface

This book is designed for final year undergraduates or beginning graduate students in
physics or theoretical physics. It assumes an acquaintance with Special Relativity and
electromagnetism, but beyond that my aim has been to provide a pedagogical introduction
to General Relativity, a subject which is now – at last – part of mainstream physics. The
coverage is fairly conventional; after outlining the need for a theory of gravity to replace
Newton’s, there are two chapters devoted to differential geometry, including its modern
formulation in terms of differential forms and coordinate-free vectors, then the Einstein field
equations, the Schwarzschild solution, the Lense–Thirring effect (recently confirmed obser-
vationally), black holes, the Kerr solution, gravitational radiation and cosmology. The book
ends with a chapter on field theory, describing similarities between General Relativity and
gauge theories of particle physics, the Dirac equation in Riemannian space-time, and
Kaluza–Klein theory.

As a research student I was lucky enough to attend the Les Houches summer school in
1963 and there, in the magnificent surroundings of the French alps, began an acquaintance
with many of the then new aspects of this subject, just as it was entering the domain of
physics proper, eight years after Einstein’s death. A notable feature was John Wheeler’s
course on gravitational collapse, before he had coined the phrase ‘black hole’. In part I like
to think of this book as passing on to the community of young physicists, after a gap of more
than 40 years, some of the excitement generated at that school.

I am very grateful to the staff at Cambridge University Press, Tamsin van Essen, Lindsay
Barnes and particularly Simon Capelin for their unfailing help and guidance, and generosity
over my failure to meet deadlines. I also gratefully acknowledge helpful conversations and
correspondence with Robin Tucker, Bahram Mashhoon, Alexander Shannon, the late Jeeva
Anandan, Brian Steadman, Daniel Ryder and especially Andy Hone, who have all helped to
improve my understanding. Finally I particularly want to thank my wife, who has supported
me throughout this long project, with constant good humour and generous and selfless
encouragement. To her the book is dedicated.



Notation, important formulae and physical
constants

Latin indices i, j, k, and so on run over the three spatial coordinates 1, 2, 3 or x, y, z or r, θ, φ
Greek indices α, β, γ,… κ, λ, μ,… and so on run over the four space-time coordinates 0, 1, 2,

3 or ct, x, y, z or ct, r, θ, �
Minkowski space-time: metric tensor is ημν= diag (–1, 1, 1, 1), ds

2 = – c2 dt2 + dx2 + dy2 + dz2

in Cartesian coordinates
Riemannian space-time: ds2 = gμν dx

μ dxν=− c2 dτ2

The Levi-Cività totally antisymmetric symbol (in Minkowski space) is

ε0123 ¼ �ε0123 ¼ 1

Connection coefficients: Gν
μ� ¼ 1=2 gνρðgμρ;� þ g�ρ;μ � gμ�;ρÞ

Riemann tensor: R�
λμν ¼ G�

λν;μ � G�
λμ;ν þ G�

ρμGρ
λν � G�

ρνGρ
λμ

Ricci tensor: Rμν ¼ Rρ
μρν

Curvature scalar: R ¼ gμνRμν

Field equations: Gμν ¼ Rμν � 1=2 gμνR ¼ 8πG
c2

Tμν
Covariant derivatives:

DV μ

dxν
¼ ∂V μ

∂xν
þ Gμ

λνV
λ or V μ

;ν ¼ V μ
;ν þ Gμ

λνV
λ

DWμ

dxν
¼ ∂Wμ

∂xν
� Gλ

μνWλ or Wμ;ν ¼ Wμ;ν � Gλ
μνWλ

Speed of light c= 3.00× 108m s−1

Gravitational constant G = 6.67× 10−11 Nm2 kg−1

Planck’s constant ћ= 1.05× 10−34 J s
= 6.58× 10−22 MeV s

Electron mass me = 9.11× 10−31 kg
mec

2 = 0.51MeV
Proton mass mp = 1.672× 10−27 kg

mpc
2 = 938.3MeV

Neutron mass mn = 1.675× 10−27 kg

mnc
2 = 939.6MeV

Boltzmann constant k= 1.4× 10−23 J K−1

= 8.6× 10−11MeVK−1

Solar mass MS = 1.99× 1030 kg





Solar radius RS = 6.96× 108m

Earth mass ME = 5.98× 1024 kg

Earth equatorial radius RE = 6.38× 106m

Mean Earth–Sun distance R = 1.50× 1011 m= 1 AU

Schwarzschild radius of Sun 2m =
2MSG

c2
= 2:96 km

Stefan–Boltzmann constant σ = 5.67× 10−8Wm−2 K−4

1 light year (ly) = 9.46× 1015m
1 pc = 3.09× 1016 m= 3.26 ly
1 radian = 2.06× 105 seconds of arc

xv Notation, important formulae and physical constants



1 Introduction

Einstein’s General Theory of Relativity, proposed in 1916, is a theory of gravity. It is also, as
its name suggests, a generalisation of Special Relativity, which had been proposed in 1905.
This immediately suggests two questions. Firstly, why was a new theory of gravity needed?
Newton’s theory was, to put it mildly, perfectly good enough. Secondly, why is it that a
generalisation of Special Relativity yields, of all things, a theory of gravity? Why doesn’t it
give a theory of electromagnetism, or the strong or weak nuclear forces? Or something even
more exotic? What is so special about gravity, that generalising a theory of space and time
(because that is what Special Relativity is) gives us an account of it? We begin this chapter
by answering the first question first. By the end of the chapter we shall also have made a little
bit of headway in the direction of answering the second one.

1.1 The need for a theory of gravity

Newton’s theory of gravitation is a spectacularly successful theory. For centuries it has been
used by astronomers to calculate the motions of the planets, with a staggering success rate.
It has, however, the fatal flaw that it is inconsistent with Special Relativity. We begin by
showing this.

As every reader of this book knows, Newton’s law of gravitation states that the force
exerted on a mass m by a mass M is

F ¼ �MmG

r3
r: (1:1)

Here M and m are not necessarily point masses; r is the distance between their centres of
mass. The vector r has a direction from M to m. Now suppose that the mass M depends on
time. The above formula will then become

FðtÞ ¼ �MðtÞmG
r3

r: (1:2)

This means that the force felt by the mass m at a time t depends on the value of the massM
at the same time t. There is no allowance for time delay, as Special Relativity would require.
From our experience of advanced and retarded potentials in electrodynamics, we can say that
Special Relativity would be satisfied if, in the above equation,M(t) weremodified toM(t− r/c).
This would reflect the fact that the force felt by the small mass at time t depended on the value
of the large mass at an earlier time t− r/c; assuming, that is, that the relevant gravitational



‘information’ travelled at the speed of light. But this would then not be Newton’s law. Newton’s
law is Equation (1.2) which allows for no time delay, and therefore implicitly suggests that the
information that the mass M is changing travels with infinite velocity, since the effect of a
changing M is felt at the same instant by the mass m. Since Special Relativity implies that
nothing can travel faster than light, Equations (1.1) and (1.2) are incompatible with it. If two
theories are incompatible, at least one of them must be wrong. The only possible attitude to
adopt is that Special Relativity must be kept intact, so Newton’s law has to be changed.

Faced with such a dramatic situation – not to say crisis – the instinctive, and perfectly
sensible, reaction of most physicists would be to try to ‘tinker’with Newton’s law; to change
it slightly, in order to make it compatible with Special Relativity. And indeed many such
attempts were made, but none were successful.1 Einstein eventually concluded that nothing
less than a complete ‘new look’ at the problem of gravitation had to be taken. We shall return
to this in the next section, but before leaving this one it will be useful to rewrite the above
equations in a slightly different form; it should be clear that, although Newton’s equations
are ‘wrong’, they are an extremely good approximation to whatever ‘correct’ theory is
eventually found, so this theory should then give, as a first approximation, Newton’s law.
We have by no means finished with Newton!

Let us define g=F/m , the gravitational field intensity. This is a parallel equation to E=F/q
in electrostatics; the electric field is the force per unit charge and the gravitational field the
force per unit mass. Mass is the ‘source’ of the gravitational field in the same way that electric
charge is the source of an electric field. Then Equation (1.1) can be written

g ¼ �GM

r2
r̂; (1:3)

which gives an expression for the gravitational field intensity at a distance r from a massM.
This expression, however, is of a rather special form, since the right hand side is a gradient.
We can write

g ¼ �r�; �ðrÞ ¼ �GM

r
: (1:4)

The function �(r) is the gravitational potential, a scalar field. Newton’s theory is then
described simply by one function. (In contrast, as we shall see in due course, the gravita-
tional field in General Relativity is described by ten functions, the ten components of the
metric tensor. The non-relativistic limit of one of these components is, in essence, the
Newtonian potential.) A mass, or a distribution of masses, gives rise to a scalar gravitational
potential that completely determines the gravitational field. The potential � in turn satisfies
field equations. These are Laplace’s and Poisson’s equations, relevant, respectively, to the
cases where there is a vacuum, or a matter density ρ:

ðLaplaceÞ r2� ¼ 0 ðvacuumÞ; (1:5)

ðPoissonÞ r2� ¼ 4πGρ ðmatterÞ: (1:6)

1 For references to these see ‘Further reading’ at the end of the chapter.
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In the case of a point mass, of course, we have ρ (r) =M δ3(r), and by virtue of the identity

r2ð1=rÞ ¼ �4πδ3ðrÞ (1:7)

Equations (1.4) and (1.6) are in accord.
This completes our account of Newtonian gravitational theory. The field g depends on r

but not on t. Such a field is incompatible with Special Relativity. It is not a Lorentz covariant
field; such a field would be a four-vector rather than a three-vector and would depend on t as
well as on r, so that the equations of gravity looked the same in all frames of reference related
by Lorentz transformations. This is not the case here. Since Newton’s theory is inconsistent
with Special Relativity it must be abandoned. This is both a horrifying prospect and a
slightly encouraging one; horrifying because we are having to abandon one of the best
theories in physics, and encouraging because Newton’s theory is so precise and so successful
that any new theory of gravity will immediately have to fulfil the very stringent requirement
that in the non-relativistic limit it should yield Newton’s theory. This will provide an
immediate test for a new theory.

1.2 Gravitation and inertia: the Equivalence Principle
in mechanics

Einstein’s new approach to gravity sprang from the work of Galileo (1564–1642; he was
born in the same year as Shakespeare and died the year Newton was born). Galileo
conducted a series of experiments rolling spheres down ramps. He varied the angle of
inclination of the ramp and timed the spheres with a water clock. Physicists commonly
portray Galileo as dropping masses from the Leaning Tower of Pisa and timing their descent
to the ground. Historians cast doubt on whether this happened, but for our purposes it hardly
matters whether it did or didn’t; what matters is the conclusion Galileo drew. By extrapolat-
ing to the limit in which the ramps down which the spheres rolled became vertical, and
therefore that the spheres fell freely, he concluded that all bodies fall at the same rate in a
gravitational field. This, for Einstein, was a crucially important finding. To investigate it
further consider the following ‘thought-experiment’, which I refer to as ‘Einstein’s box’. A
box is placed in a gravitational field, say on the Earth’s surface (Fig. 1.1(a)). An experi-
menter in the box releases two objects, made of different materials, from the same height,
and measures the times of their fall in the gravitational field g. He finds, as Galileo found,
that they reach the floor of the box at the same time. Now consider the box in free space,
completely out of the reach of any gravitational influences of planets or stars, but subject
to an acceleration a (Fig. 1.1(b)). Suppose an experimenter in this box also releases two
objects at the same time and measures the time which elapses before they reach the floor. He
will find, of course, that they take the same time to reach the floor; hemust find this, because
when the two objects are released, they are then subject to no force, because no acceleration,
and it is the floor of the box that accelerates up to meet them. It clearly reaches them at the
same time. We conclude that this experimenter, by releasing objects and timing their fall,
will not be able to tell whether he is in a gravitational field or being accelerated through
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empty space. The experiments will give identical results. A gravitational field is therefore
equivalent to an accelerating frame of reference – at least, as measured in this experiment.
This, according to Einstein, is the significance of Galileo’s experiments, and it is known as
the Equivalence Principle. Stated in a more general way, the Equivalence Principle says that
no experiment in mechanics can distinguish between a gravitational field and an accel-
erating frame of reference. This formulation, the reader will note, already goes beyond
Galileo’s experiments; the claim is made that all experiments in mechanics will yield the
same results in an accelerating frame and in a gravitational field. Let us now analyse the
consequences of this.

We begin by considering a particle subject to an acceleration a. According to Newton’s
second law of motion, in order to make a particle accelerate it is necessary to apply a force
to it. We write

F ¼ mia: (1:8)

Here mi is the inertial mass of the particle. The above law states that the reason a particle
needs a force to accelerate it is that the particles possesses inertia. Avery closely related idea
is that acceleration is absolute; (constant) velocity, on the other hand, is relative. Now
consider a particle falling in a gravitational field g. It will experience a force (see (1.2) and
(1.3) above) given by

F ¼ mgg: (1:9)

Here mg is the gravitational mass of the particle. It measures the response of a particle to a
gravitational field. It is very important to appreciate that gravitational mass and inertial mass
are conceptually entirely distinct. Acceleration in free space is an entirely different thing
from a gravitational field, and we make this distinction clear by distinguishing gravitational
and inertial mass, as in the two equations above. Now, however, consider a particle falling
freely in a gravitational field, as in the Einstein box experiments. Both equations above
apply. Because the particle is in a gravitational field it will experience a force, given by (1.9);
and because a force is acting on the particle it will accelerate, the acceleration being given by
(1.8). These two equations then give

a ¼ F
mi

¼ mg

mi
g; (1:10)

the acceleration of a particle in a gravitational field g is the ratio of its gravitational and
inertial masses times g. Galileo’s experiments therefore imply that mg/mi is the same for all

Earth

g

(a) (b)

↓ a

↓

Fig. 1.1 The Einstein box: a comparison between a gravitational field and an accelerating frame

of reference.
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materials. Without loss of generality we may putmg =mi for all materials; this is because the
formula for g contains G (see (1.3)), so by scaling G, mg/mi can be made equal to unity. (In
fact, of course, historically G was found by assuming that mg =mi; no distinction was made
between gravitational and inertial masses. We are now ‘undoing’ history.) We conclude that
the Equivalence Principle states that

mg ¼ mi: (1:11)

Gravitational mass is the same as inertial mass for all materials. This is an interesting and
non-trivial result. Some very sensitive experiments have been performed, and continue to be
performed, to test this equality to higher and higher standards of accuracy. After Galileo, the
most interesting experiment was done by Eötvös and will be described below. Before that,
however, it is worth devoting a few minutes’ thought to the significance of the equality
(1.11) above.

The inertial mass of a piece of matter has contributions from two sources; the mass of the
‘constituents’ and the binding energy, expressed in mass units (m=E/c2). This is the case no
matter what the type of binding. So for example the mass of an atom is the sum of the masses
of its constituent protons and neutrons minus the nuclear binding energy (divided by c2). In
the case of nuclei, the binding energy makes a contribution of the order of 10−3 to the total
mass. Atoms are bound together by electromagnetic forces and stars and planets are bound
by gravitational forces. In all of these cases, the binding energy, as well as the inertial mass
of the constituents, contributes to the overall inertial mass of the sample. The statement
(1.11) above then implies that the binding energy of a body will also contribute to its
gravitational mass, so binding energy (in fact, energy in general) has a gravitational effect
since its mass equivalent will in turn give rise to a gravitational field. The gravitational
force itself, by virtue of the binding it gives rise to, also gives rise to further gravitational
effects. In this sense gravity is non-linear. Electromagnetism, on the other hand, is linear;
electromagnetic forces give rise to (binding) energy, which acts as a source of gravity, but
not as a source of further electromagnetic fields, since electromagnetic energy possesses no
charge. Gravitational energy, however, possesses an effective mass and therefore gives rise to
further gravitational fields.

Now let us turn to experiments to test the Equivalence Principle. The simplest one to
imagine is simply the measurement of the displacement from the vertical with which a large
mass hangs, in the gravitational field of the (rotating) Earth. From Problem 1.1 we see that
this displacement is (in Budapest) of the order of 6 minutes of arc multiplied by mg/mi. To
see whethermg/mi is the same for all substances, then, involves looking for tiny variations in
this angle, for masses made of differing materials. This is a very difficult measurement to
make, not least because it is static.

A better test for the constancy of mg/mi relies on the gravitational attraction of the Sun,
whose position relative to the Earth varies with a 24 hour period. We are therefore looking
for a periodic signal, which stands more chance of being observed above the noise than does
a static one. The simplest version of this is the Eötvös or torsion balance; the original torsion
balance was invented by Coulomb and byMitchell, and was used by Cavendish to verify the
inverse square law of gravity. For the purposes of this experiment the torsion balance takes
the form shown in Fig. 1.2.
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Two masses, one of gold (shaded) one of aluminium (not shaded), hang from opposite
ends of an arm suspended by a thread in the gravitational field of the Earth. Consider such a
balance at the North Pole, with the Sun in some assigned position to the right of the diagram.
Then at 6 a.m., say, the situation is as shown in (a), the Earth rotating with angular velocity
ω. The force exerted by the Sun on the gold mass is (M is the mass of the Sun and r the
Earth–Sun distance)

FAu ¼ GMðmgÞAu

r2
(1:12)

and hence its acceleration towards the Sun is

aAu ¼ GM

r2
mg

mi

� �
Au
: (1:13)

A similar formula holds for the aluminium mass. Putting

mg

mi
¼ 1þ δ; (1:14)

a2

a1

ω1 > ω

Earth

a2

a1

ω

ω

ω2 < ω

Earth

(a)

(b)

Sun

Sun

Fig. 1.2 A torsion balance at the North Pole. (a) and (b) represent two situations with a 12 hour time

separation. The Earth is rotating with angular velocity w and a1 and a2 are the accelerations of the gold

and aluminiummasses towards the Sun. Assuming that a1 > a2 the resulting torques are of opposite sign.
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then if δAu≠ δAl a torque is exerted on the balance, of magnitude (2l is the length of the arm)

T ¼ GMl

r2
½ðmgÞAu � ðmgÞAl�: (1:15)

This results in an angular acceleration α given by T= Iα, with I, the moment of inertia, given
by I =mil

2, so we have, at 6 a.m.,

ðαÞ6am ¼ GM

lr2
ðδAu � δAlÞ � GM

lr2
Δ; (1:16)

whereΔ= δAu− δAl . In diagram (a)we suppose thatΔ>0, i.e. the acceleration of the goldmass
is greater than that of the aluminium mass. This in effect causes the torsion balance to rotate
with angular velocity ω1 >ω . At 6 p.m., however, the situation is reversed (Fig. 1.2(b)) so the
direction of the torque will be reversed, and

ðαÞ6pm ¼ �GM

lr2
Δ: (1:17)

Thus there would be a periodic variation in the torque, with a period of 24 hours. No such
variation has been observed,2 allowing the conclusion that

δ510�11; (1:18)

gravitational mass and inertial mass are equal to one part in 1011 – at least as measured using
gold and aluminium.

1.1.1 A remark on inertial mass

The Equivalence Principle states the equality of gravitational and inertial mass, as we have just
seen above. It is worthwhile, however, making the following remark. The inertial mass of a
particle refers to its mass (deduced, for example, from its behaviour analysed according to
Newton’s laws) when it undergoes non-uniform, or non-inertial, motion. There are, however,
two different types of such motion; it may for instance be acceleration in a straight line, or
circular motion with constant speed. In the first case the magnitude of the velocity vector
changes but its direction remains constant, while in the second case the magnitude is constant
but the direction changes. In each of these cases the motion is non-inertial, but there is a
conceptual distinction to be made. To be precise we should observe this distinction and denote
the two types of mass mi,acc and mi,rot. We believe, without, as far as I know, proper evidence,
that they are equal

mi;acc ¼ mi;rot: (1:19)

The interesting thing is that Einstein’s formulation of the Equivalence Principle referred
to inertial mass measured in an accelerating frame, mi,acc, whereas the Eötvös experiment,
described above, establishes the equality (to within the stated bounds) of mi,rot and the

2 Roll et al. (1964), Braginsky & Panov (1972).
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gravitational mass. The question is: can an experiment be devised to test the equality ofmi,acc

and mg? Or even to test (1.19)?

1.1.2 Tidal forces

The Principle of Equivalence is a local principle. To see this, consider the Einstein box in the
gravitational field of the Earth, as in Fig. 1.3. If the box descends over a large distance
towards the centre of the Earth, it is clear that two test bodies in the box will approach one
another, so over this extended journey it is clear that they are in a genuine gravitational field,
and not in an accelerating frame (in which they would stay the same distance apart). In other
words, the Equivalence Principle has broken down. We conclude that this principle is only
valid as a local principle. Over small distances a gravitational field is equivalent to an
acceleration, but over larger distances this equivalence breaks down. The effect is known as
a tidal effect, and ultimately is due to the curvature produced by a real gravitational field.

Another way of stating the situation is to note that an object in free fall is in an inertial frame.
The effect of the gravitational field has been cancelled by the acceleration of the elevator (the
‘acceleration due to gravity’). The accelerations required to annul the gravitational fields of the
two test bodies, however, are slightly different, because they are directed along the radius
vectors. So the inertial frames of the two bodies differ slightly. The frames are ‘locally inertial’.
The Equivalence Principle treats a gravitational field at a single point as equivalent to an
acceleration, but it is clear that no gravitational fields encountered in nature give rise to a
uniform acceleration. Most real gravitational fields are produced by more or less spherical
objects like the Earth, so the equivalence in question is only a local one.

We may find an expression for the tidal forces which result from this non-locality.
Figure 1.4 shows the forces exerted on the two test bodies – call them A and B – in the
gravitational field of a body at O. They both experience a force towards O of magnitude

Test
bodies

Centre of
Earth

Fig. 1.3 Test bodies falling to the centre of the Earth.
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FA ¼ FB ¼ mMG

r2

wherem is the mass of A and B,M is the mass of the Earth and r the distance of A and B from
its centre. In addition, let the distance between A and B be x. Consider the frame in which A
is at rest. This frame is realised by applying a force equal and opposite to FA, to both A and
B, as shown in Fig. 1.4. In this frame, B experiences a force F, directed towards A, which is
the vector sum of FB and −FA:

F ¼ 2FA sin α ¼ 2FA � x
2r

¼ mMG

r3
x:

A then observes B to be accelerating towards him with an acceleration given by F=−m d2x/
dt2, i.e.

d2x
dt2

¼ �MG

r3
x: (1:20)

The 1/r3 behaviour is characteristic of tidal forces.

1.3 The Equivalence Principle and optics

The Equivalence Principle is a principle of indistinguishability; it is impossible, using any
experiment in mechanics, to distinguish between a gravitational field and an accelerating
frame of reference. To this extent it is a symmetry principle. If a symmetry of nature is exact,

O

α α

r

FA

FA FA

F

FB

A B
x

Fig. 1.4 Tidal effect: forces on test bodies A and B.

9 1.3 The Equivalence Principle and optics



this means that various situations are experimentally indistinguishable. If, for example,
parity were an exact symmetry of the world (which it is not, because of beta decay), it would
be impossible to distinguish left from right. The fact that it is possible to distinguish them is a
direct indication of the breaking of the symmetry.

No experiment in mechanics, then, can distinguish a gravitational field from an accel-
erating frame. What about other areas of physics? Let us generalise the Equivalence
Principle to optics, and consider the idea that no experiment in optics could distinguish a
gravitational field from an accelerating frame.3 To make this concrete, return to the Einstein
box and consider the following simple two experiments. The first one is to release mono-
chromatic light (of frequency ν) from the ceiling of the accelerating box, and receive it on the
floor (Fig. 1.5). The light is released from the source S at t= 0 towards the observerO. At the
same instant t= 0 the box begins to accelerate upwards with acceleration a. The box is of
height h. Light from S reaches O after a time interval t = h/c, at which time O is moving
upwards with speed u= at = ah/c.

Now consider the emission of two successive crests of light from S. Let the time interval
between the emission of these crests be dt in the frame of S. Then

dt ¼ 1

ν
in frame S; (1:21)

where ν is the frequency of the light in frame S. Arguing non-relativistically, the time
interval between the reception of these crests at O is

dt0 ¼ dt � Δt ¼ dt � u
dt
c
¼ dt 1� u

c

� �
¼ 1

ν0
;

3 This generalisation is sometimes characterised as a progression from a Weak Equivalence Principle (which is the
statement mi =mg) to a Strong Equivalence Principle, according to which all the laws of nature (not just those of
freely falling bodies) are affected in the same way by a gravitational field and a constant acceleration.

O

S

h a↑

Fig. 1.5 Light propagating downwards in a box accelerating upwards.
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hence

ν0

ν
¼ 1

1� u=c
¼ 1þ u

c
þO

u

c

� �2
41; (1:22)

the light is Doppler (blue) shifted. With ν 0 = ν+Δν we have

Δν
ν

¼ u

c
þO

u

c

� �2
¼ ah

c2
þO

ah

c2

� �2
: (1:23)

Arguing relativistically, the above result is unchanged to order (ah/c2)2; the equation above
becomes (with γ= (1− u2/c2)−½)

dt0 ¼ γðdt � ΔtÞ ¼ γ dtð1� u=cÞ ¼ 1

ν0
;

hence

ν0

ν
¼ 1

γ 1� u
c

� � ¼
ffiffiffiffiffiffiffiffiffiffi
1þ u

c

1� u
c

s
¼ 1þ u

c
þO

u

c

� �2
;

which is the same as (1.22), to the given order. The Equivalence Principle then implies that
this is the relativistic frequency shift of light in a gravitational field. That is to say, if light is
emitted at a point S in a gravitational field and observed at a point O closer to the source of
the field, the measured frequency of the light atO is greater than that at S; light ‘falling into’
a gravitational field is blue-shifted. By the same token, if light moves ‘out of’ a gravitational
field its frequency is decreased – it is red-shifted. To get an order of magnitude estimate for
this effect, it follows directly from (1.23) that for light travelling 10 metres vertically
downwards in the Earth’s gravitational field, h = 10m, a= 10m s−2, we have

Δν
ν

� 10�15: (1:24)

Of course in the gravitational case the frequency shift described above is not a Doppler
shift. It is a purely gravitational effect, in which the source and the detector are not in relative
motion. The formula was, however, derived from the hypothesis that the physical conse-
quences of observing light frequency in a gravitational field are the same as those of
observing it in an accelerating frame; and this is a Doppler shift, because in this case
the source and detection point are in relative motion. This concludes the first thought-
experiment on the Equivalence Principle and optics.

The second such thought-experiment is also concerned with light propagation; this time the
light travels from left to right across the Einstein box. Consider the situations drawn schemati-
cally in Fig. 1.6. In (a) a beam of laser light travels in an inertial frame (that is, in neither a
gravitational field nor an accelerating frame) across the box. It leaves the laser on the left hand
wall and is detected on the right hand wall, after travelling in a straight line. In (b) the box is
accelerating upwards with an acceleration a; this acceleration commences at the same time
that the light leaves the laser. After a time Δt the light has travelled in the x direction a distance
Δx= cΔt, while the box has moved upwards a distance Δy=½a(Δt)2, from which
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Δy ¼ a

2c2
ðΔxÞ2: (1:25)

Since Δy and Δx are the coordinates of the light as measured in the box, it follows that the
light describes a parabolic path if the box is accelerated. It will therefore be detected at a
detector nearer the floor of the box than the laser is. The Equivalence Principle then implies
that light follows a curved path in a gravitational field, since it does so in an accelerating
frame.

This conclusion is extremely far-reaching; even more so than the prediction of a
gravitational frequency shift. Fermat (1601–1665) postulated that light takes a minimum
time to travel from one point to another. For example, consider (Fig. 1.7) the passage of
light from A to B, after reflection in a mirror. Let an arbitrary path be ACB, where C is the
point where the light beam strikes the mirror, and let the angles of incidence and reflection
be θi and θr , as marked. For simplicity, let A and B each be a perpendicular distance h from
the mirror (AM=BN=h) and let x and y be the horizontal distances MC and CN
respectively. Then, since A and B are fixed points, x + y= d (fixed). The distance s travelled
by the light is

s ¼ AC þ CB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ h2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ h2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ h2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � xð Þ2þh2

q
:

The time taken to travel a distance s is then s/c, with c the speed of light; more generally,
the time taken to travel over a given path is ∫ds/c. The requirement that the time taken be a

(a) (b)

a↑

Fig. 1.6 Light travelling across a box (a) in an inertial frame, (b) in an accelerating frame, or equivalently

a gravitational field.

h

A

h

B

M P C N

θi

θr

x y

Fig. 1.7 Fermat’s Principle: light reaches A from B after reflection at a mirror surface.
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minimum is, since c is constant, clearly the same as the requirement that the distance
travelled be a minimum. In the example of reflection of light at the mirror above, if s is a
minimum then ds/dx= 0, which is easily seen to give

ds=dx ¼ 0 ) x ¼ y ¼ d

2
;

in other words, the light beam strikes the mirror at P, at which θi = θr . Fermat’s requirement
of least time yields Snell’s law, that the angles of incidence and reflection are equal.

Fermat’s principle is, however, much more far-reaching than this. To begin with, in a
general sense, the demand that light propagation takes a minimum time is the requirement
that ∫ds be a minimum; or that, in the sense of the variational principle,4

δ
Z

ds ¼ 0: (1:26)

The bending of light in a gravitational field then implies, if we take Fermat’s principle
seriously, that the shortest path between two points in a gravitational field is not a straight
line. In any flat (Euclidean) space, however, the shortest path between two points is a
straight line. We therefore conclude that the effect of the gravitational field is to make space
curved. This is Einstein’s conclusion: to study gravity we have to study curved spaces. The
motion of particles in a gravitational field is to be formulated as the motion of particles in
curved spaces. And more generally we can then learn to formulate any laws of physics in a
gravitational field; for example, the study of electrodynamical effects in a gravitational field
is ‘simply’ arrived at by writing Maxwell’s equations in a curved space. The study of curved
spaces is, however, not easy, and this is precisely why General Relativity is so difficult. On
the other hand, in a qualitative sense some results become immediately ‘comprehensible’ in
this new language. For example, the reason that planetary orbits are curves (ellipses, in
general) is that planets travel in free-fallmotion, so they trace out the shortest path they can.
In a flat space this would be a straight line, but the effect of the Sun’s gravity is to make the
space surrounding it curved, making the planetary orbits curved paths (there are no straight
lines in a curved space.). Newton’s account of gravity, involving a force, becomes replaced
by an entirely different account, involving a curved space. This is an absolutely totally
different vision! It is, however, worth remarking again that the effects of a curved space are
not going to be easy to detect on Earth; the deflection of a light beam on Earth, travelling
over a distance of 100 km (an order of magnitude larger than, for example, SLAC, the
particle accelerator at Stanford), is, from (1.25), with a= g= 10m s−2, about 10−3mm.

The reader who has followed the logic so far will agree that the plan of action is now, in
principle, clear. We have to learn about curved spaces; and this includes learning how to
describe vectors in curved spaces, and how to differentiate them, which we must do if we are
to carry over ideas such as Gauss’s theorem and Stokes’ theorem into curved spaces. The
task is large, not to say daunting, but thanks to the efforts of differential geometers and
theoretical relativists over a long period of time (from before Einstein’s birth to after his

4 The variational principle continues to play a crucial role in the formulation of fundamental theories in physics,
from classical mechanics and quantum mechanics to General Relativity and gauge field theory. For an introduc-
tion to the central role of the variational principle see Yourgrau & Mandelstam (1968).

13 1.3 The Equivalence Principle and optics



death) it is not impossible; and, like the task of climbing a mountain, great efforts are
rewarded with excellent views. The chapters ahead chart, I hope, a sensible way through this
rather complex material, but we close this chapter by making some simple observations and
calculations about curved surfaces.

1.4 Curved surfaces

A surface is a 2-dimensional space. It has the distinct advantage that we can imagine it easily,
because we see it (as the mathematicians say) ‘embedded’ in a 3-dimensional space –which
also happens to be flat (I mean, of course, Euclidean 3-space). What I want to demonstrate,
however, is that there are measurements intrinsic to a surface that may be performed to see
whether it is flat or not. It is not necessary to embed a surface in a 3-dimensional space in
order to see whether or not the surface is curved; we can tell just by performing measure-
ments on the surface itself. The reader will appreciate that this is a necessary exercise; for if
we are to make the statement that 3-dimensional space is curved, this statement must have an
intrinsicmeaning. There is no fourth dimension into which our 3-dimensional space may be
embedded (time does not count here).

To begin, consider the three surfaces illustrated in Fig. 1.8. They are a plane, a sphere and
a saddle. On each surface draw a circle of radius a and measure its circumference C and area
A. On the plane, of course, C= 2πa and A= πa2, but our claim is that these relations do not
hold on the curved surfaces. In fact we have

Plane: C ¼ 2πa A ¼ πa2 flat zero curvatureð Þ;
Sphere: C52πa A5πa2 curved positive curvatureð Þ;
Saddle: C42πa A4πa2 curved negative curvatureð Þ:

(1:27)

C = 2πa C < 2πa C > 2πa

Zero curvature Positive curvature Negative curvature

Fig. 1.8 Circles inscribed on a plane, on a sphere and on a saddle.
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In the case of the sphere, for example, to see that C < 2πa imagine cutting out the circular
shape which acts as a ‘cap’ to the sphere. This shape cannot be pressed flat. In order to make
it flat some radial incisions must be inserted, but this then has the consequence that the total
circumference C of the dotted circle, which is equal to the sum of the arcs of all the incisions
in the diagram below, is less than 2πa. In the case of the saddle the opposite thing happens;
in order to get the circular area to lie flat, we have to fold parts of it back on itself, so that the
true circumference C is greater than 2πa.

It is important to bear in mind in the above reasoning that a, the radius of the circle, is
the actual distance from the centre to the perimeter, as measured in the space. For
simplicity imagine drawing a circle of radius 1000 km on the surface of the Earth, with
the centre of the circle at the North Pole. This could be done by having a piece of wire
1000 km long, fixing one end at the North Pole and walking round in a circle, with the wire
kept taught. The distance travelled before returning to one’s starting point is the circum-
ference C of the circle. The radius of this circle, 1000 km, is the length of the wire, which is
laid out along the curved surface. One might feel tempted to point out that one could define
the radius of the circle as the ‘straight’ distance between a point on the circumference and
the North Pole, measured by tunnelling through the Earth. But this would be cheating,
because it would involve leaving the space. We are to imagine the surface as being a world
in itself, which we do not leave; we are insisting, in other words, on making measurements
intrinsic to the space. It should now be clear that the statements (1.27) above constitute
a way of telling whether a space – in this case a 2-dimensional one – is flat or curved (and
if curved, whether open or closed), and this by means of measurements made entirely
within the space. A corollary of this is that, on this definition, a cylinder is flat; for a cylinder
can be made by joining together the edges of a flat piece of paper, without stretching or
tearing (see Fig. 1.9, where the edges with arrows are joined together). Since C = 2πa
before joining the edges, the same relation holds after joining them, so a cylinder is not
intrinsically curved. It is said that a cylinder has zero intrinsic curvature but non-zero
extrinsic curvature.

It is interesting to make one final observation about the exercise of drawing circles on
spheres. As the circle S1 is lowered over the sphere, becoming further and further south, its

Fig. 1.9 A cylinder is made by joining the edges of a plane (those marked with arrows). No cutting or

stretching is involved.
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circumference increases as its radius increases (withC< 2πa always holding).5 This happens
until the circle becomes the Equator. This is the circle with a maximum circumference in S2;
beyond the Equator, when the circle enters the southern hemisphere, its radius continues to
increase, but its circumference actually decreases. This continues to be the case until the
circle itself approaches the South Pole, at which its circumference tends to zero. This is
the limit of a circle with maximum radius (which is the maximum distance attainable in
the space) but with a circumference approaching zero. These observations are, in a sense,
obvious, but they become interesting and physically relevant in a particular cosmological
model, in which the geometry of 3-dimensional space is S3, the 3-sphere. The above
exercise can then be rehashed, increasing the dimension of everything by 1; that is, to
discuss surfaces S2 in S3, rather than lines S1 in S2. This model describes a ‘closed’ universe,
and is described further in Section 10.2 below.

Further reading

Accounts of the various attempts to construct relativistic theories of gravity (other than
General Relativity) are outlined in Pauli (1958) pp. 142–5, Mehra (1973), Pais (1982)
Chapter 13, Torretti (1996) Chapter 5 and Cao (1997) Chapter 3.

For details of the Eötvös experiment on the torsion balance, see Dicke (1964) and Nieto
et al. (1989). A modern assessment of the experimental evidence for the Equivalence
Principle is contained in Will (2001). The reference to Einstein’s seminal paper on the
Equivalence Principle and optics is Einstein (1911).

Good introductory accounts of General Relativity and curved spaces are to be found
in Hoffmann (1983) Chapter 6, and in Harrison (2000) Chapters 10 and 12. See also, for a
slightly more advanced treatment, Ellis & Williams (1988).

Problems

1.1 Find an expression for the angle of displacement from the vertical with which a mass
hangs in the gravitational field of the Earth as a function of latitude λ, and calculate its
value at Budapest (latitude 47.5° N).

1.2 Suppose that mass, like electric charge, can take on both positive and negative values,
but with Newton’s laws continuing to hold. Consider two masses,m1 andm2, a distance
r apart. Describe their motion in the cases (i) m1 =m2 =m (m > 0), (ii) m1 =m2 =−m,
(iii) m1 =m, m2 =−m. Is momentum conserved in all these cases?

5 Sn is an n-dimensional subspace of the (n+ 1)-dimensional Euclidean space, given by the formula x1
2 + x2

2 + � � �
+ xn+ 1

2 = const. So S1 is a circle, S2 (the surface of) a sphere, etc.
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1.3 The usual formula for the period T of a simple pendulum of length l is

T ¼ 2π

ffiffiffi
l

g

s
;

where g is the acceleration due to gravity. Denoting the inertial mass of the pendulum
bob by mi and its gravitational mass by mg, derive an alternative expression for T in
terms of these masses, the radius R of the Earth and its mass Mg.

1.4 By employing spherical polar coordinates show that the circumference C of a circle of
radius R inscribed on a sphere S2 (as in Fig. 1.8) obeys the inequality C < 2πR.
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2 Special Relativity, non-inertial effects
and electromagnetism

General Relativity is a generalisation of Special Relativity, and this chapter begins with a
brief summary of the special theory, with which the reader is assumed already to have some
familiarity. After an account of the famous ‘Einstein train’ thought experiment, the more
formal matters of Minkowski space-time and Lorentz transformations are discussed. We
then consider some non-inertial effects in the shape of the twin paradox and the Sagnac
effect. Mach’s Principle, which concerns itself with the origin of inertia, is considered, and
this is followed by a section on Thomas precession; an effect derivable from Special
Relativity alone, but associated with forces, and therefore with non-inertial frames. The
chapter finishes with a brief treatment of electrodynamics – which was Einstein’s starting
point for Special Relativity.

2.1 Special Relativity: Einstein’s train

We are concerned with the laws of transformation of coordinates between frames of
reference in (uniform) relative motion. Two frames, S and S 0, both inertial, move relative
to one another with (constant) speed v, which we may take to be along their common x axis.
The space-time coordinates in each frame are then

S : ðx; y; z; tÞ; S0 : ðx0; y0; z0; t0Þ:
What is the relation between these? In the physics of Galileo and Newton it is

x0 ¼ x� vt; y0 ¼ y; z0 ¼ z; t0 ¼ t (2:1)

whose inverse is

x ¼ x0 þ vt0; y ¼ y0; z ¼ z0; t ¼ t0; (2:2)

S and S 0 have a common origin at t = 0. There is an infinite number of inertial frames and the
laws of Newtonian mechanics are the same in all of them. There is no such thing as absolute
velocity; we can only meaningfully talk about the relative velocity of one inertial frame
relative to another one. This is the Newtonian–Galilean Principle of Relativity. Under the
above transformations the laws of Newtonian mechanics are covariant (of the same form).
These transformations form a group – the Galileo group – which is the symmetry group of
Newtonian mechanics. Its actions take one from one frame of reference S to another one S 0,
in which the laws of mechanics are the same. If there is a frame S00, moving relative to S 0 with
speed u along their common x axis, then the speed of S00 relative to S is



w ¼ uþ v: (2:3)

This is the law of addition of velocities in the Newtonian-Galilean Principle of Relativity.
Can this Principle of Relativity be generalised frommechanics to all of physics? This is surely

a worthy aim, but a strong hint of trouble came when Maxwell, in his theory of electro-
magnetism, showed that the speed of light (electromagnetic waves) was given by the formula

c ¼ ðε0μ0Þ�
1=2; (2:4)

where ε0 is the electric permitivity and μ0 the magnetic permeability of free space. When
the values are inserted this gives c≈ 3× 108m s−1 – the observed speed of light. So in
Maxwell’s electrodynamics the speed of light (in a vacuum) depends only on electric and
magnetic properties of the vacuum, and is therefore absolute; this clearly contradicts the
Principle of Relativity above. It must be the same in all frames of reference and Equation (2.3)
must therefore break down (at least when applied to light).

The most famous demonstration of this is the Michelson–Morley experiment, which
showed that the speed of light is indeed the same in different frames of reference. It is
therefore clear that Equations (2.1) and (2.2) must be revised. It was in fact already known
that the transformations which left Maxwell’s equations invariant were the Lorentz trans-
formations, which for relative motion along the x axis take the form

x0 ¼ γðx� vtÞ; y0 ¼ y; z0 ¼ z; t0 ¼ γðt � vx=c2Þ (2:5)

with inverse

x ¼ γðx0 þ vt0Þ; y ¼ y0; z ¼ z0; t ¼ γðt0 þ vx0=c2Þ; (2:6)

where

γ ¼ ð1� v2=c2Þ�1=2: (2:7)

Einstein interpreted these equations not just as a mathematical curiosity, but as a demon-
stration that time, like space, is relative: x 0 ≠ x, t 0 ≠ t. Let us illustrate this by considering the
‘Einstein train’.

Trains A and B, with the same length L, pass one another with relative speed v in the x
direction. How long does this take? Let us consider two events:

Event 1 : front of train B passes front of train A

Event 2 : rear of train B passes front of train A

These are illustrated in Fig. 2.1.
Let us adopt the coordinates

ðx0; t0Þ : coordinates inmoving frame

ðx; tÞ : coordinates in stationary frame
(2:8)

What is the time interval between these events, as measured in the two coordinate systems?
To be definite, let us consider train A as stationary and train B moving. We take the origins
(x = 0, x0 = 0) at the right hand ends of the trains and synchronise the clocks so that event 1
happens at t= 0, t 0 = 0. Then, for event 1
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ðx10; t10Þ ¼ ð0; 0Þ; ðx1; t1Þ ¼ ð0; 0Þ: (2:9)

If event 2 happens after a time interval T in the stationary frame (train A) and after an interval
T 0 in the moving frame (train B) then we have

ðx20; t20Þ ¼ ð�L; T 0Þ; ðx2; tÞ ¼ ð0; TÞ: (2:10)

The Lorentz transformation (2.5) applied to event 2 gives − L= γ (−v T), T 0 = γ T, or

L ¼ γ v T ; T 0 ¼ γT : (2:11)

Since γ>1, then T 0 >T ; the time interval between events 1 and 2 in the moving frame is
greater than in the stationary frame – ‘time goes slower inmoving frames’. So whenAndrei (in
train A) looks at Bianca’s clock (in train B), he sees it goes slower than his own. It is also true
that when Bianca looks at Andrei’s clock, she sees it goes slower than her own (since of course
the whole sequence of events can be considered in the frame in which B is at rest). One is
tempted to ask the question, whose clock is really going slower? But this is a bit like asking,
when walking along a road, is the house on the left or the right hand side of the road? It all
depends in which direction you are walking; and in our case it all depends who is looking at
the two clocks: if Andrei is looking, Bianca’s clock is going slower, and if Bianca is looking,
Andrei’s clock is lagging. This is, after all, a theory of relativity – only relative motion has
physical significance. It has nomeaning to say that A is at rest and B ismoving, anymore than
it has to say that B is at rest and A is moving. Since only relative motion has significance,
anything observed by A must also be observed by B; the situation is symmetrical. Einstein’s
train gives a neat demonstration of the relativity of time – to be precise, of time intervals.

There is, as the reader will know, a similar result for space intervals: what is the length of
train B as viewed from train A? Call it L0. It is of course Tv:

L0 ¼ T v ¼ L=γ ¼ L ð1� v2=c2Þ1=25L: (2:12)

Ameasures B’s train as being shorter than his own. Similarly, B measures A’s train as being
shorter than her own: moving objects appear contracted. This is the Fitzgerald–Lorentz
contraction.

Event 1

Event 2

v

v

Fig. 2.1 Event 1: front of train B passes front of train A; Event 2: rear of train B passes front of train A.
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We see that time intervals and lengths are not invariant under Lorentz transformations.
Infinitesimally, dx2 + dy2 + dz2 is not invariant, and neither is dt2. The quantity which is
invariant between the events (x, y, z, t) and (x + dx, y+ dy, z+ dz, t+ dt) is

ds2 ¼ �c2 dt2 þ dx2 þ dy2 þ dz2: (2:13)

In the present case of the train, dy = dz= 0, so ds2 =− c2 dt2 + dx2. This should be the same in
all frames of reference, where dt and dx refer to the time and space separation of the two
events above. We then have, in the rest frame S with coordinates (x, t)

ds2 ¼ �c2 dt2 þ dx2 ¼ �c2ðt2 � t1Þ2 þ ðx2 � x1Þ2 ¼ �c2T 2; (2:14)

while in the moving frame S 0, with coordinates (x 0, t 0)

ds2 ¼ �c2 dt0 2 þ dx0 2 ¼ c2ðt20 � t1
0Þ2 þ ðx20 � x1

0Þ2
¼ �c2T 0 2 þ L2

¼ �c2γ2T 2 þ γ2v2T2 ¼ �c2γ2T2ð1� v2=c2Þ
¼ �c2T2; (2:15)

where (2.11) and (2.12) have been used. We see that ds2 is the same in the two frames. We
also see the force of Minkowski’s remark,1 ‘Henceforth space by itself, and time by itself,
are doomed to fade away into mere shadows, and only a kind of union of the two will
preserve an independent reality.’

2.1.1 Minkowski space-time

We now formalise Special Relativity as follows. Space and time become a 4-dimensional
manifold, Minkowski space-time. Points in this space-time (‘events’) have coordinates x μ

(μ = 0, 1, 2, 3), with, in Cartesian coordinates (x0, x1, x2, x3) = (ct, x, y, z), and in spherical
polars (x0, x1, x2, x3) = (ct, r, θ, �). We also adopt the notation that while Greek suffices take
on the values (0, 1, 2, 3), Latin suffices take on the values (1, 2, 3) for space variables only;
x μ= (x0, xi). The invariant distance, or ‘separation’ between two events (in Cartesian
coordinates), ds2 =− c2 dt2 + dx2 + dy2 + dz2, is written in the form

ds2 ¼ ημv dx
μ dxv; (2:16)

where the summation convention has been used: repeated indices are summed over the
values 0, 1, 2, 3. Thus (2.16) is short-hand for

ds2 ¼ η00ðdx0Þ2 þ η01 dx
0 dx1 þ η02 dx

0 dx2 þ � � � ð16 termsÞ;
and ημν has the following values, in Cartesian coordinates:

ds2 ¼ �c2 dt2 þ dx2 þ dy2 þ dz2; (2:17)

1 In Lorentz et al., 1952, p. 75.
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hence

η00 ¼ �1; η11 ¼ η22 ¼ η33 ¼ 1; ημν ¼ 0; μ 6¼ ν;

or in matrix form

ημv ¼
�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA; (2:18)

and in spherical polar coordinates:

ds2 ¼ �c2 dt2 þ dr2 þ r2 dθ2 þ r2 sin2θ d�2 (2:19)

hence

η00 ¼ �1; η11 ¼ 1; η22 ¼ r2; η33 ¼ r2 sin2θ; ημν ¼ 0; μ 6¼ ν;

ημv ¼

�1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 r2 sin2θ

0
BBB@

1
CCCA:

(2:20)

The object ημν is the metric tensor of Minkowski space; it makes the space a metric space,
one in which distance is defined.

A useful concept in Special Relativity is that of proper time τ. It is defined by

ds2 ¼ �c2 dτ2: (2:21)

In a particle’s own rest frame – inwhich, of course, dx=dy=dz=0, τ coincides with t, so proper
time is simply time as measured in the rest frame, or time recorded on one’s own clock.

2.1.2 Lorentz transformations

Lorentz transformations are transformations between coordinates labelling space-time
events recorded by two inertial observers in uniform relative motion. They take a system
from one inertial frame to another one, and consist of rotations and Lorentz ‘boost’ trans-
formations.2 Under a general Lorentz transformation

2 The maximal set of transformations leaving ds2 invariant includes, in addition to rotations and boosts, also
translations in space and time, xi → xi + ai, t → t + t0 (or simply x μ → x μ+a μ). These are inhomogeneous
transformations and, corresponding to the philosophy outlined above, their inclusion represents the fact that the
laws of physics are invariant under space and time translations; there is no absolute origin in space, nor in time
(the Big Bang is not relevant here; firstly, we are not considering cosmology, and secondly, we are concernedwith
the laws of physics themselves, not with whatever state the Universe happens to be in). Enlarging the group of
Lorentz transformations to include these translations produces the inhomogeneous Lorentz group, or Poincaré
group. The importance of the Poincaré group as the maximal invariance group in Minkowski space was
emphasised particularly by Wigner, whose analysis remains of fundamental importance in particle physics. For
more details, see Wigner (1939, 1964), Wightman (1960), Sexl & Urbantke (1976), Tung (1985), Doughty
(1990), Ryder (1996), Cao (1997).

22 Special Relativity, non-inertial effects and electromagnetism



x μ ! x0μ ¼ Λ μ
vx

v (2:22)

so dx 0 μ =Λ μ
ν dx

ν and the invariance of ds2 gives

ημv dx
0μ dx0v ¼ ημv dx

μdxv;

hence

ημvΛ
μ
ρΛ

v
σ dxρ dxσ ¼ ηρσ dx

ρ dxσ

or

ημvΛ
μ
ρΛ

v
σ ¼ ηρσ : (2:23)

Let us now check that this holds for some specific Lorentz transformations. First consider a
rotation about the z axis through an angle θ:

x0 ¼ x cos θ þ y sin θ; y0 ¼ �x sin θ þ y cos θ:

The corresponding matrix is

Λ μ
v ¼

1 0 0 0
0 cos θ sin θ 0
0 � sin θ cos θ 0
0 0 0 1

0
BB@

1
CCA: (2:24)

Equation (2.23) with ρ= σ = 1 then gives ημν Λ
μ
1Λ

ν
1 = 1, i.e. (summation convention!)

� Λ0
1Λ

0
1 þ Λ1

1Λ
1
1 þ Λ2

1Λ
2
1 þ Λ3

1Λ
3
1 ¼ 1;

or cos2θ+ sin2θ = 1, which is correct. Taking different values for ρ and σ also gives
consistency with (2.23), as may easily be checked.

Now consider a Lorentz boost along the x direction. With x0 = ct (and replacing − v by
+ v), Equation (2.5) corresponds to the Lorentz matrix

Λ μ
v ¼

γ γv=c 0 0
γv=c γ 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA: (2:25)

Now put, for example, ρ= σ = 0. With Λ0
0 = γ, Λ

1
0 = γv/c, Λ

2
0 =Λ

3
0 = 0, we have

η00ðΛ0
0Þ2 þ η11ðΛ1

0Þ2 ¼ �1;
or γ2(1− v2/c2) = 1, which is correct.

For future reference it is convenient to give the most general form of a Lorentz (boost)
transformation, from frame S to frame S 0 moving with relative velocity v:

x0 ¼ xþ ðγ� 1Þ x
: v
v2

v� γvt; t0 ¼ γ t � x : v
c2

� �
; (2:26)

with inverse
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x ¼ x0 þ ðγ� 1Þ x
0 : v
v2

vþ γvt0; t ¼ γ t0 � x0 : v
c2

� �
; (2:27)

and, as usual, γ= (1− v2/c2)−½.
The matrix (2.25) may be written in a ‘trigonometric’ form, similar to (2.24). Defining the

hyperbolic angle � by (β=v/c)

γ ¼ cosh�; γβ ¼ sinh�; (2:28)

the Lorentz transformation given by (2.25) may be written

x00

x01

x02

x03

0
BB@

1
CCA ¼

cosh� sinh� 0 0
sinh� cosh� 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA

x0

x1

x2

x3

0
BB@

1
CCA: (2:29)

We now define the generator of Lorentz boosts along the x axis by

Kx ¼ 1

i
∂Λ
∂�

����
�¼0

¼ �i

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA; (2:30)

where Λ is the matrix in (2.29). It may then easily be checked that

expðiKx�Þ ¼
cosh� sinh� 0 0
sinh� cosh� 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA: (2:31)

The generators of boosts along the y and z axes are defined analogously and turn out as

Ky ¼ �i

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

0
BB@

1
CCA; Kz ¼ �i

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

0
BB@

1
CCA: (2:32)

Generators of rotations may be defined similarly. The matrix (2.24) represents a rotation

about the z axis, whose generator is defined as Jz ¼ 1

i
∂Λ
∂θ

����
θ¼0

. This and analogous defini-

tions for Jx and Jy yield

Jx¼�i

0 0 0 0
0 0 0 0
0 0 0 1
0 0 �1 0

0
BB@

1
CCA; Jy¼�i

0 0 0 0
0 0 0 �1
0 0 1 0
0 0 0 0

0
BB@

1
CCA; Jz¼�i

0 0 0 0
0 0 1 0
0 �1 0 0
0 0 0 0

0
BB@

1
CCA:

(2:33)

These six generators obey the commutation relations ([A,B]≡AB−BA)
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½Jx; Jy� ¼ i Jz and cyclic perms

½Kx;Ky� ¼ �i Jz and cyclic perms

½Jx;Ky� ¼ iKz and cyclic perms

½Jx;Kx� ¼ 0 etc:

(2:34)

Equivalently, relabelling the subscripts x, y, z as 1, 2, 3,

½Ji; Jk � ¼ i εikmJm; (2:35a)

½Ji;Kk � ¼ i εikmKm; (2:35b)

½Ki;Kk � ¼ i εikmJm; (2:35c)

where εikm is the totally antisymmetric symbol

εikm ¼
1 ðikmÞ even permutation of (123),
�1 ðikmÞ odd permutation of (123),
0 otherwise:

(
(2:36)

In terms of these six generators a general Lorentz boost transformation is

ΛðfÞ ¼ expðiK : fÞ; (2:37)

a general rotation is represented by

ΛðqÞ ¼ expðiJ : qÞ; (2:38)

while a general Lorentz transformation, comprising both a boost and a rotation is given by

Λðf; qÞ ¼ expðiK : fþ iJ : qÞ: (2:39)

The relations (2.35) define the Lie algebra of the Lorentz group, involving three generators
Ki of Lorentz ‘boosts’ (or ‘pure’ Lorentz transformations) and three generators Ji of rotations
in space. The algebra is closed, corresponding to the fact that Lorentz transformations form a
group. Rotations in space form a subgroup of the Lorentz group, as may be seen from the
fact that the generators Ji form by themselves a closed algebra. The boost generators Ki

however do not generate a closed system, as is seen from (2.35c); pure Lorentz trans-
formations do not form a group. As a simple consequence of this, the product of two Lorentz
boosts in different directions is not a single Lorentz boost, but also involves a rotation. It is
this fact which is responsible for Thomas precession (see Section 2.5 below) – and which, as
far as I can tell, seems to have been unknown to Einstein.

We finish this section with an additional remark about notation. In Equation (2.16),

ds2 ¼ ημv dx
μ dxv;

it was pointed out that the summation convention is understood. To be more precise, indices
to be summed over appear twice, once in a lower and once in an upper position. We may
write (2.16), however, in an alternative way. Defining

xμ ¼ ημ vx
v;
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we may put

ds2 ¼ dx μ dxμ; (2:40)

where still the summation convention holds, and the repeated index – only one index now –

appears once in a lower and once in an upper position. Note that the components xμ and x μ

are quite different: in Cartesian coordinates we have

ðx0; x1; x2; x3Þ ¼ ðct; x; y; zÞ; ðx0; x1; x2; x3Þ ¼ ð�ct; x; y; zÞ;
and in spherical polar coordinates

ðx0; x1; x2; x3Þ ¼ ðct; r; θ; �Þ; ðx0; x1; x2; x3Þ ¼ ð�ct; r; r2; θ; fr2 sin2θg�Þ:
In General Relativity the position of indices on vectors is important. Vectors with an upper
index, V μ, are called contravariant vectors, and those with a lower index, Vμ, covariant
vectors. In the modern mathematical formulation, these vectors actually arise in concep-
tually different ways, as will be explained in the next chapter.

2.2 Twin paradox: accelerations

The so-called twin paradox is not a paradox. It is the following statement: if A and B are
twins and A remains on Earth while B goes on a long trip, say to a distant star and back
again, then on return B is younger than A. Suppose the star is a distance l away and B travels
with speed v there and back. Then, as measured in A’s frame, B is away for a time 2l/v, and
that is howmuch A has aged when B returns. When A looks at B’s clock, however, there is a
time dilation factor of γ= (1− v2/c2)−½, so B’s clock – including her biological clock – has
only registered a passage of time 2l/γv = (2l/v)(1− v2/c2)½; on return, therefore, she is
younger than A. This is the true situation. It appears paradoxical because one is tempted
to think that ‘time is relative’, so that while A reckons B to be younger on return, as argued
above, B should also reckon A to be younger; so in actual fact, one might think, they are the
same age after the trip, just as before it. This, however, is wrong, and the reason is that while
A remains in an inertial frame (or at least the approximately inertial frame of the Earth), B
does not, since B has to reverse her velocity for the return trip, and that means she undergoes
an acceleration. There is no reason why the twins should be the same age after B’s space
trip, and they are not.

It may be useful to consider some numbers. Suppose the star is 15 light years away and B
(Bianca) travels at speed v= (3/5)c. Then, measured by A (Andrei), Bianca reaches the star in
15

3=5
¼ 25 years, so Andrei is 50 years older when Bianca returns (see Fig. 2.2). The time

dilation factor is 1/γ= (1− v2/c2)½=4/5, so, as seen by Andrei, Bianca takes a time
25× (4/5) =20 years to reach the star, and will therefore be 40 years older when she returns.
She will therefore be 10 years younger than Andrei after the trip. Of course, this is an
approximation, since we have ignored the time taken for Bianca to change her velocity from
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+v to −v; this is indicated by B’s ‘smoothed out’ world-line near the star in Fig. 2.2. We now
show, however, that this time may be as short as desired, if B is subjected to a large enough
acceleration.Wemust therefore consider the treatment of accelerations inMinkowski space-time.

First define the 4-velocity u μ:

u μ ¼ dx μ

dτ
¼ c

dt
dτ

;
dx
dτ

;
dy
dτ

;
dz
dτ

� �
: (2:41)

In view of (2.16) and (2.17) we have

ημvu
μuv ¼ u μuμ ¼ �c2; (2:42)

the 4-velocity has constant length. Differentiating this gives with _u μ ¼ du μ

dτ

� �
d
dτ

ðu μuμÞ ¼ 0 ¼ 2 _u μuμ;

or, defining the acceleration four-vector a μ ¼ _u μ,

ημva
μuv ¼ a μuμ ¼ 0: (2:43)

Now consider a particle moving in the x1 direction with constant acceleration g. The velocity
and acceleration 4-vectors are

c
dt
dτ

¼ u0;
dx1

dτ
¼ u1;

du0

dτ
¼ a0;

du1

dτ
¼ a1;

(both vectors have vanishing 2- and 3-components). Equations (2.42) and (2.43) give

� ðu0Þ2 þ ðu1Þ2 ¼ �c2; �u0a0 þ u1a1 ¼ 0: (2:44)

In addition

a μaμ ¼ �ða0Þ2 þ ða1Þ2 ¼ g2; (2:45)

Space

Time

B

A

50
years

20 years

20 years

Star

Fig. 2.2 A stays on Earth while B travels to a star and back.
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this last equation defines the constant acceleration g. These two equations have the solutions

a0 ¼ g

c
u1; a1 ¼ g

c
u0; (2:46)

from which
da0

dτ
¼ g

c

du1

dτ
¼ g

c
a1 ¼ g2

c2
u0 and hence

d2u0

dτ2
¼ g2

c2
u0: (2:47)

Similarly,

d2u1

dτ2
¼ g2

c2
u1: (2:48)

The solution to (2.48) is

u1 ¼ Aegτ=c þ Be�g τ=c;

hence

du1

dτ
¼ g

c
ðAeg τ=c � Be�g τ=cÞ:

With the boundary conditions t= 0, τ = 0; u1 = 0,
du1

dτ
¼ a1 ¼ g we find A=− B= c/2 and

hence u1 ¼ dx
dτ

¼ c sinhðgτ=cÞ. Equation (2.46) then gives

a0 ¼ du0

dτ
¼ g sinhðgτ=cÞ;

hence u0 ¼ c
dt
dτ

¼ c coshðgτ=cÞ, and finally

x ¼ c2

g
coshðgτ=cÞ; ct ¼ c2

g
sinhðgτ=cÞ: (2:49)

The space and time coordinates then fall on the hyperbola

x2 � c2t2 ¼ c4

g2
(2:50)

sketched in Fig. 2.3. The non-relativistic limits (i.e. gτ / c << 1) of x and t above are

t ¼ τ; x ¼ c2=g þ 1=2 gt2:

We may now return to the twin paradox. We saw that the amount of proper time elapsing
for B, travelling at a constant speed v = 3c/5, was 20 years for each of the journeys to and
from the star. The remaining question was, how much proper time elapses while B reverses
her velocity from + v to−v ? If this is achieved with a constant acceleration a, then we have

from (2.49)
dx
dτ

¼ c sinhðaτ=cÞ ¼ 3

5
c, hence

τ ¼ c

a
sinh�1 0:6 � 0:55c

a
:
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